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Abstract

Multi-touch technology has become commonplace in most portable devices, like tablets
and mobile phones. This technology has proven to be an interesting platform for games. Sev-
eral games have been released which are considered technology driven, i.e., they were designed
specifically for multi-touch devices. Some of these games require users to provide input using
multiple fingers single-handed. In this case, the reachable area of a finger is subject to anatom-
ical constraints. In this thesis, a model is proposed from which we can deduce the area that can
be reached by a finger, given the fixed positions of other fingers that are already placed upon
the planar surface. This model is created by measuring user input on a multi-touch device
and to process these measurements using a variety of regression techniques. In this thesis, an
estimation model is fitted in the case that one or two fingers are placed at fixed positions on
the screen. These models can estimate the reachable area with reasonable accuracy. We also
discuss how this model can be extended to serve the general case, where there are n stationary
fingers on the screen.
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1 Introduction

Multi-touch technology has been around for several decades, but it hasn’t gained significant main-
stream exposure until 2007 when the first iPhone got very popular. People were introduced with
this new technology on a large scale, which led to multi-touch becoming the new standard in
contemporary mobile devices and the introduction of tablets. These devices have proven to be a
very succesful platform for gaming as well. For instance, Apple’s official online application distri-
bution service for iPad already features about 100.000 game titles [5]. Most of these games are
not designed to be technology driven, since they only require users to provide subsequent tap- and
drag-gestures with a single finger. However, several games have been released which make more
use of multi-touch technology, and have been designed specifically for this platform.

Figure 1.1: people playing Byg̊ar on the Microsoft Surface v1.

Here are a few examples of games that are considered technology driven:

• Byg̊ar: In Byg̊ar, players must manipulate an elastic booger-network and guide it through
a maze of obstacles. Players can extend the network by pulling at it with their fingers. As
can be seen in Figure 1.1, people usually use multiple fingers from one hand to sustain the
network. Byg̊ar was created in 2010 as a student project at Utrecht University by Guido
Soetens (the author).

• TwisTouch: TwisTouch is a one-player game in which you have to drag several orbs to their
respective goals. Orbs can only be moved when all other orbs are touched as well and may
not be released. The player must consider which finger must be assigned to which orb, since
some goals are too far apart (on tablet devices) for some combination of fingers to reach.
TwisTouch was created by Ivanovich Games.

• Fingle: In this game, players have to track several moving objects with their fingers. In
order to do so, they will have to place multiple fingers on their touch-device and move them
simultaniously. This mechanic cannot be replaced by single-mouse input or any other sort of
contemporary pointing device, and is therefore considered to be specifically designed for the
multi-touch platform. Fingle is created by the Dutch game company Game Oven.

In these games, players must place multiple fingers of one hand on the screen. However, no
documented research has yet been conducted on how multiple input could be distributed single-
handed on these devices. Such research could prove to be very useful in the development of these
multi-touch technology driven games. For instance, this research could be used for random level
generation by calculating a random (feasible) set of subsequent finger placements. Also, some
combinations of required finger placements in a level design might not be physically possible for
people with ’smaller’ hands. By using our new proposed model, levels could be customized to a
player by scaling it down to ’fit’ the user’s hands.
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2 Related Work

In this section, we will discuss several subjects that are related to the research at hand. First, in
Section 2.1, we will discuss two different kinds of common technologies used in multi-touch screens,
and how user input is measured on these devices. Next, in Section 2.2, we will discuss what research
has been conducted on biometrics of the human hand.

2.1 Common Technologies in Multi-Touch Screens

In this section, we present two multi-touch technologies that are most common in multi-touch
devices. In Section 2.1.1, we discuss the capacitive touchscreen, which is most common in portable
devices, such as mobile phones and tablets. Next, in Section 2.1.2, the vision-based touchscreen
is discussed, which is present in larger multi-touch devices like the Microsoft Surface v1 and the
Microsoft PixelSense.

2.1.1 Capacitive Multi-Touch Screens

The most common technology that is used for multi-touch screens in contemporary portable devices
is the capacitive multi-touch screen. This screen contains a layer that holds an electrical charge.
Underneath this layer, there is a two-dimensional network of capacitors, which are aligned along a
grid. These capacitors monitor changes that occur in the layer’s electrical charge. These changes
arise when a conductive material, such as a finger, touches the screen. When the touch occurs,
the grid segments around the finger respond and send the touch data as electrical impulses to the
device’s processor. The processor filters out the noise from the raw data and deduces the exact
touch point. In Figure 2.1 it is shown how the exact input point is deduced from the electrical
impulses in the iPhone processor [2].

The most high-end smartphones feature capacitive multi-touch technology (e.g, the Apple
iPhone, HTC Desire, Samsung Galaxy S and the Nokia N8). The main benefits of using a ca-
pacitive touch-screen is that it supports multi-touch, it is very responsive and does not require
pressure to be applied on the screen. Therefore, the durability of a capacitive screen is greater
than pressure based touch-screens (i.e. resistive touch-screens). Also, the display of a capacitive
device has better visibility in the sunlight (compared to a resistive touch-display). The downside
of capacitive touch devices is that it only responds to conductive materials, such as a bare finger.
Therefore - for instance - a capacitive touch device does not react to touches that are delivered by
the tip of a fingernail, since it is not conductive.

Figure 2.1: To determine the exact touch location, the processor first filters the noise from the
raw input. The exact touch location is then deduced from the resulting touch area.

6



2.1.2 Visual Based Multi-Touch Screens

Larger multi-touch devices, like the Microsoft Surface v1 and the Microsoft Pixelsense, have a
visual based multi-touch screen. The system of the Microsoft Surface v1 emits infrared light onto
the touch-screen. An object that is placed upon the screen will reflect the infrared light back into
the surface. The reflected light is captured by four infrared cameras that are placed inside the
system. The structure of the Microsoft Surface is depicted in Figure 2.2a. The images that are
captured by the IR cameras contain bright blobs, which are the areas of infrared light that was
reflected at the surface contact-points. An example of what the captured IR image data looks like
is shown in Figure 2.3a.

(a) The structure of the Microsoft Surface v1
[21]. 1 is the touchscreen, 2 is the IR emit-
ter, 3 is an IR camera and 4 is the projector.

(b) The IR-sensor technology of the Microsoft
PixelSense. The IR-sensors are embedded
into the LCD layer of the display.

Figure 2.2: IR-sensing technology in the Microsoft Surface v1 and the Microsoft PixelSense.

The extraction of the touch-input locations from the captured image data is performed in three
steps. First, the bright blobs are extracted by applying a threshold filter on the captured image.
The threshold value is chosen such that the resulting binary (black-and-white) image only contains
white pixels at the areas of the bright blobs. Some illumination noise from the environment can be
filtered out at this stage by applying several subsequent erosion- and dilation-filters on the binary
image. The result of this procedure is depicted in Figure 2.3b.

In the second step, the touch input pixels in the binary image are grouped into connected
regions. Each region represents a separate touch input. The region extraction is depicted in Figure
2.3c. From these regions, the exact input points can be deduced. The input point is usually
defined as the centroid of the associated blob region. A tracking algorithm is used to monitor
the location of a touch input point over a series of subsequent frames. Sometimes, two adjacent
fingers on the surface screen could result to a single large blob region. From the size of the blob
and the information on previous frames from the tracking algorithm, it can be deduced that a blob
is generated by multiple finger contacts on the display. In that case, multiple input points are
sampled from the blob region.

(a) The original captured im-
age from the IR cameras.

(b) The result after applying
the threshold filter.

(c) The red circles indicate
the connected regions.

Figure 2.3: The first two steps in extracting the touch input points.

In the last step, the sampled input points from the processed camera image must be mapped
to the display’s coordinate system. Assuming that the camera image is not subject to radial
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distortion, the input points can be mapped from the image plane to the device’s pixel coordinates
by applying a homographic transformation on the points.

The successor to the Microsoft Surface v1 is the Microsoft PixelSense. The four IR-camera’s of
the Surface v1 have been replaced by a series of small IR-sensors. These sensors are located at each
pixel of the PixelSense LCD display, which is shown in Figure 2.2b. In this case, the coordinate
system of the captured image is equal to the display’s coordinate system, which means that the
homographic transformation does not need to be applied. Also, since the IR-sensing technology
is embedded into the display, the weight and size of the device has been greatly reduced, which
makes it possible to install the PixelSense on walls for instance.

As opposed to capacitive multi-touch technology, the visual based touch-screen does not require
the input contact to be conductive. However, in the noise reduction step after the threshold filter
has been applied to the captured infrared image, small blobs will be filtered out of the touch data.
Since the tip of a finger-nail is also relatively small, the reflected light would be filtered out during
the input processing since the resulting blob would also be relatively small.

2.2 Biometrics of the Human Hand and Hand Models

Biometrics is the science of measuring and analyzing biological data. In the analysis of the human
hand, biometrics can be used to gather information about the lengths of fingers, the degrees of
freedom of finger joints and the patterns in fingerprints for example. In the field of information
technology, the term biometrics usually refers to the usage of these measurements for authentication
purposes. In that case, the measurements are used as a discriminating factor between specific
instances. However, for the research that is presented in this thesis, we will use biometrics to
determine general properties of the human hand.

(a) The CyberGlove and its sensors. (b) Gathering joint and bone properties from
an image.

Figure 2.4: Inference of biometric data.

An example in which biometrics of the hand are used is the research in the field of Human
Computer Interaction, and in particular the study of hand gestures [16, 19]. One way to measurue
the properties of the hand is by using a CyberGlove, which is shown in Figure 2.4a. Various sensor
technologies are placed along the surface of the glove, which are used to monitor biometric data
such as the rotational properties of finger joints. Another way to gather biometric hand data is
by processing and analyzing 2D images of the hand [19], as depicted in Figure 2.4b. The observed
biometric data, like the rotation properties of joints, can be incorporated in a kinematic hand
model. This model consists of joints with different degrees of freedom (DoF). Figure 2.5 shows
this kinematic model and the types of joints in this model. The interphalangeal (IP) joint, the
distal interphalangeal (DIP) joint and proximal interphalangeal (PIP) joint each have one DoF.
The metacarpophalangeal (MCP) and trapeziometacarpal (TP) each have two DoF. The root joint,
i.e. the wrist, has full translational and rotational motion in 3D space, so therefore has 6 DoF.

The rotations of these joints are subject to several types of constraints. One type of constraint is
the intra-finger constraint, which is the range of rotations that are possible for each separate finger
joint. For instace, the movable range of rotations of the index finger’s MCP joint is approximately
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Figure 2.5: Kinematical hand model and joint notations.

[−40◦, 90◦]. Another type of constraint is the inter -finger constraint, which is the interdependence
between subsequent joint rotations. For instance, on grasping, a DIP joint has a linear relationship
with the previous PIP joint, which is defined as follows:

θDIP =
2

3
· θPIP

Using the kinematic model and its observed constraints, the pose of the hand can be recon-
structed with inverse kinematics from some key feature points, e.g. the locations of the fingertips.
In Figure 2.6, a 3D hand model is reconstructed from feature points that are obtained by processing
the image of a hand [19]. Note that the hand model has many DoF, so using inverse kinematics to
reconstruct the 3D hand model can become a computationally intensive procedure.

Figure 2.6: Modelling a 3D hand model from feature points using Inverse Kinematics [20].
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3 Research Goal and Motivation

As was mentioned in Section 1, the introduction of multi-touch technology in contemporary mobile
devices has given rise to many multi-touch technology driven games. Some of these games require
users to provide input with multiple fingers single-handed. A model from which possible placements
of fingers can be deduced could be a very useful tool in the process of level design in the development
of such multi-touch driven games. Also, such a model could be used to automatically generate
random (feasible) levels that are based on multi-touch finger placements. In this thesis, a model is
proposed with which the reachable area of a right-hand finger is estimated, given the fixed locations
of other stationary fingers of the same hand. In Section 3.1, we will discuss which types of touch-
input is taken into account in the proposed model, based on the information on different sorts of
multi-touch technologies that were discussed in Section 2.1. Next, in Section 3.2, we will discuss
how the estimation model will be constructed, as we reflect on the related research on biometrics
that was discussed in Section 2.2.

3.1 Constraints on Provided Touch-Input

As was mentioned in Section 2.1, the tip of a fingernail does not trigger an input response on both
capactive and visual based multi-touch devices. As opposed to capacitive touch-screens, a visual
based touch-screen does react to the surface of a finger nail, since this would create a larger contact
area. However, if multi-touch input would be provided with the surfaces of fingernails, the pose
of the hand could become arguably uncomfortable, as is depicted in Figure 3.1. Also, using the
surface of a fingernail to interact with controls on a multi-touch screen does not feel natural in
general. Instead, we will only consider input that is provided with the ’skin’-side of a finger. Since
skin is conductive, the model would also be applicable for capacitive multi-touch devices.

Figure 3.1: Input provided with the surface of a fingernail (the red contact area).

As was mentioned in Section 2.1.2, the exact input point that is deduced from a contact blob is
usually defined as the centroid of the contact blob. Instead of placing the fingertip on the surface,
someone can also place a larger part of the finger on the multi-touch device, which increases the
contact area. In that case, the exact input point that is sampled from the contact blob is not
located at the position of the fingertip as depicted in Figure 3.2a. Similarly as providing input
with fingernails, the pose of the hand when a larger area of the finger is placed on the multi-touch
device can become uncomfortable for most people. Given these considerations, the proposed model
will only take touch-input that is provided with fingertips into account.

The size and shape of contact blobs are determined by the type of hardware that is used.
Also, the inference method which determines the exact input point from these blobs may differ per
device. If it is assumed that the inferred touch input location, relative to the surface contact (i.e.
the fingertip), is invariant to the type of multi-touch device that is used, then the model that is
proposed in this thesis is applicable for both capacitive and visual based multi-touch devices.
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(a) A large contact area. (b) The input is provided with a fingertip.

Figure 3.2: Varying sizes of the contact area.

3.2 General Approach in Estimating the Reachable Area

As was mentioned in Section 2.2, a 3D reconstruction of a hand can be made from feature points
using inverse kinematics. If the positions of the stationary fingers are known, then we could use
these points as the feature points in the 3D reconstruction. One constraint in this reconstruction
is that the entire 3D mesh is located above the surface. The model can then be manipulated
to determine the reachable area of another finger, while taking the constraints on the kinematic
hand joints into account. However, it was mentioned that using inverse kinematics can become
computationally intensive, especially if this has to be performed at run-time on portable devices.

Instead, we will use a different approach to determine the reachable area of a finger. For
each combination of stationary fingers - and varying positions of these stationary fingers - we will
measure the reachable area of another finger (of the same hand) on a multi-touch surface. These
measurements are performed over a group of people. By performing an analysis on the acquired
measurements, we can determine some general properties of the shape and size of the reachable
area under certain conditions. These conditions differ in the number of stationary fingers that are
present on the surface and the distance between these stationary fingers for instance. By taking
these analyses into account, we can define appropriate models to estimate the reachable areas by
means of a variety of regression techniques. As the explanatory variable of the regression models
we will use some intrinsic property of the user’s hand. This value must have some significant
explanatory power, so that the estimations of the regression models will ’fit’ the actual reachable
areas of the user appropriately. This explanatory variable will be obtained by means of a calibration
procedure.

The main purpose of this model will be within the field of game- and level development. There-
fore, the calibration procedure must preferably be quick and simple, so that it does not compromise
the accessibility of the game itself. However, the brevity of acquiring user information must not
compromise the accuracy of the (user specific) estimations. Therefore, we must find an appropriate
equilibrium between the accessibility and accuracy of the proposed estimation model through the
choice of an appropriate calibration variable.
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4 Notations and Definitions

This section contains definitions of sets and notations that are used throughout this thesis.

Index: Finger:
f1 Thumb
f2 Index Finger
f3 Middle Finger
f4 Ring Finger
f5 Little Finger

We refer to each right-hand finger by assigning an index to each fingertip, as presented in the
latter table. The set of these indices (i.e. fingertips) is called I. We will also define I2 as the set
which consists of all tuples of the elements in I:

I2 = {(fa, fb) : a < b ∧ fa, fb ∈ I}

The finger tuple (fa, fb) is sometimes also written as (a, b).

12



5 Multi-touch Input Model for 2 Fingers

Suppose we want to place two fingers on a planar surface S. Of course, the first finger can be
placed on any position p ∈ S. If this finger remains fixed at p, the second finger will have a limited
reach. This limitation arises from the intrinsic properties of the hand, in particular the rotational
limits of finger joints and the lengths of fingers. In this section, we will create a model from which
we can deduce the area A ⊆ S, which denotes the area in which we can place the second finger,
relative to the point p. In Section 5.1, we will give an analysis on the properties of the placement
area A, and which variables determine its shape. Next, we will formulate how we can estimate
these variables and create a general model in Section 5.2. In Section 5.3, it is discussed how the
reachable range can be inferred from these regression models. Next, in Section 5.4, we will show
how user-input has been measured and how these measurements are used to train our model. We
test our model and reflect on the results in Section 5.5. Finally, in Section 5.6, we give a summary
of how the proposed model can be applied.

5.1 Properties of The Placement Area

For each tuple (fa, fb) ∈ I2, we want to determine the area A which can be reached by the second
finger fb, given that the first finger fa is placed fixed at the point p. We will ignore those fingers
that are not represented in this tuple. The minimum distance and the maximum distance between
the fingers of tuple i are denoted as d−i and d+i respectively. The range of distances with which
these two fingers can be placed apart from each other is [d−i , d

+
i ]. We will assume that the hand

can be rotated around point p (that is, about the normal-vector of the surface). This rotation is
valid, since it ensures that the fingertip of fa will remain fixed at point p. Therefore, any point
q ∈ S, which’ distance to p is within the range [d−i , d

+
i ] is a point in A. Any point that does not

meet this condition cannot be a point in A, since it would be out of reach for fb. We can now give
a formal definition of A:

A = {q : q ∈ S ∧ ‖p− q‖ ∈ [d−i , d
+
i ]}

In geometric terms, the shape of area A is equal to an annulus with outer radius d+i and inner
radius d−i , which is depicted in Figure 5.1.

A

p d−i d+i

Figure 5.1: The gray area represents the reachable area A.

For each tuple (fa, fb) ∈ I2, the tuple (fb, fa) is not contained in I2. If we want to estimate A
for (fb, fa), then we let the center of A (i.e. p) coincide with the position of fb. The radii of the
annulus is equal to the estimated radii for the tuple (fa, fb).

5.2 Estimation of The Stretch Range

As was mentioned in the previous section, we need to estimate the bounds of the range [d−i , d
+
i ] in

order to obtain the area A. First, in Section 5.2.1, we describe the method with which the value
for the maximum stretch d+i is estimated. Next, the method to deduce the minimum distance d−i
is presented in Section 5.2.2.
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5.2.1 Estimation of The Maximum Stretch

In order to estimate the maximum distance between each tuple, we first need to measure these
distances over a group of people. These measurements are contained in the dataset D+. The
elements in D+ are denoted as xn,i, which represents the maximum stretch measured between the
finger tuple i ∈ I2 during the measuring session n ∈ 1, 2, ..., N . Or, in short:

D+ = {xn,i : n ∈ {1, 2, ..., N}, i ∈ I2}
The marginal variable xi denotes the maximum stretch of tuple i, regardless of any session-

index. The question remains how to generate a model from these measurements. A simple and
straightforward approach would be to let the expected value of the maximum stretch, E[xi], be the
estimation of d+i for each finger tuple i. This approach would yield a very crude estimation of the
variable, since the maximum stretch is strongly determined by the intrinsic properties of hands,
which may differ greatly between people.

Instead of marginalizing the data, we will consider one of these stretch-values xc to be known
beforehand, so that we can estimate the other stretches more accurately. The tuple c is called the
calibration tuple. The other stretches xi will be estimated by performing linear regression, where
xc will serve as the input variable. The linear model which estimates xi is written as follows:

xi = xc · wi + ε

In this model, ε is the error variable. Note that the latter linear equation only calculates a
weighed value of xc, and does not contain an intercept. This means that our regression line will
go through the origin. Regression through the origin is possible, but it does not hold the same
properties as ’regular’ linear regression in which the fitted model contains an intercept [15, 6]. For
instance, there is no trivial quality measure like R2 for this regression model. Also, the following
expression may not be true:

E[ε] = 0

We will need to define our own quality measure to determine if the obtained model is a good
fit or not. We will test if a significant proportion of the estimation errors is within an acceptable
boundary, which follows from the standard deviation of ε. This will be discussed more thoroughly in
Section 5.5. The justification of using regression through the origin is as follows: if the maximum
stretch between the calibration tuple c approaches zero, then the hand must be infinitesimally
small. This means that the stretch between any other tuple i must also be approximately zero. If
the intercept is denoted as a, the estimation can be written as follows:

0 = a+ 0 · wi
This only holds if a equals zero, i.e. if the intercept is omitted. Now that the regression models

for estimating the stretches are found, we need to find the appropriate values for the coefficients
wi. These values are gathered by minimizing the sum of squared estimation errors of the models.
The sum of squared errors for estimating xi is written as follows, from [13]:

ED+(wi|c) =

N∑
n=1

{xn,i − wi · xn,c}2

To find the values for wi, which minimizes the latter equation, we must equate the derivative
of ED+ (w.r.t. wi) to zero:

δED+

δwi
=

N∑
n=1

2 · {xn,i − wi · xn,c} · (−xn,c)

= −2 ·
N∑
n=1

{xn,i · xn,c − wi · x2n,c}

= 0
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⇒ { divide both sides by −2, then separate terms into two summations }

N∑
n=1

(xn,i · xn,c)− wi ·
N∑
n=1

(x2n,c) = 0

⇒ { bring −wi ·
∑N
n=1(x2n,c) to the right, then divide both sides by

∑N
n=1(x2n,c) }

wi =

∑N
n=1(xn,i · xn,c)∑N

n=1(x2n,c)

In Section 5.5, we will determine which value for c would yield the most accurate regression
model, and reveal the optimal values for wi.

5.2.2 Estimation of The Minimum Stretch

In Section 2.1 it was mentioned that input-points are sampled from contact blobs. It also states
that there is a minimum size threshold for these contact blobs, since the input processing performs
a noise reduction procedure that filters out small contact blobs. Hence, even though when two
contact blobs are adjacent, the sampled input points do not coincide, so there is a (non-zero)
minimum distance between two input points. We will perform regular linear regression to estimate
the minimum distance, in which we introduce an intercept in the regression model. In the previous
model, the known maximum stretch value of the calibration-tuple c is used as the input variable of
the regression model, with which the other stretches are estimated. Since we do not want to burden
people with too many calibration tasks, we will try to use the calibration-value that was required
to estimate the maximum stretch as the input variable for the regression of the minimum stretch
as well. We will reflect on this choice in Section 5.5 and see if this yields an accurate regression
model. Also, we will give the optimal values for the weight-coefficients of the minimum-stretch
regression model. This model can be written as follows:

xi = w0,i + w1,i · yc + ε

where yc is the maximum stretch calibration value and xi is the estimated minimum stretch for
tuple i ∈ I2. The weight coefficients are calculated as follows [13]:

w0,i =

∑
(xn,i)− w1,i ·

∑
(yn,c)

N

w1,i =
N ·

∑
(xn,i · yn,c)−

∑
(xn,i) ·

∑
(yn,c)

N ·
∑

(y2n,c)− (
∑
yn,c)2

where xn,i ∈ D− and yn,c ∈ D+. The summations iterate from n = 1 to n = N .

5.3 Calculating Reachability

To determine if point q ∈ S lies within the annulus A, which is centered at p, we first test whether
q is within the bounds of the outer radius of A. To do so, we determine the probability that the
distance d = ‖p− q‖ is smaller than the value of the outer radius d+i (i.e. P (d < d+i )). Suppose we
want to calculate this probability for tuple i, given the maximum stretch of the calibration tuple
c: d+c . The estimation of d+i can be deduced from our linear regression model. We assume that
the distribution of the estimation error ε is a normal distribution. Therefore, the distribution of
d+i is as follows:

d+i ∼ N (µ, σ2)

where:

µ = wi · d+c + E[ε|c, i]
σ2 = var[ε|c, i]
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To determine P (d < d+i ), we have to calculate the area underneath the probability density
function (p.d.f.) of the normal distribution, for which integration techniques have to be applied.
The primitive of this p.d.f. is the cumulative distribution function (d.f.) of a normal distribution,
which is usually denoted as Φ(x). This distribution function cannot be expressed in closed form
in terms of elementary functions [14]. Therefore, we’d have to determine the values of the d.f.
by numerical approximation. One of such approximations is given by Abramowitz en Stegun [11],
which applies to standard normal distributions 1, and is defined as follows:

Φ(x) ≈ 1− (a1t+ a2t
2 + ...+ a5t

5)e−x
2

, for 0 ≤ x ≤ ∞

where t = 1
1+px . The value of Φ(x) equals the probability P (X < x), where the distribution of

X is the standard normal distribution. The numerical approximations of the constant terms are
shown in the following table:

p 0.3275911
a1 0.254829592
a2 -0.284496736
a3 1.421413741
a4 -1.453152027
a5 1.061405429

The maximum approximation error of the latter function is 1.5 · 10−7. Note that this function
only yields correct approximations for x ≥ 0. However, the probabilities of negative values can
still be determined, since the standard normal distribution is symmetric with respect to the point
x = 0 (since µ = 0), which means that Φ(−x) = 1 − Φ(x). From this symmetry property it also
follows that P (X > x) = P (X < −x). The random variable Z, which’ distribution is the standard
normal distribution, can be defined in terms of d+i as follows:

Z =
d+i − µ
σ

Where µ and σ are the parameters of the distribution of d+i . We can now calculate the proba-
bility that the distance d is smaller than the estimated maximum stretch value d+i :

P (d < d+i ) = P (
d− µ
σ

<
d+i − µ
σ

)

= P (x < Z) //for brevity: x =
d− µ
σ

= P (Z < −x) =

{
Φ(−x) if − x ≥ 0

1− Φ(x) otherwise

We can deduce the probability that d is larger than the inner radius d−i in a similar way. The
probability is defined as follows for tuple i:

P (d > d−i ) = P (
d− µ
σ

>
di − µ
σ

)

= P (x > Z)

= P (Z < x) =

{
Φ(x) if x ≥ 0

1− Φ(−x) otherwise

What is left to determine is the simultaneous probability of d being both larger than d−i and
smaller than d+i . This probability is written as follows:

P (d−i < d < d+i ) = P (d < d+i ) · P (d−i < d | d < d+i ) (1)

1The standard normal distribution: X ∼ N (µ = 0, σ2 = 1)
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The right-hand side of the latter expression contains a conditional probability. To calculate
this probability, we would have to re-define the distribution of d−i , so that it is only based on the
subset of data that meets the latter condition. That is, this subset only contains measurements
where the maximum stretch d+i is strictly larger than d. However, we want to create a model that
does not have to re-adress the data-set after it has been fitted. Therefore, we will further analyze
the properties of the distributions of d−i and d+i .

First, let us denote Min[d+i ] as the minimum maximum distance that was measured in the
entire dataset between tuple i. If d < Min[d+i ], then the condition (d < d+i ) holds for each
measurement in the data-set. In this case, no elements from the data-set will be filtered out. The
distribution of d−i will therefore remain unchanged, which is why the conditional probability can
be approximated as follows:

P (d−i < d | d < d+i ) ≈ P (d−i < d), if d < Min[d+i ] (2)

However, if d ≥ Min[d+i ], then some elements of the data-set will not meet the latter condition.
Therefore, the distribution of d−i will alter, and so does the probability that d is greater than d−i .
We expect that this probability is always approximately one, regardless of whether the distribution
of d−i is modelled using a filtered set of data or not. This follows from the expectation that the
intersection of the sample spaces of d−i and d+i is negligible. In that case, there must always be a
sufficient amount of standard deviations between the estimated value of the minimum stretch and
the distance value d, where d ≥ Min[d+i ]. The relation between d and the distribution of d−i is
depicted in the Figure 5.2.

d+id−i

E[d−i ]
n · σ d

Figure 5.2: The number of standard deviations between E[d−i ] and d.

In the image, n denotes the number of standard deviations between E[d−i ] and d. If n is
always sufficiently large (e.g. at least 4), then the probability that d is larger than d−i is always
approximately one. Therefore, both probabilities are approximately equal. We will show that this
is the case if d ≥ Min[d+i ]. For this purpose, the data-set will be filtered using every maximum
stretch value in D+ as the distance threshold d in the condition (d < d+i ). From this filtered set, we
can generate a distribution of d−i using every calibration value in D+. From this distribution and
the distribution that was modelled using the entire data-set, we can deduce the difference between
P (d−i < d | d < d+i ) and P (d−i < d). A snippet of pseudo-code with which the maximum difference
between these two probabilities can be deduced from our data-set is provided in Algorithm 1. The
results of running this algorithm for each tuple i are given and discussed in Section 5.5.

If it follows from our results that the maximum difference between P (d−i < d | d < d+i ) and
P (d−i < d) is sufficiently small - given that d ≥ Min[d+i ] - then we can approximate the conditional
probability by disregarding its condition. Therefore, we can write:

P (d−i < d | d < d+i ) ≈ P (d−i < d), if d ≥ Min[d+i ] (3)

By combining the equations (2) and (3), we get:

P (d−i < d | d < d+i ) ≈ P (d−i < d)
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Therefore, the simultaneous probability in (1) can be approximated as follows:

P (d−i < d < d+i ) = P (d < d+i ) · P (d−i < d | d < d+i )

≈ P (d < d+i ) · P (d−i < d)

Algorithm 1 Find the maximum difference (ε) between P (d−i < d) and P (d−i < d | d < d+i ),
given that d ≥ Min[d+i ]

Require: i ∈ I2, c ∈ I2, D−, D+

1: ε← 0
2: D+

i ← {xn,i : xn,i ∈ D+}
3: D−i ← {xn,i : xn,i ∈ D−}
4: M← RegressionModel(D−i )
5: σ ← EstimationErrorDeviation(M)
6: SortIncreasing(D+

i )
7: while SizeOf(D+

i ) > 0 do
8: d← First(D+

i )
9: D−i ← {xn,i : xn,i ∈ D− ∧ yn,i ∈ D+

i ∧ yn,i > d} {the filtered set of minimum stretches}
10: if SizeOf(D−i ) > 0 then
11: M′ ← RegressionModel(D−i )
12: σ′ ← EstimationErrorDeviation(M′)
13: for all xn,c ∈ D+ do
14: d−i ←M(xn,c) {estimate the minimum stretch for person n}
15: d−i

′ ←M′(xn,c)
16: ε← Maximum(ε,|(1− Φ(

d−d−i
σ ))− (1− Φ(

d−d−i
′

σ′ ))|)
17: end for
18: end if
19: RemoveFirst(D+

i )
20: end while
21: print ε

5.4 Implementation and Measuring

The measuring of the minimum and maximum input distances were performed on a Microsoft
PixelSense. This device has a 30 inch (76 cm) 4:3 multi-touch display, which ensures us that there
is enough space for the measurements to be performed. Only the stretches of the right hand were
measured. The applications were developed using WPF (.NET 4.0 framework). The minimum and
maximum stretches were measured for each finger tuple (fa, fb) ∈ I2. A procedure of measuring a
stretch is as follows for tuple (fa, fb):

• the user is asked to place fa on the center location of the screen (on a button control).

• next, the user is asked to place the second finger fb on the screen and move it as far as
possible from fa or as close as possible to fa (when measuring the maximum stretch or
minimum stretch respectively). One condition is that the positioning of the hand may not
feel uncomfortable at any point of the measurement. After fb has been placed on the screen,
other fingers (besides fa and fb) may also be placed on the screen for support.

• when the minimum or maximum stretch is reached, a button is pressed by the observer, so
that the measurement can be performed for the next tuple.

Figure 5.3 shows how the maximum distance between the fingers f2 and f5 is measured. The
outer circle of annulus A is also drawn during the measurement.

18



fa fb

d+(fa,fb)

Figure 5.3: Measuring the maximum distance between f2 (the index finger) and f5 (the little
finger)

5.5 Results

In this section, we will discuss the results of the minimum and maximum stretch measurements.
First, in Section 5.5.1, we will show the regression models that have been fitted using the gathered
data and the estimation error properties of these models. Next, we deduce which tuple is the best
choice for the calibration purpose in Section 5.5.2. Finally, in Section 5.5.3, we will reflect on
whether the conditions that allow the probability approximations from Section 5.3 are met.

5.5.1 Fitted Regression Models

At the end of this document, there is a list of appendices. In Appendix A.1, the weight coefficients
of the maximum stretch regression model are given. A separate model is fitted for each possible
calibration tuple c ∈ I2. In Appendix A.2, the first table contains the expected estimation error
for each of these regression models (E[ε|c, i]). The second table contains the general estimation
error over all tuples i ∈ I2 for each separate calibration tuple, i.e. E[ε|c]. Next, in Appendix A.3,
the two tables represent the local and global estimation error variances respectively. In total, 36
people have contributed to the data-set on which these models were fitted.

Similarly, the properties of the minimum stretch regression model are provided in Appendix
B. Note that Appendix B does not contain a section with expected prediction error values, since
this value is always zero for this particular regression model. In Appendix B.3, we have shown the
estimation values of a plain estimation model, where no regression is performed. The value printed
beneath these two tables represents the global error variance of this estimation model.

5.5.2 The Optimal Calibration Tuple

In the maximum stretch models, the model that is based on the calibration tuple c = (f1, f5) yields
the most accurate estimations. In the tables in Appendix A.2, we can see that this calibration tuple
yields the lowest overall expected prediction errors. As for the overall estimation error variance, we
can see from the second table in Appendix A.3 that the general error variance by using c = (f1, f5)
is the lowest. In Figure 5.4, a normal distribution is plotted where the variance equals the general
prediction error variance when using c = (f1, f5). The area within the domain [µ − 2σ, ∞) is
shaded in pink and covers 97.8% of the total disribution area. This means that in general, if we
subtract approximately 2 cm from the estimated maximum distance, then 97.8% of all people will
be able to reach this distance. Of course, the variance values in the first table in Appendix A.3 are
used to get a more accurate estimation for each specific tuple i ∈ I2.

Similarly, in Appendix B, we can see that choosing c = (f1, f5) yields the most accurate
estimation of the minimum stretch distance as well. However, we can see that the prediction error
variance does not differ greatly between all possible calibration tuples. The reason for this might
be that a maximum stretch value is not strongly co-related to the minimum stretch distances, and
therefore has very little influence in the estimation of the minimum stretch. Therefore, we might
consider omitting the regression procedure in the estimation of the minimum stretch by performing
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ε ∼ N (µ = 0.16, σ2 = 93)

Figure 5.4: The general estimation error distribution of the maximum distance regression model.
The area in the domain [µ− 2σ, ∞) is shaded pink. The metrics are in millimeters.

a plain estimation of the minimum distance between each tuple. The values of these estimations
are given in the first table in Appendix B.3. Even though performing regression yields lower
prediction error variances, we can see that the global variances of the regression models and the
global variance using plain estimation differ very little. The difference between the global variance
of the regression model using c = (f1, f5) and the global variance using plain estimation is 1.5
squared millimeters. We consider this value small enough to choose the plain estimation over the
usage of the regression models in the estimation of the minimum stretch, i.e. using the regression
model would not yield much more significant accuracy in the prediction of the minimum distance.
The general variance when using plain estimation is 13.1 squared millimeters. This means that in
general, if we add 7.2 (= 2 ·

√
13.1) millimeters to the estimated minimimum stretch, then we can

assume that actual minimum stretch will be smaller than this value for 97.8% of the population.

5.5.3 Justification of the Probability Approximations

We will now indicate that we can perform the probability approximations as was discussed in
Section 5.3. The table in Appendix B.4 shows the results of running the code in Algorithm 1
for each tuple in I2. These values were measured in the case that we estimate d−i by means of
regression (in the left column) and by plain estimation (in the right column). From this table, it
follows that the maximum difference between the conditional and the unconditional probability is
very small in all cases. Therefore, we consider the approximation of the conditional probability by
disregarding its condition to be accurate.

5.6 Applying the Proposed Estimation Model

In this section, we summarize how the proposed model is applied when we want to determine the
probability that points can be reached by fb, given that fa is located fixed at point p. In order to
use the regression models, we first require the calibration value c, which is the maximum distance
between the thumb (f1) and little finger (f5) of the user on whom the model is fitted. This value
is acquired by means of a calibration procedure.

The reachable area of fb is defined as an annulus, where the inner and outer radius are the
estimated minimum distance d−(a,b) and maximum distance d+(a,b) respectively. The minimum dis-

tance is estimated by means of a plain estimation. The expected minimum distance µ− and the
estimation error variance (σ−)2 are given in Appendix B.3 for each tuple (fa, fb) ∈ I2. Note that
the metrics of the standard deviation is in millimeters. Therefore, the metrics of the calibration
tuple or the standard deviation must be converted, depending on which metrics are preferred in
the output of the model.
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To estimate the maximum distance d+(a,b), we use the regression model that was defined in

Section 5.2.1. The coefficients that are used in this estimation are the ones in the fourth row of the
table presented in Appendix A.1 (i.e. the row of the calibration tuple (f1, f5) ∈ I2). To estimate
the maximum distance between the fingers fa and fb, we multiply the calibration value c with
the regression coefficient w(a,b). The estimated maximum distance is denoted as µ+. Since the
expected estimation error is a small fraction of a millimeter, we will not take it into account in the
estimation. The estimation error variance of this regression is presented in Appendix A.3, and is
denoted as (σ+)2.

Using the distribution properties of d−(a,b) and d+(a,b), we can now calculate the probability that

point q can be reached by finger fb. First, we let d denote the distance between q and point p
(where fa is located). The probability that q can be reached by fb is equal to the probability that
q is larger than the minimum distance d−(a,b), and smaller than the maximum distance d+(a,b). This

probability is written as follows:

P (d−(a,b) < d < d+(a,b))

In Section 5.3, it was shown that this simultaneous probability can be approximated as follows:

P (d−(a,b) < d < d+(a,b)) ≈ P (d−(a,b) < d) · P (d < d+(a,b))

To calculate the probability P (d−(a,b) < d), we first transform the distance variable d, such

that the transformation would make the distribution of d−(a,b) a standard normal distribution. The

transformation is written as follows:

d− =
d− µ−

σ−

If d− ≥ 0, then the probability that d is larger than the minimum distance equals Φ(d−).
Otherwise, this probability equals 1−Φ(−d−). Similarly, to calculate the probability P (d < d+(a,b)),

we transform the variable d, such that the transformation would make the distribution of d+(a,b) a

standard normal distribution. This transformation is written as follows:

d+ =
d− µ+

σ+

If d+ ≤ 0, then the probability that d is smaller than the maximum distance equals Φ(−d+).
Otherwise, this probability equals 1 − Φ(d+). The simultaneous probability is approximated by
multiplying the two separate probabilities.
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6 Multi-Touch Input Model for 3 Fingers

In this section, we wish to create a model from which we can deduce the area that can be reached
by finger fc on a planar surface, given that two other fingers - (fa, fb) ∈ I2 - are already placed at
fixed positions on this surface. Since the minimum distance between two fingers cannot be zero,
the locations of fa and fb are different. Contrary to the model that was described in the previous
section, we are not able to rotate the hand freely around any point on the surface, since any
rotation would cause either fa or fb to move away from it’s (fixed) location. This also means that
the reachable area is not simply the intersection of the two annuli that are given by the previous
model of the tuples (fa, fc) and (fb, fc), since the previous model was created from the assumption
that the hand can move freely around some pivot point.

In Section 6.1, we describe how we estimate the area that can be reached by fc, and which
parameters define this area. This estimated area will be denoted as A. Next, in Section 6.2, a
model is defined on how the area A is estimated for finger fc, given the fixed locations of fa and
fb. In Section 6.3, we calculate the probability that a point can be reached by fc according to the
proposed model. A method with which we indicate the quality of our model is proposed in Section
6.4, followed by a report on how the hands of several people were measured and what software was
written for this purpose in Section 6.5. In Section 6.6 we present the results of the fitted model that
is based on these measurements. Finally, in Section 6.7, we give a summary of how the proposed
model can be applied.

6.1 Properties of the Placement Area

For each finger fc and finger tuple (fa, fb) ∈ I2, we want to determine the area A which can be
reached by fc, given that the fingers fa and fb are placed on fixed positions. We will disregard
whether other fingers of the same hand are also placed on the surface. We have deduced some
general characteristics of the reachable area by means of empirical research, in which we let a
number of people ’draw’ the reachable area with finger fc on a multi-touch device, while two
other fingers fa and fb are placed at fixed positions on the screen. These drawings were made for
all combinations of fingers and varying distances between the stationary fingers fa and fb. One
condition of the placement of fc is that the placement does not become uncomfortable at any point
of the drawing process. One observation is that the drawn area A is convex, except for the odd case
when the drawn area is close to any of the stationary fingers fa or fb. In that case, we disregard
the points which are closer to the stationary finger than the minimum distance between fc and
the stationary finger would permit. This makes the area concave, but still most areas that were
observed remain convex.

Another observation is that the area A is invariant to any proper rigid transformation 2 with
relation to the locations of fa and fb. Therefore, we will let the location and orientation of the
world frame Fw be relative to fa and fb. The location of Fw is placed at the mean location of fa
and fb. The x-axis of Fw points to fb. The properties of Fw are depicted in Figure 6.1.

fa

fb

x

y

Fw

Figure 6.1: The properties of the world frame Fw.

We want to approximate the reachable area with a shape that can be described with a finite
number of parameters. These parameters can then be estimated by means of regression, where
the distance between fa and fb will serve as the input variable. From preliminary observations
on the shape of the reachable areas we have gathered that an ellipse approximates the reachable
area quite well. An ellipse is defined by 5 parameters. Two parameters, rx and ry, define the two
axes of the ellipse. We let the variable ϕ denote the angle of axis rx relative to the x-axis of the

2A proper rigid transformation only involves translations and rotations
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world frame. Finally, the location of the ellipse center is denoted by the polar coordinate (θ, d). A
depiction of the ellipse, its parameters and its relation to Fw is given in Figure 6.2.

fa fb
Fw

rx

ry

θ

ϕ

d

Figure 6.2: The estimated ellipse and its parameters. The distance property and angular prop-
erties are relative to Fw.

Note that there are multiple possible values for these parameters that represent an equivalent
ellipse. If we increase ϕ by 1

2π and swap the axes rx and ry, then we still have an equivalent
representation of an ellipse. This must be taken into account when regression is performed on the
latter three mentioned variables.

The ellipse is fitted on the boundary of the reachable area. The ellipse for which the summed
squared error distance to this boundary is minimized is considered to be the ’best-fit’. An approach
to fit such an ellipse is given by Harlick et al. [18], where a general conic is fitted to a set of points.
A general conic can be described by the following implicit second order polynomial:

F (x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0

Since the result of this approach is a general conic, it needs not be an ellipse. An adaptation of
this approach forces the coefficients of the latter polynomial to meet the following condition, which
ensures that the conic represents an ellipse [17, 12]:

4 · ac− b2 = 1

When the implicit representation of the best-fitted ellipse is found, then the coefficients of the
polynomial can be converted to the values of the desired ellipse parameters as follows [10]:

x =
cd− be
b2 − ac

y =
ae− bd
b2 − ac

rx =

√
2(ae2 + cd2 + fb2 − 2bde− acf)

(b2 − ac)[
√

(a− c)2 + 4b2 − (a+ c)]

ry =

√
2(ae2 + cd2 + fb2 − 2bde− acf)

(b2 − ac)[−
√

(a− c)2 + 4b2 − (a+ c)]

ϕ =


0 if b = 0 and a < c
1
2π if b = 0 and a > c
1
2 cot−1(a−c2b ) if b 6= 0 and a < c
1
2π + 1

2 cot−1(a−c2b ) if b 6= 0 and a > c

The cartesian coordinate (x, y) can then be converted to the polar coordinate (θ, d).
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6.2 Regression of the Ellipse Parameters

In this section, we define a linear regression model for the ellipse parameters. A separate estimation
model is built for each parameter of the ellipse. In order to take the proportions of hands into
account (e.g. the lengths of fingers), we want to make the input variable of the model proportional
to the maximum distance between the stationary fingers fa and fb. Therefore, the input variable
is the current distance between fa and fb, divided by d+(a,b). Also, the regression of the non-angular

parameters (i.e. d, rx and ry) will be scaled into proportion by dividing these values by d+(a,b). The

general linear regression model with which we estimate one of the parameters is written as follows:

y(t) = w0 + w1 · t+ w2 · t2

where t is the input variable. This model contains a constant term (i.e., the intercept w0), a
linear term (w1 · t) and a quadratic term (w2 · t2). To find the values for the weight coefficients wi,
we first define the following three matrices:

X =


1 t1 t21
1 t2 t22
...

...
...

1 tN t2N

 p =


p1
p2
...
pN

 w =

w0

w1

w2


In these matrices, N denotes the number of ellipses that were fitted. The value tn in X and pn

in p represent the input variable and the parameter value of the nth fitted ellipse respectively. The
resulting matrix of X ·w contains the estimations of each ellipse parameter value pn. The weight
coefficients for which the sum of squared estimation errors between the ellipse parameters pn and
its estimations is minimized can be computed as follows [13]:

w = (XTX)−1XTp

As was mentioned in the previous section, the variable ϕ can take multiple values. Any value
ϕ + λ

2π (where λ ∈ I) is an angle between the x-axis of Fw and some axis of the ellipse. An
appropriate value for ϕ has to be found, which fits appropriately in the subsequent order of all
the measured angles ϕi. Assume the measurements (ti, ϕi) are sorted by the input variables ti, in
increasing order. For t0, we let the angle ϕ0 keep its default value. Then, for i ∈ 1, 2, ..., N , we
let ϕi take the value ϕi + λ

2π that is closest to ϕi−1. As was mentioned in the previous section,
we need to swap the values of rx,i and ry,i if the angle ϕi refers to a different axis after its update
(i.e. if |λ|mod 2 6= 0). The method with which the quality of this model is measured is proposed
in Section 6.4.1.

6.3 Calculating Reachablility

The regression models that were given in the previous sections show us how to find the parameters
of the ellipse A that approximates the reachable area for finger fc. In this section, we show how
we can deduce the probability that a point can be reached by finger fc. An example of such an
approach would be to estimate the average proportion of the reachable area that is covered by
A. For instance, if the expected amount that is covered equals 70%, then the probability that
the point p ∈ A can be reached would be 0.7. This is quite a crude estimation model, since the
probability that points can be reached is equal throughout the entire area A. Also, the points
p /∈ A are not taken into account. Instead, we wish to gather more local information on how much
area is covered, so that we can perform more precise estimations.

We first introduce the concept of an iso-ellipse, which is a uniformly scaled version of another
ellipse. This scale transformation is performed on the axes of the ellipse. For instance, Figure
6.3 shows an ellipse (drawn with a thick stroke) and two scaled versions of this ellipse (drawn
dashed). The boundary of the smallest ellipse, which was scaled by 0.5, is fully contained within
the reachable area P (shaded in gray), whereas the boundary of the largest ellipse does not intersect
P at all. The boundary of the original ellipse partually intersects P . We will refer to the proportion
of the ellipse boundary that intersects P as the coverage of the ellipse. As shown in Figure 6.3, the
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coverage of the ellipse may change as the size of the ellipse is increased or diminished. In Section
6.3.1, we show the relationship between the coverage of an iso-ellipse and its scale factor. Next, in
Section 6.3.2, a model is created which estimates the coverage, using the scale factor as the input
variable.

×1.5
×0.5

Figure 6.3: A fitted ellipse and two of its iso-ellipses.

6.3.1 The Relation Between Coverage and Scale

Since we seek the proportion of the ellipse boundary that intersects P , we are allowed to perform
an affine transformation on the space in which the ellipse and P reside. The transformed version
of P is denoted as P ′. After the transformation, the ratio of the transformed ellipse perimeter
inside P ′ to its total perimeter is preserved [9]. Therefore, we can transform our space, so that
the ellipse becomes a unit circle, centered at the origin and aligned with the axes of Fw. The
transformation is depicted in Figure 6.4. This is an affine transformation, since it only involves
a translation, rotation and scale transformation. We shall refer to this transformed space as the
normalized space. The iso-ellipse with scale factor λ of the original ellipse, will become a circle
with radius λ in the normalized space.

y

x
Fw

y

x
Fw

Figure 6.4: Applying the affine transformation.
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We want to create a regression model which estimates the coverage, using λ as the input variable.
The shape of the regression model will be based on ellipses, which’ center point lies strictly within
P . Also, in this modelling process, we will assume that P is a convex shape, as was obeserved in
Section 6.1. The convex property is invariant to affine transformations [7]. Therefore, the convex
property is preserved in the normalized space, so P ′ is also convex.

In terms of the normalized space, we assume that the center of the circle (i.e. Fw) must be
a point in P ′. From this, it follows that the coverage of λ = 0 equals 100%. We now define two
other variables, λ− and λ+, which denote the minimum and maximum distance from Fw to the
boundary of P ′ respectively. The coverage of any circle, which’ radius is within the range [0, λ−],
is equal to 100% (see Figure 6.5a). If the radius of the circle is greater than λ+, then the coverage
must be 0%, since no distance to any point in P ′ is greater than λ+, as can be seen in Figure 6.5b.

p

λ−

(a)

p

λ+

(b)

Figure 6.5: The circles with radius λ− (a) and radius λ+ (b)

What is left to define is how the coverage progresses as the circle is scaled from λ− to λ+. To
do so, we will divide the space into segments as follows: a separating line is drawn from the circle
center through every intersection point of the circle and the boundary of P ′. If a circle segment
is aligned with the boundary of P ′ (i.e. if there is a part with an infinite amount of intersecting
points), then we only draw a line through the bounding points of this segment (if there are any).
The segmentation is depicted in Figure 6.6.

∞

Figure 6.6: The circle is divided in segments. The segment denoted with ’∞’ has an infinite
number of intersecting points.

We now have two sorts of segments:

1. a segment where the circle arc fully intersects P ′

2. a segment where the circle arc does not intersect P ′, except for the intersection points between
the circle and the boundary of P ′
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We will show that the coverage in all these sections deminishes when the circle radius is in-
creased, by showing that the intersecting points of the separating lines and the increased circle
boundary cannot be points in P ′. We will show this for the intersection point q. We let t be the
tangent vector at q that points to the next clockwise point on the boundary of P ′, as shown in
Figure 6.7.

t

p

q

Figure 6.7: The point q is the intersection point of the circle and the boundary of the reachable
area. The tangent vector to the next clockwise point on the reachable boundary is
denoted as t.

The point p is the center of the circle. Since P ′ is convex, and p ∈ P ′, it follows that p must
be oriented to the right hand side of t 3. Therefore, the following inequality must hold:

t× (p− q) < 0

We now increase the radius of the circle with ∆λ, as depicted in Figure 6.8.

∆λ

p

q

q′

Figure 6.8: The radius of the circle is increased with ∆λ.

The intersection-point of the increased circle and the line through p and q is denoted as q′. We
want to know if it is possible that q′ belongs to P ′. To deduce this, we first assume that this is the
case. If q′ ∈ P ′, then q′ can not be oriented to the left hand side of t, i.e., the following condition
must hold:

t× (q′ − q) ≤ 0

Note that the vector (q′ − q) is a scaled version of (p− q), where the scale factor α is less than
zero. Therefore, the latter condition can be rewritten as:

t× α(p− q) ≤ 0, where α < 0

⇒ {a× α(b) = α(a× b)}
3Note that we assume that p lies strictly within P ′, i.e. it cannot be a boundary point of P ′
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α(t× (p− q)) ≤ 0, where α < 0

⇒ { divide both sides with α, since α < 0, we change the inequality sign }

t× (p− q) ≥ 0

The latter expression contradicts the fact that t × (p− q) must be strictly less than zero.
Therefore, q′ cannot be a point in P ′. From this, it follows that if λ is increased within the bounds
(λ−, λ+], then the coverage diminishes.

6.3.2 The Coverage Estimation Model

In the previous section, we have seen how the coverage relates to the scale factor λ:

• in the range [0, λ−], the coverage equals 100%

• in the range (λ−, λ+], the coverage diminishes if λ increases

• in the range (λ+,∞], the coverage equals 0%

From the second property, it shows that the preferred model f(x) should be decreasing. From
the first and third property, it follows that f(x) should have two horizontal asymptotes, so that:

lim
x→−∞

f(x) = 100%

lim
x→∞

f(x) = 0%

These charactaristics can be found in the logistic function (or logistic curve). This curve is
very common when phenomena are modelled in various fields of research, like physics, economics,
chemistry, biology and medicine [8]. A simple logistic curve may be written as follows:

f(x) =
1

1 + e−g(x)

An example plot is shown in Figure 6.9.
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Figure 6.9: An example of the logistic curve, where g(x) = −10x+ 10. The coverage ranges from
0 to 1.

To determine the probability that point p can be reached, we need to determine the scale value
λ of the iso-ellipse on which p is located. From the coverage model, we can deduce the expected
coverage using λ, which represents the probability that p is a point in P .
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6.4 Measuring the Quality of the Estimation Models

So far, we have discussed two separate regression models with which we test whether points can
be reached by finger fc. With the first model, we estimate an ellipse with which the reachable
area is approximated. From the second model, the expected coverages of the ellipse and its scaled
iso-ellipses are gathered, so that we can deduce the probability that a point can be reached. In
this section, we will show how we measure the quality of these two models. In Section 6.4.1, we
show how we measure the quality of the estimated ellipses. Next, in Section 6.4.2, we do the same
for the coverage estimation model.

6.4.1 Measuring the Quality of the Ellipse Estimation Model

To indicate the quality of an estimated ellipse, we need to determine how well it serves our purpose
of determining whether a point lies in the reachable area P . This quality could be represented
by the average probability that a reachable point p ∈ P is indeed a point in P , according to the
estimated ellipse. In the previous section, it was mentioned that the coverage of an iso-ellipse
represents the probability that a (random) point on its boundary is a point in P . For each point
p ∈ P , we will deduce the iso-ellipse that has point p on its boundary. Of these ellipses, we will
calculate the expected coverage. This will serve as the quality indicator of the estimated ellipse. If
the expected coverage is high, then for most points in P we are certain that they are indeed points
in P , according to the estimated ellipse and its iso-ellipses. Similarly, if the expected coverage is
low, then most points in P will be disregarded, since we cannot be certain that they are indeed
points in P in most cases.

In terms of the normalized space, an iso-ellipse that was scaled by factor λ becomes a circle
with radius λ. The coverage of this circle is denoted as Coverage(λ). Note that this is the actual
coverage of the circle, not the estimated coverage from the model that was discussed in the previous
section. To determine the expected coverage, we can integrate Coverage(λ) over all points p ∈ P ′
and divide this by the area of P ′. To integrate over all points in P ′, we will perform a double
intergral, where we first integrate over λ, which ranges from 0 to ∞. Next, we integrate over the
points on the boundary of the circle with radius λ that are also points in P ′. The coverage that
is associated with each point on this boundary equals Coverage(λ). Therefore, the result of the
second integral is the length of the circle-arc inside P ′ (which equals 2πλ · Coverage(λ)) times
the coverage associated with this circle (which is Coverage(λ)). The expected coverage can be
calculated as follows:

∞∫
λ=0

{2πλ · Coverage(λ)2}

Area(P ′)

6.4.2 Measuring the Quality of the Coverage Estimation Model

Normally, to measure the quality of a fitted logistic regression model, the χ2 (Chi-squared) test is
performed. However, this test is only applicable when the output variable of the regression model
is a categorical variable [3, 14]. In the coverage regression model, a continuous numerical variable
is estimated, so therefore we cannot use the χ2 to indicate the quality of our model. Also, the R2

quality measure cannot be used for this model, since it only applies on regular linear regression
models. There are some pseudo-R2 tests that could indicate the quality of the logistic regression
model. However, the values that are deduced from this test are not intuitive. For instance, some
of these tests do not even yield the optimal value (i.e. 1) when the logistic regression model fits
the data-set perfectly. These pseudo-R2 tests can be used to compare different fits of the data, but
it does not provide useful information on the model itself. Instead, we will look for the estimation
error variance of the fitted coverage estimation models. From these values, we will deduce if the
regression models fit the data-points appropriately. We will discuss the estimation error properties
in Section 6.6.
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6.5 Implementation and Measuring

The application with which the reachable areas are measured was developped for the Microsoft
PixelSense, using WPF (.NET 4.0 framework). The Accord.NET framework was used to process
the matrices with which the ellipse parameter estimation models are built [1]. This framework
also incorporates a module with which a logistic regression model can be fitted on a data-set [4].
The reachable area of each finger fc ∈ I was measured for each finger tuple (fa, fb) ∈ I2, where
fa 6= fc and fb 6= fc. The distance between the two stationary fingers is chosen ad random from
the range of possible distances between these two fingers. For this purpose, we first measure the
stretch values between each finger tuple, using the procedure that was described in Section 5.4.
The entire session was separated in two (identical) sub-sessions for each person. The procedure of
such a sub-session is as follows:

• for each tuple (fa, fb) and third finger fc, we measure the reachable area as follows:

– we let d be a random distance between fa and fb, which is within the range of possible
distances between fa and fb.

– the user is asked to place fa and fb on the respective button controls that are shown
on-screen. The distance between the centers of these two controls is d.

– next, the user is asked to draw the boundary of the reachable area on the screen, whilst
the fingers fa and fb remain stationary at their respective locations. The area is drawn
using a plastic marker with a byte-tag on its center, which is moved by fc. The Microsoft
PixelSense is able to deduce the center position of the byte-tag when it’s placed on the
screen. The reason we use the marker instead of direct finger-input is because we want
to omit ’false’ finger-input that may arise because of the presence of light in our testing
environment.

– once the boundary of the reachable area is drawn, a button is pressed by the observer,
so that the next measurement can be performed. Note that the input variable of this
measured area is d divided by the maximum measured distance between fa and fb. This
value will be used lateron when we construct the ellipse estimation models.

• finally, the distance measurements (including the calibration value) and the boundary points
of the reachable area are stored, so that we may process them further and construct the
regression models.

Since we perform two sub-sessions for each combination of fingers, we get two measurements in
total for each combination of fingers for each person. Figure 6.10 shows how the reachable area of
f1 is measured, where the fingers f2 and f4 are placed at fixed locations on the screen.

fb

fa

fc

P

Figure 6.10: Measuring the reachable area of finger f1. The stationary fingers are f2 and f4. The
reachable area P is shaded red.
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6.6 Results

In this section, we will discuss the results of the fitted models, with which the reachable area is
estimated. First, in Section 6.6.1, we will show the regression models that were fitted for the ellipse
parameter estimation. Next, in Section 6.6.2, we will show the models that were fitted from which
the expected coverage can be calculated for the estimated ellipses. Finally, in Section 6.6.3, we will
discuss a degenerate case that may occur when the reachable area is estimated, which affects the
coverage estimation model.

6.6.1 Fitted Ellipse Parameter Estimation Models

In Appendix C.1 - at the end of this document - there is a list of tables that include the coefficients
with which each separate ellipse parameter is estimated for each tuple of stationary fingers (fa, fb)
and third finger fc. The input variable of these regression models is the current distance between
the stationary fingers fa and fb, divided by the maximum distance between fa and fb. For the data-
points with which the models were fitted, we have used the actual maximum distance between the
stationary fingers in the definition of the input parameter. However, if this model is to be used, the
model requires the estimated distance between the stationary fingers, since in this case the actual
distance is not known. Therefore, in the measurement of the quality of the estimated ellipses, we
use the estimated distance between the stationary fingers as well. The regression model with which
we estimate this maximum distance is as given in Section 5.

The tables in Appendix C.2 include the quality measurements of each separate ellipse estimation
model. The measurements can be interpreted as the average probability that a point p ∈ P is indeed
considered to be a point in P , according to the estimated ellipse and its iso-ellipses. The overall
expected coverage of the ellipses that were fitted over fifteen people is 77.8%. To determine if
the model is considered to be a general model, we have performed multiple k-fold cross-validation
tests. In Figure 6.11, the expected coverage of the training set (of size k) and the test-data (of size
N − k) is shown for each k ∈ [2, N − 1]. If k is low, e.g. k = 2, then the expected coverage of the
training data is higher than when k > 2. This is because when we use merely two measurements
in the construction of the regression model, then the model would be fitted specifically for these
two measurements and would not apply to measurements in general. Also, the expected coverage
of the test-data when k = 2 is low in comparison to the expected coverage when k > 2. In
this case, the regression model is over-fitted. However, as k approaches N , we can see that the
difference between the expected coverage of the test-data and the train-data becomes smaller. If
k is large, then the model that is generated from the training data would be a more appropriate
general model, since it also applies on the data on which the model was not fitted. We consider
the model that was generated when k = 14 to be an appropriate general model, and will therefore
use the entire data-set - which consists of all fifteen measurements - in the modelling of the ellipse
estimation model.
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Figure 6.11: The expected coverage of the training data (of size k) and the test data (of size
N − k), where N = 15.
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6.6.2 Fitted Estimation Models of the Expected Coverage

In this section, we show how the coverage estimation models are generated from the estimated
ellipses. Figure 6.12a contains a discrete set of coverage samples that are associated with the first
combination of fingers, i.e. the stationary fingers (f1, f2) and third finger f3. The coverages were
sampled over a range of λ values. In Figure 6.12b, the plotted samples at λ = 0.998 are highlighted.
The red circle represents the mean of these highlighted points, and represents the probability that
a point on the boundary of the iso-ellipse with scale factor λ = 0.998 lies within the reachable area,
given the current combination of fingers.
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(a) The coverage samples of all estimated el-
lipses
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(b) A subset of the coverage samples, where λ =
0.998. The red circle represents the mean
coverage value of this subset.

Figure 6.12: The sample plot of the iso-ellipse coverage over scale value λ. The coverage ranges
from zero to one.

The mean coverage is calculated for each λ. In Figure 6.13, the red circles represent these mean
values for each λ. Note that the coverage samples at the top left and bottom right are relatively
dense. The mean coverage values tend to be near these dense locations.
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Figure 6.13: The mean expected coverage for each λ.

The logistic regression model is fitted on the mean coverage points. The result of fitting the
regression model on these points is shown in Figure 6.14a. The standard deviation (σ) of the
expected coverage estimation error for this particular logistic regression is 1.4%. In Figure 6.14b,
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the same logistic curve is plotted, of which twice the standard deviation (2σ = 2.8%) is subtracted.
For any λ, the probability that a point can be reached is at least equal to the coverage that is
inferred from the regression model, minus 2 · σ, in approximately 98.8% of all cases.
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(a) The logistic regression model is fitted
through the mean values.
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(b) The dashed line represents the fitted logisic
curve, minus 2 · σ

Figure 6.14: Fitting the logistic regression model.

Figure 6.15 shows the ’worst’ fitted logistic curve (i.e. the curve with the highest standard
deviation σ of the estimation error), which is the curve associated with the stationary fingers
(f3, f4) ∈ I2 and third finger f2 ∈ I. The standard deviation of this regression model’s estimation
error is 2.75%.
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Figure 6.15: The ’worst’ fitted logistic regression curve.

6.6.3 Degenerate Case in the Coverage Estimation Model

As was mentioned in Section 6.3, the preferred coverage estimation model was based on the cases
in which the center point of the estimated ellipse lies strictly within the actual reachable area.
However, in approximately 1.3% of the cases, it happens that the centroid of the estimated ellipse
lies outside of the reachable area. This degenerate case does not occur for every combination of
stationary fingers (fa, fb) ∈ I2 and third finger fc ∈ I. An example of a combination of fingers
for which this does occur are the stationary fingers (f2, f3) and third finger f4. In Figure 6.16a,
the sampled coverage values are plotted for this combination of fingers. At λ = 0, some coverage
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samples are zero. Therefore, the mean value at λ = 0 is less than one. In Figure 6.16b, the logistic
regression model is fitted on the mean coverage values. The standard deviation of the estimation
error equals 1.45%, which is less than the general standard deviation. It shows that the logistic
curve can still yield accurate estimations in this degenerate case.
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(a) The mean coverage values.
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(b) The fitted logistic curve.

Figure 6.16: Fitting the logistic regression model in the degenerate case.

6.7 Applying the Proposed Estimation Model

This section summarizes how we can calculate the probability that point p can be reached by finger
fc, given that two other fingers (fa, fb) ∈ I2 are are located at fixed positions on the screen. We
place the world frame Fw at the mean location of fa and fb. The x-axis of Fw points to fb.

The reachable area of fc is approximated with an ellipse. The estimated ellipse is inferred from
a regression model. The list of tables that are presented in Appendix C.1 contain the regression
coefficients with which each separate parameter of the ellipse is estimated. The input parameter
of these regression models is the current distance between fa and fb, divided by the estimated
maximum distance between fa and fb, which is d+(a,b). The estimated maximum distance can

be calculated with the method that was presented in Section 5.6.1. The non-anglular estimated
parameters (i.e. rx, ry and d) must be multiplied with d+(a,b). Note that the angular parameters ϕ

and θ are relative to the x-axis of Fw.
We now seek the scale value λ of the iso-ellipse that has point p on its boundary. An iso-

ellipse is a uniformly scaled version of the estimated ellipse, where the scale transformation was
applied along the axes of the ellipse. To find λ, we transform the current space to the normalized
space, where the estimated ellipse becomes a unit-circle. The scale value λ is the distance from the
transformed point p′ to the origin of the normalized space (i.e. the radius of the iso-circle that has
point p′ on its boundary).

The coverage that is associated with the scale value λ can be deduced from the logistic regression
model. The coefficients of this regression model are presented in Appendix C.3 for each tuple
(fa, fb) ∈ I2 and third finger fc. The scale value λ serves as the input parameter of this regression
model. The coverage that is calculated in this model represents the probability that a point on the
respective iso-ellipse is a point in the reachable area. To make sure that the inferred probability
holds for 98.8% of all cases, we subtract twice the standard deviation (2σ) of the coverage estimation
error from the estimated value. These standard deviations can also be found in Appendix C.3 for
each tuple (fa, fb) ∈ I2 and third finger fc.

Using this model, we can also calculate the reachable area of fc that consists of all points for
which the associated coverage is above some threshold value. This threshold value is denoted as
t. The reachable area is the area of the iso-ellipse with scale value λ, for which the estimated
expected coverage is equal to t. Note that the coverage estimation function is strictly decreasing.
Hence, any iso-ellipse with a scale value smaller than λ will have a greater associated coverage (i.e.
the probability that the points within the iso-ellipse is in reach of fc is at least t).
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To determine which value of λ would yield an iso-ellipse with coverage t, we must solve the
following equation:

1

1 + e−g(λ)
− 2σ = t

⇒ { Bring −2σ to the right and multiply both sides with 1 + e−g(λ) }

1 = (t+ 2σ) · (1 + e−g(λ))

⇒ { Divide both sides with t+ 2σ and subtract 1 from both sides }

1

t+ 2σ
− 1 = e−g(λ)

⇒ { ex = y ↔ x = ln(y), g(λ) = w0 + w1 · λ }

ln(
1

t+ 2σ
− 1) = −w0 − w1 · λ

⇒ { Solve for λ }

λ =
ln( 1

t+2σ − 1) + w0

−w1

The probability that a point within the iso-ellipse with scale value λ can be reached by fc is
at least t. This holds for 98.8% of all points on the boundary of the iso-ellipse, and even a larger
percentage of points within the iso-ellipse.
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7 Conclusions and Future Work

In the previous sections, we have proposed a model with which we can estimate the reachable
area of a right-hand finger on a planar surface, given that either one or two other fingers of the
same hand are placed at fixed positions on this surface. The models have been fitted on user-input
measurements. A seperate estimation model was defined and fitted for each combination of fingers.
In Section 7.1, we will reflect on the estimation models we have obtained and the accuracy of its
estimations. Next, in Section 7.2, we will discuss how the proposed models can be extended to
serve the general case when there are n stationary fingers placed on the surface. Also, we will
discuss some other additions and adjustments to the current model that might yield more accurate
estimations.

7.1 Reflection on the Proposed Models

In this section, we will reflect on the models that have been fitted with which we estimate the
reachable areas. In Section 7.1.1, we will discuss the model that has been fitted in the case that
there is one stationary finger placed on the planar surface. Next, in Section 7.1.2, we will reflect
on the model that has been fitted when there are two stationary fingers placed on the surface.

7.1.1 The estimation model for one stationary finger

In this case, the models estimate the reachable area of finger fb ∈ I, given that some other
finger fa ∈ I is placed at a fixed position on the screen. The reachable area has the shape of an
annulus. In order to estimate the reachable area, we need to estimate the radii of the annulus.
To estimate the outer radius, we have defined and fitted a linear regression model on the touch-
input measurements of 36 people. This regression model requires an input parameter, which is
the maximum distance between the thumb and the little finger. Using this calibration value yields
the most accurate estimations from the model. The standard deviation of the estimation error
in this regression is approximately 1 cm. Of course, each separate estimation model has its own
estimation error properties. Note that the calibration procedure can be performed very quickly,
so the usage of this model would not become a bottleneck in the accessibility of applications and
games in particular. As for the estimation of the inner radius of the annulus, we have chosen to
perform a plain estimation. The standard deviation of this plain estimation error is approximately
3.6 mm.

7.1.2 The estimation model for two stationary fingers

The estimation model for two stationary fingers estimates the reachable area of finger fc, given that
two stationary fingers (fa, fb) ∈ I2 are placed at fixed positions on the screen. We have observed
that the reachable area is a convex area, which we approximate with an ellipse. An ellipse was
fitted on the touch-input measurements of 15 people. For each combination of stationary fingers
and fc, we have measured two reachable areas per person. Therefore, the data-set consists of 30
measurements per combination of fingers. A regular linear regression model was fitted for each
separate parameter of the ellipses. A quality measure was defined for the estimated ellipses, with
which we have shown that the ellipse estimation model can be considered a general model, since
the quality of the reachable area estimations is approximately equal for the training data and the
test data. This has been inferred from the k-fold cross validation procedure.

We have introduced the concepts of coverage and iso-ellipses. An iso-ellipse is a uniformly
scaled version of an ellipse, where the transformation is performed on the axes of the ellipse. The
coverage denotes the proportion of an ellipse boundary that intersects the reachable area P , which
is equal to the probability that a point on the ellipse boundary is a point in P . The relation
between the coverage and the scale value of iso-ellipses has been measured and fitted in a logistic
regression model. From this model, the probability can be deduced that a point p lies within the
reachable area, given the scale value of the iso-ellipse that has point p on its boundary. The overall
standard deviation of the probability estimation error is approximately 0.018.

The input parameter of the ellipse estimation model requires the estimated maximum distance
between the two stationary fingers. This value can be deduced from the estimation model for one
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stationary finger. Therefore, this model does not require an additional calibration task and does
not compromise the accessibility of the calibration procedure.

7.2 Future Work

In this section, we discuss some ways in which the model that has been presented in this thesis can
be adjusted or extended so that it would yield more accurate estimations of the reachable area,
or to make the model applicaple in more cases. In Section 7.2.1, we propose how this model can
be extended so that is would serve the general case, in which n stationary fingers are placed on
the surface. Also, we show how we could take the presence of multiple hands into account. Next,
in Section 7.2.2, we discuss how dynamic features can be used in the model so that it adapts its
estimations using the input that is provided by the user at run-time.

7.2.1 A General Multi-Touch Input Model for n Fingers

If we want to create a model in the case that four or five stationary fingers are placed on the
surface, then we could define a similar model as was presented in Section 6. The world frame Fw
could be defined as the frame between the two stationary fingers with the lowest indices in I. The
x-axis of Fw could point to the finger with the lowest index. Since the two fingers that define Fw
lie on the x-axis, their locations can be denoted with a single distance value from R. However, the
third and fourth stationary finger are not necessarily located on the x-axis, so their positions must
be sampled from R2 during the measurement of the reachable area. Therefore, this model requires
many more measurements than the one that was presented in Section 6. In the case that there are
just two stationary fingers on the screen, we have observed that the reachable area is convex in
general. This observation might not hold when there are more than two stationary fingers present
on the screen. In that case, we also have to define a new model that estimates the shape of the
reachable area appropriately.

Another consideration in the extention of the presented model is to take the presence of multiple
hands into account. The proposed model could be applied for each separate hand, but this model
only incorporates the intrinsic constaints of the hand anatomy. The physical presence of other
hands could constrain the reachable area of a finger. In order to take this constraint into account,
we could simulate the situation with 3D hand models and test for possible collisions. However
- as was mentioned in Section 2.2 - creating a 3D reconstruction model of the hand can become
computationally intensive. Instead, we could restrict the finger placement model so that touch
input can only occur in the area that is not close to any other hands that are located on the screen.

7.2.2 A Dynamic Estimation Model

The model that is proposed in this thesis is a static model. We could possibly add a dynamic feature
by observing the touch-input that is delivered by the user at run-time. From these observations,
the model could learn something about the intrinsic properties of the hand. For instance, if we
learn that the maximum distance between two fingers is larger than what the maximum distance
model estimates, then we could adjust the model with this new information.

Also, if it is known that the maximum distance between two fingers is larger than the estimated
distance, then we could also adjust the model by adressing some known correlating properties of the
hand. To illustrate this, we have provided a table in Appendix A.4, which contains the correlation
coefficients of the estimation errors (in the estimation of the maximum distance) between each
finger tuple . The error correlation between the tuples (f1, f2) and (f1, f3) is large (i.e.: 0.73).
Therefore, if the maximum distance between f1 and f2 is larger than the estimated distance, then
it is very likely that the maximum distance between f1 and f3 is also larger than its estimation.
Using this information, we could adjust the maximum distance estimation model, which would
then provide more accurate estimations.

Note that the finger-index that is associated with the touch-input points might not be known
a priori. However, by adressing the proposed model, we could calculate the probability of which
finger-index is associated with a touch-input point. For instance, if the distance between two
touch-input points is very large, then it is more likely that the associated fingers are the thumb
and pink, rather than the middle- and ring-finger.

37



References

[1] Accord.net framework project. http://code.google.com/p/accord/. Accessed July 2012.

[2] Capacitive sensing on multi-touch devices. http://electronics.howstuffworks.com/

iphone3.htm. Accessed June 2012.

[3] The chi square statistic. http://math.hws.edu/javamath/ryan/ChiSquare.html. Accessed
July 2012.

[4] Logistic regression in c#. http://crsouza.blogspot.nl/2010/02/

logistic-regression-in-c.html. Accessed July 2012.

[5] Number of applications and games featured in the app store. http://www.apple.com/

ipodtouch/from-the-app-store/. Accessed June 2012.

[6] Regression through the origin and its pitfalls. http://courses.washington.edu/qsci483/

Lectures/20.pdf. Accessed March 2012.

[7] Wikipedia: Convex functions. http://en.wikipedia.org/wiki/Convex_function. Accessed
July 2012.

[8] Wikipedia: the logistic function. http://en.wikipedia.org/wiki/Logistic_function. Ac-
cessed July 2012.

[9] Wolfram mathworld: Affine transformations. http://mathworld.wolfram.com/

AffineTransformation.htmll. Accessed July 2012.

[10] Wolfram mathworld: Ellipse. http://mathworld.wolfram.com/Ellipse.html. Accessed
July 2012.

[11] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tabless. Dover Publications, 1972.

[12] Maurizio Pilu Andrew Fitzgibbon and Robert B. Fisher. Direct least square fitting of ellipses.
Pattern Analysis and Machine Intelligence, 21(5).

[13] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[14] DeGroot and Schervish. Probability and Statistics. Addison Wesley, 2002.

[15] Joseph G. Eisenhauer. Regression through the origin. Teaching Statistics, 25(3), 2003.

[16] Radim Halii and Jan Flusser. Modeling the constraints of human hand motion. Technical
report, Beckman Institute, University of Illinois at Urbana-Champaign.

[17] Radim Halii and Jan Flusser. Numerically stable direct least squares fitting of ellipses. Tech-
nical report, Department of Software Engineering, Charles University.

[18] R. M. Harlick and L. G. Shapiro. Computer and Robot Vision. Addison Wesley, 1993.

[19] Sung Uk Lee. Modeling the constraints of human hand motion. Technical report.

[20] Daisaku Arita Ryuji Fujiki and Rin ichiro Taniguchi. Real-time 3d hand shape estimation
based on inverse kinematics and physical constraints. Technical report, Department of Intel-
ligent Systems, Kyushu University.

[21] Chuan-Yen Chiang et al. Yen-Lin Chen, Wen-Yew Liang. Vision-based finger detection, track-
ing, and event identification techniques for multi-touch sensing and display systems. Sensors,
11.

38



Appendices

39



A Maximum Stretch Regression (2 Fingers, N = 36)

A.1 Table of Regression Coefficients

wi =

∑N
n=1(xn,i · xn,c)∑N

n=1(x2n,c)

wi
i ∈ I2

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

c ∈ I2

(1,2) 1 1.15 1.18 1.18 0.53 0.71 0.9 0.46 0.73 0.46
(1,3) 0.86 1 1.02 1.02 0.46 0.61 0.78 0.4 0.63 0.4
(1,4) 0.83 0.96 1 0.99 0.44 0.6 0.75 0.39 0.61 0.39
(1,5) 0.84 0.97 1 1 0.45 0.6 0.76 0.39 0.61 0.39
(2,3) 1.83 2.12 2.18 2.18 1 1.32 1.66 0.86 1.35 0.86
(2,4) 1.38 1.59 1.64 1.63 0.74 1 1.25 0.65 1.02 0.64
(2,5) 1.1 1.27 1.31 1.3 0.59 0.79 1 0.51 0.81 0.51
(3,4) 2.08 2.41 2.48 2.48 1.12 1.5 1.89 1 1.54 0.98
(3,5) 1.34 1.55 1.6 1.59 0.72 0.96 1.22 0.63 1 0.63
(4,5) 2.09 2.42 2.49 2.49 1.13 1.51 1.9 0.99 1.56 1

A.2 Tables of Expected Prediction Errors (in millimeters)

ε = xn,i − wi · xn,c

E[ε|c, i] i ∈ I2
(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

c ∈ I2

(1,2) 0 0.22 0.27 0.5 0.3 0.34 0.71 0.67 0.69 0.64
(1,3) 0.04 0 0.07 0.29 0.18 0.29 0.6 0.53 0.53 0.49
(1,4) 0.16 0.17 0 0.35 0.3 0.28 0.59 0.5 0.48 0.46
(1,5) 0.07 0.05 0.01 0 0.04 0.11 0.33 0.35 0.26 0.32
(2,3) 2.26 2.53 2.75 2.5 0 0.87 1.78 0.98 1.5 0.83
(2,4) 1.68 2.03 1.97 2.01 0.38 0 1.24 0.57 0.76 0.45
(2,5) 0.33 0.41 0.31 0.31 -0.09 -0.19 0 0.16 -0.04 0.02
(3,4) 2.64 2.88 2.79 2.75 0.87 0.88 1.83 0 1.06 0.51
(3,5) 1.51 1.65 1.52 1.5 0.49 0.28 0.86 0.37 0 0.06
(4,5) 3.36 3.67 3.61 3.6 1.11 1.26 2.27 0.88 1.16 0

c ∈ I2
(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

E[ε|c]: 0.43 0.3 0.33 0.16 1.6 1.11 0.12 1.62 0.82 2.09

A.3 Tables of Prediction Error Variance (in squared millimeters)

var[ε|c, i] i ∈ I2
(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

c ∈ I2

(1,2) 0 49 90 111 131 178 147 143 212 165
(1,3) 37 0 48 66 117 179 133 128 186 148
(1,4) 63 46 0 70 133 168 119 121 167 141
(1,5) 79 63 71 0 101 153 83 109 141 131
(2,3) 446 533 641 484 0 158 232 131 253 135
(2,4) 343 459 459 412 89 0 142 87 123 96
(2,5) 180 217 207 143 83 91 0 84 78 90
(3,4) 639 760 761 680 171 201 307 0 191 105
(3,5) 389 454 433 363 136 117 116 79 0 61
(4,5) 741 882 894 822 177 223 330 105 149 0
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c ∈ I2
(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

var[ε|c]: 123 104 103 93 302 221 117 383 215 434

A.4 Table of Correlation between Errors (c = (f1, f5))

ρεi,εj
j ∈ I2

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

i ∈ I2

(1,2) 1 0.73 0.5 - -0.07 0.09 0 -0.21 -0.19 -0.2
(1,3) 0.73 1 0.61 - -0.03 -0.01 -0.1 -0.13 -0.16 -0.1
(1,4) 0.5 0.61 1 - -0.23 0.07 0.03 -0.01 0.01 0
(1,5) - - - - - - - - - -
(2,3) -0.07 -0.03 -0.23 - 1 0.56 0.45 0.31 0.24 0.41
(2,4) 0.09 -0.01 0.07 - 0.56 1 0.63 0.52 0.61 0.58
(2,5) 0 -0.1 0.03 - 0.45 0.63 1 0.46 0.67 0.61
(3,4) -0.21 -0.13 -0.01 - 0.31 0.52 0.46 1 0.56 0.6
(3,5) -0.19 -0.16 0.01 - 0.24 0.61 0.67 0.56 1 0.8
(4,5) -0.2 -0.1 0 - 0.41 0.58 0.61 0.6 0.8 1
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B Minimum Stretch Regression (2 Fingers, N = 20)

B.1 Table of Regression Coefficients

w0,i =

∑
(xn,i)− w1,i ·

∑
(yn,c)

N

w1,i =
N ·

∑
(xn,i · yn,c)−

∑
(xn,i) ·

∑
(yn,c)

N ·
∑

(y2n,c)− (
∑
yn,c)2

where xn,i ∈ Dmin and yn,c ∈ Dmax. The summations iterate from n = 1 to n = N .
Intercept:

w0
i ∈ I2

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

c ∈ I2

(1,2) 35.89 35.85 21.41 3.61 16.95 16.5 27.1 15.39 37.38 28.59
(1,3) 34.39 35.24 20.21 4.2 18.28 18.11 27.7 13.25 36.61 26.76
(1,4) 32.76 36.42 21.66 5.83 16.41 18.23 26.79 13.24 32.59 23.41
(1,5) 37.53 40.84 23.7 8.68 23.45 12.71 31.02 15.77 43.81 30.43
(2,3) 22.68 29.19 18.2 14.29 22.44 20.41 22.52 17.72 25.95 20.58
(2,4) 21.73 30.46 18.27 13.26 21.27 22.03 23.21 19.27 26.47 17.65
(2,5) 27.79 39.77 21.68 10.85 21.92 18.08 24.9 18.91 28.94 21.67
(3,4) 21.9 25.33 20.41 21.69 25.34 19.98 26.05 18.48 33.14 17.37
(3,5) 19.05 37.51 21.12 17.5 22.69 24.91 27 16.42 20.28 9.06
(4,5) 15.57 30.52 14.16 18.66 19.45 23.96 22.11 14.91 18.41 8.89

Slope:

w1
i ∈ I2

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

c ∈ I2

(1,2) -0.1 -0.11 -0.02 0.07 0 0.01 -0.05 0.01 -0.09 -0.05
(1,3) -0.08 -0.09 -0.01 0.06 0 0 -0.05 0.02 -0.07 -0.03
(1,4) -0.07 -0.1 -0.02 0.05 0 0 -0.04 0.02 -0.05 -0.01
(1,5) -0.09 -0.12 -0.03 0.04 -0.03 0.02 -0.06 0 -0.11 -0.05
(2,3) -0.03 -0.13 0 0.02 -0.05 -0.02 -0.04 0 -0.04 -0.01
(2,4) -0.02 -0.11 0 0.02 -0.03 -0.03 -0.04 -0.01 -0.04 0.01
(2,5) -0.05 -0.15 -0.02 0.03 -0.03 0 -0.04 0 -0.04 -0.01
(3,4) -0.03 -0.11 -0.03 -0.06 -0.11 -0.02 -0.1 -0.01 -0.15 0.03
(3,5) 0 -0.17 -0.02 0 -0.04 -0.05 -0.07 0 0.01 0.09
(4,5) 0.04 -0.18 0.04 -0.02 -0.02 -0.07 -0.05 0.03 0.04 0.14

B.2 Tables of Prediction Error Variance (in squared millimeters)

var[ε|c, i] i ∈ I2
(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

c ∈ I2

(1,2) 25.9 11 8.8 9.7 6 10.6 2.7 4.5 24.5 13.4
(1,3) 26.5 11.3 8.9 10 6 10.7 2.6 4.3 24.9 13.7
(1,4) 26.5 9.9 8.8 10.1 6 10.7 2.6 4.3 25.6 14
(1,5) 26.1 10.1 8.7 11.1 5.7 10.4 2.2 4.5 23.1 13.3
(2,3) 28.5 10.2 9 11.4 5.1 10.5 3 4.5 26.6 14.2
(2,4) 28.8 10.4 9 11.3 5.6 10.3 3 4.4 26.6 14.1
(2,5) 28.3 10.8 8.9 11.4 5.8 10.7 3.2 4.5 26.8 14.2
(3,4) 28.7 13 8.8 10.9 4.2 10.6 1.9 4.5 23.7 14.1
(3,5) 28.9 11.6 8.9 11.6 5.8 10.3 3 4.5 27.2 13.4
(4,5) 28.7 11.7 8.8 11.5 5.9 10.1 3.3 4.4 27 12.2

c ∈ I2
(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

var[ε|c]: 11.7 11.9 11.8 11.5 12.3 12.4 12.5 12 12.5 12.4
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B.3 Plain Estimation and Variance (No Regression)

i ∈ I2
(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

E[d−i ]: 19.1 16.9 17.7 16.6 17.2 18.1 18.1 17.5 21.6 19.6

i ∈ I2
(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)

var[ε|i]: 28.9 14.9 9 11.6 6 10.7 3.6 4.5 27.2 14.2

var[ε] = 13.1

B.4 Maximum Difference Between P (d−i < d | d < d+i ) and P (d−i < d)

The following table contains the maximum difference between P (d−i < d | d < d+i ) and P (d−i < d),
given that d ≥ Min[d+i ]. These probabilities were calculated using the Φ-function, as defined in
section 5.3. The maximum approximation error of the Φ function is added to the entries in this
table.

Estimation Procedure

regression: plain estimation:

i ∈ I2

(1,2) 1.5 · 10−7 1.5 · 10−7

(1,3) 1.5 · 10−7 1.5 · 10−7

(1,4) 1.5 · 10−7 1.5 · 10−7

(1,5) 1.5 · 10−7 1.5 · 10−7

(2,3) 1.5 · 10−7 1.5 · 10−7

(2,4) 1.5 · 10−7 1.5 · 10−7

(2,5) 1.5 · 10−7 1.5 · 10−7

(3,4) 3.5 · 10−7 2.7 · 10−7

(3,5) 2.1 · 10−7 2.0 · 10−7

(4,5) 5.0 · 10−4 3.2 · 10−4
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C Reachable Area Regression (3 Fingers, N = 15)

C.1 Tables of Ellipse Parameter Estimation Coefficients

The following tables contain the coefficients for each separate ellipse parameter regression model.
Such a model can be written as follows:

y(x) = w0 + w1 · x+ w2 · x2

The input variable of this regression model is the distance between the stationary fingers (fa,fb),
divided by their maximum (estimated) distance d+(a,b). A table is given for each combination of

two stationary fingers and third dynamic finger fc. The table that belongs to these three fingers
is indexed by ’fa fb fc’.

f1 f2 f3 : f1 f2 f4 : f1 f2 f5 :

w0 w1 w2 w0 w1 w2 w0 w1 w2

θ 1.12 -1.39 0.94 θ 0.92 -0.12 0.1 θ 1.24 -0.52 0.41
d 0.35 0.38 -0.16 d 0.46 0.16 -0.08 d 0.52 0.18 -0.13
ϕ -0.54 0.46 0.19 ϕ -0.15 -1.11 1.59 ϕ 0.19 -2.21 2.62
rx 0.14 0.69 -0.69 rx 0.11 1.12 -1 rx 0.56 -0.23 -0.09
ry 0.17 0.15 -0.13 ry 0.15 0.37 -0.26 ry 0.33 -0.15 0.13

f1 f3 f2 : f1 f3 f4 : f1 f3 f5 :

w0 w1 w2 w0 w1 w2 w0 w1 w2

θ -2.14 2.65 -1.3 θ 1.15 -1.16 0.53 θ 1.09 -0.13 -0.16
d 0.24 0.17 -0.07 d 0.21 0.36 -0.09 d 0.37 0.22 -0.15
ϕ -0.67 1.64 -2.26 ϕ -0.45 0.68 -0.43 ϕ 2.34 -10.07 9.61
rx 0.18 0.25 -0.28 rx 0.06 0.64 -0.58 rx 0.17 0.53 -0.55
ry 0.16 0.14 -0.17 ry 0.07 0.23 -0.18 ry 0.29 -0.21 0.1

f1 f4 f2 : f1 f4 f3 : f1 f4 f5 :

w0 w1 w2 w0 w1 w2 w0 w1 w2

θ -1.65 1.2 -0.64 θ -1.53 1.97 -1.04 θ 1.67 -2.82 1.75
d 0.41 -0.15 0.08 d 0.15 0.42 -0.15 d 0.11 0.67 -0.34
ϕ 0.43 5.16 -6.76 ϕ -1.9 8.51 -8.58 ϕ -1.26 2.61 4.08
rx 0.24 0.06 -0.12 rx 0.21 0.25 -0.32 rx 0.18 0.09 -0.18
ry 0.3 0.26 -0.41 ry 0.12 0.08 -0.06 ry 0.07 0.22 -0.2

f1 f5 f2 : f1 f5 f3 : f1 f5 f4 :

w0 w1 w2 w0 w1 w2 w0 w1 w2

θ -1.87 1.11 -0.64 θ -1.5 0.84 -0.25 θ -1.37 1.53 -0.77
d 0.45 -0.14 0.07 d 0.33 0.18 -0.07 d 0.2 0.27 -0.02
ϕ -1.15 6.71 -8.34 ϕ -0.41 1.37 -1.63 ϕ 0.04 -0.02 -0.19
rx 0.16 0.77 -0.77 rx 0.17 0.69 -0.71 rx 0.16 0.35 -0.39
ry 0.17 0.26 -0.2 ry 0.14 0.24 -0.24 ry 0.08 0.19 -0.18

f2 f3 f1 : f2 f3 f4 : f2 f3 f5 :

w0 w1 w2 w0 w1 w2 w0 w1 w2

θ 1.75 0.82 -0.73 θ 1.01 -0.6 0.48 θ 1.09 -0.34 0.26
d 1.06 0.17 -0.17 d 0.6 0.1 -0.05 d 0.81 0.12 -0.06
ϕ -0.16 1.6 -1.32 ϕ 1.49 -7.87 5.97 ϕ 1.15 -10.58 8.31
rx 1.4 -0.22 -0.08 rx 0.48 0.15 -0.39 rx 0.79 -1.07 0.68
ry 0.62 0.5 -0.43 ry 0.15 0.67 -0.54 ry 0.27 1.35 -1.25
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f2 f4 f1 : f2 f4 f3 : f2 f4 f5 :

w0 w1 w2 w0 w1 w2 w0 w1 w2

θ 1.84 0.48 -0.43 θ -1.62 0.49 -0.22 θ 0.85 -0.53 0.42
d 0.76 0.27 -0.21 d 0.43 -0.03 -0.11 d 0.35 0.6 -0.33
ϕ 1.75 -8.36 5.44 ϕ -0.82 6.6 -11.41 ϕ -2.25 6.73 -0.74
rx 1.43 -2.21 1.35 rx 0.51 -0.56 0.25 rx 0.36 -0.31 0.13
ry 0.18 2.18 -1.58 ry 0.19 0.19 -0.2 ry 0.05 0.76 -0.68

f2 f5 f1 : f2 f5 f3 : f2 f5 f4 :

w0 w1 w2 w0 w1 w2 w0 w1 w2

θ 2 0.09 -0.27 θ -1.69 -0.54 0.35 θ -1.45 0.6 -0.11
d 0.76 -0.04 -0.1 d 0.41 0.09 -0.19 d 0.27 0.22 -0.17
ϕ -0.19 3.35 -4.83 ϕ -0.09 -0.58 0.75 ϕ 0.31 -0.75 -0.27
rx 0.51 0.92 -1.11 rx 0.19 0.14 -0.2 rx 0.11 0.44 -0.45
ry 0.26 0.55 -0.24 ry 0.18 0.03 -0.03 ry 0.08 0.27 -0.27

f3 f4 f1 : f3 f4 f2 : f3 f4 f5 :

w0 w1 w2 w0 w1 w2 w0 w1 w2

θ 1.52 0.96 -0.74 θ 1.8 1.23 -1.05 θ 0.51 0.59 -0.46
d 1.25 0.3 -0.09 d 0.83 -0.17 0.11 d 0.56 0.6 -0.3
ϕ -0.17 1.31 -0.97 ϕ -0.95 6.19 -6.68 ϕ -4.07 14.69 -8.88
rx 1.91 -0.08 -0.3 rx 0.7 0.84 -1.17 rx 0.45 -0.09 -0.11
ry 1.01 0.23 -0.29 ry 0.5 -0.27 0.41 ry 0.09 1 -0.89

f3 f5 f1 : f3 f5 f2 : f3 f5 f4 :

w0 w1 w2 w0 w1 w2 w0 w1 w2

θ 1.97 -0.55 0.3 θ 1.83 1.45 -1.05 θ -1.37 -0.56 0.37
d 1.06 -0.36 0.23 d 0.46 0.38 -0.21 d 0.32 -0.07 0.02
ϕ 0.31 -0.1 -0.06 ϕ -1.38 8.39 -4.91 ϕ 2.05 -4.53 1.5
rx 1.19 -0.55 0.33 rx 0.87 -1.48 0.9 rx 0.11 0.09 -0.1
ry 0.63 0.01 -0.02 ry 0.09 1.1 -0.83 ry 0.1 0.13 -0.16

f4 f5 f1 : f4 f5 f2 : f4 f5 f3 :

w0 w1 w2 w0 w1 w2 w0 w1 w2

θ 1.71 0.15 -0.2 θ 2 0.38 -0.33 θ 2.2 0.69 -0.55
d 1.41 0.18 -0.13 d 1.08 -0.08 -0.02 d 0.71 0.32 -0.21
ϕ -0.08 0.98 -0.73 ϕ -0.3 3.14 -2.97 ϕ 0.61 0.27 -0.18
rx 2.19 -1.03 0.52 rx 1.06 0.36 -0.67 rx 0.5 0.47 -0.58
ry 1.13 -0.19 0.09 ry 0.75 -0.48 0.42 ry 0.29 0.26 -0.26
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C.2 Expected Coverage of the Estimated Ellipses

In the following tables, the combination of two stationary fingers (fa, fb) ∈ I2 and third finger fc
is indexed by (fa, fb, fc). In terms of the normalized space, the expected coverage is calculated as
follows:

∞∫
λ=0

{2πλ · Coverage(λ)2}

Area(P ′)

Expected Coverage: Expected Coverage:

(f1, f2, f3): 77.0% (f2, f4, f1): 84.2%

(f1, f2, f4): 78.9% (f2, f4, f3): 79.7%

(f1, f2, f5): 79.7% (f2, f4, f5): 68.2%

(f1, f3, f2): 81.6% (f2, f5, f1): 82.4%

(f1, f3, f4): 72.1% (f2, f5, f3): 75.2%

(f1, f3, f5): 73.4% (f2, f5, f4): 71.9%

(f1, f4, f2): 83.7% (f3, f4, f1): 87.3%

(f1, f4, f3): 78.4% (f3, f4, f2): 79.2%

(f1, f4, f5): 71.2% (f3, f4, f5): 65.3%

(f1, f5, f2): 82.3% (f3, f5, f1): 85.3%

(f1, f5, f3): 79.7% (f3, f5, f2): 77.5%

(f1, f5, f4): 74.4% (f3, f5, f4): 59.4%

(f2, f3, f1): 86.1% (f3, f5, f1): 88.5%

(f2, f3, f4): 67.9% (f3, f5, f2): 81.5%

(f2, f3, f5): 75.2% (f3, f5, f3): 75.7%

Overall expected coverage: 77.8%

C.3 Table of Coverage Estimation Coefficients and Error Properties

In the following tables, the combination of two stationary fingers (fa, fb) ∈ I2 and third finger fc is
indexed by (fa, fb, fc). Note that the expected prediction error ε is zero when the logistic model is
constructed using the minimum squared error condition. The values in the fourth column are the
variances of the estimation error, where the coverage ranges from zero to one. In the fifth column,
the standard deviations (times two) are given as percentages of the coverage. The estimation model
is written as follows:

Coverage(λ) =
1

1 + e−g(λ)
, where: g(λ) = w0 + w1 · λ
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w0 w1 var[ε|fa, fb, fc] 2 · σ
(f1, f2, f3): 4.964 -4.954 0.0002 2.8%

(f1, f2, f4): 6.677 -6.704 0.00012 2.2%

(f1, f2, f5): 6.602 -6.716 0.00057 4.8%

(f1, f3, f2): 6.001 -6.183 0.00057 4.8%

(f1, f3, f4): 5.045 -5.265 0.00008 1.8%

(f1, f3, f5): 5.68 -5.935 0.00011 2.1%

(f1, f4, f2): 9.27 -9.383 0.00003 1.1%

(f1, f4, f3): 6.977 -7.134 0.0001 2%

(f1, f4, f5): 4.228 -4.58 0.00019 2.7%

(f1, f5, f2): 8.472 -8.779 0.00006 1.5%

(f1, f5, f3): 6.785 -7.083 0.00014 2.4%

(f1, f5, f4): 4.412 -4.756 0.00026 3.2%

(f2, f3, f1): 9.953 -9.642 0.00005 1.4%

(f2, f3, f4): 3.517 -3.55 0.00021 2.9%

(f2, f3, f5): 4.724 -4.726 0.00047 4.3%

(f2, f4, f1): 9.371 -9.555 0.00008 1.8%

(f2, f4, f3): 4.857 -4.997 0.00063 5%

(f2, f4, f5): 4.512 -4.758 0.00051 4.5%

(f2, f5, f1): 8.171 -8.635 0.00012 2.2%

(f2, f5, f3): 4.431 -4.864 0.00057 4.8%

(f2, f5, f4): 4.677 -5.131 0.00043 4.2%

(f3, f4, f1): 11.035 -11.214 0.0003 3.5%

(f3, f4, f2): 5.986 -6.007 0.00076 5.5%

(f3, f4, f5): 2.757 -2.867 0.00073 5.4%

(f3, f5, f1): 8.121 -8.971 0.00059 4.8%

(f3, f5, f2): 6.92 -7.817 0.00027 3.3%

(f3, f5, f4): 1.751 -2.433 0.00022 3%

(f4, f5, f1): 10.451 -11.098 0.00059 4.9%

(f4, f5, f2): 6.829 -7.391 0.00051 4.5%

(f4, f5, f3): 4.807 -5.278 0.00051 4.5%

The general estimation error properties:

var[ε] = 0.00033

2 · σ = 3.6%
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C.4 Several Results of the Estimated Reachable Regions

Each of the following figures contains three images. The first image represents the area that was
measured for some combination of stationary fingers and third finger (of which the reachable area
is measured and estimated). The second image shows the ellipse that is fitted on the reachable
area. Finally, the third finger contains the estimated ellipse of the reachable area, which is deduced
from the model that is based on all the fitted ellipses of the respective finger combination. The red
gradient represents the coverage that is deduced from the respective coverage estimation model,
which ranges from red (full coverage) to transparent (zero coverage). In the gradient, the standard
deviation is not subtracted from the coverage estimation model.

Figure C.1: The estimated region of some measurement of the finger combination f1, f2, f3

Figure C.2: The estimated region of some measurement of the finger combination f1, f5, f3

Figure C.3: The estimated region of some measurement of the finger combination f3, f5, f4
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