
Information and Computing Sciences

Utrecht University

VSTEP

Master thesis project

Automatic conversion of scanned sea
charts into 3D simulation models

Supervisors: Author:

Remco Veltkamp Andreea Barac
Ben Borrie
Pjotr van Schothorst

ICA3622479

Utrecht, 2012

I would like to thank my supervisor Remco Veltkamp who o�ered me a good supervision
of my thesis and great support throughout the project. I would also like to thank VSTEP
and to my co-supervisors, Ben Borrie and Pjotr van Schothorst, for their guidance.

My thanks also goes to the Romanian-American Foundation for their scholarship which
allowed me to �nish my master thesis. Last but not least, I would like to express my
gratitude to my family and to my boyfriend, who patiently have been supporting me
morally.

Abstract

Automatic nautical chart recognition and interpretation is a research topic that has
been going on for many years. Nautical chart digitization has a variety of applications
in navigation or in the development of navigational software, but also in educational
applications like 3D training simulators which require a realistic representation of the
seabed and its surroundings. This thesis presents a study on converting 2D scanned
nautical chart images into 3D models. It is an exploration of some of the possibilities
and problems occurring when designing and implementing such a system.

In order to obtain a 3D model, the scanned sea chart images have to be digitized. In
digitizing a scanned sea chart, one of the major challenges is to properly separate and
identify symbols on the map. The approached method �rst separates the background
and the foreground pixels with a threshold-based segmentation method applied on the
gray-scale image and then identi�es individual objects in the image by searching for all
connected components in the segmented binary image.

Another challenge is the classi�cation of individual objects. The study brings a solu-
tion for the classi�cation of di�erent types of objects in a sea chart, focusing on the
proper classi�cation of spot soundings. Geometrical features like area, center of gravity,
bounding box, density, orientation are used to build innovative decision rules that clas-
sify objects into several types of lines, characters or other symbols. The spot soundings
are later recognized and interpolated to create a 3D surface of the maritime terrain.
Tesseract OCR engine is used for character recognition. The spot soundings are in-
terpolated using a method called Inverse Distance Weighting with Natural Neighbors.
The interpolation method assumes that nearby points should have a greater in�uence
than further away points. The nearby points are the vertices of the Delaunay triangle
containing the interpolated point and are called natural neighbors.

The result of this research is a complete system that converts 2D scanned images into
3D simulation models. However, the performance of the algorithm is not 100% correct.
Some issues remain and can be improved by further work.

ii

Contents

Acknowledgements i

Abstract ii

I Introduction 1

1 Introduction 2

1.1 Project statement . 2
1.2 Scanned sea charts . 3
1.3 Symbols in sea chart images . 4
1.4 Previous work . 5

1.4.1 Features for character recognition in scanned sea charts 5
1.4.2 Automatic interpretation of maps 6
1.4.3 Automatic character recognition in maps 7
1.4.4 Spatial interpolation methods . 8

1.5 Designing a module for automatic conversion of scanned sea charts into
3D models . 10

II Automatic recognition of spot soundings 11

2 Object identi�cation 12

2.1 Binary segmentation . 12
2.1.1 K-Means algorithm . 13
2.1.2 Binary segmentation algorithm 13
2.1.3 Evaluation . 15

2.2 Object labeling . 16
2.2.1 Evaluation . 17

3 Object classi�cation 19

3.1 Features . 20
3.2 Decision rules . 20

3.2.1 Vertical straight lines (VSL) . 21
3.2.2 Horizontal straight lines (HSL) 21
3.2.3 Oblique straight lines (OSL) . 22
3.2.4 Curved lines (CL) . 23

iii

3.2.5 Characters . 24
3.2.6 Other symbols . 26
3.2.7 Classi�cation algorithm . 26

3.3 Evaluation . 27
3.4 Object grouping . 29

4 Spot soundings recognition 31

4.1 Tesseract OCR engine . 31
4.2 Evaluation . 33

4.2.1 Character recognition . 33
4.2.2 Sounding recognition . 34

III Automatic interpolation of spot soundings 35

5 Automatic interpolation of spot soundings 36

5.1 Desirable features of the interpolation method 37
5.2 Spatial interpolation methods . 37

5.2.1 Distance Transform Interpolation 38
5.2.2 Inverse Distance Weighting (IDW) 40
5.2.3 IDW - Shepard's method . 40
5.2.4 IDW - Natural neighbors . 41

5.3 Evaluation . 42

IV System overview 44

6 System overview 45

6.1 Appearance . 45
6.2 Performance . 46
6.3 Testing procedure . 46

6.3.1 Testing small parts of a scanned sea chart image 46
6.3.2 Testing full scanned sea chart images 47

V Conclusions 51

7 Conclusions 52

8 Future work 54

A Delaunay Triangulation 56

Part I

Introduction

1

Chapter 1

Introduction

1.1 Project statement

VSTEP develops training simulators that are used at maritime schools, to let students
practice ship handling and maneuvering in a safe and controlled environment. For
schools, it is important to o�er students local ports in the simulator, so they get a
matching experience with the real on-board practice they will get after the simulator
training. Creating realistic ports is however a lengthy and therefore expensive process.

Part of the port creation process may be automated using intelligent image interpre-
tation algorithms, used on scanned sea charts. These elements could be automatically
recognized and interpreted:

1. Coastlines

2. Seabed depth contours

3. Depth soundings, i.e. numbers on the chart that correspond with the water depth
at low tide

4. Buoy data: identi�er, shape, and light characteristics.

VSTEP's requirements were divided in two separate projects:

1. Creating an application in C++ that extracts spot soundings (numeric depth
measurements) from a scanned sea chart, the resulting point cloud data should
then be tessellated and then rendered to a 32-bit elevation GeoTIFF �le. The
resolution of the GeoTIFF should be user de�nable in terms of meters per pixel.

2. Creating an application in C++ that extracts depth contour lines from a scanned
sea chart and then exports each contour line to a separate EPS �le.

The conversion of a scanned sea chart into a 3D simulation model was further divided
into several steps: segmentation, identi�cation and classi�cation of di�erent symbols
that appear on a scanned sea chart, digit recognition for identifying the spot soundings
and interpolation of spot soundings. Because of time constraints, the current research
brings a solution to the �rst part of the project, but some steps for the second part

2

CHAPTER 1. INTRODUCTION 3

were also made. The following sections of this chapter present an overview of scanned
sea charts and symbols, mentioning some of the features that characterize each symbol.
The chapter ends with a resume of the previous work done in this �eld and an overview
of the challenges that rise when designing a module for automatic conversion of scanned
sea charts into 3D models.

1.2 Scanned sea charts

A sea chart or a nautical chart is a graphic representation of a maritime area and the
adjacent coastal regions. Usually, it shows depths of water, natural features of the
seabed, details of the coastline, information on tides and currents and human-made
structures such as harbors, buildings and bridges. With its help, the navigator plots
courses, ascertains positions and views the relationship of the ship with the surrounding
area. The sea chart assists the navigator in avoiding dangers and arriving safely at his
destination.

Nautical charts may take the form of charts printed on paper or electronic navigational
charts. Conventional maritime charts are printed on large sheets of paper at a variety of
scales. A scanned nautical chart represents the digital scanned image of a paper chart.
The quality of a scanned chart depends on the scanner resolution and on the quality of
the original printed chart (for example, an old printed chart will be blurred and faded).
An example of a scanned sea chart is displayed in Figure 1.1.

Figure 1.1. The Solent and Southampton Water

Most charts use color to emphasize various features and to facilitate chart reading and
interpretation, as can be seen in Figure 1.2:

• land areas are shown in gray or a yellowish color;

• water areas are shown in white, except in shallow regions, which are displayed in
blue;

• submerged areas which at times uncover at some tidal stages are shown in green;

CHAPTER 1. INTRODUCTION 4

• purple is used for many purposes on charts;

• buoys and other aids are appropriately colored in red, green, white, yellow, while
lighted buoys of any color have a purple disc over a dot;

• black is used for most symbols and printed information.

(a) Yellowish land, water, sub-
merged areas, purple symbols

(b) Grayish land, water, sub-
merged areas

(c) Buoys, purple and black
symbols

Figure 1.2. Di�erent colors used in nautical charts

Nautical charts are labeled with navigational and depth information, such as chan-
nels, anchorages, geographic names, �xed aids to navigation (e.g. lighthouses), bottom
characteristics, depths, underwater hazards and obstructions, pilotage areas, dangerous
wrecks. Other information, such as the meaning of symbols and abbreviations, special
notes of caution, units of measurement may be found on the chart. The next section
gives an overview on the symbols present in a sea chart and their features.

1.3 Symbols in sea chart images

The chart uses symbols to provide information about the nature and position of features
useful to navigators. Figure 3.1 shows some examples of chart symbols. For a more
detailed review of the symbols on nautical charts refer to [29].

1. Soundings
Depths which have been measured are indicated by numbers shown on the chart.
Usually they are black, may be either vertical or slanting (depending on the font
face) and are written with di�erent font sizes and faces. Decimal digits are written
as subscripts, without a decimal point. Soundings above sea level are indicated
using a horizontal line underneath them.

2. Depth of contour lines

Contour lines are lines connecting points of equal depth; the depth is usually
indicated on a chart with numbers which have a grayish color and are aligned
with the contour line.

3. Letters, words
They can represent geographic names or abbreviations, but also information about
the chart. They are usually black or purple, may have a variety of orientations,
font sizes and font faces even inside the same chart.

CHAPTER 1. INTRODUCTION 5

4. Lines
Usually, straight lines represent a straight course of water or tidal information,
while the curved lines represent contour lines. There are several types of lines
that may be present on a sea chart:

• Vertical straight lines - they can be either black or purple, continuous or
dotted. Usually, they are used to delimit an area with speci�c properties:
restricted areas, international boundaries and national limits, etc.

• Horizontal straight lines - just like the vertical straight lines, they can be
either black or purple, continuous or dotted and are used to delimit the same
type of areas.

• Oblique straight lines - they can be black or purple, continuous or dotted.
They can symbolize natural or cultural features, ports, etc.

• Curved lines - they may be black or gray and may have di�erent sizes; curved
lines are mostly used to represent natural features, like coastlines, shorelines,
rivers, lakes, contour lines etc.

5. Other symbols
A lot of symbols are used in nautical charts to provide more information to the
navigator. They can represent aids of navigation, like lighthouses and buoys,
vegetation, cultural features etc.. They may be black, purple, yellow, red, green,
have di�erent sizes and di�erent shapes (dots, circles, polygons, stars etc.). Refer
to [9] for more information about chart symbols.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.3. Symbols in nautical charts: a) soundings; b) depth of a contour line; c) string of characters;
d) horizontal line; e) oblique lines; f) curved line; g, h) examples of other symbols.

1.4 Previous work

Research on automatic map recognition has been going on for many years resulting
in a huge amount of publications. Early reports already introduced the �rst steps of
this automatic procedure: digitization of the original paper chart using a scanner and
thresholding. The following steps are di�erent, depending on the method approached
by the authors.

1.4.1 Features for character recognition in scanned sea charts

In 1996, Trier et al. [33] published a survey of feature extraction methods for character
recognition. Their prime interest was to recognize hand-printed digits in hydrographic

CHAPTER 1. INTRODUCTION 6

maps. Trier pointed the selection of a feature extraction method as being the most
important part in achieving a high recognition performance and discussed di�erent
methods in terms of invariance properties, reconstructability and expected distortions
and variability of the characters. They also discussed methods for di�erent represen-
tation of the characters, such as solid binary characters, character contours, skeletons
or gray level subimages of each individual character. When dealing with a gray-scale
image, template matching, unitary image transforms, zoning, geometric moment invari-
ants or Zernike moments may be used for character recognition. They obtained the
best results by using Zernike moments, which can be made invariant w.r.t. rotation
and illumination and mentioned that at least 8-11 moments are needed for a complete
description of a character. Projection histograms may also be used for binary images,
but Trier concluded that the Zernike moments gave the best performance in terms of
recognition accuracy. For binary contours, they discussed methods that use contour
pro�les, spline curve approximations, elliptic Fourier descriptors or other Fourier de-
scriptors and reported that the elliptic Fourier descriptors have the best performance;
these descriptors can be made independent of the starting point, invariant w.r.t rotation
or size. After calculating the features of the characters, they propose training a neural
network classi�er as the last step of the recognition process. The work of Trier et al.
inspired a lot of researchers that worked on character recognition.

1.4.2 Automatic interpretation of maps

Some authors focused on the automatic extraction of contour lines from topographic
maps. A topographic map essentially consists of feature lines and area features; di�erent
features are printed with di�erent colors. Brown is used to depict contour lines, which
are smooth, continuous curves that sometimes overlap. The algorithms for contour lines
extraction usually have three steps: segmentation by thresholding, contour thinning
and reconstruction of broken contour lines. Ghircoias and Brad [24] designed a semi-
automatic algorithm that used K-Means1 to segment the scanned map. They used as
initial centers a set of colors selected by the user and removed the resulting noise on the
basis of a minimum distance criteria. The reconstruction of the broken contours was
based on the concept of medial axis of a curve2, approximated by the vertices of the
Voronoi diagram. Arrighi and Soille [16] developed a method based on morphological
transforms. They extracted the contour lines by selecting all the pixels with red hue and
removed the noise with the hit-or-miss transform3. For reconnection, they extracted the
endpoints of the lines with the hit-or-miss transform, skeletonized the lines and used
a combination of distance and direction criteria. After the reconstruction, the user
could insert contour line elevations to generate a digital elevation model. The same
segmentation method was used by Xin et al. [36]. However, they tracked the contour

1Refer to chapter 2 for an overview of the K-Means algorithm.
2The medial axis of a curve represents the locus of the center of the circles that are tangent to the

curve in more than two points.
3The hit-or-miss transform is a general binary morphological operation that is used to look for

particular patterns of foreground and background pixels in the image; it takes as input a binary image
and a structuring element that may contain both foreground and background pixels and produces
another binary image as output.

CHAPTER 1. INTRODUCTION 7

lines with an active contour model algorithm1 and used a Generalized Gradient Vector
Flow algorithm2 to reconnect contour lines. Frischknecht et al. [23] used a knowledge-
based template matching algorithm for automatic interpretation of topographic maps.
Here, segmentation is used as a preselection technique to �nd regions of high, low or no
interest. Individual segments are found with a run-length-encoded method. Features as
area, perimeter, compactness, orientation, center of gravity, height, width are computed
for each segment to enlarge the knowledge-basis.

Because these methods are focused on �nding and reconstructing contour lines in maps,
they are not suited for the current project, in which all symbols have to be identi�ed
and all the soundings recognized. Furthermore, nautical charts display more information
and symbols with di�erent colors than topographic maps. Thus, they cannot be used
to automatically interpret a nautical charts.

Ablameyko et al. [13] developed a method for an automatic/interactive interpretation
of color maps. After the binarization of the color image using RGB and HSV color
spaces, they vectorized the image by thinning the objects, extracting the contours and
calculating geometric features and relations between objects. They also proposed a
method for automatic identi�cation of dashed lines based on spatial distances and the
minimal and maximal width and length of the objects. In the end, they created a
module for interactive image interpretation. Some parts of Ablameyko's method are
similar to the proposed algorithm, however their method is not an automatic process
for image interpretation since it requires user intervention.

1.4.3 Automatic character recognition in maps

Other authors focused on the automatic recognition of characters in maps. Eikvil et
al. [20] �rst extracted the lines in the map and then identi�ed objects in the image
by extracting the remaining foreground pixels. They extracted features based on the
Fourier expansion of the contour of the symbols, which can be made invariant to scale,
shift and rotation, classi�ed the objects using Bayes and grouped them based on their
location in the image. Chiang et al. [17] tried to recognize text labels in raster maps
using morphological transforms. After applying a Mean-shift �lter to smooth the image
and reduce the noise, they performed color-quantization with a median-cut algorithm;
the text was extracted by letting the user select a set of colors used on text in the
map. To identify strings, they computed the width and height of characters for each
font size from samples provided by the user; the dilation operator3 was used to merge
nearby characters and group them together. The orientation of the characters was
calculated with the closing operator4. After string orientations have been identi�ed,
the strings are rotated clockwise and anti-clockwise and then passed to an OCR to

1Active contour model, also called snake, is an algorithm used to delineate an object outline from a
possibly noisy 2D image.

2Generalized gradient vector �ow controls curve contour features through appropriate restriction
applied to deformable curves. It makes edge attraction �ow smoothly to the image border, therefore it
expands decisive range of attraction �ow.

3The dilation operator gradually enlarges the boundaries of regions of foreground pixels in binary
images. Thus, areas of foreground pixels grow in size, while holes within those regions become smaller.

4The closing operator preserves background regions that have a similar shape to the structuring
element, while eliminating all other regions of background pixels.

CHAPTER 1. INTRODUCTION 8

determine their real horizontal orientation. Velasquez et al [34] computed the gray-scale
image and performed segmentation using threshold values selected from a histogram of
frequency gray values. To separate touching or overlapping characters, they used V-
lines (4 horizontal lines measured at di�erent height w.r.t the character) and V-curves
(for curvilinear text) and used an arti�cial neural network for recognition.

The authors reported a good performance of character recognition for all the methods.
However, they didn't focused on the separation of characters from other objects that
appear in maps.

In conclusion, researchers focused on treating speci�c parts involved in the process of au-
tomatic interpretation of maps, such as character recognition or contour line extraction.
However, a complete system that performs this task still doesn't exist. The necessity of
a system that automatically interprets maps arises in a lot of di�erent activities which
require an automatic digitization of existing maps.

1.4.4 Spatial interpolation methods

The interpolation of spatial data has been considered in many di�erent forms. Myers
[27] and Li [26] give good overviews of the existing methods. They divide the methods
into deterministic or non-geostatistical methods and stochastic or geostatiscal methods.
Li also presents a comparison and evaluation of the methods. Some representative
examples from both categories are summarized below.

Deterministic methods

1. Kernel approximation
If the sample points are written as a sum of delta functions 1 , then the 'spikes'
given by the delta function can be replaced with a kernel approximation or in-
terpolation (for example, an exponential function). Usually, the kernel function
has a parameter called band width, which determines the area of action of the
kernel. By adjusting the band width, the interpolator can give greater or lesser
weights to data in terms of how close the data locations are to the point where
the interpolation is desired. Thus, it can be adjusted to perform a smooth or a
strict interpolation.

2. Inverse distance weighting
Inverse distance weighting can be seen as a special case of kernel approximation in

1The delta function can be viewed as the derivative of the Heaviside step function: if

H(x) =


a, x < x0
b, x = x0
c, x > x0

(1.1)

then

d

dx
H(x) = δ(x) (1.2)

See http://mathworld.wolfram.com/DeltaFunction.html for more details.

CHAPTER 1. INTRODUCTION 9

which the kernel function is given by the inverse of the distance between the point
where the interpolation is desired and the sample points; this kernel function has
in�nite band width. The method is fully explained in Chapter 4.

3. Triangular Irregular Networks
The triangular irregular network (TIN) [30] was developed by Peuker et al. in
1978. In a TIN model, the sample points are connected by lines to form triangles;
within each triangle, the surface is usually represented by a plane. Most often,
the triangles are formed based on a Delaunay's triangulation1, ensuring that each
triangle is empty so it does not contain any of the sampled points. The value of
a point inside a triangle is usually estimated by linear or cubic interpolation.

4. Splines
The splines are polynomials with each polynomial of degree p being local rather
than global. The polynomials describe pieces of a line or surface (they are �tted
to a small number of data points exactly) and are �tted together so that they join
smoothly.

Stochastic methods

1. Models
The interpolating function is expressed as a sum of functions, but those functions
are not explicitly known nor speci�ed a priori. Information contained in the data,
such as spatial correlation, is used to determine the coe�cients of the unknown
functions.

2. Spatial structure functions
The basic underlying premise is that values at locations that are close together
are more similar and values at locations far apart are relatively independent.

3. Kriging
Kriging [18] is a special case of a spatial structure function. It is based on the
assumption that the parameter being interpolated can be treated as a regionalized
variable. A regionalized variable varies in a continuous manner from one location
to the next and therefore points that are near each other have a certain degree of
spatial correlation, while points that are widely separated are statistically inde-
pendent2.

According to Li's evaluation, the IDW method works well with regularly spaced data,
but it is unable to account for clustering. The disadvantage of the TIN method is
that the result only depends on three samples; the estimated surface is continuous, but
with abrupt changes in gradient at the margins of the triangles. Splines can be quickly
calculated and predictions are close to the values being interpolated, but there are no
direct estimates of the errors. Kriging methods provide the best linear estimate, but the
result depends on the assumptions made, the de�nition of the model is time-consuming
and it requires a large number of samples.

1See Annex A for an overview of Delaunay triangulation.
2In probability theory, two events (points here) are statistically independent if the occurrence of one

event gives no information about the occurrence of the other event.

CHAPTER 1. INTRODUCTION 10

Li also mentions that all the deterministic methods are local methods in which the value
of interpolated point is based on the sampled data nearby, while the stochastic methods
are global methods. The TIN model produces a discrete and abrupt surface, while the
others produce smooth and gradual surfaces. They all are exact methods generating an
estimate with the same value as the observed value at a sample point or they can be
forced to be exact.

In conclusion, spatial data interpolation can be performed in various ways by invoking
di�erent assumptions and models. The most suitable method for a speci�c problem
depends on the data and on the desirable properties the interpolation result should
have.

1.5 Designing a module for automatic conversion of scanned

sea charts into 3D models

Even though some steps were taken in this direction, there is still no fully automatic
algorithm for map interpretation or conversion into a 3D model. Designing and devel-
oping such a system is a complicated work, since there are many considerations to be
made.

First of all, scanned sea charts are large complicated images, which display a lot of
information and symbols that sometimes may touch or overlap. Thus, a good separation
and identi�cation of the symbols was required. Secondly, the conversion of a 2D map into
a 3D model requires an interpolation of the spot soundings. The interpolation method
has to ful�ll some constraints, since the result has to be similar to a real terrain.

The �rst step was to divide the problem in two separate parts: automatic sounding
recognition and automatic interpolation of the extracted soundings. The �rst part was
further divided into:

1. Segmentation - the goal of this step is to remove all background pixels (belonging
to land areas, water or submerged areas) and keep only pixels that belong to
symbols;

2. Labeling - di�erent symbols are separated by searching for connected components
through the foreground pixels;

3. Classi�cation - all the individual objects are given a class label based on the
similarity with a certain type of symbol (characters, lines, curves etc.)

4. Recognition - all the objects belonging to the 'characters' class are passed to an
OCR software to recognize the true soundings.

For the second part, several interpolation methods were considered and reviewed; based
on the obtained results and certain constraints, an Inverse Distance Weighting interpo-
lation method based on Delauney triangulation was chosen1.

1Refer to Chapter 5 for a detailed explanation.

Part II

Automatic recognition of spot

soundings

11

Chapter 2

Object identi�cation

Scanned sea chart images represent the input data of this module. The images are
color images which usually exceed sizes of (5000, 5000) pixels. Analyzing a large image
like this is a tedious work which takes a lot of processing time. A simpli�cation of the
problem is to only consider those parts of the image that are of main interest (pixels that
belong to a symbol) and to ignore pixels that belong to the background (land, water,
submerged area). The separation of image pixels into foreground and background pixels
is achieved through a binary segmentation method. The following chapters will present
the step-by-step process of the automatic recognition of spot soundings in scanned
sea charts, from the binary segmentation method, object labeling and classi�cation to
soundings recognition.

2.1 Binary segmentation

In a sea chart image, background areas may have di�erent colors, depending on their
type: blue for water, white for submerged areas, gray or yellow for land. However, the
shades of these colors are di�erent from chart to chart and this fact makes an automatic
segmentation method in RGB-color space impossible.

Figure 2.2a shows an example of a sea chart color image and Figure 2.2b displays
the corresponding gray-scale image. Looking at the gray-scale image, it is visible that
background areas have light shades of gray, while symbols are represented by dark shades
of gray. This observation can be used to develop an automatic binary segmentation: all
pixels with light shades of gray can be labeled as background and all pixels with dark
shades as foreground. The problem is how to decide which gray levels are considered
light and which dark.

Partitioning all pixels in the image in two clusters using the K-Means algorithm gives
the answer to the problem: the resulted cluster centers will give a threshold for light
and dark shades of gray and all pixels will be labeled as background or foreground
depending on their distance to the cluster centers.

12

CHAPTER 2. OBJECT IDENTIFICATION 13

2.1.1 K-Means algorithm

The K-Means clustering algorithm is used to partition n data points or observations into
k disjoint clusters, cj , in which each observation belongs to the cluster with the nearest
mean. The partitioning is done so as to minimize the sum-of-squares optimization
function:

J =
k∑

j=1

n∑
i=1

∥∥∥xji − µj∥∥∥2 (2.1)

where
∥∥∥xji − µj∥∥∥2 is a distance measure between the data point xji and the cluster center

µj .

The algorithm is composed of the following steps:

1. Initialize the cluster centers, either randomly or by some heuristics:µ01, µ
0
2, ..., µ

0
k.

2. Assign each data point to the cluster that has the closest centroid:

ctj : arg min
i

∥∥xj − µti∥∥2 (2.2)

3. Update the value of the k centroids:

ut+1
j =

∑
xi∈cj xi

|cj |
(2.3)

4. Repeat step 2 and 3 until the assignments no longer change.

Although it is proven that the algorithm will always terminate, K-Means does not
necessarily �nd the global minimum of the objective function [6]. The algorithm is
also highly sensitive on the initial selected cluster centers. To reduce this e�ect, the
algorithm can be run multiple times.

Figure 2.11 presents an illustration of the K-Means algorithm applied for a set of 20 2-
dimensional data points with k = 3 and Euclidean distance as a distance metric. Figure
2.1a displays the data points and the initial cluster centers. After the �rst assignment
step, data points are divided in three clusters as in �gure 2.1b; the updated centroids are
displayed in �gure 2.1c. Figures 2.1d and 2.1e present the next iteration: the points are
reassigned to the new clusters, the centroids are updated and the algorithm converges.
The �nal solution is given in �gure 2.1f.

2.1.2 Binary segmentation algorithm

The steps of the binary segmentation algorithm, illustrated in Figure 2.2, are:

1. Compute the gray-scale image (�gure 2.2b) from the original image (�gure 2.2a);

2. Compute the gray-scale image histogram, by counting the number of pixels for
each gray level. Figure 2.2c displays the histogram of the image in Figure 2.2b.

1The images were created using [5].

CHAPTER 2. OBJECT IDENTIFICATION 14

(a) (b) (c)

(d) (e) (f)

Figure 2.1. K-Means algorithm:a) Data points and initial centers, b) First iteration: assignment step,
c) First iteration: update step, d) Second iteration: assignment step, e) Second iteration: update step,
f) Final solution.

3. Run the K-Means algorithm to partition the pixels in 2 clusters, thus k = 2. The
K-Means algorithm doesn't return the global optimum of the problem, but a local
optimum, and the result is dependent on the choice of the initial centers. Because
it is desired to cluster the pixels into light (close to white) and dark (close to black)
shades, the centers are initiated with these extreme values: µ1 = 0, µ2 = 255.
After applying K-Means clustering for the histogram in �gure 2.2c, the resulted
centers are: µ1 = 70, µ2 = 209.

4. Label all the pixels w.r.t their distance to the cluster centers, as in the pseudocode
in Listing 2.1. Figure 2.2d shows the binary segmentation of the image in Figure
2.2a.

1 // G - grayscale image
2 // µ1, µ2 - final cluster centers
3 // B - final binary image
4 forall pixels (i, j) in G
5 if abs(G[i, j] - µ1) < abs(G[i, j] - µ2)
6 B[i, j] = 0;
7 else
8 B[i, j] = 255;

Listing 2.1. Label pixels as background or foreground

CHAPTER 2. OBJECT IDENTIFICATION 15

(a) (b) (c)

(d) (e)

Figure 2.2. Object labeling steps: a) Original color image; b) Grayscale image; c) Corresponding
grayscale histogram and centers found with K-Means; d) Binary segmented image; e) Individual objects
(connected componets) in the image.

2.1.3 Evaluation

The performance of the binary segmentation method is in�uenced by the intensity of
every pixel, since it is a graylevel-based segmentation. The threshold values delimiting
the background and the foreground pixels are very important; they may give a good
segmentation (according to the human visual perception) or they may cause di�erent
objects to be treated as background losing any information about them. The resolution
of the image also plays an important role. Despite the fact that sea charts have a high
resolution and the objects in the image seem to be represented by constant pixel values,
they sometimes have small variations in their intensity values. That is why one object
may end up being segmented in several parts.

Figure 2.3 shows several results. Image 2.3a contains four di�erent objects (two 'one'
digits and two lines) and the segmentation result in �g. 2.3c is accordingly. The other
two images show the two type of problems that may be encountered:

• Undersegmentation
Figure 2.3d is a case of undersegmentation. As can be seen in �g. 2.3e, the gray
values of the horizontal lines are more similar to the gray values of the background
and therefore are treated as background. Another problem here is that di�erent
objects may end up being segmented as a single object, depending on the gray
values of the pixels in between them. Even though humans can distinguish eight
di�erent objects in the image (two digits, one curved line and �ve horizontal lines),

CHAPTER 2. OBJECT IDENTIFICATION 16

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.3. Segmentation results: a, d, g) Original images; b, e, h) Graylevel images; c, f, i) Corre-
sponding binary segmentations.

the method only �nds two (the curved line and the two digits glued together and
treated as a single object).

• Oversegmentation
Figure 2.3g is a case of oversegmentation: the gray values of the house-shaped
object vary and some of the pixels are treated as background. This way, gaps are
introduced in the object, making it to be segmented in several parts. Even though
only six di�erent objects are distinguishable in the scene (three digits, two discs
and a house-shaped object), the method �nds 16 di�erent objects, by segmenting
the house in 11 small parts.

For the purpose of the project, some of the segmentation problems can be ignored. The
omission of certain objects that are not soundings and that are treated as background
does not a�ect the overall performance, because only soundings are of interest. Also,
the oversegmentation of objects other than soundings can be ignored. However, spot
soundings can sometimes be a�ected by these problems: when the scanned sea chart is
an old chart with blurred or faded colors digits may be lost during the segmentation
process, resulting in an undersegmentation, or they may be oversegmented if gaps are
formed. Another problem is when digits are glued together, causing them to lose their
individual shape properties; in the classi�cation step they will not be recognized as
digits or characters.

2.2 Object labeling

The result of a binary segmentation is a binary image de�ned by the fact that all pixels
are either black or white (0 and 1, 0 and 255). Usually, black pixels represent the
foreground and white pixels the background. The goal of labeling binary images is to
identify and separate individual objects in the scene. Thus, all pixels belonging to a
certain object are marked with a unique label, di�erent from the labels of other objects

CHAPTER 2. OBJECT IDENTIFICATION 17

in the image. An individual object is a distinct connected component. The label may
be a number or a string of characters.

Figure 2.4. V8

neighborhood (dark
and light gray) and
the predecessors
of the curent pixel
(dark gray).

Object labeling was performed using a method called region track-
ing with correspondence tabels [2]. This is a simple algorithm that
consists in iterating through the image (from left to right and from
top to bottom) and assigning a label to an object pixel w.r.t the
labels of its predecessors. The predecessors in a V8 neighborhood
are shown in Figure 2.4. When the predecessors have di�erent la-
bels, the minimum label is assigned to the current pixel, but since
all pixels actually belong to the same object, the correspondence
between labels is written in a correspondence table. This way, the
number of iterations through the image is limited to one.

Let T be the correspondence table. When the algorithm starts, each
entrance in the table is initialized with its value (T (j) = j). The
table is updated in two situations:

• if the current pixel has no labeled predecessors it has to receive
a new label which is pushed back in the table (T (jmax = jmax);

• if the current pixel has labeled predecessors it receives the min-
imum label and the correspondence between the other labels
and the minimum one is written in T . If the current pixel
has as predecessors P1, P2, P3, P4, then let m = min(Pi). The
pseudocode for updating the correspondence table is given in
Listing 2.2.

1 forall Pi

2 while T (Pi) 6= m do
3 tmp = T (Pi)
4 T (Pi) = m
5 Pi = tmp

Listing 2.2. Updating the correspondency table

After the �rst iteration, T is updated such that each label corresponds to the �nal label
of the object. The �nal labels are not necessarily in order. The algorithm ends by
replacing each label j in the image with T (j).

Figure 2.2e shows the result of this algorithm applied on the binary image in �gure
2.2d.

2.2.1 Evaluation

The object labeling method correctly identi�es all the connected components in the
input binary image. As can be seen in �gure 2.5, each connected component is identi�ed
as a di�erent object given in a di�erent color. In �gure 2.5g, the digit 9 and the buoy

CHAPTER 2. OBJECT IDENTIFICATION 18

are glued together in the segmentation method and now they are identi�ed as a single
connected component.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.5. Object labeling: a, d, g) Original images; b, e, h) Binary segmentation; c, f, i) Individual
objects given in di�erent colors.

Chapter 3

Object classi�cation

After applying the labeling algorithm, all the individual objects in the chart image are
obtained. They further need to be classi�ed into several classes according to the symbol
they are most similar with. The classes are: horizontal straight line, vertical straight
line, oblique straight line, curved line, character and other symbols. Some examples of
symbols are given in Figure 3.1.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

(y) (z)

Figure 3.1. Symbols in nautical charts: a) - d) soundings, e) - f) depth of contour lines, g) - k) letters,
l) vertical line, m) horizontal line, n) - p) oblique lines, q) - s) curved lines, t) - z) some examples of
other symbols.

19

CHAPTER 3. OBJECT CLASSIFICATION 20

3.1 Features

After eliminating the noise resulted after the segmentation and object labeling steps
based on a minimal surface criteria, geometrical features are calculated for the remaining
objects. Some of the geometrical features are illustrated in Figure 3.2.

• Area
The area of an object is equal to the total number of pixels that belong to that
object.

• Center of gravity
The center of gravity of an object is equal to the arithmetic sum of all object
points.

• Axis-aligned minimum bounding box
The axis-aligned minimum bounding box of an object is the tightest rectangle
which includes the object. The rectangle is parallel to the x and y axes and is
described by four numbers: the smallest x and y coordinates of the object points
denoting the top-left corner of the rectangle, and the greatest x and y coordinates
denoting the bottom-right corner.

• Orientation
The orientation of an object is the imaginary rotation that is needed to move the
object from a reference placement to the current placement. It is calculated with
an iterative search: the object is rotated successively with angle values ranging
from 0 to 2π and the width of the rotated object is calculated. The orientation is
chosen to correspond to the minimal width of the object.

• Arbitrarily oriented minimum bounding box
The arbitrarily oriented minimum bounding box is the minimum bounding box
calculated subject to no constraints as to the orientation of the result.

• Density
The density of an object is the ratio of the area of the arbitrarily oriented minimum
bounding box and the area of the object: ρ = Abb/Aobj .

• Vertical and horizontal projection histograms
The vertical and horizontal projection histograms represent the projection of the
object on the x ans y axes.

All these features are later used in the classi�cation process.

3.2 Decision rules

As mentioned in Chapter 1, symbols of the same type have similar features and these
features are di�erent from features of symbols of some other type. If a symbol is properly
described, the respective features could be used to build decision rules, which represent
the basis of the classi�cation process.

CHAPTER 3. OBJECT CLASSIFICATION 21

(a) (b) (c) (d)

(e)

Figure 3.2. Geometrical features: a) Symbol, b) Center of gravity, c) Axis-aligned bounding box, d)
Arbitrarily oriented bounding box, e) Horizontal and vertical projection histograms

The decision rules mainly focus on describing and classifying di�erent types of lines
and characters in a sea chart. The reason is the goal of the project: to recognize spot
soundings and contour lines in a scanned sea chart.

3.2.1 Vertical straight lines (VSL)

The main and simplest features of a vertical straight line is a small width of its bounding
box and an orientation angle of 0 degrees. To eliminate false positive results, a constraint
on the height of the line is required: the height has to be big enough such that dots
or other similar objects are not labeled as a vertical straight line. The examples in
Figure 3.3 have a width equal to 1, respective 2, and both have an orientation angle of
0 degrees.

(a) (b)

Figure 3.3. Vertical straight lines: a) width = 1, θ = 0; b) width = 2, θ = 0.

Therefore, the decision rule to identify vertical straight lines is: (width < thresh1) &&
(height > thresh2) && (θ = 0), which is also listed in the pseudocode in Listing 3.1.

1 if (obj.width < thresh1 && obj.height > thresh2 && theta == 0)
2 return true;
3 return false;

Listing 3.1. VSL decision rule

3.2.2 Horizontal straight lines (HSL)

If vertical straight lines are characterized by a small width and an orientation angle of 0
degrees, horizontal straight lines are characterized by a small height of their bounding

CHAPTER 3. OBJECT CLASSIFICATION 22

box and an orientation angle around 90 degrees. The lines in Figure 3.4 both have a
width of 2 and an orientation angle equal to 90 degrees.

(a) (b)

Figure 3.4. Horizontal straight lines: a) width = 2, θ = 90; b) width = 2, θ = 90.

A constraint on the width of the line is required: the line has to be wide enough such
that dots are not labeled as horizontal straight line. Thus, the decision rule to identify
horizontal straight lines is: (height < thresh1) && (width > thresh2) && (θ = 90),
which is also listed in Listing 3.2.

1 if (obj.height < thresh1 && obj.width > thresh2 && theta == 90)
2 return true;
3 return false;

Listing 3.2. HSL decision rule

3.2.3 Oblique straight lines (OSL)

The easiest way to identify oblique straight lines would be to calculate their arbitrarily
oriented bounding box and apply the same decision rules as for vertical or horizontal
straight lines. Since the calculation of the arbitrarily oriented bounding box depends
on the line' s orientation angle which is calculated with an error of 1 degree, the result
could be compromised. Therefore, another decision rule is required.

The most natural way to check if an object is a line is to �nd the endpoints of the
object and compute the distance from all other points in the object to that line. If the
distance is small enough, then it can be said that the points approximate a line.

Because we are dealing with straight lines, the easiest way to �nd the endpoints is to
go through all the points of the object and keep the two points with minimum and
maximum y coordinates, p1 and p2. Then, the distance from a point p to the line
formed by p1 and p2 can be calculated using Eq. 3.1.

d =
|(xp2 − xp1) ∗ (yp1 − yp)− (xp1 − xp) ∗ (yp2 − yp1)|√

(xp2 − xp1)2 + (yp2 − yp1)2
(3.1)

(a) (b)

Figure 3.5. Oblique straight lines and the endpoints found: a) max_dist(p, line) = 1.51 b) max_-
dist(p, line) = 2.69.

CHAPTER 3. OBJECT CLASSIFICATION 23

Figure 3.5 shows some examples of oblique straight lines cropped from sea charts, the
endpoints found with the previous mentioned algorithm and the maximal distance from
the other object points to the line. Of course, the maximum distance increases with the
width of the line, but also with the error in approximating the endpoints of the line.

Thus, the condition for an object to be an oblique straight line is that the maximum
distance from all object points to the line approximation to be smaller than some
threshold. A pseudocode of the decision rule is given in Listing 3.3.

1 forall points Pi in obj
2 if (dist(Pi, line) > thresh)
3 return false;
4 return true;

Listing 3.3. OSL decision rule

3.2.4 Curved lines (CL)

Building a decision rule to identify curved lines in a sea chart image is a more delicate
problem. A plane curve is the locus of points of coordinates x, y, such that f(x, y) = 0,
where f is a polynomial in two variables de�ned over some domain, F , given here by
the width and height of the image. The process of �nding the function f that best �ts
the set of data points and possibly subject to some constraints is known as curve �tting.
Polynomials, conic sections, trigonometric functions are generally used for curve �tting.
However, in a sea chart image curved lines usually represent contour lines and there
is no prior knowledge on what type of curves they could be. Thus, it is very hard to
decide what type of curve �tting algorithm would be appropriate.

Another way to identify curved lines in sea chart images is based on properties of the
shape and geometry of curves. For example, curves have bounding boxes with rather
large area compared to their own area. The reason is due to the fact that curves are
usually made of thin segments, but they are either long or wide. A consequence is
visible in their projective histograms, on x or y axes: the maximum value of the x or y
projection histogram is a relative small number.

Therefore, the properties of curved lines used in classi�cation are:

• The density of background pixels inside the bounding box has to be greater than a
threshold; the curves in Figure 3.6 have a density equal to 12.8, respective 10.55,
which shows a relative high number of background pixels inside their bounding
box compared to the number of foreground pixels.

• The maximum values of the horizontal or vertical projection histograms have to be
smaller than a threshold. Because pixels are equally divided along the curved line
(the curve has the same width along its path), in an ideal case1 the values of each
bin of the histograms are equal. This value is given by the ratio of the area and

1An ideal case is a curve shaped like a circle, without any loops or waves.

CHAPTER 3. OBJECT CLASSIFICATION 24

the width (or height) of the curve multiplied by a constant value1 depending on

how many waves or loops the curve has: Hmax = ct∗
⌈

area
width

⌉
, Vmax = ct∗

⌈
area
height

⌉
.

In Figure 3.6a, the curve has a horizontal orientation and a threshold equal to 8,
while the maximum value of the horizontal projection histogram is 3; the curve
in Figure 3.6b has a vertical orientation, a threshold equal to 12 and a maximum
value of the vertical projection histogram of 3. In both cases, the condition holds.

(a) (b)

Figure 3.6. Curved lines: a) ρ = 12.8, Hmax = 8, hmax = 3; b) ρ = 10.55, Vmax = 12, vmax = 3.

Therefore, the decision rule for identifying a curved line in a sea chart is based on these
two properties of the shape and a pseudocode is given in Listing 3.4.

1 if obj.density > thresh
2 h_curve = false; v_curve = false;
3 max = ct * ceil (area / width);
4 forall bins i in hhist
5 if hhist[i] > max
6 h_curve = false;
7 break;
8 max = ct * ceil (area / height);
9 forall bins i in vhist
10 if vhist[i] > max
11 v_curve = false;
12 break;
13 if h_curve || v_curve
14 return true;
15 return false;

Listing 3.4. CL decision rule

3.2.5 Characters

Assuming all the vertical, horizontal, oblique straight lines and curved lines were cor-
rectly identi�ed, the only remaining objects are characters (letters and digits) and other
symbols with various shapes and sizes. Therefore, a decision rule to separate the char-
acters from all these objects is needed.

1The constant value was chosen empirically and set to ct = 4.

CHAPTER 3. OBJECT CLASSIFICATION 25

Again, this is a delicate problem since there is no general way to describe the shape of all
letters and digits. Furthermore, in di�erent charts, characters have di�erent font faces
and sizes, which makes the problem even more di�cult. The solution is to �nd similar
features of all characters in maps and combine them to build decision rules that will
separate characters from the other remaining symbols. The main concern is to classify
spot soundings, thus the decision rules will be based on general features of digits by
analyzing font types ans sizes.

The shape properties considered for this classi�cation are mainly geometrical features
of the object:

• Area - even considering all font faces and sizes used in charts, the area of a digit
falls within some thresholds.

• Orientation - digits that represent spot soundings have a vertical orientation or
they are slightly inclined, depending on the font face.

• Density - digits and characters in general can be seen as curved lines, thus they
also have a large density (ratio between the amount of background and foreground
pixels inside their bounding box).

• Bounding box - depending on the font face and size and, of course, on the digit,
the size of the bounding box di�ers, but it is bounded by some thresholds.

• Height-width ratio - digits have a rectangular bounding box, with height greater
than their width.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.7. Characters: a) area = 126, θ = 0.26, ρ = 1.62, bb = (12, 17), hwratio = 1.41; b)
area = 66, θ = 0.22, ρ = 1.43, bb = (5, 19), hwratio = 3.8; c) area = 72, θ = 0, ρ = 2.22, bb = (10, 16),
hwratio = 1.6; d) area = 98, θ = 0.12, ρ = 2.35, bb = (11, 21), hwratio = 1.9; e) area = 57, θ = 0.34,
ρ = 1.35, bb = (7, 11), hwratio = 1.57; f) area = 84, θ = 0.29, ρ = 1.92, bb = (9, 18), hwratio = 2; g)
area = 107, θ = 0.2, ρ = 1.77, bb = (10, 19), hwratio = 1.9.

In Figure 3.7 there are some examples of digits and letters with di�erent font sizes
and faces; the corresponding feature values are listed. The feature values vary inside
a certain range, therefore, using an empirical approach, the corresponding threshold
values can be set. The decision rule for identifying a character in a sea chart is listed
in Listing 3.5.

1 if (InRange(obj.area) &&
2 InRange(obj.theta) &&
3 InRange(obj.density) &&
4 InRange(obj.bb) &&
5 InRange(obj.hw_ratio))
6 return true;

CHAPTER 3. OBJECT CLASSIFICATION 26

7 return false;

Listing 3.5. Character decision rule

Combining all these features, a lot of symbols that don't represent characters are elim-
inated. The success of this decision rule highly depends on the set thresholds. The
more strict the threshold is, the better the result. However, since more than one font is
considered, the range of values increases and this may result in classifying other symbols
as characters.

3.2.6 Other symbols

Since there is no interest in classifying other types of symbols, like buoys, lighthouses and
so on, they will all be regarded as belonging to the same class. If all previous symbols
were correctly classi�ed, the remaining unclassi�ed symbols all belong to the other
class. The only mention is that, in order to distinguish between symbols on the chart
and background pixels, the area of a symbol doesn't have to exceed a certain threshold.
Therefore, the decision rule is only based on the area feature, as the pseudocode in
Listing 3.6 shows.

1 if (obj.area < thresh)
2 return true;
3 return false;

Listing 3.6. Other symbols - decision rule

3.2.7 Classi�cation algorithm

After all individual objects have been identi�ed in the sea chart image, the classi�cation
process starts by �rst testing for simple objects and continuing with more complicated
ones. The order of testing is important; for example, if an object is �rst tested for the
other class, all objects will end up being classi�ed as other symbols. The pseudocode
for classi�cation is given in Listing 3.7.

1 if obj.isHSL()
2 obj.type = HSL;
3 break;
4 if obj.isVSL()
5 obj.type = VSL;
6 break;
7 if obj.isOSL()
8 obj.type = OSL;
9 break;
10 if obj.isCurvedLine()

CHAPTER 3. OBJECT CLASSIFICATION 27

11 obj.type = CL;
12 break;
13 if obj.isCharacter()
14 obj.type = Character;
15 break;
16 if obj.isOther()
17 obj.type = Other;
18 else
19 obj.type = BGR;

Listing 3.7. Classi�cation - pseudocode

3.3 Evaluation

To evaluate the performance of the classi�cation process, a set of labeled testing images
was built to represent the ground truth. The testing images are small images cropped
from the scanned sea charts and they usually contain a single type of objects. Figures
3.8 and 3.9 display some examples of testing images for all object types. The results
and the corresponding threshold values are given in Table 3.1.

No. Class # test images # correctly classi�ed Parameters

1
VSL 20 18 thresh1 = 2

thresh2 = 4

2
HSL 20 18 thresh1 = 2

thresh2 = 4
3 OSL 22 18 thresh = 4
4 CL 27 27 ct = 4

5

area ∈ (10, 160)
Soundings 32 30 θ ∈ (0, 0.8)

ρ ∈ (1.25, 2.5)
Other characters 23 13 bb ∈ ((3, 10) , (20, 25))

hw-ratio > 1.1

6 Other 38 32 thresh = 1000

Table 3.1. Classi�cation results

Figure 3.8 shows some classi�cation results. For each type of object, one correct classi�-
cation and some misclassi�cation examples are given. Each type of object is represented
by an unique color: VSL - magenta, HSL - yellow, OSL - cyan, CL - red, CH - green,
Other - blue.

The performance of the classi�cation method depends on the threshold values, which
were empirically determined and have the same values for all charts. Because of the
di�erences in fonts and styles from chart to chart, the threshold values have to be
�exible enough to be able to correctly classify as many objects as possible and, in the
same time, to minimize the classi�cation errors over all sea chart images. The most
important issue is to correctly classify the spot soundings.

CHAPTER 3. OBJECT CLASSIFICATION 28

For testing the decision rules for both vertical and horizontal straight lines, 20 ground
truth images were used for each class. In both cases, there were two classi�cation
errors: the lines were classi�ed once as oblique straight lines and once as other objects.
They were misclassi�ed as oblique straight lines because they are slightly inclined and
the width of their bounding box exceeded the threshold value. This may not be a
misclassi�cation, but an error in human visual perception. Figure 3.8e shows a vertical
line misclassi�ed as other object; the reason is that, after segmentation, some parts of
the texture in the background were touching the vertical line. Thus, they became one
single object, with a di�erent shape geometry. The same fact applies to the horizontal
line in �gure 3.8k: the segmentation changed the geometry of the line, resulting in a
misclassi�cation.

To test the classi�cation of the oblique straight lines, 22 ground truth images were used
resulting in 4 classi�cation errors. The main reason for the classi�cation errors is that
the threshold values are very strict, because they are also meant to prevent classifying
the digit 1 as an oblique straight line. As mentioned before, the correct classi�cation of
the spot soundings is the major priority. In all cases, the oblique lines were misclassi�ed
as curved lines.

The classi�cation of curved lines was tested using 27 images containing curved lines and
several other types of objects. The decision rules for this type of objects gave the best
performance, since all curved were correctly classi�ed. Some results are given in �gures
3.8t, 3.8v, 3.8x.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Figure 3.8. Classi�cation results - VSL: a, c, e) Original images; b, d, f) Classi�cation; HSL: g, i, k)
Original images; h, j, l) Classi�cation; OSL: m, o, q) Original images; n, p, r) Classi�cation; CL: s, u,
w) Original Images; t, v, x) Classi�cation.

The performance of the decision rules for the character class was tested in two stages:
�rst for spot soundings and then for other types of characters (letters, digits in di�erent
fonts). The reason is that the decision rules were build speci�cally to identify soundings

CHAPTER 3. OBJECT CLASSIFICATION 29

in a sea chart image and they were based on the geometry of spot soundings (size,
orientation etc.). Therefore, other types of characters may be misclassi�ed.

32 images were used to test the performance of sounding classi�cation resulting in 2
classi�cation errors. The errors are due to the fact that in the sea chart image the
digit representing the sounding was touching another symbol (in �gure 3.9d, digits 0
and 7 are touching; the same happens for digits 4 and 1 in �gure 3.9f); thus, they were
interpreted as a single object with a di�erent geometry.

When classifying other types of characters, the performance is not that good: out of 23
testing images, 10 were misclassi�ed. The errors are due to the di�erences in fonts and
styles along sea charts: in �gures 3.9j and 3.9l the digits and letters have a bigger font
size than the font size of the soundings and they are interpreted as other objects. Another
error is the interpretation of letters like l or i as oblique straight lines. However, these
errors do not a�ect the overall performance of the system, because the main interest is
to recognize spot soundings.

The classi�cation of symbols belonging to the other objects class was tested using 38
images containing di�erent symbols that may be encountered in a sea chart. Out of all
the symbols, 6 were wrongly classi�ed. Some symbols have a shape similar to a curve
and thus can be easily interpreted as curved lines, like in �gure 3.9r. Other symbols are
very similar to some characters (for example, the symbol in �gure 3.9p is similar to a
mirrored 3, an E or an m), making them di�cult to be correctly labeled based only on
shape geometry. Because this type of error may a�ect the overall performance of the
system, using a good Optical Character Recognition software is mandatory in order to
eliminate symbols that were misclassi�ed as characters.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 3.9. Classi�cation results - CL: a, c, e) Original images; b, d, f) Classi�cation; Soundings:
g, i, k) Original images; h, j, l) Classi�cation; Other characters: m, o, r) Original images; n, p, r)
Classi�cation; Other objects: s, u, w) Original images; t, v, x) Classi�cation.

3.4 Object grouping

Individual objects that have the same class label and are close together usually form a
group on the sea chart. This may happen for dotted lines, dots, characters. This part
is very important for the proper recognition and interpretation of soundings that are
represented by more than one digit or decimals.

CHAPTER 3. OBJECT CLASSIFICATION 30

The two most important grouping criteria are the type of the objects and the Euclidean
distance between them. However, for spot soundings, the y-coordinate of the digit in
the image is also important. The latter will prevent characters placed like in Figure
3.10g to be grouped together. The characters in the �gure should form two groups: (6,
s) and (2, 1), but if the y-coordinate is not considered, they will form one single group:
(6, s, 2, 1), because they are close enough.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.10. Object and corresponding groups; each group is given in di�erent colors.

The pseudocode for object grouping is given in Listing 3.8. The method returns true if
obj1 and obj2 should be grouped together.

1 if obj1.type != obj2.type
2 return false;
3 if obj1.type == Character &&
4 abs(obj1.y - obj2.y) > th1
5 return false;
6 if dist(obj1, obj2) > th2
7 return false;
8 return true;

Listing 3.8. Object grouping

Another important issue is to set the sign of the spot sounding by checking whether
there is a close horizontal line underneath it. If there is one, then the sounding is above
sea level and its value will be + |value|, otherwise the value will be − |value|.

Chapter 4

Spot soundings recognition

The main purpose of this module is to recognize spot soundings in sea chart images.
Having all the symbols in the image classi�ed, the only remaining thing is to select all
digits in the characters class and to identify their value. For this purpose an optical-
character-recognition (OCR) engine is used: the Tesseract OCR engine [31].

4.1 Tesseract OCR engine

Tesseract is an OCR engine that was developed at HP Labs between 1985-1995. It
was released as an open-source engine in 2005 and from 2006 its development has been
sponsored by Google. Tesseract has no page layout analysis feature and it assumes as
input a binary image with optional polygonal text regions de�ned. An overview of its
architecture is given in Figure 4.1 [11].

Figure 4.1. Tesseract OCR architecture

The �rst step in the processing pipeline is the connected-component analysis: the out-
lines of the components are stored and gathered together by nesting in structures called
blobs. During the second step, blobs are organized into text lines. The text lines and

31

CHAPTER 4. SPOT SOUNDINGS RECOGNITION 32

regions are analyzed for �xed pitch and proportional text spacing, because for exam-
ple italics, digits and punctuation create special-case font-dependent spacing. The text
lines are broken into words according to the character spacing by measuring gaps in a
limited vertical range between the baseline and the meanline, shown in Figure 4.2 [31]
. The baselines are �tted using a quadratic spline model, which makes it possible to
handle pages with curved baselines, a�ected by skew and curl.

Figure 4.2. A line of text with a �tted baseline, descender line, meanline and ascender line; all these
lines are parallel (with a constant y separation) and slightly curved.

To achieve a better performance, words are recognized in two steps. The �rst step
attempts to recognize each word in turn. Two types of classi�ers are being used: a static
classi�er and an adaptive one. The adaptive classi�er is a more font-sensitive classi�er
and it is trained by the output of the static classi�er. To improve the performance, each
word is also passed as a training data; this way, the classi�er gets a chance to more
accurately recognize text lower in the page.

The static classi�er uses two types of features, illustrated in Figure 4.3 [11]. During the
training process, the features are represented by the segments of a polygonal approxi-
mation of the characters (�g. 4.3d), while for the recognition step features of a small,
�xed length (in normalized units) are extracted from the outline (�g 4.3e) and matched
many-to-one against the clustered prototype features in the training data (�g 4.3f and
�g. 4.3g).

(a) (b) (c) (d) (e) (f) (g)

Figure 4.3. Recognition step: a) Prototype, b) Original image, c) Outlines of components, d) Polyg-
onal approximation, e) Extracted features, f) Match of prototype to features, g) Match of features to
prototype.

During the second step of the recognition process, words that were not recognized well
enough are recognized again. The second recognition may improve, because the classi�er
may have learned something useful too late to make a contribution near the top of the
page.

Tesseract may be run in several modes, depending on the type of characters it has to
recognize. It normally recognizes all types of characters (letters, digits, punctuation),
but it may be set to recognize only digits. However, the recognition performance de-
pends on the font type it was trained for. Figure 4.4 displays some results. For more
information on running Tesseract OCR engine, check [11].

CHAPTER 4. SPOT SOUNDINGS RECOGNITION 33

(a) (b)

(c) (d) (e) (f) (g) (h)

Figure 4.4. Results: a) Random text; b) Result for a); c), e), g) Symbols in sea chart images; d), f),
h) Corresponding results.

4.2 Evaluation

The performance of Tesseract OCR depends on the font styles it was trained for. The
software was already trained to recognize English text and digits, therefore no extra
training was performed. However, training it for the speci�c fonts that are used in sea
charts could improve its performance.

The character recognition testing process was divided in two stages. Firstly, character
recognition was tested, which implied all types of characters found in a sea chart (letters,
digits with di�erent fonts and sizes). Secondly, sounding recognition was tested by only
considering soundings and setting Tesseract to interpret the input images as a single
text line.

4.2.1 Character recognition

A number of images were passed to Tesseract to test its performance in character recog-
nition. The images contained text and numbers having di�erent font styles and sizes.
Before passing them to Tesseract, they were converted to gray-scale images, because
now Tesseract works only with gray-scale images. The results are shown in �gure 4.5.

As can be seen, Tesseract can handle character recognition in a sea chart image when
characters are identi�ed beforehand. It can handle a variety of font styles and sizes.
However, the recognition is not 100% correct. For example, the line in �gure 4.5e
represents noise but it is interpreted as an accent and together with the letter c are
recognized as é. Other errors in �gure 4.5m are the confusion between l and i in the
word Additional or the bad recognition of the word survey as sun/ey.

CHAPTER 4. SPOT SOUNDINGS RECOGNITION 34

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n)

Figure 4.5. Character recognition with Tesseract: a, c, e, g, i, k, m) Input grayscale images; b, d, f,
h, j, l, n) Results.

4.2.2 Sounding recognition

The performance of Tesseract in sounding recognition was tested using images contain-
ing all digits from 0 to 9 in all available fonts. As mentioned before, when testing
sounding recognition, Tesseract was set to interpret the images as a single line text.
This prior assumption regarding the layout analysis improves the recognition rate and
can be easily used when recognizing individual soundings. The outcome is given in
�gure 4.6.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.6. Soundings recognition with Tesseract: a, c, e, g, i) Input images; b, d, f, h, j) Results.

The results show that Tesseract is able to correctly recognize the digits, even though
di�erent fonts are used. The only problem is that for some font styles Tesseract rec-
ognizes the digit 1 as a 7. This confusion happens for fonts in images 4.6g and 4.6i,
because those are slanted fonts and a slanted digit 1 becomes similar to a 7. There are
two possibilities to solve this problem: either the digit 1 is rotated before passing it to
Tesseract or Tesseract is trained for this font style.

Part III

Automatic interpolation of spot

soundings

35

Chapter 5

Automatic interpolation of spot

soundings

Interpolation is a method of constructing new data points within the range of a discrete
set of known data points. Suppose a variable has meaningful values at every point
within a region, then given the values of that variable at a set of sampled points, an
interpolation method can be used to predict values at every point. The value of any
unknown point is calculated by taking some form of weighted average of the values at
surrounding points. Figure 5.1 [1] illustrates an example of interpolation: given the
points in �g. 5.1a, new values are calculated for all the points in the region, producing
the output in �g. 5.1b.

(a) (b)

Figure 5.1. Interpolation: a) Input data, b) Interpolation result.

When dealing with spatial data, the interpolation problem is de�ned as follows [27]:
there is an unknown function, f , values of f are known at �nite number of points
in space, and the objective is to produce an approximation to the values of f at one
or more points where the value is not known. When the function is not known, the
process usually begins with a model which includes one or more parameters that must
be estimated from the data. Di�erent models may produce di�erent results, thus the
model is chosen to ensure that the interpolation function has certain desirable properties.

36

CHAPTER 5. AUTOMATIC INTERPOLATION OF SPOT

SOUNDINGS 37

5.1 Desirable features of the interpolation method

The input data of the interpolation module is given by the spot soundings recognized
in the scanned sea chart image. The soundings are points in a 3D environment, each
having an x and y coordinate and a depth value (z coordinate) associated with it. They
further have to be interpolated to produce a 3D surface.

A number of spatial interpolation methods are known in the literature and each has
its speci�c assumptions and features [26]. In order to decide which method is more
appropriate for the current problem, the desirable properties of the result have to be
described. These properties are:

1. Local
The basic premise behind spatial interpolation methods is motivated by the �rst
low of geography, given by Waldo Tobler in 1970: "Everything is related to ev-
erything else, but near things are more related than distant things." [32]. Thus,
near points generally receive higher weigths than far away points. Local meth-
ods which operate within a small area around the point being estimated (called
neighborhood) and capture the local variation are a suited choice to respect this
premise.

2. Exactness
The method should generate an estimate that is the same as the observed value
at the sampled point.

3. Gradual
The method should produce a smooth and gradual surface, not an abrupt one.

5.2 Spatial interpolation methods

Spatial interpolation methods usually compute a new value for an unknown point as a
weighted average of sample points. The general formula is given by Eq. 5.1.

F (x, y) =
n∑

i=1

wifi (5.1)

where n is the number of sample points taken into consideration, fi are the depth values
of the sample points, wi are the corresponding weights given to each sample point and
F (x, y) is the new depth value calculated at coordinates (x, y). The weight functions
are normalized so that the weights sum to unity.

To properly choose the technique that is best suited for the current problem, several
interpolation methods were considered and evaluated.

CHAPTER 5. AUTOMATIC INTERPOLATION OF SPOT

SOUNDINGS 38

5.2.1 Distance Transform Interpolation

The distance transform operator (DT) is a morphological operator normally applied to
binary images. The result of the transform is a gray-scale image, called image distance
in which the gray-scalel intensities of points inside foreground regions show the distance
to the closest boundary from each point. In [15], de Souza and Banon gave an im-
plementation for the DT transform based on the Chessboard metric1 using only two
iterations of the image: one in raster mode (from left to right and from top to bottom)
and one in antiraster mode (from right to left and from bottom to top). However, for
the current project the algorithm was adapted to the Chamfer distance. Given two
2-dimensional points, p1 = (x1, y1) and p2 = (x2, y2), the Chamfer distance is calcu-
lated with Eq. 5.2 and represents the best approximation of the Euclidean distance in
two-passes.

d(a,b) = max {|x1 − x2| , |y1 − y2|} a+ min {|x1 − x2| , |y1 − y2|} (b− a) (5.2)

The Chamfer metric(a, b) has the constraint 0 < b < 2a and the best approximation for
the Euclidean distance is given when a = 1 and b = 1/

√
2 +

√√
2− 1 [14].

If E is a rectangle of Z2 and K = {0, 1}, then a binary image is the mapping from E
to K, where for any point (x, y) ∈ E, f(x, y) = 1 if (x, y) belongs to the foreground
and f(x, y) = 0 otherwise. If A is a subset of E and Ac its complement, then the image
distance of A w.r.t the metric d is the mapping DTA from E to R given by:

DTA(p) =

{
d(p,Ac), p ∈ A

0, otherwise
(5.3)

calculated for every p in E. The mapping A 7→ DTA is called distance transform.

Consider E an m× n image and de�ne two subsets of pixel values which represent the
prior and posterior pixels of (x, y) in a V8 neighborhood: Nr((x, y) , f) =
{f(x− 1, y − 1), f(x− 1, y), f(x− 1, y + 1), f(x, y − 1)} and Na((x, y) , f) =
{f(x, y + 1), f(x+ 1, y − 1), f(x+ 1, y), f(x+ 1, y + 1)}. If M is a matrix with the
same size as E, then the pseudocode for computing the DT transform of E is given
in Listing 5.1.

1 /* Raster mode */
2 for x from 1 to m− 2 do
3 for y from 1 to n− 2 do
4 if f(x, y) == 1 then
5 M(x, y) = min {Nr((x, y) ,M)}+ 1
6 else M(x, y) = 0;
7 /* Antiraster mode */

1Given two 2D points, p1 = (x1, y1) and p2 = (x2, y2), the Chessboard distance between them is:
d(p1, p2) = max {|x1 − x2| , |y1 − y2|}.

CHAPTER 5. AUTOMATIC INTERPOLATION OF SPOT

SOUNDINGS 39

8 for x from m− 2 to 1 do
9 for y from n− 2 to 1 do
10 if M(x, y) > 1 then
11 M(x, y) = min {M(x, y),min {Na((x, y) ,M)}+ 1}

Listing 5.1. DT pseudocode

Before the calculation, the �rst and last columns and rows of M have to be initialized
with the corresponding values of E. The pseudocode returns M , the image distance of
E. Figure 5.3c shows the result of the DT transform applied to the binary image in
�g. 5.3a having a curved line with 5 interior points as foreground objects: the whiter a
pixel, the farther it is from an object.

(a) (b)

Figure 5.2. Distance trasform: a) Binary image: background = white, foreground = black, b) Image
distance.

Even though the DT operator gives a good estimate of the distance between objects
(or soundings) in an image, it is not intuitive how to incorporate the z-coordinate given
the current algorithm and use it for interpolation. The DT operator is applied on
binary images and it only considers a pixel value as being background or foreground.
One idea to use the DT operator for interpolation would be to create a 3D function,
f : G1 ×G2 ×G3 → {0, 255}, de�ned as follows:

f(x, y, z) =

{
255, I(x, y) 6= z
0, I(x, y) = z

(5.4)

where I is the original image containing soundings, x, y are pixel coordinates in I and
z is the value of I at given coordinates x and y. By applying the DT operator on
this 3D function the minimum distance to the closest object is obtained, while keeping
track of the depth value of the closest object by using the z-coordinate. Therefore, all
coordinates can now have an interpolated value inverse proportional to the minimum
distance to the closest object and direct proportional to the depth value of the closest
object: interpolation(x, y) = z

minz df(x,y,z)
.

In 2004, Felzenszwalb et al. gave an algorithm to compute the DT of a one-dimensional
function using Euclidean distance [21]. In the same article, he mentions that the DT of
an n-dimensional function can be computed by performing one-dimensional transforms
along each dimension. Figure 5.3 shows a distance image obtained by applying Felzen-
szwalb's algorithm and the corresponding interpolation. The drawbacks are that the
interpolation result is not smooth, the in�uence of a spot sounding is radial and sym-
metrical and in order to calculate the interpolation value only one sounding is taken

CHAPTER 5. AUTOMATIC INTERPOLATION OF SPOT

SOUNDINGS 40

into account (the closest one). Even though the method is local and exact, it is an
abrupt method and doesn't correspond with what it is expected.

(a) (b) (c)

Figure 5.3. Distance trasform: a) Binary image: background = white, foreground = black, b) Image
distance, c) Interpolation result.

5.2.2 Inverse Distance Weighting (IDW)

Inverse distance weighting is based on the assumption that the interpolating surface
should be in�uenced most by the nearby points and less by the more distant points.
The interpolating surface is a weighted average of the sample points and the weight
assigned to each sample point diminishes as the distance from the interpolation point
to the sample point increases. The weights can be expressed as in Eq.5.5 [26]:

wi =

1
dpi∑n
i=1

1
dpi

(5.5)

where di is the distance between f0 and fi in the neighborhood, p is a positive real
number called the power parameter and n represents the number of sampled points
used for the estimation. The weight function varies from a value of unity at the scatter
point to a value approaching zero as the distance from the scatter point increases. The
value of the power parameter p is the main factor in�uencing the accuracy of IDW: the
smoothness of the estimated surface increases as the power parameter increases.

The choice of the neighborhood determines which points are included in IDW. Based
on this choice, two methods of IDW were considered and are given in the following
subsections.

5.2.3 IDW - Shepard's method

Shepard's method is the simplest form of IDW. Originally, it is a global method, which
takes into account all the sample points when computing the value of an unknown point.
Nevertheless, it can be localized by either de�ning the weights to be zero outside some
disk of given radius or simply by considering the closest n points. The latter method
was chosen for the implementation.

In Shepard's method, the weights are computed as in Eq. 5.5 using the Euclidean
distance between the unknown point, f0 of coordinates (x0, y0), and the sample points,
fi of coordinates (xi, yi):

CHAPTER 5. AUTOMATIC INTERPOLATION OF SPOT

SOUNDINGS 41

di =
√

(x0 − xi)2 + (y0 − yi)2 (5.6)

However, Franke and Nielson [22] found another equation to give superior results:

wi =

(
R−di
Rdi

)p
∑n

j=1

(
R−dj
Rdj

)p (5.7)

where R is the distance from the interpolation point to the most distant sample point.

The weight function is a function of Euclidean distance and is radially symmetric about
each sample point. As a result, the interpolating surface is somewhat symmetric about
each point and tends toward the mean value of the sample points. The power parameter
also in�uences the result: greater values of p assign greater in�uence to values closest
to the interpolated point with the result turning into nearly a constant value for large
values of p. Figure 5.4 shows this artifact: when p = 2 some gradual passing between
values is visible, but when p = 16 the areas seem to have constant values with abrupt
passings.

(a) (b) (c)

Figure 5.4. Shepard's method with n = 3: a) p = 2, b) p = 4, c) p = 16.

5.2.4 IDW - Natural neighbors

The set of three vertices of the triangle containing the interpolation point is another way
of de�ning the neighborhood. When the triangles are given by a Delaunay triangulation,
the Delaunay point group represents the natural neighbors of the sample point.

The weight function assigned to each sample point is a cubic function. Given a point
(x, y) enclosed in a triangle T with vertices (i, j, k), the weight of vertex i is:

wi(x, y) = b2i (3− 2bi) + 3
b2i bjbk

bibj+bibk+bjbk
∗{

bj

[
‖ei‖2+‖ek‖2−‖ej‖2

‖ek‖2

]
+ bk

[
‖ei‖2+‖ej‖2−‖ek‖2

‖e2j‖

]}
(5.8)

where ‖ei‖ is the length of the edge opposite vertex i and bi, bj , bk are the area coordinates
or barycentric coordinates of the point (x, y) w.r.t triangle T . The latter describe the
position of the point within the interior of the triangle relative to the vertices of the

CHAPTER 5. AUTOMATIC INTERPOLATION OF SPOT

SOUNDINGS 42

(a) (b) (c)

Figure 5.5. Barycentric coordinates for a point in a triangle.

triangle. The magnitude of the coordinates corresponds to area ratios as shown in
Figure 5.5.

The coordinates of the interior point can be written in terms of the coordinates of the
vertices as follows:

x = bixi + bjxj + bkxk (5.9)

y = biyi + bjyj + bkyk (5.10)

1 = bi + bj + bk (5.11)

Solving the above equations for bi, bj , bk yields:

bi =
1

2A
[(xjyk − xkyj) + (yj − yk)x+ (xk − xj) y] (5.12)

bj =
1

2A
[(xkyi − xiyk) + (yk − yi)x+ (xi − xk) y] (5.13)

bk =
1

2A
[(xiyj − xjyi) + (yi − yj)x+ (xj − xi) y] (5.14)

(a) (b)

Figure 5.6. IDW with natural neighbors.

Figure 5.6 shows some results of IDW interpolation using natural neighbors. The result
is visibly improved with a smooth and gradual passing between soundings.

5.3 Evaluation

Figure 5.7 shows the interpolation results of several user de�ned spot soundings using
the three methods mentioned above. After analyzing the methods and the results they
produce, some conclusions were drawn w.r.t the desirable properties they should meet:

CHAPTER 5. AUTOMATIC INTERPOLATION OF SPOT

SOUNDINGS 43

1. Interpolation with DT is an exact and local method, but the interpolated value
only depends on the closest spot sounding. Only close points are a�ected by a
sounding because the minimum distance has a rapid growth in a 3D space and
the denominator in eq. 5.4 increases very fast, making the result to tend to 0.
The interpolation is not smooth, nor gradual.

2. IDW with Shepard's method is a local method, exact, but the radial symmetry of
the Euclidean distance prevents it from having a gradual passing between sound-
ings. Also, the computational time of the algorithm is large because for each
interpolated point the closest n-points have to be found.

3. IDW with Natural neighbors ful�lls all the desired properties: local, exact, gradual
and smooth.

(a) (b) (c)

(d) (e) (f)

Figure 5.7. Interpolation methods: a, d) DT interpolation, b, e) IDW - Shepard's method, c, f) IDW
- Natural neighbors.

Therefore, IDW with natural neighbors was chosen as the best interpolator; it gives
a quick interpolation from sparse data, producing a smooth surface, being simple and
fast.

Part IV

System overview

44

Chapter 6

System overview

In the previous chapters, all the methods used in the project were described and eval-
uated. However, the evaluation was per method and not per system as a whole. Thus,
an evaluation of the entire system is needed. This chapter focuses on analyzing the
behavior of the complete system for automatic conversion of scanned sea charts into 3D
models.

6.1 Appearance

The GUI interface of the �nal product facilitates the manipulation of sea chart images.
Figure 6.1 shows the appearance and some of the features of the system.

Figure 6.1. GUI interface.

Besides the already mentioned features that concern spot sounding recognition and in-
terpolation, additional features give the possibility of creating and adjusting splines
that simulate contour lines and the possibility of manually adding spot soundings that
can be interpolated. Other features regard visualization options (zoom in, zoom out,
normal view, �t-to-window view) or display options (the possibility to display only indi-
vidual objects, groups, recognized soundings or the interpolated surface). The user also
has the possibility to edit (add, delete or modify) spot soundings after the recognition

45

CHAPTER 6. SYSTEM OVERVIEW 46

process. This feature is useful to correct possible errors and obtain a correct 3D model
of the seabed.

6.2 Performance

The module for converting 2D scanned sea chart images into 3D models was imple-
mented in C++, using Qt [10] as a GUI library and the GDAL library [3] to write
GeoTi� �les.

The running time of the algorithm depends on the size and complexity of the input
image. If for a small image of 200 × 200 pixels the result is given in several seconds,
for an image of 2000 × 2000 pixels the algorithm takes about forty seconds to output
the result in Release mode. The algorithm was tested on a laptop with Intel Core i3
processor running at 2.27 Ghz, 4 GB RAM and Windows 7 32-bit operating system.

6.3 Testing procedure

In order to analyse the performance of the algorithm, the testing process was divided in
two stages. In the �rst stage, small parts of a scanned sea chart image were given as an
input to the algorithm. This testing stage gives a better overview and the possibility of
identifying more drawbacks, because it is easier to analyse smaller parts. In the second
stage, an entire sea chart image was given as an input to analyse the performance of
the system in a real situation.

6.3.1 Testing small parts of a scanned sea chart image

For this part of the analysis, three images were cropped from a scanned sea chart; they
are displayed in �gures 6.2a, 6.2b and 6.2c.

The result of the classi�cation module is shown in �gures 6.2d, 6.2e, respective 6.2f.
Each color represents a label for the type of the object: yellow - horizontal straight
lines, magenta - vertical straight lines, cyan - oblique straight lines, red - curved lines,
green - characters, blue - other objects; all other colors represent background objects
which are not processed. Figures 6.2g, 6.2h and 6.2i show the recognized soundings. On
a �rst glance, it can be seen that the more simple an image is, the better the results.
The type of errors that can a�ect the result of the algorithm are:

1. Errors due to overlapping or touching symbols.
For example, the digit 7 in �gure 6.2d is touching an oblique straight line, thus
they are identi�ed as a single object in the image and recognized as a curved line.
The same thing happens for some digits in �gure 6.2f: digits 7, 1, 3, 2 etc. are
overlapping a curved line.

2. Errors due to the classi�cation process.
For example, three digits 1 in �gures 6.2d and 6.2e are wrongly classi�ed as other
objects and are not passed further to Tesseract. The reason is the shape of the

CHAPTER 6. SYSTEM OVERVIEW 47

digits: in �gure 6.2e, the wrongly classi�ed 1 is thicker than usual, while in the
other images, the digits are thinner.

3. Errors due to the OCR engine.
In �gure 6.2e, number 26 is recognized as a group of characters and passed to
Tesseract OCR engine. However, because digit 2 is touching a small oblique line,
the number is not properly recognized by the engine and the sounding is lost.
Another problem is the confusion between the digit 0 and the letter o in �gure
6.2i.

4. Errors due to the misinterpretation of other numbers displayed on the sea chart
as soundings.
In �gure 6.2f there is a string of characters G"31" in the bottom right side of the
image. Digits 3 and 1 are labeled as characters and properly recognized, ending
up as a sounding with value -31.0 on the chart. However, it does not represent a
spot sounding, but other information.

Figures 6.2j, 6.2k and 6.2l show the result of the interpolation algorithm and �gures
6.2m, 6.2n and 6.2o display the corresponding 3D views of the interpolated surfaces1.
The resulting surfaces are smooth and the interpolated values create a gradual passing
between di�erent spot soundings. A disturbing artifact could be the visibility of the
Delauney triangles or edges in the 2D images of the interpolated surfaces. However,
when displaying the 3D view of the corresponding surfaces, the Delaunay edges are not
visible anymore and the result can be interpreted as a terrain or an earth surface.

6.3.2 Testing full scanned sea chart images

Given the nautical chart in �gure 6.3a as an input, the results of the spot sounding
recognition algorithm are displayed in �gure 6.3b. Figure 6.3c shows a 3D view of the
surface created by interpolating the recognized soundings and �gure 6.3d shows the 3D
view of the interpolated surface obtained after the wrongly recognized soundings were
corrected. The size of the original image was (2143 × 1356) pixels and the program
needed about 25 minutes to process it.

By analyzing the output of the algorithm, we see that the main problems are caused
by the bad results of the OCR engine. The confusion between a slanted digit 1 and
digit 7 is the most important problem, being the cause of the big holes in the output
surface in �gure 6.3c. For example, a sounding with value -13.0 is recognized as -73.0 ;
the di�erence between values is very big comparative to other soundings on the chart,
thus the large holes in the 3D surface.

Other problem is that the original interpolated surface is not entirely smooth like the
surface created after the correction step. The reason for this is the bad recognition of
some of the soundings. However, the di�erence in absolute values is not as big as earlier
mentioned: for example, the sounding 6.5 is recognized as 5.5. A confusion of the
classi�cation algorithm is another reason for a non-smooth surface. Some digits that
appear on the chart and do not represent soundings are similar in font and size with spot
soundings and end ep being classi�ed as soundings. For example, digits that appear in

1For a better view, the z-coordinates were exaggerated in the 3D models.

CHAPTER 6. SYSTEM OVERVIEW 48

a string of characters that give information about buoys are classi�ed as soundings and
recognized accordingly.

The same type of errors can be observed by analyzing the chart of the coast of Rio
de Jaineiro in �gure 6.4. The majority of the errors are caused by the OCR engine,
but there are also errors due to overlapping symbols or to false soundings which, as
mentioned before, are digits similar in shape with the spot soundings, but represent
other information on the chart.

By using the Edit soundings option after the spot sounding recognition process has
ended, all the errors can be corrected to obtain an accurate 3D model of the seabed.

CHAPTER 6. SYSTEM OVERVIEW 49

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6.2. a, b, c) Original images; d, e, f) Classi�cation; g, h, i) Sounding recognition; j, k, l)
Interpolated surface; m, n, o) 3D view.

CHAPTER 6. SYSTEM OVERVIEW 50

(a) (b)

(c) (d)

Figure 6.3. a) Original scanned sea chart image; b) The result of the spot sounding recognition
method; c) 3D view of the resulting interpolated surface; d) 3D view of the interpolated surface after
the wrongly recognized spot soundings were corrected.

(a) (b)

(c) (d)

Figure 6.4. a) Original scanned sea chart image; b) The result of the spot sounding recognition
method; c) 3D view of the resulting interpolated surface; d) 3D view of the interpolated surface after
the wrongly recognized spot soundings were corrected.

Part V

Conclusions

51

Chapter 7

Conclusions

The digitization of nautical charts is a problem that was often approached by re-
searchers. It has a variety of applications in navigation or in the development of navi-
gational software. Digital nautical charts are necessary for the conversion of maritime
terrain in 3D models. The latter are useful for 3D applications like training simulators
used in maritime schools, games, movies etc. However, there is still no complete system
that handles the digitization of nautical charts w.r.t all symbols encountered or that is
capable of converting a 2D nautical chart in a 3D model.

The current project gives a partial solution for both digitizing sea charts and converting
them into 3D simulation models. Given a scanned sea chart image, the algorithm
�rst separates all di�erent symbols from the background by using a threshold-based
segmentation method. The thresholds are found with the K-Means algorithm applied on
the grayscale image histogram. Usually, the segmentation method correctly separates
the foreground objects, but it is unable to handle overlapping or touching symbols.
Another problem is that symbols which are represented with colors that have high
intensity values are interpreted as background and are lost during the segmentation
process.

Further, all the individual objects in the segmented binary image are identi�ed using a
labeling method called region tracking with correspondence tables. The method is able
to correctly identify all connected components in the image in only one passing. In
this research a method has been developed to classify individual objects into: vertical
straight lines, horizontal straight lines, oblique straight lines, curved lines, characters
and other symbols. Geometrical features of the objects like area, center of gravity,
orientation, density, axis-aligned and arbitrarily-oriented bounding boxes are used to
create innovative decision rules used in the classi�cation process. The decision rules are
based on threshold values that were empirically determined and had �xed values over
all charts. The thresholds had to be �exible enough to correctly classify the symbols
along di�erent charts with di�erent font and styles, but also strict enough to make a
di�erence. Overall, the classi�cation rate is higher than 80%. Possible errors are due to
overlapping or touching symbols that are not separated during the segmentation process
or to the threshold values. The output of this step is the digitized version of the nautical
chart given as input.

52

CHAPTER 7. CONCLUSIONS 53

To recognize spot soundings in the chart, all symbols in the character class are passed
to Tesseract OCR engine. Tesseract has a good performance in character recognition,
but in some cases it can fail because of font styles or confusions between characters (for
example, slanted 1 is confused with 7, 0 sometimes is confused with o).

The recognized soundings are then interpolated to obtain 3D simulation surfaces. This
research gives a comparison between di�erent interpolation methods: interpolation us-
ing the distance transform operator, inverse distance weighting with Shepard's method
and inverse distance weighting with natural neighbors. After analysing the methods
in terms of the desirable features they should ful�ll (exact, local, gradual), the Inverse
Distance Weighting with Natural Neighbors was chosen as the best interpolator. The
method is based on the assumption that an interpolated value should be mostly in�u-
enced by nearby points and less by further away points. The nearby points are the
vertices of the Delauney triangle containing the point (called natural neighbors) and
the weights are inverse proportional to the corresponding distances from the point to
the triangle vertices. IDW with Natural Neighbors is an exact method, because the
estimate value is the same as the observed value at a sample point. It is a local method
by only considering the natural neighbors of a given point. It is also a gradual method,
producing a smooth surface. The interpolated surface meets all the required features
and it can be interpreted as a 3D terrain.

The performance of the whole system was analysed in the previous chapter and all
possible drawbacks were reviewed. Even though the output is, in general, accordingly
to what it is expected, errors due to the misinterpretation of symbols and the bad
recognition of spot soundings may sometimes happen.

The goal of this research was to design and implement a tool which would facilitate the
work of VSTEP in the process of creating a realistic seabed for their maritime training
simulator, NAUTIS. At the moment, this process is done by manually tracking the
contour lines in the sea charts and interpolating their depth values. The 3D surface
obtained from the interpolation of spot soundings would increase the accuracy of the
seabed model by overlaying the two surfaces and thus considering sounding information
as well. Even though the result of this study is not a perfectly working system that
converts scanned sea chart images into 3D models, it represents a good basis for further
development and shows that an automatic conversion system is possible.

Chapter 8

Future work

As mentioned before, the algorithm for converting a 2D scanned sea chart image into a
3D model has certain drawbacks. The performance of the algorithm can be improved
and the remaining open issues that need further work are:

• Overlapping / touching symbols
Overlapping or touching symbols represent a major problem for the performance
of the algorithm. Usually, overlapping symbols have di�erent colors, but they
are hard to detect in a graylevel-based segmentation method and without any
user intervention. Incorporating color information in the segmentation method or
using other color spaces (for example, Lab color space) could improve the result
of the algorithm. Another possibility is to allow the user to select from a list the
colors used to represent the symbols that he is interested in.

• Object features
The features used in the classi�cation process are geometrical features of the
symbols. The performance of the classi�cation could be improved by taking into
account other types of features, like color features, or more complex features like
the Zernike moments or the Fourier descriptors.

• Decision rules
Another problem that a�ects the result is the recognition of false soundings on the
chart. These are digits that have a similar font and size with the spot soundings,
but represent other type of information (for example, buoy information). New
decision rules should be build to separate these false soundings from the real ones.
They could be based on the analysis of the surrounding area to check whether
they belong or not to a group of characters.

• Choice of OCR engine
The OCR engine is responsible for the correct recognition of characters and spot
soundings, therefore the performance of the system is directly a�ected by the
choice of the OCR engine. Tesseract is rated to be a good OCR engine, but
its performance could be improved by training it for speci�c font faces that are
used in sea charts. Also, other OCR engines could be tested and compared with
Tesseract in terms of recognition rates.

54

CHAPTER 8. FUTURE WORK 55

• Contour lines extraction
In order to complete the project proposed by VSTEP, the contour lines should
be extracted and saved to an ESP �le. The decision rules for curve classi�cation
are valid, but the remaining problem is the fact that curves often intersect other
symbols on the chart. Besides this, a contour line reconstruction algorithm would
be necessary to recover the entire curved line.

• Eliminating grids
Charts usually display grids which are a set of horizontal and vertical parallel
straight lines which often intersect other symbols on the map. Eliminating these
line would facilitate the classi�cation of the remaining symbols.

• Interpolation method
To increase the accuracy of the interpolated surface, contour lines and their corre-
sponding depth should be taken into account when interpolating spot soundings.
A new method for spatial interpolation that ful�lls this constraint should be de-
veloped.

Appendix A

Delaunay Triangulation

Triangulation is the division of a surface or plane polygon into a set of triangles, usually
with the restriction that each triangle side is entirely shared by two adjacent triangles
[12]. It was proven that every surface has a triangulation, but it might require an in�nite
number of triangles [35]. Figure A.1 shows an example of triangulation of a polygonal
region.

Figure A.1. a) Polygonal surface, b) Triangulation

In [25], Barry Joe de�nes a valid triangulation of a polygonal region as a collection of
triangles that form a 'tiling' of the region without overlaps or gaps. Given a set V of
vertices in the plane that are not collinear, Joe states that a Delaunay triangulation of
V is a valid triangulation in the convex hull of V 1 which satis�es the max-min angle
criterion: for any two triangles in the triangulation that share a common edge, if the
quadrilateral formed from the two triangles with the common edge as its diagonal is
strictly convex, the replacement of the diagonal by the alternative one does not increase
the minimum of the six angles in the two triangles making up the quadrilateral. In other
words, the Delaunay triangulation is the triangulation which maximizes the minimum
angle in the triangles globally as well as locally in any two adjacent triangles which form
a strictly convex quadrilateral.

Consider V = {pi, pj , pk, pl} as in Figure A.2 [19]. The quadrilateral can be triangulated
by either adding the edge pipj or by removing this edge and inserting pkpl instead. The
latter procedure is called an edge �ip. It is visible that the triangulation given by
inserting the edge pkpl is a Delaunay triangulation, while the other one is not, because
the minimum angle of the triangles pipkpl and pjpkpl is greater than the minimum angle
of the triangles pipjpl and pipjpk.

1The convex hull of a point set V is the smallest convex set containing all the points in V .

56

APPENDIX A. DELAUNAY TRIANGULATION 57

Figure A.2. Flipping an edge

Figure A.3. Circle criterion

A Delaunay triangulation also satis�es
the circle criterion: the circumcircle of
any triangle in the triangulation contains
no vertex of V in its interior. This prop-
erty is useful to �nd a Delaunay triangula-
tion of a given set of vertices by searching
for Delaunay edges pipj , where pi, pj ∈ V .
An edge is a Delaunay edge if and only if
there exists a point c such that the circle
centered at c and passing through pi and
pj does not contain any other vertex of V in its interior. Given the triangulation in
Figure A.3 [19], the circle C is the circle through pi, pj , pk. The edge pipj is an illegal
Delaunay edge, because the point pl lies inside the circle C.

For the current project, the Delaunay triangulation was calculated using the GEOM-
PACK library [4], a free C++ library that handles both 2- and 3-dimensional triangu-
lations. The Delaunay triangulation method is implemented inside GEOMPACK using
an incremental approach: one vertex is added at a time and the a�ected parts are
retriangulated.

Bibliography

[1] A brief introduction to spatial interpolation, http://www.bisolutions.us/a-brief-
introduction-to-spatial-interpolation.php.

[2] Etichetarea imaginilor binare, http://alpha.imag.pub.ro/ro/cursuri/archive/etich.pdf.

[3] Gdal - geospatial data abstraction library, http://www.gdal.org/.

[4] Geompack - delaunay triangulations, http://people.sc.fsu.edu/ jburkardt/cpp_src/-
geompack/geompack.html.

[5] Kmeans - interactive demo, http://home.dei.polimi.it/matteucc/clustering/tutorial_-
html/appletkm.html.

[6] Kmeans tutorial slides, http://www.autonlab.org/tutorials/kmeans.html.

[7] Learn about nautical charts, http://www.nauticalcharts.noaa.gov/mcd/learn_-
aboutcharts.html.

[8] Nautical chart, http://en.wikipedia.org/wiki/nautical_chart.

[9] Nautical charts, http://www.sailingissues.com/navcourse2.html.

[10] Qt, http://qt.nokia.com/products/.

[11] tesseract-ocr, http://code.google.com/p/tesseract-ocr/.

[12] Triangulation, http://mathworld.wolfram.com/triangulation.html.

[13] S. Ablameyko, V. Bereishik, M. Homenko, N. Paramonova, and O. Patsko, Auto-
matic/interactive interpretation of color map images, Pattern Recognition, Inter-
national Conference on 3 (2002), 30069.

[14] M. Akmal Butt and P. Maragos, Optimum design of chamfer distance transforms,
Trans. Img. Proc. 7 (1998), no. 10, 1477�1484.

[15] Gerald J.F. Banon Arley F. de Souza, Distance transform as a basis for contour
line interpolation and intermediate line generation, (2004).

[16] Patrice Arrighi and Pierre Soille, From scanned topographic maps to digital eleva-
tion models.

[17] Yao-Yi Chiang and Craig A. Knoblock, An approach for recognizing text labels in
raster maps, ICPR, 2010, pp. 3199�3202.

58

BIBLIOGRAPHY 59

[18] John C. Davis, Statistics and data analysis in geology, John Wiley & Sons, Inc.,
New York, NY, USA, 1973.

[19] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf, Com-
putational geometry: algorithms and applications, Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1997.

[20] Line Eikvil, Kjersti Aas, and Marit Holden, Tools for automatic recognition of
character strings in maps, CAIP, 1995, pp. 741�746.

[21] Pedro F. Felzenszwalb and Daniel P. Huttenlocher, Distance transforms of sampled
functions, Tech. report, Cornell Computing and Information Science, 2004.

[22] Richard Franke and Greg Nielson, Smooth interpolation of large sets of scattered
data, International Journal for Numerical Methods in Engineering 15 (1980),
no. 11, 1691�1704.

[23] Ste�en Frischknecht, Entela Kanani, and Alessandro Carosio, A raster-based ap-
proach for the automatic interpretation of topographic maps, In: IAPRS 32 (1998),
523�530.

[24] Tudor Ghircoias and Remus Brad, A new framework for the extraction of contour
lines in scanned topographic maps, IDC, 2010, pp. 47�52.

[25] Barry Joe, Delaunay triangulat meshes in convex polygons, SIAM J. Sci. Stat.
Comput. 7 (1986), 514�539.

[26] J. Li and A.D. Heap, A review of spatial interpolation methods for environmental
scientists, Geoscience Australia, Canberra, 2008.

[27] D. E. Myers, Spatial interpolation: an overview, Geoderma 62 (1994), 17�28.

[28] LL.D. Nathaniel Bowditch, The american practical navigator: an epitome of navi-
gation, 1995.

[29] Department of Commerce National Oceanic, Department of Defense National Im-
agery Atmospheric Administration, and Mapping Agency, Nautical chart systems,
abbreviations and terms, 1997.

[30] R.J. Fowler J.J. Little D.M. Mark Peuker, T.K., The triangulated irregular network,
American Society of Photogrammetry: Digital Terrain Models (DTM) Symposium
(1978), 516�540.

[31] R. Smith, An overview of the tesseract ocr engine, Proceedings of the Ninth Inter-
national Conference on Document Analysis and Recognition - Volume 02 (Wash-
ington, DC, USA), ICDAR '07, IEEE Computer Society, 2007, pp. 629�633.

[32] Waldo R. Tobler, A computer movie simulating urban growth in the Detroit region,
Economic Geography 46 (1970), 234�240.

[33] Øivind Due Trier, Anil K. Jain, and Tor�nn Taxt, Feature extraction methods for
character recognition-a survey, Pattern Recognition 29 (1996), no. 4, 641�662.

[34] Aurelio VelÃ¡zquez and Serguei Levachkine, Text/graphics separation and recogni-
tion in raster-scanned color cartographic maps., GREC (Josep LladÃ³s and Young-

BIBLIOGRAPHY 60

Bin Kwon, eds.), Lecture Notes in Computer Science, vol. 3088, Springer, 2003,
pp. 63�74.

[35] Je� Weeks and George Francis, Conway's ZIP Proof, The American Mathematical
Monthly 106 (1999), 393�399.

[36] Dongjun Xin, Xianzhong Zhou, and Huali Zheng, Contour line extraction from
paper-based topographic maps, 2006.

	Acknowledgements
	Abstract
	I Introduction
	1 Introduction
	1.1 Project statement
	1.2 Scanned sea charts
	1.3 Symbols in sea chart images
	1.4 Previous work
	1.4.1 Features for character recognition in scanned sea charts
	1.4.2 Automatic interpretation of maps
	1.4.3 Automatic character recognition in maps
	1.4.4 Spatial interpolation methods

	1.5 Designing a module for automatic conversion of scanned sea charts into 3D models

	II Automatic recognition of spot soundings
	2 Object identification
	2.1 Binary segmentation
	2.1.1 K-Means algorithm
	2.1.2 Binary segmentation algorithm
	2.1.3 Evaluation

	2.2 Object labeling
	2.2.1 Evaluation

	3 Object classification
	3.1 Features
	3.2 Decision rules
	3.2.1 Vertical straight lines (VSL)
	3.2.2 Horizontal straight lines (HSL)
	3.2.3 Oblique straight lines (OSL)
	3.2.4 Curved lines (CL)
	3.2.5 Characters
	3.2.6 Other symbols
	3.2.7 Classification algorithm

	3.3 Evaluation
	3.4 Object grouping

	4 Spot soundings recognition
	4.1 Tesseract OCR engine
	4.2 Evaluation
	4.2.1 Character recognition
	4.2.2 Sounding recognition

	III Automatic interpolation of spot soundings
	5 Automatic interpolation of spot soundings
	5.1 Desirable features of the interpolation method
	5.2 Spatial interpolation methods
	5.2.1 Distance Transform Interpolation
	5.2.2 Inverse Distance Weighting (IDW)
	5.2.3 IDW - Shepard's method
	5.2.4 IDW - Natural neighbors

	5.3 Evaluation

	IV System overview
	6 System overview
	6.1 Appearance
	6.2 Performance
	6.3 Testing procedure
	6.3.1 Testing small parts of a scanned sea chart image
	6.3.2 Testing full scanned sea chart images

	V Conclusions
	7 Conclusions
	8 Future work
	A Delaunay Triangulation

