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Abstract 

In recent years, super-resolution localization has been a vast developing area in 

bio-imaging, which aims at overcoming the resolution limit of microscope image due 

to the diffraction limit of light microscopes. To achieve sub-resolution precision, 

super-resolution techniques fit single molecules to the PSF (Point Spread Function) of 

the microscope. Existing software for super-resolution localization either lose 

substantial number of the true positive in the particle detection phase or doesn`t 

provide good estimations of the localization error, which is important parameter for 

reconstructing image with higher resolution. In current work a set of robust 

computational tools is developed for super-resolution localization analysis. One of the 

main goals is to keep as many true positive as possible while eliminating the false 

positive. These tools work well not only with homogeneous background images, but 

also provide robust analysis of images with non-homogeneous background, which are 

usually obtained during acquisition. The methods of the particle localization provide 

statistical estimation of localization precision, so that the real resolution could be 

determined. All methods are implemented as a plug-in for the free open source 

software ImageJ that is widely used for microscopy image analysis. It is shown that 

suggested approach gives substantial improvement in the particle detection and the 

localization precision compared with existing software and simultaneously gives an 

estimation of the localization error. Furthermore, drift correction algorithms are 

studied to get clearer image. 
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Chapter 1 Introduction 

1.1 Motivation 

In cell biology domain, fluorescent microscopy is the one of the most important tools 

for analyzing cell activities. It enables visualization of cell structures at the 

micrometer scale. 

In the past few decades, researchers had been working on improving the resolution of 

fluorescent microscopy. Efforts had been made to limit the directions of the emitting 

light, so as to narrow the region from which a pixel receives the light, hence 

improving the image resolution. A typical example of this kind of microscope is the 

confocal microscope. Confocal microscope uses scanning point source for 

illumination, instead of the traditional light source that illuminated the whole 

specimen at the same time. Moreover, it eliminates out-of-focus light with a pinhole. 

Images acquired by a confocal microscopy have less out-of-focus signals, compared 

with traditional wide-filed microscopy. 

However, being a type of optical microscopy, fluorescent microscopy has the same 

limit in resolution, which is roughly half of the wavelength. This limit is caused by a 

diffraction of light. Any object that is smaller than this diffraction limit will appear as 

a disk.  

Therefore, a development of advanced optical components already reached its limit, 

while an increasing demand for resolution in cell biology still remains. It is naturally 

that researchers started to exploit the super-resolution techniques to overcome the 

bottleneck of diffraction limit in recent years. 

Instead of improving image acquisition technique, as the new advanced microscopes 

do, super-resolution techniques is focused on improving the resolution by means of 

image analysis. Time-lapse images of the specimen are taken, with the help of special 

chemical techniques. After that a super-resolution reconstruction image is generated 

by analyzing the time-lapse images. It will give an image of cell structures at the 

nanometer scale. 

Although a lot of software analysis tools have been developed for super-resolution, 

they are either not free or not robust enough. With the growing application of 

super-resolution techniques, a free super-resolution tool that can provide a good 

super-resolution reconstruction is in great demand. 

1.2 Goal 

The goal of this project is to develop a set of instruments for single-molecule 
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super-resolution localization. The main tasks are automatic detection of particles in  

time-lapse images and finding spots centers` coordinates. The localization errors will 

also be estimated.  

1.3 Overview 

In the first chapter introduces the motivation and the main goal of our project.  

In the chapter two the main principles of super-resolution microscopy and its 

difference from conventional fluorescence microscopy are briefly described. 

Chapter three describes the first phase of super-resolution image analysis - particle 

detection. To improve the true positive rate detection and eliminate the false positive, 

specific convolution kernel is used to enhance the particle signal, smooth the noise 

and remove the gradient background. An optimal threshold is chosen for image 

binarization. Some filters are applied after that to eliminate the false positive. In 

comparison with existing super-resolution analysis software RapidStorm, I achieve 

similar true positive rate on artificial images dataset and number of false positives is 

much smaller. Comparing with another existing software QuickPALM, our false 

positive rate is slightly worse but our true positive rate is considerable more than 

QuickPALM`s.  

In the chapter four the second phase of analysis is introduced: particle localization. A 

set of different localization algorithms is discussed: center of mass method, Gaussian 

mask method and Gaussian fitting method. The Gaussian fitting method is discussed 

in details to figure out possible improvements in the localization precision and 

estimated error of particle localization. The localization precision has been improved 

by 4% - 76% at signal-to-noise ratio from 2 to 100 comparing with QuickPALM on 

our artificial dataset (Appendix 1.3.1). In comparison with RapidStorm, our 

localization precision is up to 7% better at low signal-to-noise ratios (from 2 to 7) and 

roughly the same at high signal-to-noise ratios (from 7 to 100). At signal-to-noise 

ratio of 100, our localization error is equal to 0.011 pixels. Since typical microscopy 

images have dimensions of 100 nm/pixels, the achieved localization precision is 

around 1 nm at signal-to-noise ratio of 100. The estimated localization error given by 

proposed algorithm is 13% - 17% more than the real localization error at 

signal-to-noise ratios from 2 to 7. At the signal-to-noise ratios from 7 to 100 the 

estimated localization error exceeds “ground-truth” error up to 58%. 

The chapter five introduces the implementation of our super-resolution image analysis 

tool. The general framework of the algorithm is described and the implementation 

details of the fitting are given. The performances of different fitting library are 

compared.  

The chapter six concludes the whole project and discusses directions of the future 

works. 
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Chapter 2 

2.1 Conventional Fluorescence Microscopy 

Fluorescence microscopy is a branch of optical microscopy, which involves the 

transmission and reflection of lights through optical lenses together with special 

staining of a sample. Typical setup contains a light source, a set of filters, a 

microscope and a camera. 

To visualize the cells using fluorescence microscopy, first the specimens should be 

stained with fluorescent dyes. Fluorescent dyes are fluorescent molecules which can 

absorb a certain wavelength of lights and emit lights with a longer wavelength. These 

dyes are chosen to label target structures that carry specific molecules in the cell with 

specific colors [1]. There are a variety of fluorescent dyes in the fluorescent dyes 

family. Each type of dye has its specific applications. After staining the specimen is 

exposed under proper range of light wavelengths that matches this fluorescent dye 

absorption spectrum and the electron in the fluorescent molecule will absorb the 

photon and switch from the ground state to a higher energy level, which is unstable. 

This wavelength range is called the excitation range. At the unstable level the electron 

has the tendency to fall back to the ground state and at the same time, it emits a 

photon. The emitted photons are within another wavelength range, which is the 

emission range. The emission range is always higher than the excitation range, 

implying lower energy. This phenomenon is called fluorescence, which was first 

described by Stokes [2]. To separate the emitted photons from photons coming from 

the light source, the emission filter is used. These emitted photons are detected by the 

camera and in this way the structures labeled with fluorescent can be depicted.  

Since registration of fluorescence does not differ much from registration of other 

microscopy techniques, the resolution of imaging system is ultimately limited by 

diffraction. Characteristic scale of resolution depends on optical parameters of system, 

used wavelength and etc, but it can be roughly estimated to be equal to 200-300 nm. 

2.2 Super-resolution Microscopy  

During last decades a set of different methods were developed to overcome diffraction 

limit and obtain super-resolution images.  

4Pi microscopy [3] overcomes the fact that the resolution in the axial direction is one 

third or less of the resolutions in the other directions, because the point spread 

function is elongated in the axial direction. By illuminating a sample using two 

objective lenses, the axial resolution can be enhanced.  

Stimulated emission depletion (STED) [4] improves the resolution by inhibiting the 
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outer region of excitation point spread function which is equivalent to breaking the 

diffraction limit. Structured illumination microscopy (SIM) [5] uses images made 

under different illumination to derive encoded high-resolution information.  

The techniques described above increase the resolution by improving the illumination 

of sample and require hardware modification of microscopy setup. It is not the case 

with single-molecule localization super-resolution (SR) techniques. These methods 

work only under the assumption that the images are sparse-particle images and each 

particle is a single particle.  

In conventional fluorescence microscopy, an image of the specimen displays an 

ensemble of overlapping particles. In these conditions it is very hard to locate 

individual molecules. Main principle of SR localization is to light up only single 

molecules and determine the positions of centers with high precision.  

To adapt the imaging for the use of single-molecule super-resolution techniques, some 

special dyes are introduced. Photoactivable fluorescent molecules can be activated by 

impulse of light within a specific range of wavelengths. Photoswitchable fluorescent 

molecules are capable of being turn on and turn off stochastically under certain 

illumination [6]. With these dyes only a few particles are turn on in each frame, 

producing sparse-particle image. For each sparse-particle image, single particles are 

detected and localized with a localization precision that is much smaller than the 

diffraction limit. Finally they are plotted on a super-resolution reconstruction image.  

Single Molecule High Resolution Imaging with Photobleach (SHRImP) [7] 

(sometimes also referred as BaLM [8]) gradually photobleaches molecules and thus is 

able to separate individual fluorophores. Photo-Activated Light Microscopy (PALM) 

[9] uses photoactivatable fluorescent molecules to target specific protein. After 

stochastic activation of subset of molecules, they are imaged, localized and 

photobleached (inactivated) and cannot be re-activated. Another single-molecule 

super-resolution technique – Stochastic Optical Reconstruction Microscopy (STORM) 

[10] is based on photoswitchable fluorescent dyes. The fluorophores are first all 

switched off. In the later stage they are switched on and off stochastically.  

For BaLM and SHRImP, at initial moment when the molecules are active, they are all 

turned on. At this stage the acquired images are of no big different from the 

conventional microscopy image. After photobleaching is applied, the molecules keep 

bleaching, which may be reflected in the image that the particles disappear as time 

passes. Single molecules are located at image that is subtraction of each frame from 

the following one. For STORM, the particles in each frame are already expected to be 

sparse, so they can be directly used for super-resolution technique. 

Figure 2-2-1 shows the conventional microscopy image and super-resolution image of 

the sample containing stained microtubules in vitro. If the same region of interest is 

zoomed in both images, in the conventional microscopy images, we can hardly see 

fine structure and location of microtubules. In the zoom-in image of the 

super-resolution image, we can see there are two microtubules crossing each other 
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while in the conventional image, these two microtubules may be count as one 

microtubule because of the lower resolution. 

 

Figure 2-2-1 (1) The two images on the top shows a conventional microscopy 

image and the super-resolution reconstruction of it. (2) The two images on the 

bottom are the insets of the same rectangular region of the images above them. 

There are a number of existing software for super-resolution image analysis: 

PALM3D [11], 3Bmicroscopy [12], Octane [13][14], M
2
LE, RapidSTORM [15] and 

QuickPALM [16]. Each of the solution has its own drawbacks. PALM3D focuses on 

3D super-resolution reconstruction and it has strict limits in the input data format. 

3Bmicroscopy aims at analyzing image where many particles may overlap and 

requires substantial computational resources. Octane doesn`t provide automatic 

particle detection. M
2
LE requires large-memory machine for calculation, which is not 

applicable for common user. RapidSTORM has a good true positive rate and uses 

Gaussian fitting method for localization, but the false positive rate is as high as 28% 

at signal-to-noise ratio of 2 (testing on our artificial dataset). QuickPALM use a 

simple center of mass method for particle localization, which give worse localization 

precision than Gaussian fitting method and it loses most of the true positive at low 

signal-to-noise ratios, but its false positive rate has been eliminated to less than 1%. 

The achieved results are compared results with RapidSTORM and QuickPALM, as 

widely accepted benchmark software. 
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Chapter 3 Single Particle Detection 

3.1 Introduction 

3.1.1 Background and Motivation 

In the past few decades we had witnessed a rapid growing of digital image processing. 

Nowadays it has become a well-developed image analyzing technique that has wide 

application in the fields of information technology, biology, geosciences, etc.  

In spite of the advances in digital image processing, the effectiveness of particle 

detection is always limited by the quality of the images. Unfortunately, in the 

application of super-resolution fluorescent microscopy, image quality is often a 

critical issue. The noise in microscopy images will always increase the difficulty of 

single particle detection (Appendix 3.1.1). The main noise sources in fluorescent 

microscopy images are the shot noise and the background noise.  

Shot noise origins from the particle nature of light. The camera works by counting the 

number of photons it receives in a specific region within a short period of time, and 

transforming it to the grey count of that pixel in the corresponding frame. The photons 

from a stream of light of constant intensity still arrive at detector randomly, yielding a 

variation in the number of photons the camera receives. The brighter the light is, the 

larger the variation we get. This photon counting error contributes to the shot noise in 

the pixels. 

For charged-couple device (CCD) (that is a major technology used in cameras for 

digital imaging) background noise mainly consists of out-of-focus fluorescence, CCD 

readout noise and dark current [17]. 

Dark current is caused by thermally generated electrons in the CCD. It`s directly 

related to the temperature of the CCD. If the temperature is high enough, dark current 

will completely fill the image. 

Readout noise follows Gaussian distribution. Shot noise and dark current both follow 

Poisson distribution, which can also be approximated by Gaussian distribution at high 

values [18].  

To measure the ratio of the spot signal and the noise signal the parameter called 

signal-to-noise ratio (SNR) is introduced (see Appendix 3.1.2 for definition). 

Fluorescent microscopy images usually have signal-to-noise ratio between 2 and 100. 

The performance of particle detection dramatically gets worse in low signal-to-noise 

ratio region. Unfortunately the fluorescent microscopy images fall in low 

signal-to-noise ratio region frequently. In low signal-to-noise ratio region the number 

of true positive dramatically decreases. And fraction of the false positives is in general 
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higher in the low signal-to-noise ratio region than in the high signal-to-noise region. 

As shown in Figure 3-1-1, testing with the uniform-background images (slope = 0) in 

our artificial dataset, QuickPalm has only 2% of true positive at SNR = 2, 20% at 

SNR = 3 and 70% of true positive at SNR = 4. RapidStorm has much better 

performance of true positive than QuickPALM with uniform-background images. But 

its false positive rate is as high as 28% at SNR = 2, 17% at SNR = 3 and 10% at SNR 

= 4. As for gradient-background images (slope = 3), RapidStorm loses its 

discriminative power, while QuickPALM`s performance is as good as its performance 

with uniform-background. 

 

Figure 3-1-1 The left plot shows the true positive rates of QuickPALM particle 

detection and RapidStorm particle detection at different signal-to-noise ratios, 

testing with the uniform-background images (slope = 0) and the 

gradient-background images (slope = 3) of our artificial dataset. The left plot 

shows the false positive rates of them. In all our tests with QuickPALM in this 

project, the following parameters are used: Minimum SNR – half of SNR; 

Maximum FWHM (in px) – 5; Image plane pixel size (nm) – 106.00; other 

parameters are chosen as default. The test in rapidStorm performed in the 

casual mode. The parameters setting are chosen to correspond to the 

parameters in QuickPALM. 

 

3.1.2 Framework 

In machine learning object detection can be fulfilled by supervised methods. 

Additional training dataset is required to train a classification system in an offline 

phase. Supervised methods may give good results because the particles have certain 

patterns. But considering that for the reconstruction of super-resolution structures 

there may be hundreds of thousands of particles, and computation time is also a 

critical issue, supervised method would be too computation consuming. Moreover, if 

training dataset is involved for particle detection, automatic particle detection cannot 

be achieved. Smal [19] has tested fluorescence microscopy particle detection 
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algorithms with the commonly used supervised methods and unsupervised methods. It 

has been shown that supervised methods didn`t give substantially better results than 

the best of the unsupervised methods. Therefore in this work the unsupervised method 

based on particle detection algorithm is chosen. 

The implemented unsupervised method follows a preprocessing-detection-post 

processing scheme. 

Given an image I, the first step of particle detection is noise removal. A low-pass filter 

is applied on the image to remove noise. After that the image is convoluted with a 

kernel K. The convolution step smoothes the noise and enhances the spot signal that 

match the kernel. These two steps are pre-processing steps that prepare the image 

before the particle detection. The next step is binarization with a threshold T. It 

divides the image into the background region and the spot regions, fulfilling initial 

particle detection. After that a few filters are applied on the binary image for false 

positive elimination.  

 

Figure 3-1-2-1 General framework of the particle detection section of our 

algorithm. 

To remove non-homogeneous background, our particle detection algorithm combines 

the Top-hat filter with a Gaussian kernel. The parameters of these filters are optimized 

so that they will keep as many true positives as possible while eliminating the false 

positives. Automatic thresholding is implemented by calculation the statistical 

characteristics of the images. Our algorithm detect more than 60% of true positive at 

SNR = 2 and more than 95% of true positive at SNR = 3, for both uniform 

background images and gradient-background images. The achieved false positive rate 

is 3.5% at SNR =2 and 0.5% at SNR = 3. 

3.1.2 Goal 

In this chapter our main goal is to improve the efficiency of particle detection, namely 
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increase the number of true positives, eliminate false positive and make the particle 

detection invariant to gradient background. Considering that missing some particles 

among thousands of fluorophores is better than wrongly labeling some non-existing 

particles while they are not expected, when a balance has to be taken between 

increasing the true positive and eliminating the false positive, it is preferable to 

eliminate false positive in sacrifice of losing some true positive.  

Apart from improving the performance, another goal is to implement automatic 

detection. In the particle detection phase, various filters are applied and each of them 

requires some customized input to fit the testing data. Users should be relieved as 

much as possible from the difficult choice of complicate user-input parameters. 

Approach requires that user provides only a few easy-to-measure parameters and 

evaluates the rest of parameters based on revealed optimal dependences, thus the 

algorithm can be automatically executed. 

3.2 Convolution 

The main purpose of convolution is to enhance the spot signal and smooth the noise. 

Image convolution (Appendix 3.2.3) is a 2-dimensional discrete convolution of the 

image I and the kernel K.  

The kernel K can be viewed as a weight mask. A pixel at the rth row and the cth 

column in the output image is the sum of K and a square region in the input image. 

This square region has the same size as K, centered at the rth row and the cth column.  

Consider an average kernel KA, whose elements have the same value 1. D is the 

2-dimensional pixel region of KA. When an image is convoluted with KA, each pixel 

in the output image is the average of the square region in the input image, which is the 

process of average blur (Appendix 3.2.4). 

If we view it in the frequency domain, a convolution operator in the space domain has 

the same effect with a multiplication operator in the frequency domain (Appendix 

3.2.5): 

In frequency domain, kernel KA has its average value a0 in the lowest frequency level. 

In all the other higher frequency level the coefficients are all zero. If I multiplies KA 

in frequency domain, only the average value of I will be left if KA is large enough. 

The details of I in higher frequency level are all discarded because of the zeros in 

these levels of KA. So we can see I will become a plain background image without 

any textures. The kernel works as a blur filter. This is in accordance with the analysis 

in space domain. 

When the kernel doesn`t have uniformed value, it`s a weighted blur filter if all the 

values are positive. In our case the purpose is to smooth the noise while avoiding 

blurring the spot signal, so an average kernel will not be an appropriate choice. 

Apart from being a blur filter, the kernel also serves to enhance a certain pattern in the 
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images, which is done by setting weight values in each pixel of the kernel. A kernel 

enhancing the spot must have a pattern agreeing with the intensity distribution of the 

spot, which is also the point spread function of the microscope. 

As mention before any object that is smaller than the diffraction limit will appear as a 

disk in microscopy images. This disk is the convolution of the spot itself and the point 

spread function of the microscope. Point spread function is the function that describes 

the distribution of the intensity of a spot that is smaller than the diffraction limit under 

an optical microscope. It is a property of the microscope. Considering the complexity 

of constructing the true point spread function model of a microscope, in most 

application, it`s approximated by a Gaussian function for simplification. 

Here the kernel KG is generated (Appendix 3.2.6) that represents a discrete Gaussian 

function. 

 

Figure 3-2-1 (1) The plot on the left shows the true positives percentage when 

particle detection algorithm detects with Gaussian kernels with different sigma 

(standard deviation) at different signal-to-noise ratio. (2) The plot on the right 

shows the false positive the particle detection algorithm detects with Gaussian 

kernels with different sigma (standard deviation) at different signal-to-noise 

ratio. 

Figure 3-2-1 shows that the particle detection has the best result when the standard 

deviation of the Gaussian kernel is 2.0 (sigma = 2.0). It is exactly the value of the 

standard deviation of the artificial microscope`s point spread function used to 

generate images. 

To avoid edge effect induced by the convolution, while computing convolution of the 

pixels near the edges, the pixels outside the image region are padded with pixels of I 

that has smallest Euclidean distance to the out-of-bound pixels. 
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3.3 Thresholding 

The preprocessing steps prepare the images for particle detection. After that the image 

will be binarized with a threshold value T. Any pixels that have intensity equal to or 

larger than T are the foreground and pixels that have intensity smaller than T are 

considered to be background. 

Existing algorithms for image thresholding are mainly histogram-based (Appendix 

3.3.1). All of them compute a threshold value T that will minimize the detection error. 

Histogram approach is fast and convenient way to implement image binarization. 

However, for single particle detection, our images are preprocessed into 

sparse-particle images, implying that the number of noise pixels is greatly larger than 

the number of spot pixels, resulting in a huge difference between the noise histogram 

and the spot histogram, which makes histogram segmentation impossible.  

Figure 3-3-1 shows the histogram of an artificial image containing particles. The 

x-axis shows the intensity range of this image is [0, 65535]. From the figure one can 

only recognize a major peak in the histogram, which is the peak of the noise pixels. 

The pixels belonging to the spots distribute in the high-intensity region of this 

histogram. But the number of spot pixels is so small compare with the number of 

noise pixels that one cannot distinguish them from the noise pixels. Therefore, a 

statistics approach could be taken. 

 

Figure 3-3-1 The histogram of an image with SNR = 3 from our dataset. The 

x-axis represents the intensity of the pixels and the y-axis represents the counts. 

It could be seen that one can hardly separate the particle signal from the noise 

signal in the histogram. 

For a wide-field microscope the noise can be modeled by a Gaussian distribution N(μn, 

σn
2
), where μn is the average intensity of the noise, and σn is the standard deviation. 

As mentioned in section 3.1.1, the distribution of spot signals can be also 
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approximated by Gaussian distributions. Assume that the spot signal follows the 

distribution N(μs, σs
2
), where μs is the average intensity of the spots signal and σs is the 

standard deviation. 

Since (σs +σn)  ≪ (μs - μn), it can be assumed that the histograms of the noise and the 

spot signal are non-crossing. Thus they could be considered separately. If the intensity 

of a pixel is higher than a intensity value (μn + C·σn), the probability that this pixel is 

not a noise pixel (which means it`s a spot pixel, because the background is dark and 

the noise signal and the spot signal has higher intensity than the background intensity) 

is: 

1 – P(μn + C·σn) =  𝑝(𝑖)𝑑𝑖
+∞

𝜇𝑛  + 𝐶·𝜎𝑛
 

P(x) is the cumulative distribution function of the noise and p(x) is the probability 

density function. If C is large enough, the intensities of most of the noise pixels are 

smaller than (μn + C·σn). So a threshold that divides the noise and the spot T is given 

by: 

𝑇 = 𝜇 +  𝜎 ∙ 𝐶 

where C is a constant parameter. The choice of C will greatly affect the goodness of 

particle detection. Figure 3-3-2 shows that a value of C within the range of [3, 4] 

would be appropriate. In current work the value of 3 is chosen to be optimal. With this 

three-stand-deviation coefficient, there are still 0.2699796% of noise pixels being 

wrongly classified as spot pixels and it may become false positives of the particle 

detection phase. These false positive will be removed in later phases. 

 

Figure 3-3-2 (1) The plot on the left shows the true positive detected by 

the algorithm with different standard deviation coefficient on the x-axis. 

(2) The plot on the right shows the false positive detected by the 

algorithm with different standard deviation coefficient on the x-axis. 

(3-3-1) 

(3-3-2) 
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Now a problem arises. The proper thresholding requires values of the mean and the 

standard deviation of the noise. However, it`s impossible to get the real statistical 

values of the noise, because before that correct separation of the noise signal and the 

spot signal is required. But this cannot be done before the image is converted to binary. 

In current implementation the statistical values of the whole image as an 

approximation of the statistical values of the noise is calculated. Let these 

approximated values be (𝜇 , 𝜎 ) and the real values be (μ, σ).  

Assume that using the real value (μ, σ) one can better binary the image. There is a 

simple way to obtain a better approximation of the real statistics. After thresholding 

with threshold 𝑇 , the segmentation of the noise pixels and the spot pixels is achieved. 

With that a new mean 𝜇 ′  and a new standard deviation 𝜎 ′  of the noise pixels can be 

calculated and thresholding can be performed again with the new threshold 𝑇 ′, which 

is calculated with 𝜇 ′  and 𝜎 ′ .  

 

(a) 

 

(b) 

Figure 3-3-3 (a) The figure shows the true positive/false positive the original 

algorithm and the improved algorithm detect at different signal-to-noise ratio. 

(b) The figure shows the true positive/false positive the original algorithm and 

the improved algorithm detect with different standard deviation coefficient. 

Standard Deviation Coefficient Standard Deviation Coefficient 
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Considering that the spot signal has higher intensity than the noise, one can get the 

following relation if C is fixed: 

𝜇 > 𝜇 >  𝜇 ′  

𝜎 > 𝜎 > 𝜎 ′  

𝑇 > 𝑇 > 𝑇 ′  

Therefore, if 𝑇  is used as the threshold the numbers of true positive and false 

positive are less, and if 𝑇 ′  is used these numbers are bigger.  

As shown in Figure 3-3-3 (a), when C = 3, the difference in true positive is rather 

small, but the difference in false positive is substantial. 

However, the threshold is a single value. Adjusting of the threshold could be made by 

directly adjusting C. By doing this the difference between these two approaches will 

be wiped out, as shown in Figure 3-3-3 (b). If the curve of the improved approach is 

shifted for -0.5 along the x-axis, it will overlap the curve of the original approach. 

Similarly, the shift also works for the curves plotted with the real statistical values of 

the noise. Therefore the assumption that using the real values gives better 

thresholding result than using the approximated values doesn`t stand.  

3.4 Background Subtraction 

A non-specific staining, stray illumination, out-of-focus structures and other factors 

can induce non-homogeneous background in the SR images. If threshold is directly 

applied to the image, the regions that have brighter background may be classified as 

the spots, and the spots that lie on darker background regions may be classified as the 

background, as shown in Figure 3-4-1.  

 

 

 

 

Figure 3-4-2 shows the true positive rate of particle detection of homogeneous 

Figure 3-4-1 (1) The left image is an image from our dataset with gradient 

background. (2) The right image is the binarized image of the left image 

without proper handling of background. 

(3-3-3) 

(3-3-4) 

(3-3-5) 
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background (left) and non-homogeneous background (right) images. Applying our 

Gaussian kernel and statistical threshold, the algorithm achieves good particle 

detection performance while testing with homogeneous background images. But it 

loses its discriminative power while testing with non-homogenous background image. 

In the right plot the true positive curve converges to 20%, agreeing with Figure 3-4-1, 

where only one out of five columns of particles that share similar background 

intensity is detected. 

To solve this problem, background subtraction is introduced in our algorithm to make 

the convolution kernel invariant to gradient background. 

 

Figure 3-4-2 (1) The left plot shows the true positive detected by the Gaussian 

kernel and QuickPALM at different signal-to-noise ratio, testing with the 

non-gradient background images. (2) The left plot shows the true positive 

detected by the Gaussian kernel and QuickPALM at different signal-to-noise 

ratio, testing with the gradient background images. 

Mashanov and Molloy [20] purposed a simple but effective background subtraction 

kernel (Table 3-4-1). The sum of weight of this kernel is exactly one. 

The cells in the inner region of the kernel have weight value of one. This region 

serves as an averaging kernel. The zeros cells are ignored. The outer region with 

minus-value cells is considered as the background. By setting minus value in the outer 

region, which is presumed as the background region, the background value is 

subtracted. This kernel immediately improves the performance of particle detection 

for gradient background images. However, firstly it doesn`t match our particles` 

pattern very well because it uses an average filter in the middle of the kernel. 

Secondly, found background region does not give the best evaluation of the 

background value. Finally, the sum of weight is one, which is not as good as a zero 

weight for gradient background removal. 

To solve the first problem Gaussian kernel is integrated with a background subtraction 
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filter. For the second one, Top-hat filter is used for background evaluation. Finally, I 

study the influences of different sum of weight values. 

 

 0 -1 -1 -1 -1 -1 0  

 -1 0 1 1 1 0 -1  

 -1 1 1 1 1 1 -1  

 -1 1 1 1 1 1 -1  

 -1 1 1 1 1 1 -1  

 -1 0 1 1 1 0 -1  

 0 -1 -1 -1 -1 -1 0  

Table 3-4-1 The Mashanov`s convolution kernel. 

Before moving to solution of these problems, let’s discuss how background 

subtraction works.  

In digital image processing, the sum of weight of a basic 3 by 3 high-pass spatial filter 

is (Appendix 3-4-1) zero [21]. After the filter move over the image during convolution, 

the output image has intensity values close to zero. In this way the zero-frequency 

term of the input image is eliminated. This can be verified by calculating the average 

intensity of the image, which shall be zero. If one subtract the original image by the 

high-pass image, one get the low-pass image, representing the low frequency terms. 

The corresponding low-pass filter (Appendix 3-4-1) is a typical average filter, which 

will get the average values of the image it convolutes with. For a pixel in the input 

image, if we want to evaluate the background value of this pixel with its n by n 

neighboring pixels, including the center pixel itself, the average filter will be exactly 

the filter we need, when n = 3. Subtracting the original image by the background 

value has the same effect as applying the high-pass filter to the original image. 

But what happens in the Mashanov`s kernel is slightly different, for the sum of weight 

is one instead of zero. As was mentioned earlier: 

High-pass = Original – Low-pass 

A high-boost filter is: 

High-boost = C·Original – Low-pass 

where C is a user-defined coefficient. When C > 1, it enhances the high-frequency 

terms and at the same time keeps the general appearance of the original image. 

The filter in Mashanov`s kernel can be described by: 

 
50

49
∙ 𝑶𝒓𝒈𝒊𝒏𝒂𝒍 − 𝑳𝒐𝒘𝒑𝒂𝒔𝒔 ∙ 49 

=
1

49
 𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍 + 49 ∙ 𝑯𝒊𝒈𝒉𝒑𝒂𝒔𝒔 ∙ 49 
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=
1

49
 𝑳𝒐𝒘𝒑𝒂𝒔𝒔 + 50 ∙ 𝑯𝒊𝒈𝒉𝒑𝒂𝒔𝒔 ∙ 49 

A small portion of the low-pass terms, namely the background value is still kept in the 

output image. If the input image has a steep gradient background, with Mashanov`s 

kernel the gradient background cannot be completely subtracted. Figure 3-4-3 (a) and 

(b) show the difference in background subtraction of a high-pass kernel and a 

high-boost kernel.  

 

 

 

 (a) (b)  

Figure 3-4-3 (a) The result of background subtraction with a high-pass kernel. 

(b) The result of background subtraction with a high-boost kernel. 

To integrate our 7 by 7 Gaussian kernel with a 7 by 7 average filter for background 

subtraction, both of them are simply normalized and summed up. This new Gaussian 

subtraction kernel integrates Gaussian kernel and average filter. It has the same effect 

as sequentially applying a Gaussian filter and the average filter.  

 

Figure 3-4-3 (1) The left plot shows the true positive detected by the Gaussian 

kernel and QuickPALM at different signal-to-noise ratio, testing with the 

gradient background images. (2) The left plot shows the true positive detected 

by the Gaussian subtraction kernel and QuickPALM at different 

signal-to-noise ratio, testing with the gradient background images. 
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The right plot of Figure 3-4-4 shows the true positive performance of Gaussian 

subtraction kernel, compared with QuickPALM. The left plot is performance of 

Gaussian kernel without background subtraction. In 3-1-1 it was shown that 

RapidStorm is not invariant to gradient background, thus here only QuickPALM was 

used for comparison. 

Now the remaining task is choosing the correct pixels for background value 

evaluation. Assume that the spots have radius r. Consider a n by n kernel size, any 

pixels within the distance of r from the center pixel are the spot pixels, and the others 

are the background pixels. The background value of the center pixel will be the 

average intensity of the background pixels (Appendix 3.4.2). 

3.5 False Positive Elimination 

In Figure 3-3-2 (2) one can see that no matter how the threshold is adjusted, there are 

always some true positives lost or some false positives existing. Because of the 

trade-off, a balanced value has to be chosen, so that most of the true positives are kept 

and at the same time the number of false positive is kept as small as possible. After 

that additional false positive elimination phase is added to remove remaining false 

positives. 

Four types of filters are applied here for noise elimination: noise filter, symmetry filter, 

opening filter and area filter, among which the noise filter is the pre-convolution filter 

and the other three are the post-convolution filter. The pre-convolution filter is applied 

for image pre-processing before the convolution. It removes the signal in the image 

that is characterized by the noise model. The other three filters are applied on the 

binary image after the convolution and the binarization. Each of them make use of a 

property of the spot model to remove detected spots that don`t match the property.  

3.5.1 Noise filters 

There are a variety of filters for removing noise. Some of them either work in the 

space domain, such as average filter and median filter, or in the frequency domain, 

such as low-pass filter. Others estimate the noise model for image restoration. 

However, for most of them, smoothing the noise will more or less bluring the image. 

In our case it was already shown that the noise follows Gaussian distribution, and 

there is the initial guess of the spot (signal) model, which is also a Gaussian function. 

The choice of a filter should be done carefully so that it will smooth the noise but 

avoid blurring the spot signal too much.  

Although the noise signal model and the spot signal model are both Gaussian function, 

one can still see the difference between them. For each pixel of the image, the noise 

intensity is a random variable that follows Gaussian distribution. So the noise of the 

image has the majority of its signal in the high-frequency range of the image spectrum. 
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The spot signal model is a Gaussian function in the space domain within certain range. 

So it lies in the lower-frequency range of the image spectrum. 

Considering this difference the Gaussian low-pass filter is used for the purpose of 

noise removal. Since the Fourier transform of a Gaussian function is also a Gaussian 

function, a Gaussian function is a low-pass filter that will smooth the image [22]. 

3.5.2 Symmetry 

In the spot signal model, no matter what the parameters of the Gaussian distribution 

are, the spots are always reflection symmetric. This is a feature that can be used to 

distinguish the spot from the noise.  

To measure the degree of symmetry of a spot, a feature descriptor is needed. 

QuickPALM uses two values Sx and Sy (Appendix 3.5.2.1) for measuring the 

symmetry with respect to x-axis and y-axis [23]. If the spot is a true positive then it 

should stand that Sx ≈ 1 and Sy ≈ 1. Allowing a portion of error, a tolerance is set to  

Ts. If a spot has symmetry errors exceeding the Ts, it is a false positive (Appendix 

3.5.2.2). 

Figure 3-5-2-1 shows the results of choosing different tolerance Ts. When Ts = 1.0, the 

allowing range is [0.0, 2.0], which means no symmetry filter is applied. It can be seen 

that from Ts = 0.4 to Ts = 0.35 there is a sudden drop on the false positive, but the loss 

on true positive is rather small. So Ts = 0.35 was chosen as the optimal value. 

 

Figure 3-5-2-1 (1) Left: the true positive detected by the particle detection 

algorithm with different symmetry thresholds TS. (2) Right: the false positive 

detected by the particle detection algorithm with different symmetry thresholds 

TS. 

3.5.3 Open 

Open operation is a widely used morphological operation in image processing. It is 

the sequential combination of erosion and dilation, which are also fundamental 

morphological operations. Open is often used for noise removal. Here binary open 

operation is applied on the image after thresholding. It will remove small foreground 
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particles from the image. 

Open is an erosion followed by a dilation with the same operator (Appendix 3.5.3.1). 

Using a large operator width will lead to loss of some true positives that have small 

sizes. But with a small operator width the operation will has less eliminating power. In 

this case the chance to eliminate the false positive is less. 

Here the 3 by 3 open operator was chosen with all the elements in the cells equal to 

one. So the center of the operator is (2, 2). 

3.5.4 Area 

After binarization, there are many small spots in the image that are originated from 

the noise in the original microscope image. These spots are false positive which have 

to be removed. A simple area filter will do the job efficiently.  

An area filter defines a threshold Ta. Any spot that has an area smaller than Ta will be 

treated as a false positive. 

The choice of threshold value is a critical issue here. As mentioned before, the plug-in 

has to choose most of the parameters automatically, including the area threshold Ta.  

The initial assumption is that Ta may be affected by the standard deviation of the point 

spread function, the convolution kernel size and the binarization threshold. Since the 

binarization threshold is defined by the convoluted image itself, and it shall correctly 

separate the background and the spots, the influence of binarization threshold can be 

ignored. Because as long as the background and the spots are correctly separated, the 

areas of the spots shall be the same. Our tests have shown that Ta = kernelSize + 1 

would be appropriate. 

3.6 Experiment Result 

The whole process of particle detection has been discussed in this chapter. In this 

section I am going to integrate all parts and test the performance of proposed 

approach. 

In the previous section, all of the filters discussed are designed for eliminating the 

false positive. The Gaussian low-pass filter removes the noise in the image before 

particle detection. Except the Gaussian low-pass filter, the other three filters eliminate 

the false positive by removing irregular detected spots. It`s not difficult to notice that 

the functions of some of these filters overlap with each other. For instance, opening 

operation and area filter both remove small particles from the detected spots. Area 

filter only deals with the area of a spot, while opening operation not only deals with 

the area, but also works on the shape of a spot. 

Therefore, it is essential to investigate how these filters perform when they are 
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combined with each other. The crucial experiment is designed to test the performance 

of different combination of filters. The performance is evaluated by the true positive 

and false positive it gives.  

In the experiment, all the combinations of the four filters are tested. The filters are 

applied in a certain order. The order is arranged considering the functions and the 

effects of the filters. As a noise removal filter, Gaussian low-pass filter must be a 

pre-processing step, so it shall be applied before the convolution. Because open 

operation will change the shapes of the spots, and once the shapes are changed, the  

 

(a) SNR = 2 

 

(b) SNR = 3 

Gaussian Top-hat Kernel 

17.3% 

28% 
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(c) SNR = 2 

 

 (d) SNR = 3 

Gaussian Subtraction Kernel 

Figure 3-6-1 shows the true positive/false positive rates of the particle 

detection algorithms with Gaussian Top-hat kernel and different filter 

combinations, at SNR = 2. (b) is the result of the same algorithm except that 

SNR =3. (c) and (d) are the results of the same algorithm, except that they use 

Gaussian subtraction kernel. The performances of QuickPALM and 

RapidStorm are also shown here for comparison.  

Each digit of the combination numbers indicates whether the corresponding 

filter is applied. The correspondence of the digits and the filters are: 1) 

Gaussian low-pass filter. 2) Symmetry filter. 3) Opening operation. 4) Area 

filter. 

28% 

17.3% 
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symmetry may be changed, it has to be applied after symmetry filter. Open operation 

may separate some improperly connected spots into single spots. If area filter is 

applied before opening operation, the single spots which are smaller than the area 

threshold cannot be removed. Concluding all of these conditions, the order of these 

filters can be summarize.  

Firstly, Gaussian low-pass filter is applied on the original image. And then the image 

will be convoluted with the top-hat Gaussian kernel. After that the image is binarized 

with a threshold calculated from the image statistics. For the next step, symmetry 

filter is applied on the binary image, following with opening operation. Finally, area 

filter will be applied. 

 

(a) Proposed algorithm 

 

(b) QuickPALM 

Figure 3-6-2 (a) is the super-resolution reconstruction of a series of dSTORM 

images with proposed particle detection and (b) is the reconstruction with 

QuickPALM`s particle detection. For each of them, the left image is the whole 

reconstruction image. The right images are the details in the rectangular 

regions of the left image. Comparing them it can be seen that the microtubules 

in (a) have smaller widths and clearer structures. 
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Figure 3-6-1 shows the results of the top-5 combinations using Gaussian top-hat 

kernel, compared with the result of QuickPALM and RapidStorm. All of the 

combinations here greatly outperform QuickPALM in terms of true positive. Even 

with SNR = 3 can QuickPALM detect only less than 20% of true positive, but the best 

of our filters combination can detect more than 95% true positive. However, 

QuickPalm does an excellent job in eliminating false positive, it has less than 1% 

false positive both with SNR = 2 and SNR = 3. Our best combination has 0.5% false 

positive at SNR = 3 and almost 2% false positive when SNR = 2. Compared with 

rapidStorm our algorithm is slightly better in true positive rate. But RapidStorm has 

high false positive rate of 28% at SNR = 2 and 17% at SNR = 3. 

Comparing the results of Gaussian top-hat kernel and Gaussian subtraction kernel, it 

is hard to find obvious differences in the true positive plots. But from the plots of 

false positives it can be seen that Gaussian top-hat kernel is more robust to gradient 

background image, especially when considering the “non-slope bar” and the “slope 3” 

bars. This agrees with the conclusion of the section Background Subtraction. 

In this experiment combination 1011 shows the best result, which is the combination 

of Gaussian low-pass filter, opening operation and area filter. If considering only the 

figure of Gaussian top-hat kernel at SNR = 3, it achieves 99% true positive and 5% 

false positive. 

 

Figure 3-6-3 The left column shows the original image, and the right column 

shows the binary image with SNR=2. If we check the false positive (the ones 

in the dashed circle) in the original image, we find that even human visual 

system will classify them as real spots, but actually they are just spot patterns 

resembled by noise.   

Although it was mentioned before that losing true positive is better than plotting 

non-existing false positive, but the statistics itself doesn`t make too much sense if 

there is no reasonable evaluation of the final reconstruction result. Since the 

super-resolution technique is developed for further investigation of cell structures, the 
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evaluation of performance shall be done by human visual system, with real 

microscope images. 

Figure 3-6-2 shows the super-resolution reconstructions of a dSTORM sample of 

microtubules. The QuickPALM reconstruction has more isolated spots that are not 

connected to any microtubule. And its microtubules have worse continuity and larger 

width than results acquired with suggested approach, which means the former has 

lower resolution. So suggested particle detection procedure is better than 

QuickPALM`s. 

Notice that there are still 5% false positive while doing particle detection with 

developed algorithm. These false positive are inevitable rare noise patterns 

resembling spots (Figure 3-6-3). Some of these false positive can be removed in the 

next chapter – Particle Localization. 
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Chapter 4 Particle Localization 

4.1 Introduction 

4.1.1 General Introduction 

Once particle detection is done, it provides a list of spots, each of which the intensity 

and the coordinate of each pixel are provided. Our remaining task is to find the 

accurate position of the maximum intensity peak in each spots. 

The simplest approach one can come up with is calculating the geometric center of the 

spot. This approach is fast but crude. It gives a rough estimate of the spot position and 

it`s too rough for super-resolution reconstruction. 

A better approach is calculating center of mass, as QuickPALM does. It`s also fast and 

it gives an acceptable precision. In this chapter a new method for center of mass 

calculation is introduced, that improves the localization accuracy in the low SNR 

range comparing with QuickPALM. However, when the image quality is extremely 

good, center of mass will give an accurate result, but with the SNR range that general 

microscope images have, center of mass is not as reliable as with high SNR range, 

even though the accuracy has been improved.  

Therefore further localization is necessary for higher resolution reconstruction. What 

is known is the spot signal follows Gaussian distribution, and this is the information 

one can use for further localization. 

With the information of the spot pixels known, a non-linear least square fit to the 

Gaussian distribution can be used to estimate the mean of the Gaussian distribution, 

which will be the position of the spot. Since it`s a two-dimensional fitting, each spot 

may need a considerable number of iterations before it is fitted, it`s much more 

computational expensive than computing center of mass. 

A compromise is Gaussian mask [16], which is a simplified Gaussian Fitting. 

Although it is a simplified Gaussian fitting, it has a form similar to center of mass, 

which makes it much faster than Gaussian fitting. 

4.1.2 Motivation 

As shown in Figure 2-2-1, conventional microscopy images do not have enough 

resolution to show the details of many subcellular structures. The center of mass 

localization method used by QuickPALM resolves much higher details than 

conventional microscopy images. RapidStorm uses Gaussian fitting for localization, 

which gives better localization precision than QuickPALM (Figure 4-1-2-1). But 

again RapidStorm has much worse performance with gradient-background images 
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than with uniform background images. A robust particle localization algorithm shall 

give small localization errors with both uniform background images and 

gradient-background images. 

 

Figure 4-1-2-1 The localization error of QuickPALM and RapidStorm at 

different signal-to-noise ratios, testing with the uniform-background images 

(slope = 0) and the gradient-background images (slope = 3) of our artificial 

dataset. 

After the particles are localized, they will be plotted on the super-resolution 

reconstruction image. To accurately plot the sub-pixel coordinate of a particle on the 

image, simply adding the average intensity of the particle to the pixel that is closest to 

the particle`s coordinate is not sufficient. Instead, the particle shall be displayed with 

a Gaussian spot whose standard deviation is the localization uncertainty of the particle. 

The localization uncertainty is evaluated by the localization error.  

When testing is performed on artificial synthetic dataset, since the ground true is 

already known – the real position of the spots, the localization error can be calculated 

directly. But if this algorithm is going to be applied to real microscopy data, since the 

ground true is not provided, another way to estimate the error should be found. 

4.1.3 Framework 

The general framework of particle localization is simple (Figure 4-1-3-1). For a spot 

detected by the phase particle detection, the pixels belonging to the spot region are 

used for calculating center of mass. With center of mass as the initial spot position, 

Gaussian Mask or Gaussian fitting will be done to get a more accurate spot position. 

A question here is how is the spot region defined? QuickPalm and gSHRImP [25] 

both find the local maximum of a spot and cut out a predefined shape from the 

original microscopy image with the local maximum as the center. But here a more 

representative spot region is used, which will be introduced in the next section -- 
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Center of Mass. Gaussian fitting will be implemented by Levenberg-Marquardt 

method. Before that the background value of a spot is evaluated for background 

removal. Weight fitting, estimated parameters constraint and different Jacobian 

evaluation methods are discussed to improve the localization precision. The method 

of estimating localization error is introduced.  

 

Figure 4-1-3-1 The general framework of particle localization 

 

With our Gaussian fitting algorithm, achieved localization errors is 0.011 pixel at 

SNR = 100 and 0.6 at SNR = 2, which is a considerable improvement compared with 

QuickPALM center of mass method. In low SNR region, our localization errors are up 

to 7% better than RapidStorm`s Gaussian fitting method. Our implementation also 

estimated errors 13% - 58 % higher than the real errors at SNR from 2 to 100. 

4.1.4 Goal 

The main goal here is developing an algorithm for single-molecule super-resolution 

particle localization. The localization shall give small localization errors. It shall also 

give an estimation of the localization error, which approximates the real error. 

4.2 Center of Mass 

The output of particle detection is some pixels with intensity above the threshold. Let 

Pi be the pixels belonging to the ith spot and pij be the jth pixel of the ith spot. A 

commonly used method to find the spot region is to find the local maximum first. 

With the local maximum as center, a spot region is cut out. 

Let pm be a local maximum in the microscope image. QuickPALM defines the 

brightest spot in Pi be the local maximum and define a spot width ws. The spot region 

is a square with a length ws and a center pm . gSHRImP has a more conventional way 

of finding local maximum. It takes all the pixels that are brighter than their eight 

surrounding neighbors as local maximums and defines a spot with radius rs. The spot 

region includes all the pixels within a distance of rs to pm. Since a normal distribution 

will result in a round disk in the image, defining a radius is more reasonable than 

defining a width. But on the other hand, is more time consuming to cut out a circle 

than a square. In the center of mass method, the center coordinate is calculated with 

the intensity of each pixel as the weight (Appendix 4.2.1). 

With the interference of the shot noise and the background noise, it`s natural that 

some of the pixels` intensity are not as reliable as others`. As shown in Figure 4-2-1, 
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the Gaussian-distribution spot has been damaged by the noise. 

 

Figure 4-2-1 A spot cut out from the image. 

Shot noise is caused by the fluctuation in photon arrival times. The standard deviation 

of the shot noise is equal to the square root of the photon number. And the number of 

photons is proportional to the light intensity. Let s be the intensity of a pixel. The 

absolute uncertainty is: σ = k·√s. The relative uncertainty with respect to the intensity 

is k/√s. So the larger the intensity is, the smaller the uncertainty. 

For background noise, since the background noise model on each pixel is the same 

and it`s irrelevant to the intensity of the pixel, the absolute uncertainty caused by 

background noise is the same on different pixels regardless of the variety of the 

intensity. So the relative background noise uncertainty is also smaller on a larger 

intensity pixel. 

From all above it can be concluded that with the interference of noise, the pixels with 

larger intensity are more reliable for localization. If this is true, using only the 

large-intensity pixels to calculate center of mass will give us a better accuracy at low 

Signal-to-noise area. 

Under this assumption I purpose another approach for calculating center of mass. 

Instead of finding the local maximum as the spot center, I directly use Pi to calculate 

center of mass of the ith spot. By doing this only the pixels with intensities larger than 

the threshold are taken into account. This will avoid the main disadvantage of local 

maximum approach that with the existence of background noise and shot noise, pm 

may not be the center of the spot. The result (Figure 4-2-2 (a)) has proven that our 

assumption is correct. The localization error has been decreased by up to 45% in the 

interested SNR range. The two curves cross at SNR = 30 and at SNR larger than that, 

our approach lose its power. That`s because at high signal-to-noise area, the initial 

spot center defined by local maximum is accurate enough. And since the noise is 

ignorable compared with the spot signal, the pixels around the local maximum are 

also reliable. 

In equation (A-22) and equation (A-23), the coordinate of each pixel of a spot is 

multiplied by the weight of this pixel. The weight of a pixel shall be equal to the 

probability that a photon will hit this pixel, which can be estimated by the number of 

photons hitting this pixel over the total number of photons in the spot. In a microscopy, 

the number of photons hitting a pixel is proportionally converted to the intensity of 

the pixel. When there`s only the spot signal with a completely dark background in the 

image, taking the pixel intensity over the sum of intensity of the spot as the weight  
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(a) 

 

(b) 

 

(c) 

Figure 4-2-2 (a) Comparison of localization errors of threshold center of mass 

method and local maximum method. (b) The improvement of adding 

background subtraction in the center of mass method in terms of localization 

error. (c) Comparison of localization errors of threshold center of mass method 

and QuickPALM center of mass method. 
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will give needed result. However, in a microscope image the background is not 

completely dark, because of the existence of all sorts of noise. Moreover, these noises 

change over different parts of the image, which make the background intensities of 

different parts vary. 

To get the proper weight for each pixel, the background intensity has to be subtracted 

from the pixel intensity. Assume that all the pixels of a spot have the same 

background intensity, let the intensity of the darkest pixel of a spot be sl and the 

background intensity of the spot be sb. The background intensity of the spot is 

estimated by: 

𝑠𝑏 =  𝑠𝑙  

This estimation works because the binarization of particle detection separates the 

spots and the background. Let sl’ be the intensity of the darkest pixel of the spot if 

there is no noise on the image. One will get: 

𝑠𝑙
′ + 𝑠𝑏 = 𝑠𝑙  

Because the point spread function of the microscope is a Gaussian function: 

𝑠𝑙
′ ≈ 0 

Combining equation (4-2-2) and (4-2-3), equation (4-2-1) can be derived.  

The results Figure 4-2-2 (b) shows that at high signal-to-noise condition the 

background subtraction approach gives better improvement. With high-quality image 

(SNR = 100), 55% of improvement has been seen. Background subtraction doesn`t 

show too much of its power at low signal-to-noise condition because compared with 

the spot signal intensity, the background intensities on the spot pixels are large, 

resulting in large differences among the background intensities of different spot pixels. 

And these differences are so large that the assumption that all the pixels of a spot have 

the same background intensity can no longer be true.  

Figure 4-2-2 (c) shows that our threshold approach of center of mass with background 

subtraction has better localization accuracy than QuickPALM center of mass. 

Especially within the SNR range of microscope image, the improvement is up to 36% 

(at SNR = 4).  

4.3 Gaussian Mask 

Gaussian mask is a simplified Gaussian fitting introduced by Thompson et al in 2002 

[24]. Gaussian fitting incorporates not only background noise but also shot noise. But 

as a simplification of Gaussian fitting, Gaussian mask only incorporates background 

noise. 

Gaussian mask approach defines a two-dimensional Gaussian mask on the spot, with 

the spot center (x0, y0) as the Gaussian center. The values on the cells of the mask 

follow the Gaussian distribution. It`s a discrete form of Gaussian distribution. It`s 

(4-2-2) 

(4-2-3) 

(4-2-1) 



32 

 

generated by integrating the Gaussian function over each pixel. By adjusting the 

Gaussian distribution model, the Gaussian mask is changed, so that the χ
2
 sum is 

minimized (Appendix 4.3.1). The initial value of (x0, y0) will be set to the center of 

mass of the spot. Iteration after iteration it shall converge and give a more accurate 

center.  

 

Figure 4-3-1 Comparison of the localization errors of the threshold center of 

mass method and the Gaussian Mask method. 

Comparing the localization errors calculated by the center of mass and the Gaussian 

mask Figure 4-3-1, it was found that the Gaussian mask doesn`t show any 

improvement over the center of mass. The center of mass approach already achieves 

an excellent accuracy, considering its low computation cost. Though the Gaussian 

mask approach is a simplified Gaussian fitting, it still has a form closer to the center 

of mass. It updates the coordinate of the spot center with the intensities of the pixels 

as weights, and incorporates with the discrete Gaussian mask. So the Gaussian mask 

is actually a sort of adjusted center of mass. Therefore it shall not be surprising to see 

that the localization error s of the center of mass and the Gaussian mask are so close. 

4.4 Gaussian Fitting 

4.4.1 Non-linear Least Square Fit 

Least square is a widely used method in machine learning to evaluate the fit of a 

model to the data. When the objective function is non-linear on parameters to be 

estimated, the widely used fit is a non-linear least square fit. It`s not as commonly 

used as linear least square fit, which is often seen while fitting a linear regression 

model.  

Here in our application, the objective function of non-linear least square fit has the 
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same form as the point spread function of the microscope, which is approximated by 

Gaussian function. Because the parameters of the Gaussian functions of different 

spots vary, the Gaussian functions of different spots vary. So the full non-linear least 

square fit has to be done for each spot. The fit is a minimization problem of the least 

square loss function, which minimizes the error between the objective function and 

the spot pixels signal (Appendix 4.4.1.1). 

4.4.2 Levenberg-Marquardt 

Commonly used method for solving non-linear least square problem includes gradient 

descent method, Gauss-Newton method, Levenberg-Marquardt, EM algorithm, etc 

[28].  

Gradient descent method minimizes the least square in the direction along the steepest 

gradient of the objective function with respect to the parameters. The steepest gradient 

direction is the direction to the current estimated global minimum. But in general case 

it is not necessary that the direction of the current steepest gradient will coincide with 

the shortest direction to the real global minimum. 

 

 

Gauss-Newton method updates the parameters with the differentiation equation of the 

objective function. Compared with gradient descent method Gauss-Newton method is 

faster but it`s more sensitive to the initial values. The Gauss-Newton method works 

under the presumption that the current location of the objective function is quadratic 

in the parameters away from the global minimum, which means that the initial values 

shall be already close to the optimal values. That explains why the Gauss-Newton 

method is so sensitive to the initial values. 

EM algorithm is a maximum-likelihood based algorithm. The iteration is performed 

by alternating an expectation estimation step and a log-likelihood maximization step. 

A maximum likelihood based method has been proposed [26] and they claimed that 

their localization error had achieved Cramer-Rao lower bound. 

Gradient Decent Method 

Global Minimum 

Figure 4-4-2-1 The steepest gradient direction of gradient decent method 
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Many existing methods for solving non-linear least square problem don`t provide any 

way to estimate the localization error. But fortunately Levenberg-Marquardt does. Our 

algorithm uses Levenberg-Marquardt, mainly because correct analysis requires not 

only high localization accuracy and short computation time, but also a good 

estimation of the localization error. Levenberg-Marquardt is a combination of gradient 

descent method and Gauss-Newton method (Appendix 4.4.2.1). It can adjust the 

converging step dynamically, avoiding trapping into local minimums. Existing 

implementation has provided a variety of options for improving the algorithm, such as 

weight fitting, different Jacobian approximation methods, independent variable 

scaling, constrained minimization, etc. Moreover, it`s fast compared with many other 

methods. As mentioned before, the number of particles to be localized for a 

super-resolution reconstruction can be hundreds of thousands, which makes the time 

issue critical. A fast-converge least square fit method will remarkably improve the 

speed. In practice, Levenberg-Marquardt has become a standard method for 

non-linear least square problem. 

A damping coefficient λ is introduced Levenberg-Marquardt algorithm. In equation 

(A-36), with the addition of the term λI, when the current location is far away from 

the global minimum, λ is relatively large and the method will act more like the 

gradient decent method. When the current location is near the global minimum, the 

presumption of the Gauss-Newton method is valid. λ will decrease and the method 

works like the Gauss-Newton method.  

The square errors of the estimated parameters are at the diagonal of the covariance 

matrix, which is convenient for localization error estimation (Appendix 4.4.2.2). 

4.4.3 Background Parameter 

Unlike the center of mass approach and the Gaussian Mask approach, Gaussian fitting 

approach doesn`t require background subtraction before localization starts. In the 

center of mass approach and the Gaussian Mask approach, the background value of a 

spot is pre-calculated, and the value is subtracted from the intensity of each pixel of 

the spot. However, in the Gaussian fitting approach, the background value can be 

incorporated in the Gaussian fitting model, so there is no need to subtract the 

background value beforehand.  

Many existing super-resolution techniques setup the Gaussian fitting model without 

considering the background. As in gSHRIMP, the fitting model is: 

𝑔𝑔𝑆 𝑥𝑖 , 𝑦𝑖 =  𝐴 ∙ 𝑒
−

1

2𝜎2  𝑥𝑖−𝑥0 2+ 𝑦𝑖−𝑦0 2 
 

Compared with the model mentioned before Equation (A-29), which is also used by 

RapidStorm, the background parameter A0 is missing in the gSHRIMP model. 

Without the background parameter, the dark current is not incorporated. The existence 

of background parameter in the model implies the assumption that all the pixels of a 

(4-4-3-1) 
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spot have the same background value, as it was proposed before in the section Center 

of Mass. 

Figure 4-4-3-1 shows the fitting with and without the background parameter. Figure 

4-4-3-2 shows the localization error given by these two different models. The 

Gaussian fitting is performed with the Levenberg-Marquardt library Levmar. Figure 

4-4-3-3 shows the improvement on localization error after applying background 

parameter in the Gaussian model. 

 

 

 

Figure 4-4-3-1 The best fit of Gaussian function to a synthetic generated 2D 

spot. X-axis represents the distance from the data point to the spot center. 

Y-axis represents the intensity of the data point. The blue triangles are the 

Gaussian function data points and the black triangles are the spot data points. 

Since 2D Gaussian function is used, the data points of it shall outline a 

half-1D-Gaussian-curve. 

From Figure 4-4-3-1 and Figure 4-4-3-2, it`s obvious that with the background 

parameter the data is better fitted to the Gaussian model. Again from the improvement 

(Figure 4-4-3-3) it was found that in low signal-to-noise region the background 

parameter doesn`t have too much power. This agrees with the conclusion made in the 

section Center of Mass -- in low signal-to-noise region the amplitude of the noise is 

too large, resulting in large different in the background values of different pixels of a 

spot, so the assumption that all the pixels of a spot have the same background value is 

not as appropriate as in high signal-to-noise region.  

It`s convenient to set a background parameter in the Gaussian model for handling 

background noise, but subtracting the background value before the localization (as it 

was done for the Center of Mass approach and the Gaussian Mask approach) is also 

possible for the Gaussian fitting approach. The only different is how the background 

values are acquired. The background parameter estimates the background value by 

fitting. The background subtraction takes the minimum intensity of all the pixels as 

the background value. The background value estimated by fitting shall be larger than 

With Background parameter Without Background parameter 

X axis: distance to the spot center 

Y axis: pixel intensity 
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the minimum intensity of the pixels. 

 

 

Figure 4-4-3-2 The comparison of the localization errors of background 

parameter particle localization and non-background-parameter particle 

localization. The fitting is implemented with Levmar library. 

 

Figure 4-4-3-3 The improvement of the localization error after adding 

background parameter estimated in particle localization. The fitting is 

implemented using Levmar library. 

For comparison of the background parameter and the background subtraction, Figure 

4-4-3-4 shows the ratio of the background subtraction localization error and the 

background parameter localization error. The result shows that the background 

subtraction has a smaller localization error than the background parameter at 

signal-to-noise ratio smaller than 10. 

At high signal-to-noise ratio, the background parameters estimated by the two 

approaches are extremely close. It can be seen that the ratio of the background 

subtraction localization error and the background parameter localization error is 

SNR = 7 
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almost 1. As the signal-to-noise decreases, the amplitude of the noise increases, 

leading to larger uncertainties of the pixels` intensities. So the background value 

estimated by the background parameter gradually differs from that of the background 

subtraction`s, which is supposed to be a good estimation of the background value. 

Therefore, the background subtraction approach begins to outperform the background 

parameter approach. As the signal-to-noise reaches 3 and continues to decrease, the 

assumption that supports the background subtraction is not valid anymore. The 

improvement of the background subtraction approach compared with the background 

parameter approach reduces, so the background subtraction-background parameter 

ratio increases again. 

 

Figure 4-4-3-4 The ratios of the localization errors using background 

subtraction and particle localization with background value as a parameter. 

The test above clearly shows that the background subtraction approach gives better 

localization accuracy than the background parameter approach. So instead of doing 

the fitting with the model of Equation (A-21), Equation (4-4-3-1) shall be used, and a 

background subtraction step shall be added before the localization.   

4.4.4 Weight 

It is mentioned before in the section Center of Mass that the intensity of a pixel 

represents the number of photons hitting that pixel. And the intensity is proportional 

to that number. Each pixel of the spots is a sample data of the spot signal model. 

However, in a series of repeat samplings, the measured intensities at the same pixel 

are not always the same [27]. This variation of measured intensities at different 

samplings is caused by the shot noise. 

The shot noise has casted uncertainty on the intensity of each pixel. If s is a 

measurement of the intensity at a pixel, the uncertainty can be measured by the 

standard deviation of the intensity (Appendix 4.4.4.1).  

From equation (A-38) follows that a data point with a large intensity will have a small 
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relative uncertainty, giving us more confidence on the signal.  

Since the data points have different quality, introducing weights in the fitting model 

may enable the data points with high quality to have more influence on the parameter 

estimation than the data points with low quality. The weight of a data point shall 

correspond to the confidence of the data point`s intensity (Appendix 4.4.4.2). By 

giving different weight to the residual of each data point, these data points will have 

different influences on the parameter estimation.  

In theory, with weight fitting, the localization shall be more precise.  

Figure 4-4-4-1 shows that using a fitting with weights, the localization precision 

calculated with ground true barely improves, especially at low signal-to-noise level, 

which means the real localization precision doesn`t improve. However, the 

localization error estimated by the covariance matrix does reduce, as it is expected. A 

better covariance estimate error may indicated that weight fitting has improved the 

goodness of the fitting itself. However, if one considers the χ goodness (Appendix 

4.4.4.3) of the fitting with and without the fitting (Figure 4-4-4-2), it is found in 

agreement with the covariance estimate error that the fitting has improved with the 

existence of the weight.  

 

 

Figure 4-4-4-1 The ratios of the localization errors of weighted and 

non-weighted fitting. The y-axis represents the ratio of the corresponding 

errors of weighted fitting and non-weighted fitting. 

The goodness is evaluated by the fitting process itself, so it could be understood that 

when the goodness has reduced, the covariance estimated error will also reduced. 

Small values of χ goodness indicate that the data is well fitted to the model. In Figure 

4-4-4-1 and Figure 4-4-4-2 it is shown that the covariance estimate error and the chi 

goodness of the fitting have showed a conflict with the real error. 
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Figure 4-4-4-2 Dependence of χ goodness of the fitting with weight and the 

fitting without weight on SNR. 

Now let’s look into the detail of how the covariance matrix is computed and how the 

estimated parameters are updated. To add weight in the fitting, we have to do some 

change to the Equation (A-36). The equation for updating the estimated parameters 

will be: 

 𝑱𝑇𝑾𝑱 + 𝜆𝑰 𝒉𝑔𝑛 = 𝑱𝑇𝑾 𝒈 − 𝑺  

And the covariance matrix calculated with weight is: 

𝑪 =  𝑱𝑻𝑾𝑱 −𝟏 

The diagonal elements of the covariance matrix, namely the variances of the 

estimated parameters can also be represented in this form [28]: 

𝜎2 𝑝𝑗  =  𝜎𝑖
2  

𝜕𝑝𝑗

𝜕𝑠𝑖
 

2
𝑛−1
𝑘=0  

si is the intensity of the ith data point of the spot and pj is the jth estimated parameter. 

σi is the absolute measurement error of the intensity of the ith data point. 

In Equation (4-4-4-1) it can be seen that the data points with larger weight will play 

more important roles in updating the new parameters. These data points with larger 

weight are pixels that have smaller uncertainty at their intensities. The fitting will take 

the differences between the intensities of these pixels and the value given by the 

Gaussian model at these pixels as priority. So the updating of the estimated 

parameters will give smaller differences at pixels with larger weights. When the 

covariance matrix is calculated, it also give more weight to these pixels, whose 

intensity have smaller differences with the value given by the Gaussian model. So 

again, these data points with smaller errors play more important roles on the total 

errors of the estimated parameters than other data points, and the data points with 

larger errors contribute less in the total errors, resulting in smaller total errors of the 

(4-4-4-1) 

(4-4-4-2) 

(4-4-4-3) 
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estimated parameters than when all the data points have equal weights. So the 

covariance estimate error can be smaller while the real error is actually larger. 

The weight fitting is supposed to have better performance than the fitting without 

weight. Since the covariance estimate error and the chi goodness agree that weight 

fitting has improve the data fitting, it can be believed that the fitting itself has 

improved, in the sense of minimize the loss function. But the real localization error is 

not improved as expected. A possibility is that the fitting is not improved in the 

expected way. It doesn’t direct the fitting to the real spot center. 

In Figure 4-4-4-1, it is shown that for both the covariance estimate error and the 

ground true error, at low signal-to-noise ratio the weight fitting gives especially bad 

result. At higher signal-to-noise level, weight fitting actually gives slightly 

improvement on the ground true error. We may consider that at low signal-to-noise 

level, evaluating the uncertainty of the data point only with shot noise is not 

appropriate. Actually, at low signal-to-noise level, the background noise will dominate 

the uncertainty of a data point. 

Since weight fitting doesn`t give considerable improvement on the localization 

precision, we apply uniform weight in our fitting. 

4.4.5 Jacobian evaluation 

When all the steps of the algorithm are settled, the least-square fitting options 

themselves are the main factors that affect the localization precision. As a matter of 

fact, the Levenberg-Marquardt algorithm provides a variety of options for different 

applications. 

During fit iterations Equation (A-36) is solved to get the perturbation of the estimated 

parameters. But in the equation the Jacobian matrix J is unknown. Before we are able 

to solve this equation, we have to evaluate the Jacobian matrix, i.e. get derivatives of 

optimization function with respect to parameters. 

There are two ways to evaluate the Jacobian matrix. The first one is called the analytic 

Jacobian, which takes the user defined partial derivative functions to evaluate the 

Jacobian matrix in the iteration. The elements of the Jacobian matrix are calculated 

with these derivative functions, when the information of the data points is provided. 

The second way is called the difference approximated Jacobian. It approximates the 

partial derivatives dynamically by calculating the difference between the consecutive 

iterations. No explicit partial derivative function is need. Actually, the derivative is 

approximated by computing the slope defined by the point of the current iteration and 

the point of the previous iteration, instead of computing the tangent line of the current 

point, which is the derivative at the current position [29]. 

Since the difference approximated Jacobian calculates the approximation of the partial 

derivatives, while the analytic Jacobian gives the exact value of partial derivative, we 

may expect that the Jacobian matrix evaluated by the analytic Jacobian should be 
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closer to the Jacobian matrix we need. On the other hand, the difference approximated 

Jacobian approximates the partial derivatives with the dynamic values calculated in 

the iterations. It shall be more reliable than the values computed by the derivative 

function of a theoretical objective function. 

 

Figure 4-4-5-1 The ratio of localization errors of the fittings with analytic 

Jacobian and the fitting with difference approximate Jacobian. The red curve is 

the fitting with constraint on estimated parameter and the blue curve is the 

fitting without constraint. The y-axis represents the ratio of the corresponding 

errors of Analytic Jacobian difference Jacobian. 

 

Figure 4-4-5-2 The ratio of χ goodness of the fittings with analytic Jacobian 

and the fitting with difference approximate Jacobian. The red curve is the 

fitting with constraint on estimated parameter and the blue curve is the fitting 

without constraint. 

 

Figure 4-4-5-1 compares the localization error of fittings using analytic Jacobian and 

difference approximated Jacobian. 

The analytic Jacobian tends to outperform the difference approximated Jacobian as 
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the signal-to-noise ratio increase and becomes worse than the difference approximated 

Jacobian at lower signal-to-noise levels. But when the image quality is extremely bad, 

the situation becomes complicated and none of them is better than the other. The chi 

square goodness agrees with the result given by comparing the localization errors 

(Figure 4-4-5-2).  

To study more about this result we have to go back to the theory. Equation (A-33) and 

Equation (A-35) show how the perturbations are computed for the gradient decent 

method and the Gauss-Newton method. For the gradient decent method, the steepest 

decent direction J
T
(g - S) is derived by the giving the derivative of the chi square a 

zero value: 

𝜕𝜒2

𝜕𝒑
=  𝒈 − 𝑺 𝑇

𝜕 𝒈 − 𝑺 

𝜕𝒑
 

=  𝒈 − 𝑺 𝑇
𝜕𝒈

𝜕𝒑
 

=  𝒈 − 𝑺 𝑇𝑱 

So the Jacobian matrix shall be evaluated by: 

𝑱 =
𝜕𝒈

𝜕𝒑
 

For the Gauss-Newton method, the Taylor expansion for deriving Equation (A-35) is: 

𝒈 𝒑 + 𝒉𝒈𝒏 ≈ 𝒈 𝒑 +
𝜕𝒈

𝜕𝒑
∙ 𝒉𝒈𝒏 

=  𝒈 +  𝑱𝒉𝒈𝒏 

Note that the first line is an approximation. Actually if the analytic Jacobian on the 

right side is replaced by the difference approximated Jacobian, the left side is equal to 

the right side. 

Therefore, for the decent gradient method it`s better to use the analytic Jacobian and 

for the Gauss-Newton method, the difference approximated Jacobian will be more 

appropriated. 

When the signal-to-noise ratio is high, as the fitting start, the damping coefficient will 

decrease fast, and the fitting acts more like the Gauss-Newton method. So the 

difference approximated Jacobian is expected to give smaller localization error. But 

since the image quality is good, there will not be much error difference between the 

two methods. The localization will finally stop at where it shall be for both methods.  

Therefore at high signal-to-noise level the analytic Jacobian and the difference 

approximated Jacobian give very close errors. When the signal-to-noise ratio is low, 

the spot model is not so smooth. Hence the damping coefficient may increase 

frequently, slowing down the speed of convergence. Compared with at higher 

(4-4-5-1) 

(4-4-5-2) 

(4-4-5-3) 
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signal-to-noise level, the fitting acts more like the gradient decent method. So the 

analytic Jacobian may sometimes give better localization precision. But when the 

image is noisy, the prediction of global minimum is not so reliable. The gradient 

decent method may also give bad result. So at very low signal-to-noise ratio we 

cannot expect one method will obviously perform better than the other.  

4.4.6 Parameter Constraint 

During the fitting, it is possible to restrict the values of the estimated parameters, so 

that they will not go too far to some impossible values. It is especially useful when the 

image signal-to-noise ratio is very low. It prevents the fitting from trapping in a local 

minimum that`s far away from the expected range. 

With parameter constraint, whenever an updated parameter is out of the range during 

the fitting, the updated parameter will be bounded to the border of the range.  

From the localization errors (Figrue 4-4-6-1) and covariance estimated errors (Figrue 

4-4-6-2) of fittings with and without parameter constraint, we can see when the 

signal-to-noise ratio is lower than three, the fitting with parameter constraint helps 

avoiding huge localization errors. But if we compare the chi goodness of the fittings 

with and without parameter constraint, we will find that in contrast with the results 

shown by the localization error and the covariance estimated error, the chi goodness 

of the fitting without parameter constraint is better than the fitting with parameter 

constraint. Actually, with parameter constraint, the constraint will restrict the values 

the parameters can be, hence eliminating some of the possible values that will give 

lower chi square error. Therefore the chi goodness of constraint fitting is worse while 

the parameter constraint help decreasing the localization error. At high signal-to-noise 

level, because the distribution of the data signals are so good that the fitting will 

barely go to the positions that are out of bound, the fitting with parameter constraint 

will not show much power. 

In the unconstraint parameter test we find that at signal-to-noise ratio lower than or 

equal to one, the localization error is always more than one and sometimes it goes to 

more than a thousand. However, in Figure 4-2-2 (a) we can see the localization errors 

given by the center of mass method at low signal-to-noise ratios are still less than 1.6 

pixel. A solution to overcome the large localization errors at low signal-to-noise level 

is combining the center of mass method and the fitting method. At low signal-to-noise 

ratio, the center coordinates given by the Levenberg-Marquardt could be compared 

with the center coordinates given by the center of mass method. If their difference is 

larger than a certain pixel number, we may get the conclusion that the Gaussian fitting 

has failed and instead the center of mass coordinates is more reliable. 
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Figure 4-4-6-1 The ratios of the localization errors of the fitting with 

parameter constraint and the fitting without parameter constraint. 

 

Figure 4-4-6-2 The ratios of the estimated localization errors of the fitting with 

parameter constraint and the fitting without parameter constraint. 

 

 

Figure 4-4-6-3 The ratios of the χ squares of the fitting with parameter 

constraint and the fitting without parameter constraint. 
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4.4.7 Covariance Estimated Error 

Estimating the localization error is one of our main goals. Fortunately, 

Levenberg-Marquardt provides the covariance matrix recording the variance of each 

estimated parameter. The localization precision of a estimated parameter will be the 

square root of the parameter`s variance.  

Considering our application, an ideal covariance estimated error shall approximate the 

real localization error, and at the same time it shall be the upper bound of the real 

localization error.  

We test with difference Levenberg-Marquardt libraries on how good the covariance 

matrix can achieve in estimating the localization error. The result is quite satisfying. 

All of them give covariance estimated errors slightly more than the “ground-truth” 

localization errors.  

The Levmar C++ library and the Matlab routine both give estimation errors of less 

than 12 percents within the signal-to-noise range of [2, 100]. The LMA Java library 

gives up to 58 percents` estimation error at high signal-to-noise ratio, but we usually 

will not achieve so high a signal-to-noise ratio with the microscope, so even the 

estimation given by LMA Java library is acceptable. All of the three libraries share the 

same characteristic: the estimation errors increase as the signal-to-noise ratio 

increases. 

 

 

Figure 4-4-7-1 The comparison of the ground-truth localization errors and 

covariance estimated error of the particle localization at different SNR. The 

fitting is implemented with Levmar Library. 
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Figure 4-4-7-2 The comparison of the ground-truth localization errors and 

covariance estimated error of the particle localization at different SNR. The 

fitting is implemented with Java LMA Library. 

 

 

Figure 4-4-7-3 The comparison the ground-truth localization errors and 

covariance estimated error of the particle localization at different SNR. The 

fitting is implemented with the Matlab routine. 

4.5 Drift Correction 

4.5.1 Background and Motivation 

A critical issue of super-resolution reconstruction is the drift correction. During the 

whole period of the time-lapse images, the specimen may have continuous drift on 

x-axis or on y-axis. The main cause of the drift is the temperature variation, which is 

induced by the light source, the change of the room temperature and other factors that 

may affect the temperatures of the microscope and the materials. As the microscope 

cools down or warming up, the drift goes in one direction and another.  



47 

 

For conventional microscope imaging, the drift will not cause any problem because an 

image is taken within a short period. The drift will be too trivial to lower the 

revolution of the images. However, for single-molecule super-resolution imaging, 

obtaining all the fluorophores in the specimen by only allowing sparse particles in the 

images, the experiment will take up to several minutes, which causes considerable 

drift. 

The drift produces different errors on the localization at different frame of the 

microscopy images. As time passes the cell structure floats on the images, producing 

thick lines on the reconstruction image, hence reducing the resolution (Figure 

4-5-1-1). 

 

 

Figure 4-5-1-1 The super-resolution reconstruction image of a specimen of 

microtubules without drift correction. Because of the drift, the width of the 

microtubules is larger than it shall be. 

 

Drift correction estimates the displacement of the images taken at different times and 

corrects the localization positions. 

A common and reliable method to track the drift is introducing markers in the 

specimen. Unlike the fluorophores in the images, which blink in the whole period of 

the imaging, the markers appear in each frame and it is always at the same relative 

position in the specimen. The constant existence of the markers enables us to track the 

trajectory of them. Since the drift is mainly in the horizontal direction and the vertical 

direction in the x-y plane, we could assume that the trajectory of the markers is also 

the trajectory of the drift. Despite the high precision of drift estimation of this method, 

introducing markers may interfere the imaging of the cell structures. To solve the 

problem without introduction of markers, so called “period drift correction” was 

developed [31]. The whole microscopy images stack is divided into many periods. For 
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each period Tk, a reconstruction image Ik is generated with all the particles switching 

on in this period. The lengths of these periods are chosen that the number of stochastic 

particles in each period is large enough to reconstruct the general cell structure of the 

specimen. The first period T0 is the reference period, whose drift is zero. For a period 

Tk (k ≠ 0), the drift of period Tk is estimated by finding the maximal cross-correlation 

function of I0 and Ik`s shifted images. This method is generalized but the effectiveness 

has some dependency on the particles number in each period. The optimal particles 

number in each period varies for different specimen, depending on the complexity of 

the cell structure. 

In this section we test our drift correction algorithm with a training set of dSTORM 

microscopy images of labeled microtubules. There are 40,000 frames in total and 

every 2,000 frames form a drift correction period. 

It should be noted that results presented below are very preliminary, since they were 

tested only on one dataset.  

4.5.2 Cumulative Drift Approach and Direct Drift Approach 

There are two ways of calculating the drift of a period Tk. The first one is direct drift 

approach, which directly calculating the absolute drift of Tk with T0 as the reference. 

The second one is cumulative drift approach that calculates the relative drift of Tk 

with Tk-1 as the reference, which is obtained by finding the maximal cross-correlation 

function of Ik-1 and Ik`s drift images. And then accumulate the relative drifts from T0 to 

Tk.  

The advantage of the cumulative drift approach is that the amount of drift is expected 

to be much smaller for consecutive periods than for a random period and T0. Smaller 

potential drift means smaller searching window for the maximal cross-correlation 

function. Defining a square searching window, if the length of the searching window 

for the cumulative drift approach is l, the length of the searching window for the 

direct drift approach shall be (n-1)·l, where n is the total period number. With a brute 

force algorithm the complexity of the direct drift approach is (n-1)
2
 times of the 

complexity of the cumulative drift approach. Using the cumulative drift approach 

would save a large amount of time. However, a concern about the cumulative drift is, 

with the same drift estimation precision, smaller drift may yield larger relative error of 

drift estimation. As the cumulative drifts accumulate for getting the absolute drift, the 

errors may also accumulate.  

However, in our tests we find that the drift correction of the direct drift approach 

doesn`t give clearer reconstruction image of the whole specimen than the drift 

correction of the cumulative drift approach. We compare the width of line segments in 

the same region of the two drift corrected reconstructed images (Figure 4-5-2-1). The 

direct drift approach gives slighter thinner line segments than the cumulative drift 

approach, but the little improvement doesn`t worth such a huge computation cost. For 

shorter computation time, the cumulative drift approach shall be used. 
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Figure 4-5-2-1 Comparison of the widths of the microtubules` line segments 

in the drift corrected reconstructed images. Each plot shows the integrated 

intensity of a 15-pixel-length line segment along the width. The x-axis 

represents the distance along the line width and the y-axis represents the 

integrated intensity of 15 pixels. The plots on the first row are the integrated 

intensity of two random line segments in the cumulative drift reconstruction 

image. The second row shows the integrated intensity of the same line 

segments in the direct drift reconstruction image. The plots on the same 

column represent the same line segment from different drift reconstruction 

images. 

4.5.3 Drift Linear Interpolation  

As stated before, the drift of the specimen is a continuous process. Drift happens 

within a period as well as between different periods. However, the drift correction 

algorithm we use only calculates the drift for each period. Applying uniform drift 

correction to all the frames within a period will imply that the drift happens only at 

the border of each pair of consecutive periods like a step function. The error of drift 

correction will be at least the drift of half a period. To rectify this problem, linear 

interpolation is applied for drift correction of each frame. 

Assume that the number of frames in each period is N and the drift of period T is 

drift(T).  

For the nth frame of period T, if n ≤ N /2, its drift is: 

𝑑𝑟𝑖𝑓𝑡 𝑇, 𝑛 = 𝑑𝑟𝑖𝑓𝑡 𝑇 − 1 +
𝑛+

𝑁

2

𝑁
∙  𝑑𝑟𝑖𝑓𝑡 𝑇 −  𝑑𝑟𝑖𝑓𝑡 𝑇 − 1   

If n > N /2, the drift is: 

(4-5-3-1) 

2um / image inch 
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𝑑𝑟𝑖𝑓𝑡 𝑇, 𝑛 = 𝑑𝑟𝑖𝑓𝑡 𝑇 +
𝑛−

𝑁

2

𝑁
∙  𝑑𝑟𝑖𝑓𝑡 𝑇 + 1 −  𝑑𝑟𝑖𝑓𝑡 𝑇   

So if n = N /2, drift(T, n) exactly equals to drift(T). 

Linear interpolation works under the assumption that the overall drift of period T is 

exactly the same as the drift of the frame at the half of the period, and the specimen is 

moving linearly between each two consecutive periods. 

 

 

Figure 4-5-3-1 Comparison of the integrated intensity of segments from the 

uniform drift reconstructed image and linear interpolation drift reconstructed 

image. The first row is for uniform drift and the second row is for the linear 

interpolation drift. 

In Figure 4-5-3-1 we find that with our only microscopy image dataset the 

improvement of applying linear interpolation is extremely subtle. We need to have 

more samples to make a better conclusion. 

4.5.4 Particle-dependent Period 

The reason why the drift shall be estimated at each period instead of at each frame is 

the cross-correlation function shall be calculated for two images that displays the 

same cell structure. Only with reconstructed images that contain large amounts of 

particles could the general cell structure be displayed. Considering that the particles 

switch on stochastically and the number of particles varies from frame to frame, it 

shall be more appropriate to define the length of each period with the number of 

particles instead of the number of frames. 

Again we test these two approaches with our microtubule images stack. For 

time-dependent period drift, each 2,000 frames form a period. With our 40,000 frames 

there are 20 periods. For particle-dependent period drift, there are roughly 440,000 

(4-5-3-2) 

2um / image inch 
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particles in the image stack. To keep the periods number the same as the 

time-dependent period drift, we define 22,000 particles a period. Figure 4-5-4-1 

compares the integrated intensity of segments from the same regions of the 

time-dependent period drift reconstructed image and the particle-dependent period 

drift reconstructed image. 

 

 

Figure 4-5-4-1 Comparison of the integrated intensity of segments from the 

time-dependent period drift reconstructed image and particle-dependent period 

drift reconstructed image. The first row is for time-dependent period drift and 

the second row is for the particle-dependent period drift. 

In our sample we could see very small improvement from the plots of 

particle-dependent period drift reconstructed image. 

4.6 Experiment Result 

In this chapter we have discussed three different particle localization approaches - the 

center of mass method, the Gaussian mask method and the Gaussian fitting method. It 

has been shown before that our threshold center of mass method with background 

subtraction considerably outperforms the regular center of mass method at low 

signal-to-noise ratios, because it only considers the data points with high quality. The 

Gaussian mask is a form of improved center of mass that integrates a discrete 

Gaussian function. However, to our disappointment, its performance is merely as 

good as the threshold center of mass.  

For the Gaussian fitting, despite the convenience of setting a background parameter in 

the Gaussian model, handling the background value before the fitting actually starts is 

more effective. The weight fitting that copes with the uncertainty induced by the shot 

noise doesn`t show any improvement on the real localization precision, although it 

does reduce the covariance estimate error. 

2um / image inch 
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Figure 4-6-1 shows the localization error for QuickPALM center of mass method, the 

threshold center of mass method and the Gaussian fitting method. Compared with 

QuickPALM center of mass method, the threshold center of mass method remarkably 

reduces the localization errors at signal-to-noise ratios from 2 to 10. The Gaussian 

fitting outperforms both of the center of mass approaches at any signal-to-noise ratio. 

 

Figure 4-6-1 The localization errors with QuickPALM center of mass method, 

the localization with the threshold center of mass method and the localization 

with the Gaussian Fitting implemented with the Matlab routine. 

 

Figure 4-6-2 The red curve shows the improvement of the localization with 

Gaussian fitting over the localization with the threshold center of mass, in 

terms of the localization errors. The blue curve shows the improvement of the 

localization with Gaussian fitting over the localization with QuickPALM 

center of mass. 

 

Figure 4-6-2 shows the improvement of the Gaussian fitting method over these two 

center of mass approaches. For both comparisons, the improvements tend to be more 

substantial as the signal-to-noise increases. At low signal-to-noise ratios, the noise has 

disturbed the image quality so much that even the Gaussian fitting has lost its power. 
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As the image quality gets better, the Gaussian fitting method has shown its superiority 

over the center of mass method. The improvement reaches 70% at our signal-to-noise 

ratio of 100. Even at a low signal-to-noise of 2, there is still 5% of improvement over 

the threshold center of mass method and 14% over the QuickPALM center of mass 

method.  

 

(a) Image reconstruction without drift correction 

 

 

(b) Image reconstruction with drift correction 

Figure 4-6-3 (a) is the super-resolution reconstruction image without drift 

correction particle detection and (b) is the reconstruction with drift correction. 

For each of them, the left image is the whole reconstruction image. The right 

images are the details in the rectangular regions of the left image. Comparing 

them we can see that the microtubules in (a) have smaller widths and clearer 

structures. 

Figure 4-6-3 compares the reconstruction images without drift correction and without 

drift correction. Clearly with drift correction the width of the line segments on the cell 

structure has decrease. In Figure 4-6-4 we randomly choose a region and compute the 

integrated intensity of the same line segment in that region in the two reconstructed 

images. The width of the line segment in the non-drift correction reconstruction image 
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is approximately 0.1 inch, while in the drift correction reconstruction image the width 

is approximately 0.075 inch, which has decrease by 25%.  

 

 

Figure 4-6-3 Comparison of the integrated intensity of segments from the 

non-drift correction reconstructed image and the drift correction reconstructed 

image. The plot on top is for non-drift correction reconstructed image and the 

plot at the bottom is for the drift correction reconstructed image. 

  

2um / image inch 
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Chapter 5 Implementation 

5.1 Framework 

Main purpose of current project is to develop a tool for automatic single-molecule 

super-resolution images analysis. Algorithms discussed above were implemented in a 

Java plug-in. The plug-in is developed for ImageJ that is an image processing 

software commonly used for biological image analysis. ImageJ provides easily 

accessed interface for Java plug-in. A great number of image analysis plug-in, 

including QuickPALM, have been developed for ImageJ. 

When a specimen is set under the fluorescent microscope, a series of consecutive 

images (SR dataset) are taken. Developed plug-in deals with each of these images 

individually. When an image is inputted, it goes through the steps of particle detection. 

The output of particle detection is a number of spots in the image whose pixels 

intensities and pixels coordinates are indicated. In the phase particle localization, each 

spot is handled individually. For a spot, the center of mass with background 

subtraction is computed. Then the center of mass is used as the initial center 

parameters of the spot in the Gaussian fitting.  

When the localization is finished, the estimated parameters are checked in case some 

noise patterns are detected as spots. If a detected spot has a standard deviation much 

larger or much smaller than the point spread function of the microscope, this spot is a 

false positive and it will be removed. 

 

 

Figure 5-1-1 The general frame work of our whole algorithm. 
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After all of these are done, for each image we get the coordinates of all the spots in 

the image. Then all of spots detected from every image will be plot on the final 

reconstruction image. 

5.2 Levenberg-Marquardt Fitting  

Before the Levenberg-Marquardt starts its fitting, it needs to be initialized. The 

following parameters are required to initialize: the fitting function, the partial 

derivative function, the data matrix of the dependent variables, the data matrix of the 

independent variables, the weights, the iteration stop criteria and the initial guess of 

the estimated parameters and the damping coefficient.  

First, the fitting model shall be provided, which is a Gaussian function. To evaluate 

the Jacobian matrix, the partial derivative function (Appendix 5.2.1) of the fitting 

model with respect to each of the estimated parameters shall be indicated.  

The dependent variables are the intensities of the pixels of the spot, whose values 

largely depend on the relative positions of the pixels with respect to the spot center. If 

the background subtraction is needed to be done before the fitting, the dependent 

variables shall be the intensities of the pixels minus the background value of the spot. 

The independent variables are the pixels` coordinates of the spot, whose values do not 

depend on any other variables. But the values of the dependent variables depend on 

the values of the independent variables.  

As stated before, the weights shall be calculated by taking the square roots of signal 

values, namely the square root of pixels` intensities minus the background value of 

the spot.  

The initial guess of the estimated parameters includes the spot center coordinate, the 

spot standard deviation and the intensity amplitude. The initial value of spot center 

coordinate is set as the center of mass. The standard deviation of the spot is provided 

by the user, which is the standard deviation of the point spread function of the 

microscope. If a background parameter is set in the fitting model, its initial value will 

be the minimum intensity value of all the pixels of the spot. Because if there`s no 

background in the image, the intensity of a pixel of the spot will approach 0 as it goes 

further away from the spot center, the minimum intensity of the pixels is expected to 

approximate the background value of the spot. Because the exponent of the Gaussian 

model is a negative value, the range of the exponential term is [0, 1]. The initial value 

of the amplitude shall be the maximum intensity minuses the minimum intensity of 

the pixels. 

There are a few convergence criteria for stopping the iteration of the 

Levenberg-Marquardt algorithm. 

 When the derivative of the chi square J
T
e is below ε1. 

 When perturbation h drops below ε2. 
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 When the chi square e
T
e drops below ε3. 

 When the iterations number exceeds imax. 

If any of the criteria above is satisfied, the iteration will stop. 

The initial guess of the damping coefficient λ is 0.001. The steps of the iteration are as 

follows: 

 Solve the Equation (A-36) for a perturbation. 

 If the new chi square error with the updated parameters is smaller than the old chi 

square error, the update is accepted and the damping coefficient is decreased by a 

factor of 10. The fitting goes towards the Gauss-Newton method. 

 If the new chi square error with the updated parameters is equal to or larger than 

the old chi square error, the update is rejected and the damping coefficient is 

increased by a factor of 10. The fitting goes towards the gradient decent method.  

5.3 Libraries 

Except for the time for convergence, fitting goodness, the stability is also a critical 

factor influencing our choice of library.  

There are a variety of libraries implemented for Levenberg-Marquardt algorithm. The 

Matlab routine we use is developed by Henri Gavin [30], modified from the 

Levenberg-Marquardt non-linear regression function of Octave–Forge. It requires 

constraints on the estimated parameters. Using difference approximated Jacobian, it 

doesn`t ask for the partial derivative functions explicitly.  

Another library is a C++ library Levmar. It provides different options of the Jacobian 

evaluation methods, parameters constraint, independent variable scaling, computation 

precision, etc. The library is fast and robust, with numbers of options adapting to 

different applications. 

LMA is a Java library with analytical Jacobian. It doesn`t provide any parameter 

constraint. 

Table 5-3-1 shows the options provided by these three libraries. 

In chapter three, we conclude that the problem caused by fitting without parameter 

constraint at low signal-to-noise level can be overcome by combining the center of 

mass. Therefore whether the libraries provide parameter constraint doesn`t make any 

big difference. We also find that the fitting with approximated Jacobian and the fitting 

with analytical Jacobian have quite similar general performance. Although at low 

signal-to-noise level, analytical Jacobian is better. So a library using analytical 

Jacobian is more welcomed but a library with approximated Jacobian is also 

acceptable. Concluding all above, all the three libraries have satisfied our 

requirements but the C++ library Levmar and the Java library LMA are preferred.  



58 

 

 Matlab routine Levmar(C++) LMA(Java) 

Parameter Constraint Yes Yes/No No 

Approximated Jacobian Yes Yes No 

Analytical Jacobian No Yes Yes 

Table 5-3-1 The table shows compare the options provided by the three 

libraries we use. 

Now we will compare the performance of the three libraries. Table 5-3-2 shows the 

localization errors of the three libraries at difference signal to noise ratios. Note that 

due the different options provided by the libraries, the Matlab routine uses difference 

approximated Jacobian while Levmar and LMA use analytical Jacobian. LMA doesn`t 

provide parameters constraint while the other two do. Except these, all the other 

settings are the same for the three libraries in this test. 

 

Lib\SNR 1 2 3 4 5 7 10 30 50 100 

Matlab 2.067 0.593 0.369 0.269 0.232 0.145 0.103 0.035 0.021 0.011 

Levmar 1.150 0.749 0.378 0.270 0.216 0.156 0.100 0.036 0.0213 0.0109 

LMA 8.180 0.573 0.360 0.267 0.202 0.151 0.102 0.036 0.021 0.011 

Table 5-3-2 The table shows the localization errors of the three libraries at 

different SNR. 

From the results we can see the localization errors given by these three libraries are 

quite the same at high signal-to-noise levels. As the signal-to-noise ratio decreases, 

the differences of the three libraries become larger, because of the differences in 

parameter constraint and Jacobian approximation. The worse the signal-to-noise ratio 

is, the more likely that the parameters will go to unexpected values that are out of the 

parameters constraint boundaries. Therefore the differences in localization error of the 

three libraries become obvious. And as discussed in the section Jacobian Evaluation in 

chapter three, at low signal-to-noise level the analytical Jacobian starts to outperform 

the difference approximated Jacobian. That explains why both having parameter 

constraint, the Matlab routine and Levmar library gives so different result at SNR = 1.  

If we look at the performance of LMA library, we find that its localization error is the 

best among the three libraries, except that at SNR = 1 it unexpectedly gives a huge 

error, because it doesn`t use parameter constraint. We have stated in the section 
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Parameter Constraint in chapter three that at signal to noise less than or equal to one, 

the localization result may be replaced by the center of mass coordinate if the fitting 

fail to fit the spot center. The localization error given by the center of mass 

coordinates is 0.93 at SNR = 1, which is even better than the best fitting error of the 

three libraries. Therefore combining with center of mass, LMA library has the best 

performance among the three libraries.   

Apart from finding the spot centers` coordinate, another goal of our algorithm is to 

estimate the localization error with the covariance matrix. In the section 4.4.7, we 

show that all the three libraries give acceptable estimation of the errors. They all give 

the upper bounds of the real errors and approximate the real errors with only small 

differences. Although the covariance estimated error given by LMA is generally 

worse than the other two libraries, at signal-to-noise ratio less than or equal to seven, 

the difference is trivial and the estimated errors are only up to 13% more than the real 

errors. So LMA still satisfies our needs. 

Since our ImageJ plug-in is written in Java, a Java library gives easier interface than 

the libraries in other language. We have shown that LMA gives the best localization 

error and its error estimation is only slightly worse than the other two libraries in our 

interested region. Therefore, we use LMA library in our plug-in for Gaussian fitting. 

 

Figure 5-3-1 This figure shows the ratio of the localization errors given by our 

Gaussian fitting method and the RapidSTORM Gaussian fitting method. 

 

Figure 5-3-1 compare the localization errors of our Gaussian fitting method and the 

RapidSTORM Gaussian fitting method. At signal-to-noise ratios from 2 to 10, the 

localization errors given our method are up to 7% smaller than the RapidSTORM 

Gaussian fitting method. Improving the localization error at low signal-to-noise ratios 

is exactly our main task. 
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Chapter 6 Conclusion and Future Works 

Main aim of this project is developing a tool for automatic detection and localization 

of particles for single-molecule super-resolution images including correct estimation 

of the localization errors. The particle detection is mainly implemented by proper 

convolution and thresholding that is invariant to gradient background. The false 

positives are eliminated by several filters. Suggested particle detection substantially 

outperform QuickPALM`s and RapidSTORM`s as shown in the section 3.6. Then the 

center of mass coordinates of the particles are calculated, in a way that is different 

from general center of mass. This improved center of mass has greatly improved the 

localization error (section 4.2 - Center of Mass) and achieved the localization 

precision of Gaussian Mask – an iterative method that is the simplification of 

Gaussian fitting. The center of mass coordinates serve as the initial center value of the 

Gaussian fitting. The Gaussian fitting is implemented by LMA library. In section 5.3 

we show that LMA library has smaller localization error than the other two libraries 

we test. And it also gives acceptable estimation of the localization errors. Our whole 

localization algorithm finally reduces the localization errors of QuickPALM by 10% 

to 70% within SNR range of [2, 100]. At low signal-to-noise ratios, our algorithm 

gives up to 7% improvement on localization errors compared with RapidSTORM. 

With drift correction algorithm, we have decreased the thickness of the line segment 

in the cell structure by 25% in our sample. 

 

Figure 6-1 In this image two microtubules cross each other. The 

single-particle-property of the general super-resolution technique may induce 

blur at the cross. 

There are still many details to be improved in the localization algorithm. For instances, 

in chapter three it was assumed that any two particles are far away from each other. 

Whole implemented algorithm is working under the assumption of sparse single 

molecule. Despite the single-molecule imaging techniques, occasionally one can still 

see overlapping molecules in the images. The problem of detecting these particles and 

separating them is still not well solved. As shown in Figure 6-1, at the place where 

two microtubules cross, un-separated overlapping particles bring especially bad 

effects. The algorithm may detect two close particles that belong to different 

microtubules as only one particle and plot it in the middle of them. This induces error 

in the localization of the microtubules. A simple crude solution is to ignore these 
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irregular particles, but obviously this will cause more false negatives in the images. 

Another solution is to analyze these particles and separate them into single particles. 

Since crosses may be everywhere in a microscope image, if this process is too 

computation consuming, it will slow down the speed of the whole localization 

algorithm. 

Another problem is that for the application of photoswitching, the particles switch on 

and off, blinking repeatedly in the time period, which most of the super-resolution 

software, including QuickPALM haven`t taken in to consideration. The algorithm will 

detect the same repeatedly blinking particles as two different particles and they will be 

labeled twice in the reconstruction image. Since there are errors in the localization and 

many particles are very close to each other, we are not sure if they are the same 

particle switching on twice or two different particles that are close to each other. A 

possible solution to determine this will be constructing a probability model, which 

combines the factor of the estimated localization error, the signal-to-noise ratio, the 

distribution of particles in the space, etc. 

In the microscope image, actually the particles may be ellipses. The ratio of the 

maximal axis length and the minimal axis length is the focus length, which indicates 

the position of the particle in the 3D z-direction [32]. With this z-axis position and the 

x/y positions we acquire from the Gaussian fitting localization, we are able to make a 

3D reconstruction of the sample. 
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Appendices 

Appendix 1.3.1  

For microscopy images with low signal-to-noise ratio, even human visual system 

cannot distinguish all the particles from the noise. This makes difficulties in the 

evaluation of the particle detection algorithm. To properly evaluate the algorithm, an 

artificial dataset is generated.  

In the dataset there are three main categories of image with different types of 

backgrounds, one with uniform background and the other two with gradient 

backgrounds. In each main category there are twelve categories of images with 

signal-to-noise ratio from 0.5 to 100. Each SNR category contains twenty images.  

For each image, 50 spots with predefined coordinates are generated, during which 

shot noise is added to the signal. It follows Poisson distribution. After that the signal 

is add up with background noise which is described by another Poisson distribution. 

For generating the noises, each pixel is randomly assigned to a value in the Poisson 

distribution: 

𝑓(𝜆) =
𝜆𝑥𝑒−𝜆

𝑥 !
(𝑥 ≥ 0) 

where x is a random variable. For the background noise, λ is 2 times the standard 

deviation of the noise. For the shot noise λ is equal to the original spot intensity of that 

pixel, which is generated by the Gaussian function. 

Appendix 3.1.1  

For single-molecule super-resolution techniques, particle detection is performed under 

the assumption that the images we obtain are sparse particle images, so that no two 

particles overlap each other in the space. With this assumption, for any two particles A 

and B in the image, the following condition should be satisfied: 

(𝑥𝐴 − 𝑥𝐵)2 +  (𝑦𝐴 − 𝑦𝐵)2  > 𝑟𝐴 + 𝑟𝐵 

where rA and rB are the radiuses of spot A and spot B, and (xA, yA) and (xB, yB) are the 

coordinates of the spot centroids. 

Appendix 3.1.2  

The signal-to-noise ratio is defined by: 

𝑆𝑁𝑅 =
𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝜎𝑛𝑜𝑖𝑠𝑒
  

where Asignal is the amplitude of the spot signal and σnoise is the standard deviation of 

the noise. 

(A-2) 

(A-3) 

(A-1) 
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Appendix 3.2.3  

The mathematics expression is: 

𝐼 𝑥, 𝑦 ∗  𝐾 𝑥, 𝑦 =   𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) ∙ 𝐾(𝑢, 𝑣)u,v  

Appendix 3.2.4  

An kernel KA for average blur can be defined by: 

𝐊𝐀 𝐱, 𝐲 =  𝟏, [𝐱 𝐲]𝛜 𝐃 

Appendix 3.2.5  

𝐹𝐹𝑇(𝐼 𝑥, 𝑦 ∗  𝐾 𝑥, 𝑦 ) = 𝐹𝐹𝑇 𝐼 𝑥, 𝑦  ∙ 𝐹𝐹𝑇 𝐾 𝑥, 𝑦   

where FFT() is the function that transform an image or a kernel from space domain to 

frequency domain. 

Appendix 3.2.6  

The discrete Gaussian kernel generator is implemented by: 

𝐾 𝑥, 𝑦 =    g(u, v)dvdu
y+ 

1

2

y− 
1

2

x+ 
1

2

x−
1

2

 

where (x, y) is the center of a pixel in the kernel. g(x, y) is a 2 dimensional Gaussian 

function, which is given by: 

g u, v =  𝐴 ∙ 𝑒−
1

2
[ 

𝑢−𝑥0
𝜎

 
2

+(
𝑣−𝑦0

𝜎
)2]

 

σ is the estimated standard deviation of the spot and (x0, y0) is the center of the 

Gaussian kernel. 

Appendix 3.3.1  

Figure A-1 shows how most of histogram algorithms implement image segmentation 

or object detection. Let C1, C2 be the two classes to be segmented in the image, and 

e(C2| C1) be the number of pixels belonging to C1 that is miss-classified as C2. The 

detection error of the whole image is: 

e(I) = e(C2| C1) + e(C1| C2) 

which is represented as the shading area in the figure. The threshold that minimizes 

e(I) is at the crossing point of the C1 and C2. 

(A-4) 

(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 
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Appendix 3.4.1  

The basic 3 by 3 high-pass filter has a form as shown in Figure A-2 (a). The 

corresponding low-pass filter is shown in Figure A-2 (b).  

 

 -1/9 -1/9 -1/9  1/9 1/9 1/9  

 -1/9 8/9 -1/9  1/9 1/9 1/9  

 -1/9 -1/9 -1/9  1/9 1/9 1/9  

  (a)     (b)  

Figure A-2  (a) The high-pass spatial filter. (b) The corresponding low-pass 

spatial filter. 

Appendix 3.4.2  

For background subtraction, the background value of the center pixel will be the 

average intensity of the background pixels. 

𝑏𝑔𝑐 =
1

 1𝑖 ,𝑗 ,(𝑖−𝑖𝑐 )2+(𝑗−𝑗𝑐 )2>𝑟2
 𝐼(𝑖, 𝑗)𝑖 ,𝑗 ,(𝑖−𝑖𝑐)2+(𝑗−𝑗𝑐)2>𝑟2  

Where (ic, jc) is the position of the center pixel.  

Appendix 3.5.2.1 

QuickPALM a simple symmetry evaluation method for measuring the symmetry with 

respect to x-axis and y-axis: 

𝜎𝑙 =
 𝑆𝑖 ,𝑗 (𝑐𝑥−𝑥𝑖 ,𝑗 )𝑖 ,𝑗

 𝑆𝑖 ,𝑗𝑖 ,𝑗
, where  𝑖, 𝑗 ∈   𝑖, 𝑗 |𝑥𝑖,𝑗 < 𝑐𝑥  

T 

C1 

C2 

Figure A-1 This figure shows the histogram of two classes C1 and C2. The 

optimal threshold between them will be T. 

(A-10) 

(A-11) 
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𝜎𝑟 =
− 𝑆𝑖 ,𝑗 (𝑐𝑥−𝑥𝑖 ,𝑗 )𝑖 ,𝑗

 𝑆𝑖 ,𝑗𝑖 ,𝑗
, where  𝑖, 𝑗 ∈   𝑖, 𝑗 |𝑥𝑖 ,𝑗 ≥ 𝑐𝑥  

𝜎𝑎 =
 𝑆𝑖 ,𝑗 (𝑐𝑦−𝑦𝑖 ,𝑗 )𝑖 ,𝑗

 𝑆𝑖 ,𝑗𝑖 ,𝑗
, where  𝑖, 𝑗 ∈   𝑖, 𝑗 |𝑦𝑖 ,𝑗 < 𝑐𝑦  

𝜎𝑏 =
− 𝑆𝑖 ,𝑗 (𝑐𝑦−𝑦𝑖 ,𝑗 )𝑖 ,𝑗

 𝑆𝑖 ,𝑗𝑖 ,𝑗
, where  𝑖, 𝑗 ∈   𝑖, 𝑗 |𝑦𝑖,𝑗 ≥ 𝑐𝑦  

Si, j is the intensity of the pixel (i, j) and (xi, j, yi, j) is the coordinate of it. (cx, cy) is the 

spot center of mass. 

The x-axis, y-axis symmetry is measured by: 

𝑆𝑥 = 1 −
|𝜎𝑙−𝜎𝑟 |

𝜎𝑙+𝜎𝑟
 

𝑆𝑦 = 1 −
|𝜎𝑎−𝜎𝑏 |

𝜎𝑎 +𝜎𝑏
 

If the spot is a true positive we will get σl ≈ σr and σa ≈ σb, which yields Sx ≈ 1 and Sy 

≈ 1. 

Appendix 3.5.2.2  

The following symmetry criterion eliminates a false positive: 

If 𝑆𝑥 < 1 − Ts or 𝑆𝑥 > 1 + Ts or 

𝑆𝑦 < 1 − Ts or 𝑆𝑦 > 1 + Ts, 

the spot is a false positive. 

Appendix 3.5.3.1 

The definitions of erosion and dilation are [33]: 

Erosion: 𝛼 ⊝ 𝛽 =∩𝑏𝜖𝛽 𝛼−𝑏  

Dilation: 𝛼⨁𝛽 =∩𝑏𝜖𝛽 𝛼𝑏  

where 

𝛼𝑥 = {𝑎 + 𝑥: 𝑎 𝜖 𝛼} 

α is the binary image and β is the operator.  

The center of the operator is: 

cx = floor[(w + 1) / 2] 

 cy = floor[(h + 1) / 2]  

where w is the width of the operator and h is the height of the operator. 

(A-12) 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

(A-17) 

(A-18) 

(A-19) 

(A-20) 

(A-21) 
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Appendix 4.2.1 

Let Pi’ be the pixels of the spot region of the ith spot, and pik’ be the kth pixel of Pi’. 

Let Sik, (xik, yik) be the intensity and the coordinate of pik’. The center coordinate of the 

ith spot calculated by center of mass is: 

𝑥𝑖𝑐 =
 𝑥𝑖𝑘 ∙𝑆𝑖𝑘𝑘

 𝑆𝑖𝑘𝑘
 

𝑦𝑖𝑐 =
 𝑦𝑖𝑘 ∙𝑆𝑖𝑘𝑘

 𝑆𝑖𝑘𝑘
 

Appendix 4.3.1 

Let Si be the ith pixel of a spot and Ni be the corresponding cell of the Gaussian mask. 

The least square measures the error between spot pixels` intensities Si and the discrete 

Gaussian function Ni [24]: 

𝜒2 =
1

2
  𝑆𝑖 − 𝑁𝑖 

2
𝑖  

where: 

𝑁𝑖 =   𝐴 ∙ 𝑒
−

1

2
 
 𝑢−𝑥0 2

𝜎𝑥
2 +

 𝑣−𝑦0 2

𝜎𝑦
2  𝑥𝑖+ 

1

2

𝑥𝑖− 
1

2

𝑑𝑢𝑑𝑣
𝑦𝑖+ 

1

2

𝑦𝑖− 
1

2

 

(xi, yi) is the coordinate of the ith pixel of the spot. 

The following equation shall be satisfied: 

𝑑𝜒2

𝑑𝑥0
= 0 

These yields: 

𝑥0 =
 𝑥𝑖𝑆𝑖𝑁𝑖𝑖

 𝑆𝑖𝑁𝑖𝑖
 

𝑦0 =
 𝑦𝑖𝑆𝑖𝑁𝑖𝑖

 𝑆𝑖𝑁𝑖𝑖
 

Appendix 4.4.1.1 

The objective function of the non-linear least fitting will be: 

𝑔 𝑥𝑖 , 𝑦𝑖 =  𝐴0 + 𝐴 ∙ 𝑒
−

1

2
 
 𝑥𝑖−𝑥0 

2

𝜎𝑥
2 +

 𝑦 𝑖−𝑦0 
2

𝜎𝑦
2  

 

x0 and y0 are the parameters to be estimated, which are non-linear in the function. 

The fit is a minimization problem of the least square loss function: 

(A-22) 

(A-23) 

(A-24) 

(A-25) 

(A-26) 

(A-27) 

(A-28) 

(A-29) 
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min𝑥0 ,𝑦0 ,𝜎 ,𝐴0 ,𝐴 𝑓 𝑥0, 𝑦0, 𝜎𝑥 , 𝜎𝑦 , 𝐴0, 𝐴 =   𝑔 𝑥𝑖 , 𝑦𝑖 − 𝑆𝑖 
2

𝑖  

Si is the signal of the ith pixel, which is the intensity. In this minimization equation, xi, 

yi and Si are observable variables, which are the pixels information provided by the 

spot. xi, yi are the independent variables and Si is the dependent variable. g(xi, yi) is the 

prediction and g(xi, yi) - Si is the residual. 

A weighted least square is given by: 

min𝑥0 ,𝑦0 ,𝜎 ,𝐴0 ,𝐴 𝑓 𝑥0, 𝑦0, 𝜎𝑥 , 𝜎𝑦 , 𝐴0, 𝐴 =  𝑤𝑖 𝑔 𝑥𝑖 , 𝑦𝑖 − 𝑆𝑖 
2

𝑖  

where wi is the weight for the ith pixel. 

Appendix 4.4.2.1 

The chi-square of the fit is also the objective function to be minimized, which will be: 

𝜒2 =
1

2
  𝑔 𝑥𝑖 , 𝑦𝑖 − 𝑆𝑖 

2
𝑖  

The gradient decent method defines a step length α in the steepest descent direction. 

The perturbation hgd is the step length times the steepest decreasing direction of the 

objective function [35]: 

𝒉𝑔𝑑 = 𝛼𝑱𝑇 𝒈 − 𝑺  

where g is a n by 1 matrix of the intensities calculated by the function g(xi, yi) (i = 1, 

2, …, n) and S is a n by 1 matrix of the intensities of n spot pixels. J is the Jacobian 

matrx: 

𝑱 =
𝜕𝒈

𝜕𝒑
 

p is the m by 1 parameters matrix. m is the number of estimated parameters. 

The Gauss-Newton method always directs the perturbation to the point 𝜕𝜒2/𝜕𝒉𝑔𝑛 = 0, 

where hgn is the perturbation. Approximate g(p + hgn) with the Taylor expansion 

yields: 

 𝑱𝑇𝑱 𝒉𝑔𝑛 = 𝑱𝑇 𝒈 − 𝑺  

The equation for calculating the perturbation of Levenberg-Marquardt is very similar 

to the one of Gauss-Newton method`s: 

  

 𝑱𝑇𝑱 + 𝜆𝑰 𝒉𝑔𝑛 = 𝑱𝑇 𝒈 − 𝑺  

(A-30) 

(A-31) 

(A-32) 

(A-33) 

(A-34) 

(A-35) 

(A-36) 
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Appendix 4.4.2.2 

The covariance matrix is defined by: 

𝑪 =  𝑱𝑻𝑱 −𝟏 

Appendix 4.4.4.1 

Measurement error is also the relative uncertainty in the intensity of the data point. If 

σs is the measurement error, it is calculated by: 

𝜎𝑠 =
1

 𝑠
·𝑠 

Appendix 4.4.4.2 

A least square with weight is: 

𝜒2 =
1

2
 𝑤𝑖 𝑔 𝑥𝑖 , 𝑦𝑖 − 𝑆𝑖 

2
𝑖  

The weight wi of the ith data point shall correspond to the confidence of the data 

point`s intensity. Hence wi is given by: 

𝑤𝑖 =
1

𝜎𝑠
2 

Appendix 4.4.4.3 

The χ goodness is a value for evaluating the goodness of the fitting. It`s χ
2
 divide by 

the degree of freedom, which is: 

𝜎2 =
𝜒2

𝑚−𝑛
 

(m - n) is the degree of freedom, where m is the data points number and n is the 

number of parameters to be evaluated. σ
2
 is also called the unbiased estimated of the 

error [36]. 

Appendix 5.2.1 

Let the fitting model be y. The partial derivative functions are: 

𝑓(𝑝𝑖) =
𝜕𝑦 

𝜕𝑝𝑖
(𝑖 = 1, 2, …𝑚) 

m is the number of parameters to be estimated and pi is the ith estimated parameter.

(A-37) 

(A-38) 
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