
Marcelo André Barbosa de Sousa

A Framework for Formal
Verification of Concurrent
Software

– MSc Thesis –

ICA-3535592

August 31, 2012

Utrecht Universiteit, Netherlands
Boğaziçi Üniversitesi, Türkiye

Vague and nebulous is the beginning of all things, but not their end.

Kahlil Gibran

Summary. The widespread usage of concurrent software boosted the need for veri-
fication tools to help designers and implementors in the overall software engineering
process. Formal verification techniques aim at producing automated tools to reduce
the quality assurance stage. Currently, most of the verification approaches have only
been applied to sequential software or partially to concurrent software. We present a
novel framework implemented in a pure functional language for verification of com-
monly used concurrent mechanisms. To our knowledge, this is the first verification
framework using the Low Level Virtual Machine (LLVM) byte code representation
focused on concurrent programs and using a generic representation of a concurrent
model. In this thesis, we focus on test-suite development as the main application of
the framework. We devise two orthogonal approaches for automated test-suite gen-
eration: a SMT-based bounded model checker for Pthread programs and a mutation
testing driven SMT-based static analysis procedure for SystemC TLM models. We
perform initial experiments on SystemC designs and Pthread programs with mul-
tiple threads and mutex locking operations to demonstrate the effectiveness of our
framework.

I would like to thank Prof. Alper for his constant guidance and support to freely
explore my research ideas, and Prof. Wishnu for his helpful insights. I dedicate this
thesis to my family for their unconditional support.

Contents

1 Introduction . 1
1.1 Motivation . 2
1.2 Research Contributions . 3
1.3 Roadmap . 3

2 Background . 4
2.1 Formal Program Verification . 4
2.2 Bounded Model Checking . 6
2.3 Low-Level Virtual Machine . 8
2.4 Shared Memory Concurrency . 11
2.5 Mutation Testing . 15

3 Related Work . 18
3.1 Formalization of LLVM IR . 18
3.2 Model Checking . 18
3.3 Mutation Testing . 19
3.4 Automated Test-Case Generation . 20

4 LLVM Verification Framework . 21
4.1 Architecture . 21
4.2 Front-End . 22

4.2.1 Extraction . 22
4.2.2 Abstraction . 23

4.3 Back-End . 24
4.3.1 SMT-based Bounded Model Checker . 24
4.3.2 Mutation Framework . 29
4.3.3 Generation of SystemC TLM Testbenches Using Mutation

Testing . 31

5 Experiments . 38

6 Conclusion . 42

References . 45

1

Introduction

Software gets slower faster than hardware gets faster.

Niklaus Wirth

The observation of Moore’s Law [62] in the last half century triggered a paradigm
shift in mainstream computer architectures. This shift ignited when the hardware in-
dustry realized that the approaches applied for boosting CPU performance reached
the physical limits [68]. The solution adopted was the transition from single to
multi-processor architectures. From the hardware perspective, this transition seems
to scale with the increasing size and complexity of hardware designs. However, for
various reasons the software industry still does not leverage the potential CPU
speedups.

In the past, software developers methodologically relied on hardware advances
to optimize their programs [77]. This inadequate methodology created a fundamen-
tal problem concerning the quality of the existent software with respect to code
reliability and efficiency. With the shift to multi-core architectures, programming
language designers developed specific concurrent programming languages and a wide
spectrum of mechanisms to support concurrency. However, in practice, software de-
velopers still relied on operating systems and compilers to optimize their programs
with efficient scheduling and parallelization techniques. Hence, we observed that
concurrent programming was deceivingly ubiquitous in software engineering.

The skepticism shared among software developers concerning concurrent pro-
gramming can be pinpointed to the idea that developing concurrent programs is
hard. This idea results from the inherent non-deterministic nature of concurrent
programs. The conceptual gap between standard sequential or object-oriented pro-
gramming and concurrent programming affects all major phases of the software
development process: design, implementation and validation.

The design and implementation of concurrent software is harder because de-
velopers need to decide which concurrent model and synchronization strategy is
appropriate. These decisions are not trivial considering the wide range of program-
ming languages that support concurrency, and the time required to develop a deep
understanding of the concurrent and synchronization constructs. Optimization of
concurrent software requires extra effort, since the notion of atomicity depends on
the underlying memory model and compiler technology used. Testing and debugging
concurrent programs is particularly problematic because of their non-deterministic

2 1 Introduction

nature. In practice, there is a rupture of the traditional testing and debug tools since
developers cannot rely on a single execution of their test suites and erroneous test
cases might not be reproducible.

Despite the skepticism, concurrent programming has long been claimed as the
way of the future [78] and in recent years there is a renewed interest in concurrent
programming. This interest is driven not only by the evolution of hardware architec-
tures but also the increasing size, complexity, expectations and reliability of software
systems [40].

1.1 Motivation

Formal verification of software is a valuable approach to produce automated analysis
and testing tools [51]. The tools are valuable because they simplify the developers
manual quality assurance cycle, which represents a major portion of software devel-
opment. Automated test-suite generation techniques and techniques to strengthen
the quality of existing test-suites for concurrent programs are valuable for the in-
dustry to lower the costs of the quality assurance cycle. Moreover, research in this
direction provides insights on the behavior of concurrent software and allows the
identification of common error patterns in the industry.

Following the software industry trend, currently most of the verification tools
focused on sequential software or a specific concurrent model [27]. The continu-
ous widespread of concurrent software calls for a general framework for verifica-
tion of concurrent software. The main goal is a transparent and scalable infras-
tructure for verification of several concurrent mechanisms. Hence, we design the in-
frastructure to verify programs represented at the compiler intermediate language,
namely the Low-Level Virtual Machine (LLVM) Intermediate Representation (IR)
level [52, 2, 53]. Furthermore, we leverage the advantages of Haskell [50], a general
purpose strongly-typed functional programming language, and the Utrecht Univer-
sity Attribute Grammar Compiler (uuagc) [79] to perform efficient transformations
on our formalizations. Haskell is suitable for prototyping due to its expressive type
system that allows the implementation of reliable and scalable solutions. Moreover,
it is suitable for program analysis and verification due to its ease of equational
reasoning, a feature of pure functional languages.

The motivation for a new infrastructure is based on two main observations. The
first observation is that a common practice in formal verification approaches, such
as model checking is to reuse existing frameworks. For example, in the past several
tools reused the explicit-state model checker SPIN [45]. This approach reduces the
overall implementation effort for verification of a domain specific language because of
the numerous optimizations already implemented in SPIN. However, it still requires
a considerable amount of work to implement a front-end that translates the native
language to Promela models [5], and in general, there is no guarantee that the
translation process is reliable. Moreover, users need to understand the translation
process and the verification results provided by SPIN. These limitations apply to
other existing verification frameworks.

The second observation is that most of the verification tools focus on a specific
concurrent domain. With the popularity of LLVM and since LLVM IR is designed
to be a universal compiler intermediate representation, a verification framework op-
erating at the LLVM IR level is applicable for concurrent programs represented in

1.3 Roadmap 3

the programming languages supported by LLVM. Furthermore, LLVM IR is a suit-
able language for verification since it is a well-defined language that considerably
eases a logical encoding and closely reassemble the actual executed programs [61].
We are interested in the identification and formalization of an abstract concurrent
model based on LLVM IR and apply several verification techniques over that model.
Therefore, achieving a framework that could verify different shared-memory concur-
rent libraries, e.g. Pthread, domain specific languages, e.g. SystemC, and message
passing interfaces, e.g. MPI [63] or MCAPI [80].

1.2 Research Contributions

We present a novel framework implemented in a pure functional language for verifi-
cation of commonly used concurrent mechanisms. To our knowledge, this is the first
verification framework using the LLVM byte code representation focused on concur-
rent programs using a generic representation of a concurrent model. The extension
of the framework to a particular concurrent model is accomplished with an inter-
pretation of the concurrent constructs. We present a new LLVM IR formalization
using the attribute grammar system, and also an initial formalization of an abstract
concurrency model.

We devise two applications for our framework: a SMT-based bounded model
checker [8] for Pthread [64] programs that is able to produce counter examples for
assertion violations in the original program; and a mutation testing driven SMT-
based static analysis procedure that generates testbenches for SystemC TLM models
[1] with high mutation coverage ratios.

1.3 Roadmap

The remaining of this thesis is organized as follows. Chapter 2 provides background
on formal verification with focus on SMT-based bounded model checking, the LLVM
framework, the two concurrent domains of research: Pthread and SystemC, and mu-
tation testing. Chapter 3 describes related work in formalization of LLVM IR, SMT-
based bounded model checking for LLVM IR, SystemC mutation testing and test
case generation using mutation analysis. In Chapter 4, we introduce the architecture
and applications of our verification framework llvmvf (LLVM Verification Frame-
work). Chapter 5, describes our experimental setup and discusses the results of the
experiments with the Pthread library and SystemC. We conclude with discussion of
our current limitations, optimizations and extensions to be left as future work.

2

Background

Precise language is not the problem. Clear language is the problem.

Richard Feynman

This chapter provides background on Formal Verification (Section 2.1), Bounded
Model Checking (Section 2.2), LLVM (Section 2.3), shared-memory concurrent mod-
els (Section 2.4) and Mutation Testing (Section 2.5).

2.1 Formal Program Verification

The roots of formal program verification, also referenced as formal methods, are
tied to the early beginnings of computer science. The fundamental idea behind for-
mal methods is that programs can be viewed as mathematical objects with a well-
defined behavior. Therefore, using mathematical logic we can reason about program
correctness [33]. Program correctness is the main motivation for verification, but
is a stand-alone general concept. The interpretation of correctness for a particular
program is captured in its specification. Whether the formalism used in the spec-
ification is appropriate, or the specification truly captures the informal notion of
correctness, are relevant issues that affect the verification approach.

Historically, there were two major periods in formal verification. Until the late
70s, the prevailing paradigm was based on deductive systems such as the successful
Floyd-Hoare framework [34, 44]. The standard approach for verification was to use
such deduction systems to produce formal proofs of correctness. This approach,
known as theorem proving, aimed at a total correctness of the specification in a
mathematical constructivist fashion. In practice, the specification was composed of
a set of theorems and the verification was an ingenious manual process to produce
formal proofs of the theorems.

Although theorem proving allows us to guarantee the reliability of programs,
the framework suffers from three major limitations. The first limitation is related
to Godel’s first incompleteness theorem [38]. The theorem implies that there are
sentences in a deductive system that cannot be formally proved. Hence, it restricts
the proof domain of theorem proving.

2.1 Formal Program Verification 5

The second limitation is related to the constructivist nature of proofs. Using the
theorem proving framework, there are two possible outcomes. In the successful sce-
nario, we obtain formal proofs that mathematically guarantee that the specification
is satisfied. However, in case of failure we cannot guarantee that the specification is
not satisfied. The lack of information in a failing scenario poses a severe practical
limitation to use theorem proving. In practice, we are also interested in identifying
which part of the program fails to meet the specification.

The third limitation is the observation that theorem proving does not scale with
increasing size and complexity of programs. The main reason for the scalability
problem is that manual proofs are laborious, error-prune and require a high level
of expertise. The effort to reduce the scalability problem and automatize the proof
process originated the development of proof assistants. Generally, a proof assistant
is composed of a core and an interface component. The core of a proof assistant is
an implementation of a deductive system. The interface guides the user in the proof
process by interpreting the current proof state and provide hints. Currently, there
are several kinds of proof assistants that implement various deductive systems and
provide different user interface approaches [87].

In the late 70s, the seminal paper of Pnueli [70] marked a new period in formal
methods. Following the advances in modal logics, Pnueli developed Linear Temporal
Logic (LTL): a simple and expressive logic to reason about correctness properties
of concurrent systems. The flexibility and expressiveness of temporal logic inspired
the field of model checking [22, 33]. The approach in model checking is to extract a
formal model from the program under verification and check if the specification is
satisfied by the model. The framework is valuable because it provides an algorithmic
approach for verification, and the specification is composed of temporal properties.
This algorithmic approach implies that automated tools can be implemented. De-
riving the specification with a temporal logic is a flexible and practical approach,
due to the expressive power of temporal logic. Moreover, temporal logics are popular
because they are composed of a reduced number of well-defined constructs that can
be easily understood.

In general, a model checker execution results in one of three different scenarios.
If the execution returns a positive result, we conclude that the model satisfies the
specification. However, we can not formally guarantee that the actual program sat-
isfies the specification, because the model might not be semantically equivalent to
the program.

If the execution returns a negative result, we can use the model checking algo-
rithm to generate a program trace representing a potential program error. In prac-
tice, the main applications of model checking are model falsifiability and automatic
test case generation [7].

In the third scenario, the model checker fails. A possible failing scenario is the
case where the model checker consumes all available memory. In general, this situa-
tion is caused by the state explosion problem. The state explosion problem [83] is an
inherent problem in explicit-state model checking that occurs due to the exponen-
tial growth of the state space. In particular, the state explosion problem is a major
issue in verification of concurrent programs because of the interleaving semantics of
such programs. In the last three decades, several algorithms such as abstraction [28],
partial order reduction [82] and counterexample guided abstraction refinement [23]
were developed and combined with model checking algorithms to tackle the state
explosion problem.

6 2 Background

In an alternative failing scenario, the model checker issues an execution timeout.
Due to the halting problem, it is generally undecidable if the model checker will
terminate [47]. Moreover, the complexity of standard verification algorithms is NP-
complete.

2.2 Bounded Model Checking

Bounded Model Checking (BMC) [7, 8] originated as an alternative to symbolic
model checking using binary decision diagrams (BBDs) [14] that suffered from a
scalability problem considering the increasing trend in complexity and size of hard-
ware systems.

The approach of BMC consists on generating verification conditions that en-
code the reachability problem of all property violation states in the system up to
a given bound. BMC leverages recent optimizations in boolean satisfiability (SAT)
and Satisfiability Modulo Theories (SMT) solvers, that find (if possible) satisfying
assignments to a set of constraints, to remain a scalable approach for increasingly
complex systems [29]. SAT/SMT-based BMC generates a first-order propositional
formula Ψ given a transition system M , a bound k, and a property φ according to
the formula:

Ψ(M,k, φ) = I(M)
∧

i∈[0..k−1]

Ti(M) ∧ J¬φKi (2.1)

The general BMC formula above encodes the entire model M (Ti(M)) at each
bound depth constrained by the initial state I(M). BMC encodes the negation of
the given property and uses the SAT/SMT solver to determine if the negation of
the property is satisfiable, i.e. if there is an assignment to the formula variables such
that the formula evaluates to true. Using the dual relationship between satisfiability
and validity, BMC proves if the property in the model is invalid.

In practice, BMC is an iterative process that increases the search depth until re-
source exhaustion or property violation. This approach has been successfully applied
for automatic test-case generation of hardware and software systems [7] .

In this work, we exploit the optimization advances of SMT solvers to tackle the
infamous state explosion problem in verification of multi-threaded programs.

The SMT-LIB Language (v.2)

Recent BMC tools owe their success to improvements in SMT solvers. The SMT-
LIB language is a part of the SMT-LIB standard for comparison of SMT solvers.
Since its initial proposal in 2003, the language suffered several revisions that led to
the SMT-LIB v.2. Currently, several SMT solvers are compliant with the standard
language such as Boolector [13], MathSAT 5 [39], Yices [32] and Z3 [29], although
some of them do not support the latest version of the SMT-LIB language.

The SMT-LIB language encodes logical formulas in a many-sorted first-order
logic [26]. It is a strongly-sorted (typed) language, where each well-formed expression
has a unique sort and is well-sorted. It supports polymorphic functions such as
equality function (=) and new sort definition.

2.2 Bounded Model Checking 7

A SMT-LIB program is composed by a non-empty list of S-expressions with op-
tional comments. A S-expression encloses a command in parenthesis. The grammar
production for a SMT-LIB command is presented in Figure 2.1.

〈command〉 |= set-logic 〈logic〉
| declare-fun 〈symbol〉 (〈sort-expr〉∗) 〈sort-expr〉
| define-fun 〈symbol〉 ((〈symbol〉 〈sort-expr〉)∗) 〈sort-expr〉 〈expr〉
| declare-sort 〈symbol〉 〈numeral〉

| define-sort (〈symbol〉+) 〈expr〉
| assert 〈expr〉
| get-assertions

| check-sat

| get-proof

| get-unsat-core

| get-value 〈expr〉+

| get-assignment

| push 〈numeral〉
| pop 〈numeral〉
| get-option 〈keyword〉
| set-option 〈keyword〉 〈attr-value〉
| get-info 〈keyword〉
| set-info 〈keyword〉 〈attr-value〉
| exit

Fig. 2.1: SMT-LIB commands

SMT-LIB commands have different cardinality, e.g. a valid SMT-LIB program
can only have one set-logic command, while the command set-info can occur multiple
times. Moreover, some commands are defined depending on the current context,
e.g. the get-value command is only valid when the option produce-models is set to
true and the result from check-sat is sat. The commands declare-sort and define-
sort introduce new sorts by respectively, declaring a new sort and introduce a sort
synonym.

The grammar for SMT-LIB expression grammar is described in Figure 2.2. A
SMT-LIB expression can be a literal, identifier, function application, quantified ∀
and ∃-expressions, and let-expressions used to create more compact formulas.

The command set-logic initializes the solver with the specified logic. In this thesis
we use the QF AUFBV logic [16], that supports closed quantifier-free formulas over
the theory of bit-vectors and bit-vector arrays.

An example of a SMT-LIB program is presented in Figure 2.3. The program
encodes the law of excluded middle using the logic of uninterpreted functions (line

8 2 Background

〈expr〉 |= 〈literal〉
| 〈identifier〉

| 〈identifier〉 〈expr〉+

| forall ((〈symbol〉 〈sort〉)+) 〈expr〉

| exists ((〈symbol〉 〈sort〉)+) 〈expr〉

| let ((〈symbol〉 〈sort〉)+) 〈expr〉
〈identifier〉 |= 〈symbol〉

| 〈symbol〉 〈numeral〉+

| as 〈identifier〉 pnsort
〈sort-expr〉 |= 〈sort〉

| 〈symbol〉 〈sort-expr〉+

Fig. 2.2: SMT-LIB expressions

1). In line 2, we declare a boolean value p and in line 3, we assert p∧¬p. In line 4, we
ask the SMT solver to check the satisfiability of the current stack of assertions and
finally in line 5, we terminate the SMT solver. The result of a SMT solver execution
is sat, satisfiable.

(set−l o g i c QF UF)
(dec la re−fun p () Bool)
(a s s e r t (or p (not p)))
(check−sa t)
(e x i t)

Fig. 2.3: SMT-Lib Encoding of the Law of excluded middle

2.3 Low-Level Virtual Machine

LLVM is a popular and growing compiler framework that supports aggressive mul-
tistage optimizations to overcome known problems of traditional compilation tech-
niques [52]. The framework was initially designed to be a flexible, well-documented
and transparent infrastructure for research projects in the compiler domain.

From a compiler designer perspective, LLVM offers several advantages. The ar-
chitecture of the framework, represented in Figure 2.4, was designed to be dependent
on the Intermediate Representation (IR) language to ease component reusability.
This design decision simplifies the compiler construction process since compiler im-
plementors can reuse LLVM’s backend. Using the framework, the main compiler

2.3 Low-Level Virtual Machine 9

C, C++
ObjC, Haskell,

...
LLVM IR

front-end X86, PowerPC
Alpha...

code generation/JIT

Optimizer

Analyzer

Fig. 2.4: LLVM Architecture

construction component is the front-end implementation. With the upward trend
of domain specific languages development, LLVM is a valuable framework to imple-
ment an efficient compiler with limited resources. Moreover, LLVM provides code
generation for several architectures, and although primarily focused on C and C++,
other programming languages front-ends have been implemented.

LLVM is used in multiple projects due to its scalability and competitive per-
formance results against industrial and research compilers [58]. Furthermore, there
is an active community of users and developers, and a continuous interest of the
academic community with hundreds of research papers up to date.

LLVM Intermediate Representation

In LLVM, every optimization or transformation is performed over LLVM Interme-
diate Representation (IR) code. The LLVM IR language implements an unbounded
register machine. The instruction set is composed of RISC-like three address code in-
structions in Single Static Analysis (SSA) form [74] with high level type information.
The SSA representation form and the combination of low-level and high-level infor-
mation translate in a well-defined and target-independent semantics. Hence, LLVM
IR is suitable for analysis and, in theory, is capable of representing ‘all’ high-level
languages cleanly [2, 53].

In Figure 2.5, we describe some of the productions that compose the imple-
mented LLVM IR grammar. We describe a simplified grammar since for our current

10 2 Background

〈module〉 |= 〈nmd-ty〉∗ 〈global〉∗ 〈fn〉∗

〈nmd-ty〉 |= % 〈ident〉 〈ty〉
〈global〉 |= @ 〈ident〉 〈ty〉 〈val〉?
〈fn〉 |= fun-decl 〈ident〉 〈ty〉 〈param〉∗

| fun-def 〈ident〉 〈ty〉 〈param〉∗ 〈bb〉+

〈param〉 |= 〈ident〉 〈ty〉
〈bb〉 |= 〈label〉 〈phi〉∗ 〈instr〉∗ 〈tmn〉

〈phi〉 |= phi 〈value〉 〈ty〉 (〈value〉 〈label〉)+

〈tmn〉 |= unreachable | 〈br〉 | 〈ret〉
〈instr〉 |= 〈bop〉 | 〈bwop〉 | 〈vop〉

| 〈aop〉 | 〈mop〉 | 〈cop〉 | 〈oop〉
〈value〉 |= 〈ident〉 | 〈const〉
〈ty〉 |= void | i 〈int〉 | 〈float〉

| [〈int〉 × 〈ty〉] | 〈 〈int〉 × 〈ty〉 〉
| 〈ty〉* | 〈ty〉∗ → 〈ty〉 | { 〈ty〉∗ }

Fig. 2.5: Abstract LLVM IR Grammar

verification algorithms we are not interested in attributes such as linkage, section or
garbage collection.

A LLVM IR 〈module〉 is composed of a list of named types, global variables
and functions. A named typed, 〈nmd-ty〉, binds an identifier to a type. In line 1 of
Figure 2.6, %“class.std :: ios base :: Init” is defined as the integer type of one byte.
A global variable 〈global〉 is represented by an identifier, a type and an optional
value if the variable is initialized. Line 2 of Figure 2.6, defines “@M1” as a constant
with the value “M1”.

Function definitions are composed of a declaration (identifier 〈ident〉, type 〈ty〉
and parameters 〈param〉∗) and a list of basic blocks. Each basic block 〈bb〉 is rep-
resented by a label identifier, a list of 〈phi〉 instructions, a list of instructions and a
final terminator 〈tmn〉 instruction such as an unconditional branch (line 4). A phi
instruction represents a value choice between basic blocks.

1 %” c l a s s . s t d : : i o s b a s e : : I n i t ” = type { i 8 }
2 @M1 = l i n k o n c e o d r constant [2 x i 8] c”M1”
3 %. 0 = phi i 8 ∗ [% .pre1 , %bb1] , [% tmp8 , %bb4]
4 br label %bb14

Fig. 2.6: LLVM IR example

2.4 Shared Memory Concurrency 11

Instructions are grouped into binary 〈bop〉, bitwise 〈bwop〉, vector 〈vop〉, aggre-
gate 〈aop〉, memory access and addressing 〈mop〉, conversion 〈cop〉 and other 〈cop〉
operations.

LLVM IR is equipped with a type system that adds extra expressive power to the
language. Every LLVM IR 〈value〉, either an identifier 〈ident〉 or a constant 〈const〉
has a type 〈ty〉. LLVM IR supports primitive types: void, integers with a specified
bit width i〈int〉 or 〈float〉; and derived types for arrays, vectors, structs, pointers and
functions.

2.4 Shared Memory Concurrency

Concurrency is a property of software systems that leverages the state of the art
preemptive operating system schedulers and hardware architectures to speedup the
execution of the programs by executing more instructions than sequential systems.
Currently there are two predominant models in concurrent systems according to
their inherent memory model: shared-memory concurrency and message passing
concurrency. Both models have the same expressive power since we can implement
a message passing concurrent strategy using shared-memory concurrency and vice
versa. In message passing concurrency, the concurrent components, processes or
threads, have their own memory and communicate with other processes through
messages. Shared-memory concurrency is characterized by shared memory blocks
between threads. Although this model arguably requires less memory than message
passing, verification of programs that use this model is particularly harder because
synchronization errors are more intricate. In this work we focus on two implemen-
tations of shared memory concurrency: the Pthread library and SystemC.

Pthread

The Pthread library [64] is the most popular library for implementation of multi-
threaded C/C++ programs. The library provides an extensive API for thread man-
agement, scheduling, synchronization, signaling and cancellation.

Table 2.1 summarizes the Pthread library functions.
The Pthread library does not specifies any scheduling algorithm, although it

supports functions to change the priority of the processes. The thread scheduling is
accomplished by the operating system scheduler, which typically is preemptive, i.e.
the scheduler can stop a running thread in any instruction location.

Pthread Example

Figure 2.7 presents a Pthread example from [27]. The main function (lines 22 to 30)
creates two threads Tx and Ty that execute without any synchronization mecha-
nism. In this example, since the function nondet uint can return an integer bigger
than 10, if thread Ty executes first and re-assigns the shared variable x to 3, when
execution resumes to Tx the assertion will fail. We will use this example to describe
our Bounded Model Checker throughout this thesis.

12 2 Background

Construct Available Functions

Management pthread create, pthread join,
pthread exit, pthread cancel

Mutex pthread mutex init,
pthread mutex destroy,
pthread mutex lock,
pthread mutex trylock,
pthread mutex unlock

Conditional Variable pthread cond init, pthread cond signal,
pthread cond wait

Table 2.1: Common Pthread Library Functions

SystemC

In recent years, SystemC became a de-facto standard for simulation of SoCs us-
ing TLM designs. SystemC [1] is an IEEE standard C++ library composed of an
event scheduler and constructs to represent the concurrent behavior of hardware.
The SystemC TLM standard enables system level verification and debugging as well
as hardware/software co-design, architectural exploration, and power/performance
analysis. SystemC [1] models hardware components as modules. Modules are com-
posed of processes which encode the concurrent behavior of the component, and
ports that are used for interprocess communication. Although processes run con-
currently, their execution is sequential. The SystemC scheduler is non-preemptive;
hence, a process has to voluntarily yield control for another process to be executed.
The scheduler chooses non-deterministically exactly one process at a time to be ex-
ecuted. It implements an event-based simulator similar to VHDL by handling event
notifications and managing updates to channels. Hardware parallelism is abstracted
with the notion of delta cycle.

SystemC supports method processes and thread processes. A method executes
atomically and cannot explicitly suspend itself. The simulator regains control after
the entire method has been executed. Threads are run exactly once by the scheduler
and are typically enclosed by a loop that keeps them alive for the duration of the
simulation. The program-flow control remains with the thread till it explicitly yields
by calling wait() or finishing its execution. In the former case, the thread stays in
a wait state until some event triggers it, and it resumes execution from the next
statement after wait.

Processes are triggered and synchronized with respect to its sensitivity on events.
A SystemC event is the occurrence of an sc event notification and happens at a single
point in time. An event has no duration or value. Events are controlled via wait,
next trigger and notify functions of the sc event class. A wait function changes
dynamic sensitivity of a thread process and suspends its execution. For example,
wait(SC ZERO TIME) delays the process by one delta cycle, a process waits on
event e with wait(e), and with wait(e1|e2|e3) a process waits on event e1, e2, or e3.

2.4 Shared Memory Concurrency 13

1 #define N 10
2
3 int nondet u int () ;
4
5 int a [N] , i , j =1, x=2;
6
7 void ∗Tx(void ∗ arg) {
8 i f (x>2){
9 a s s e r t (i>=0 && i<N) ;

10 a [i]=∗((int ∗) arg) ;
11 }
12 }
13
14 void ∗Ty(void ∗ arg) {
15 i f (x>3)
16 a [j]=∗((int ∗) arg) ;
17 e l s e {
18 x=3;
19 }
20 }
21
22 int main () {
23 pthread t id1 , id2 ;
24 int arg1 =10, arg2 =20;
25
26 i=nondet u int () ;
27
28 pthread create(&id1 , NULL, Tx , &arg1) ;
29 pthread create(&id2 , NULL, Ty , &arg2) ;
30 }

Fig. 2.7: Pthread example

Events occur explicitly by using the notify function, and the scheduler re-
sumes execution of a thread or method process by executing the trigger func-
tion. For example, e.notify() is called an immediate notification since processes
sensitive to event e will run in the current evaluation phase or delta cycle. Using
e.notify(SC ZERO TIME) processes sensitive to event e will run in the evalua-
tion phase of the next delta-cycle. Using e.notify(t) processes sensitive to event e
will run during the evaluation phase of some future simulation time.

Process synchronization also occurs with the usage of channels, interfaces, and
ports. These constructs are the core of SystemC Transaction Level Model (TLM)
based methodology [1]. The basic idea of TLM is to model hardware components as
modules that communicate with transactions. TLM provides interoperability layer
for bus modeling through generic payloads and phases that in turn get used through
initiator and target sockets. These sockets can use blocking and nonblocking trans-
port interfaces. Different levels of model abstraction are provided in TLM through

14 2 Background

different coding styles such as loosely-timed (used by blocking transport interface)
and approximately-timed (used by non-blocking transport interface). Loosely-timed
is more suitable for software development, whereas approximately-timed is more
suitable for performance analysis or architectural exploration. Some of the TLM
synchronization functions are b transport (blocking transport), nb transport fw
(non-blocking transport forward path), and nb transport bw (non-blocking trans-
port backward path). Synchronization is also established through instantiating
sc semaphore and sc mutex objects, which provide wait, trywait, post and lock,
trylock, unlock functions, respectively. Note that, in SystemC, communication be-
tween processes is established either by explicit concurrency functions or by shared
variables.

Table 2.2 summarizes SystemC concurrency functions.

Construct Available Functions

Event notify, wait, next trigger

Channel read, write, put, get, peek, nb put, nb get,
nb peek, b transport, nb transport fw,
nb transport bw

Semaphore wait, trywait, post

Mutex lock, trylock, unlock

Table 2.2: SystemC Concurrency Functions

The following displays the steps of the simulation scheduler in more detail. The
first phase of a SystemC simulation, the elaboration phase, consists of describing an
architecture by registering the processes in the scheduler and defining constructs for
module interconnection.

1. Initialization: All processes are made executable in an unspecified order.
2. Evaluate: Select a ready-to-run process and resume its execution. This may

result in more processes ready for execution in this same phase due to immediate
notification. Signals and channels may invoke a request for update in the update
phase.

3. Repeat Step 2 until no more processes are ready-to-run.
4. Update: Execute all pending update requests due to calls made in Step 2.
5. If Steps 2 or 4 resulted in delta event notifications, go back to Step 2.
6. If there are no more events, simulation is finished for current time.
7. Advance to next simulation time that has pending events. If none, exit simula-

tion.
8. Go back to Step 2.

In [43], the authors show that a non-preemptive scheduler introduces implicit
atomic sections (a wait-to-wait block in a process) hiding most of the issues regarding
concurrent accesses to shared resources.

2.5 Mutation Testing 15

SystemC Example

Figure 2.8 illustrates a SystemC design. We will use this example throughout this
thesis to demonstrate our second framework application for automated testbench
generation using mutation testing. The code in Figure 2.8 declares a SystemC mod-
ule M1 where internal processes, threads T1 and T2, communicate through a Sys-
temC event e and two shared variables cs1 and cs2.

In this example, the synchronization of the event e is guarded by two booleans cs1
(line 17) and cs2 (line 26) assigned in the constructor of M1. The values of cs1 and
cs2 are assigned to arguments of the constructor. Therefore, both threads T1 and T2
are open programs. The input-synchronization dependency of the threads presents
an interesting case study since the presence of synchronization errors is not uniquely
dependent on the SystemC scheduler. This behavior is similar to synchronization
events generated by other processes through interprocess communication. We are
interested in an automatic method for generation of unit tests that explore different
SystemC simulations.

2.5 Mutation Testing

Mutation testing is a commonly used software testing technique to measure the
quality of testbenches [3]. Mutation testing is based on a fault model represented as
a set of mutation operators. A mutation operator MO is a non-deterministic rewrite
system.

Example 2.1. Mutation operator MO for wait(e):

wait(e)→ wait(1,SC NS);

wait(e)→ e.notify();

wait(e)→ ε;

The example above is composed of three rewrite rules. The left hand-side of a rule
represents the operation to be mutated, and by definition in a mutation operator,
the left hand-side of all rules is the same. The first rule mutates the argument of
wait to a value of a different type. The second rule applies the dual relation between
wait and notify and the third rule removes the operation.

A mutant P ′ of a program P is the program generated by one reduction of the
mutation operator MO. In the previous example, MO can potentially generate three
mutants. Following the definition of mutant, we can define killed and live mutant.

Definition 2.2. A mutant P ′ of a program P is said to be killed by a test t if and
only if there are observable differences between P ′(t) and P (t).

Definition 2.3. A mutant P ′ of a program P is said to be live if and only if there
is no test t in the testbench T that kills the mutant.

Using mutation testing we can compute a new coverage metric, mutation cover-
age, that is useful to assess the quality of a testbench.

16 2 Background

1 SCMODULE(M1)
2 {
3 sc event e ;
4 bool cs1 , cs2 ;
5
6 SC HAS PROCESS(M1) ;
7
8 M1(sc module name name , bool x , bool y)
9 {

10 SCTHREAD(T1) ;
11 SCTHREAD(T2) ;
12 cs1 = x ;
13 cs2 = y ;
14 }
15
16 void T1() {
17 i f (cs1) {
18 wait (e) ; // Mutation #1
19 cs2=f a l s e ;
20 }
21 wait (10 ,SC NS) ; // Mutation #2
22 cs2=true ;
23 }
24
25 void T2() {
26 i f (cs2) {
27 cs1=f a l s e ;
28 e . notify () ; // Mutation #3
29 }
30 wait (10 ,SC NS) ; // Mutation #4
31 cs1=true ;
32 }
33 } ;

Fig. 2.8: A SystemC Design

Definition 2.4. The mutation coverage of a testbench T for a program P is the
ratio of the number of killed mutants to the number of all mutants.

Mutation coverage is a useful metric since it identifies errors, encoded as mutants,
that are not tested in the testbench T . Therefore, mutation coverage of T can be
improved by extending the testbench with new test cases that kill live mutants.

Algorithm 1 describes a general mutation coverage algorithm. In line 1, we gen-
erate a metamutant MP by inserting mutation operators into P . A metamutant
captures all possible mutations and supports a mechanism that allows dynamic ac-
tivation of one mutation operator. This strategy is popular for mutant testing since
it is more efficient than generating a compiled version of the program for each muta-

2.5 Mutation Testing 17

Algorithm 1 Mutation Coverage Algorithm

Input: a program P , a testbench T .
Output: mutation coverage.
1: generate a metamutant MP from P ;
2: for each mutation operator MO in MP do
3: generate a mutant P ′ from MO and P ;
4: for each test t ∈ T do
5: execute P ′ with t;
6: check if P ′ is killed by t;
7: end for
8: end for
9: compute mutation coverage;

tion. In line 3, we generate a mutant from the original program using the mutation
operator as described above. Then, in line 4, we iterate over the test suite and exe-
cute the mutant with every test (line 5) and check if the mutant is killed by the test
using Definition 2.2 (line 6). Finally, we compute the mutation coverage rate using
Definition 2.4. A mutation coverage rate of 1 may no be possible due to equivalent
mutants.

The complexity of the algorithm can reach M ×T ×Ct, where M is the number
of inserted mutations, T is the size of the test suite and Ct is the execution cost of
one test. Since the number of mutations can be high, mutation analysis suffers from
a scalability problem so mutation coverage can be an expensive metric to compute.

3

Related Work

To understand a program, you must become both the machine and the
program.

Alan Perlis

In this chapter, we describe previous approaches related to our research ques-
tions. Section 3.1 presents previous formalizations of LLVM IR. Section 3.2 provides
a general overview on verification of LLVM IR for sequential and concurrent pro-
grams focused on bounded model checkers for C and Pthread programs and also pre-
vious approaches for verification of SystemC modules. Section 3.3 provides related
work in mutation testing and Section 3.4 describes automated test-case generation
tools using model checking techniques and mutation testing.

3.1 Formalization of LLVM IR

Recently, several tools have formalized the LLVM IR language in the context of
certified compilers. Vellvm [88] is a Coq framework to formally prove transformations
over LLVM IR programs in a first attempt to a formally verified LLVM compiler.
This framework was inspired in CompCert [18], a ANSI-C verified compiler. LLVM
M.D. [81] is a compiler research project to detect semantic changes in the input
program produced by the optimizer. LLVM M.D. is implemented in Haskell, but their
model generation is based on a parser of the LLVM IR language while we use the
bindings for the LLVM api which is a more reliable solution since the disassembled
byte code is only for human reader purpose and may contain errors.

3.2 Model Checking

In the last decade, several tools applied bounded model checking to verify C and
C++ programs. The initial tools, CBMC [24] and F-Soft [46] focused on sequential
programs. SMT-CBMC [4] proposed a combination of bounded model checking with
SMT solvers to use their expressive power. TCBMC [71] and ESBMC [27] apply
bounded model checking for Pthread C programs. TCBMC is limited to concurrent

3.3 Mutation Testing 19

programs with two threads. ESBMC reuses CBMC front-end to generate verification
conditions and supports several encoding approaches to produce a boolean formula.
SATABS [21] performs verification of multi-threaded software with shared variables
with a CEGAR approach on sequential GOTO-programs translated from the original
concurrent program [23].

Recently, formal verification tools target intermediate languages. VCC [25] is an
assertion verifier for concurrent C programs. VCC uses the SMT solver z3 to analyze
verification conditions (VCs) generated from Boogie. Boogie [6] produces VCs for
programs represented in an intermediate verification language also called Boogie
that is previously translated from high-level languages such as C, C# or Spec#.
Concerning LLVM IR, LLBMC [61] applies SMT based bounded model checking for
sequential C/C++ programs. LAV [84] combines symbolic execution and SMT based
bounded model checking for bug finding in sequential C programs. Our backwards
static analysis reachability method for SystemC is a symbolic execution approach
similar to Dijkstra weakest pre-condition formulation [31]. A formal weakest pre-
conditional model to reason about assembly language programs can be found in
[54].

Concerning SystemC, PinaVM [60] is a SystemC front-end that translates LLVM
IR code into a usable intermediate format for several verification tools. We believe
that our approach is more flexible since we do not have to maintain another in-
termediate representation. Moreover, we do not introduce overhead and potential
implementation bugs with the translation process. Kratos [19] is a model checker
for SystemC that uses abstraction techniques to perform concurrent or sequential
analysis over GOTO-programs translated from SystemC designs. Scoot [9] is a static
analyzer for SystemC that extracts a multipurpose semantic model. Because of the
dynamic nature of the SystemC library implementation, Scoot requires library mod-
ifications for correct usage.

A common disadvantage of model checkers that operate at the level of LLVM
IR is the fact that they depend on a specific version of LLVM which reduces the
usability of the tool. Several tools have installation problems and furthermore the
user might be interested in verifying a feature of a newer version of LLVM IR. SMT-
based bounded model checkers also use the API of the SMT solvers. Therefore, they
depend on older versions of the SMT solver that do not leverage newer optimiza-
tions. Our approach uses the current version of LLVM and our installation process
does not require a specific package of LLVM. Moreover, we generate SMT-LIB v.2
language programs that can be used with all SMT solvers that are compliant with
the STM-LIB standard. Hence, we can compare performance of SMT solvers in our
benchmarks.

3.3 Mutation Testing

Mutation testing is an approach based on software testing to assess the quality of
test suites [15, 66, 67]. It has been defined for programming languages such as Java
[59, 12], state machines [69] and hardware description languages such as Verilog [41].
A detailed survey on applications of mutation testing can be found in [49].

Mutation testing has been widely applied in exploiting the correlation between
the fault model and real faults [3]. The standard mutation testing approach is to
inject mutations into the program one at a time, and check whether the test suite

20 3 Related Work

can identify the fault introduced. Hence, it helps to strengthen the quality of test
suites by providing information related to tests cases that should complement the
test suite. Mutation testing has proven more powerful than other coverage criteria
such as statement, branch, and all-use dataflow [35, 85, 57].

Standard mutation frameworks implement optimization to reduce the high num-
ber of mutants generated. Prior work on mutant equivalence [75] and higher order
mutation testing [48] have tackled this problem.

A mutation model for SystemC TLM 2.0 communication interfaces have been
defined in [10, 11] and this has been extended to all SystemC concurrency constructs
in [76]. Our work implements a mutation framework that supports the latter muta-
tion model. We do not require any modification of the SystemC libraries, hence our
mutation framework is scalable and transparent to the user.

3.4 Automated Test-Case Generation

Automated test case generation is a natural application of mutation testing. Early
research on mutation testing [65] developed methods based on constraint solving to
solve the input-mutant reachability problem. In [30], this work is extended with a
necessity condition encoding the mutant effects on states of the program.

µTest [36] applies a genetic algorithm to generate unit tests for object-oriented
classes in Java based on mutation analysis. The framework generates oracles to
increase mutation coverage by comparing execution traces of a test case on a pro-
gram and its mutants. Our approach focuses on the domain of concurrent programs
and uses a byte code representation that supports a wider range of programming
languages.

SymBMC [73] uses SMT/bounded model checking approach using mutation
analysis to generate test cases from ANSI-C programs. KLEE [17] and KLOVER
[55], perform symbolic execution of sequential C and C++ programs represented with
the LLVM byte code for automatic test suite generation. Recently, GKLEE [56], a
tool based on KLEE, applies concolic execution to CUDA programs for test gener-
ation. The tools of the KLEE family require manual instrumentation from the user
and all except GKLEE do not handle concurrent programs. Our approach is more
transparent to the user and supports a better integration since we do not require
any user modification on the source code.

4

LLVM Verification Framework

One day Chao-Chou fell down in the snow, and called out: “Help me!
Help Me!” A monk came and lay down beside him. Chao-Chou got up and
went away.

Zen Kōan

In this chapter, we present our LLVM verification framework, llvmvf. Section 4.1
describes the design goals and architecture of the framework. Section 4.2 provides
implementation details on the front-end of the framework to formalize LLVM IR
and the extraction of an abstract concurrent model under verification. In Section
4.3, we detail the three main applications of llvmvf : an SMT-based Bounded Model
Checker (4.3.1), a Mutation Testing framework (4.3.2) and a technique for generation
of SystemC TLM testbenches using Mutation Testing (4.3.3).

4.1 Architecture

The architecture of llvmvf is designed to create a compact model of the byte code
from the original high level program. In Figure 4.1, we present the several phases of
our framework. The input of our flow is a LLVM byte code file correspondent from
the high-level program under verification. For example, in the case of C/C++ we
can use a compiler from the clang family [20]. Since the implementation of SystemC
and other C++ libraries is heavily based on template programming, applying various
optimizations to obtain more compact byte code modules removes some overhead
from the infrastructure.

We start, phase (a), by using the optimizer to transform the current byte code
into a form that is suitable for our analysis. In total, we apply 18 LLVM passes over
the input byte code file. The LLVM Pass Framework is an infrastructure to struc-
turally implement byte-code traversals at different levels of abstraction for compiler
transformations/optimizations and analysis. We divide the set of transformations
applied into decidability and simplification categories. Decidability transformations
aim at generating a bounded version of the program such that the reachability prob-
lem becomes decidable for sequential programs. For the purpose of our analysis we
want to obtain byte code that has no cycles in the basic block graph. Simplification

22 4 LLVM Verification Framework

LLVM IR LLVM IR
(a) simplify LLVM IR

Model
(b) extract Abstract

Model
(c) abstract

Back-Ends
(d) verify

Fig. 4.1: llvmvf Architecture

transformations aim at simplifying our formalization. We reduce the byte code size
eliminating LLVM IR constructs not supported by our analysis such as invoke or
switch instructions. Furthermore, we lift stack operations by promote the stack to
registers and use an LLVM pass to name all nameless identifiers.

4.2 Front-End

In phase (b) of Figure 4.1, we use a binding mechanism to extract a LLVM IR model
that follows the abstract grammar in Figure 2.5 (4.2.1). The model generated by
the extraction function is refined into an abstract concurrent model that contains
information about the architecture and the behavior of the processes (4.2.2). To
extend the framework to a new concurrent mechanism or language, the only compo-
nent that a user has to implement is the refinement from LLVM IR to the abstract
concurrent model.

4.2.1 Extraction

The extraction function uses a double binding schema to call a LLVM API function
from Haskell as Figure 4.2 illustrates.

An alternative solution to formalize LLVM IR in Haskell would be to create a
parser from the dissembler output. Our approach is more reliable because the output
from the dissembler might contain errors but we experienced a scalability problem
from the Haskell package llvm-base already developed. This problem arose because
of API changes in LLVM with newer versions and it required the implementation of
a complete set of bindings both on the Haskell and c binding libraries.

For example, to call the LLVM API function getModuleIdentifier that retrieves
the name of the byte code module:

const std : : s t r i n g &g e t M o d u l e I d e n t i f i e r () const {
return ModuleID ;

}

4.2 Front-End 23

LLVM C++LLVM C
 c Bindings

LLVM Haskell

 Haskell
 Foreign Function

 Interface

Fig. 4.2: Calling the LLVM API in Haskell.

First we need to create the c binding:

const char ∗LLVMGetModuleIdentifier (LLVMModuleRef M) {
return unwrap (M)−>g e t M o d u l e I d e n t i f i e r () . c s t r () ;

}

And finally, the Haskell binding:

f o r e i g n import c c a l l unsa fe ”LLVMGetModuleIdentifier ”
g e t M o d u l e I d e n t i f i e r : : ModuleRef −> IO CString

We have extended the functionality of the current Haskell and C binding infras-
tructure with about 25 LLVM API function calls.

4.2.2 Abstraction

The LLVM IR model extracted implicitly represents a concurrent model through
function calls to concurrent libraries such as Pthread and the SystemC kernel. We
refine the LLVM IR model as a synchronous model of concurrent program [37]. A
synchronous model is a concurrency model with explicit scheduler where only one
thread can execute at a time. We use an Haskell type class to denote the class of
synchronous concurrent models:

class SCModel t where
model : : Module −> Model t

The model function transforms a LLVM model Module into an abstract Model
presented in Figure 4.3.

We record the main function in the Model to be able to map arguments to the
threads parameters. A Process is a model of the original LLVM Function with
concurrent productions such as CreateThread or MutexLock. Each instruction is
labelled with an unique attribute representing the program counter.

A model represents a concurrent control flow graph. A concurrent control flow
graph is an annotated control flow graph with scheduling information such as thread
creation.

Figure 4.4 shows the concurrent control flow graph for the Pthread program in
Figure 2.7. The diamond node represents the scheduler. Each instruction is anno-
tated with a program counter in the left side. For Pthread programs, the abstraction

24 4 LLVM Verification Framework

data Model t = Model { types : : NamedTypes
, g l o b a l s : : Globals
, main : : Process
, procs : : Proce s s e s
, sched : : Scheduler
}

data Process = Process { i d ent : : String
, unProc : : Function }

data Scheduler = Preemptive
| NonPreemptive

Fig. 4.3: Abstract Model Declaration.

algorithm traverses the main function calculating the intra-procedural control flow
and searching for scheduling operations. In this example, the LLVM instruction at
program counter 38:

ca l l i 32 @pthread create (i 64 ∗ %id1 , %u n i o n . p t h r e a d a t t r t ∗
nul l , i 8 ∗ (i 8 ∗) ∗ @Tx, i 8 ∗ %tmp1) nounwind

Is translated to:

Create Thread ”Tx” (I d e n t i f i e r ”tmp1” (TyPointer (TyInt 8))

4.3 Back-End

In this Section we describe phase (d) of Figure 4.1. In this thesis, we devised two
applications of llvmvf : an SMT-based Bounded Model Checker (4.3.1) for Pthread
programs using the abstract model described in the previous section; and a back-
wards static analysis procedure based on our LLVM IR Mutation Testing framework
(4.3.2) for generation of SystemC TLM testbenches framework (4.3.3).

4.3.1 SMT-based Bounded Model Checker

The abstract model described in the previous section represents a state transition
system. Given a transition system M , a bound k and a property φ, a SMT-based
BMC generates the formula:

Ψ(M,k, φ) = I(M)
∧

i∈[0..k−1]

Ti(M) ∧ J¬φKi (4.1)

Although we have a partial implementation for a liner encoding of LTL proper-
ties, we currently focus on verifying user assertions. Therefore, we are able to stat-
ically determining the error states since they are calls to the function assert fail
and reduce Formula 4.1 to a reachability problem:

4.3 Back-End 25

function main

basic block bb

function Tx

basic block bb

basic block bb2

basic block bb5 basic block bb6

basic block bb11

function Ty

basic block bb

basic block bb2 basic block bb8

basic block bb9

||

1 %tmp = load i32* @x, align 4 16 %tmp = load i32* @x, align 4

29 %id1 = alloca i64, align 8

30 %id2 = alloca i64, align 8

31 %arg1 = alloca i32, align 4

32 %arg2 = alloca i32, align 4

33 void store i32 10, i32* %arg1, align 4

34 void store i32 20, i32* %arg2, align 4

35 call nondet_uint

36 void store i32 %tmp, i32* @i, align 4

37 %tmp1 = bitcast i32* %arg1 to i8*

38 create_thread

39 %tmp3 = bitcast i32* %arg2 to i8*

40 create_thread

41 ret i32 0

2 %tmp1 = icmp sgt i32 %tmp, i32 2

3 br i1 %tmp1, label %bb2, label %bb11

4 %tmp3 = load i32* @i, align 4

15 ret undef

5 %tmp4 = icmp ult i32 %tmp3, i32 10

6 br i1 %tmp4, label %bb6, label %bb5

7 call __assert_fail 9 %tmp7 = bitcast i8* %arg to i32*

8 unreachable 10 %tmp8 = load i32* %tmp7, align 4

11 %tmp9 = sext i32 %tmp3 to i64

12 %tmp10 = getelementptr [10 x i32]* @a, i64 0, i64 %tmp9

13 void store i32 %tmp8, i32* %tmp10, align 4

14 br label %bb11

17 %tmp1 = icmp sgt i32 %tmp, i32 3

18 br i1 %tmp1, label %bb2, label %bb8

19 %tmp3 = bitcast i8* %arg to i32* 26 void store i32 3, i32* @x, align 4

20 %tmp4 = load i32* %tmp3, align 4

21 %tmp5 = load i32* @j, align 4

22 %tmp6 = sext i32 %tmp5 to i64

23 %tmp7 = getelementptr [10 x i32]* @a, i64 0, i64 %tmp6

24 void store i32 %tmp4, i32* %tmp7, align 4

25 br label %bb9

28 ret undef

27 br label %bb9

Fig. 4.4: Concurrent Control Flow Graph for Example 2.7.

26 4 LLVM Verification Framework

Ψ(M,k) = I(M)
∧

i∈[0..k−1]

Ti(Mprocs) ∧

Current state is a fail state︷ ︸︸ ︷∨
f∈F (M)

∨
j∈[0..tc−1]

Πjpci = f (4.2)

In Formula 4.2, tc is the number of threads and Πjpci is the program counter in
bound i of the thread Πj . The formula encodes a breadth-first search for an error
state f in the set of error states of M, F (M), up to the specified bound k in the
transition system M .

Model Encoding

Following the Formula 4.2, we start by encoding the initial state of M , I(M), as:

I(M) = T (Mtypes) ∧ T (Mglobals) ∧ T (Mmain)
∧

pci∈PCi0
(Mprocs)

pcΠi0
= pci (4.3)

In Formula 4.3:

• T (Mtypes) represents the encoding of all the types used in the program;
• T (Mglobals) represents the encoding of all global/shared variables between

threads;
• T (Mmain) represents the sequential encoding of the main function;
• pcΠi0

= pci assigns a fresh variable that represents the pc of thread Πi in the
initial state 0 to the initial program counter of thread Πi.

In the encoding Ti(Mtypes), we define the type iN as a new sort IN that is
a synonym for a BitV ector of size N, except for i1 that is mapped to Bool. For
example, the LLVM type i8 is encoded as:

(define-sort I8 () (BitVec 8)) (4.4)

Arrays and Vectors produce in the same sort:

Ti(Array n ty) = (define-sort Arraynty () (Array (BitVec bsize(n)) sort(ty)))
(4.5)

The function sort retrieves the sort of the type and the function bsize generates
a BitV ector of the minimum size required to encode the number of elements in the
Array. For example, an Array with 4 elements of type i8 is encoded as:

(define-sort Array4I8 () (Array (BitVec 3) I8)) (4.6)

For simplicity, pointer types are defined as the sort of the type they point to.
Structures are encoded as pairs of sorts. For example, the type:

%u n i o n . p t h r e a d a t t r t = type { i64 , [48 x i 8] }

4.3 Back-End 27

is encoded as:

(declare-sort Pair 2)

(define-sort union.pthread attr t () (Pair I64 Array48I8))
(4.7)

Encoding for the remaining LLVM types is not supported yet. Note that ∧ is
overloaded to concatenate both encodings in T (Mtypes)∧T (Mglobals) since T (Mtypes)
does not generate predicates but SMT-LIB commands.

In the encoding Ti(Mglobals), we declare the global variables and if they are
initialized we generate assertions and a predicate lid, where id is the variable name,
that keeps track of the last program counter where an assignment was performed.
By default the program counter is 0. The global declaration:

@x = g l o b a l i 32 2 , a l i g n 4

is encoded as:

(declare-fun x () I32)

(declare-fun lx () I32)

(assert (and (= x (bv2 32)) (= lx (bv0 32))))

(4.8)

We add extra predicates to I(M) to control possible store instructions related
to global variables in the main function.

The encoding of T (Mmain) is given by the formula:

T (Mmain) =
∧

pci∈PCi(Mmain)

(ppci = pci) ∧ Jti, next(pci)Kseq (4.9)

In Formula 4.9, pci represents the program counter at instruction i; ppci is a
predicate that represents a constraint to enable the effect of the instruction if the
current ppc is equal to pci. The function next retrieves the set of program counter
successors of pci. We define the encoding function J Kseq for sequential programs as
follows:

Jti, ∅Kseq = JtiK (4.10)

J(Br c), {pct, pcf}Kseq = (c ∧ ppci+1 = pct) ∨ (¬c ∧ ppci+1 = pcf) (4.11)

Jti, {pci+1}Kseq = JtiK ∧ ppci+1 = pci+1 (4.12)

The first case, Formula 4.10, encodes an instruction that has no successors by
simply encoding the instruction without the constraints for the successors. The
second case, Formula 4.11, encodes the conditional branch instruction. In this case,
we generate two alternatives according to the condition predicate for the true and
false branches. In the third case, Formula 4.12, we encode an instruction with one
successor. The encoding is a conjunction of the encoding of the instruction and a
constraint that determines the next program counter value, ppci+1.

The encoding function JtiK is straightforward for binary, bit-level, casting and
address calculation instructions, since these instructions are part of the theory of
arrays and fixed-sized bitvectors or can easily be encoded. For example, the LLVM
instruction add is translated into the instruction bvadd in the theory of bitvectors.

28 4 LLVM Verification Framework

The address calculation instruction getelementptr is translated into the instruction
select in the theory of arrays.

The encoding of a set of threads at a given bound depth i is given by the formula:

Ti(Mprocs) =

scheduler︷ ︸︸ ︷∧
j∈[0..tc−2]

xor Πij Πij+1 ∧
∨

j∈[0..tc−1]

∨
pci∈PC(Πj)

Πij ∧ (Πpci = pci) ∧ Jti, next(pci)Kcon

︸ ︷︷ ︸
thread instruction encoding

(4.13)

In Formula 4.13: Πij is a predicate that represents that thread Πj is enabled
in bound i. The left sub-formula of the conjunction in Formula 4.13 encodes a
preemptive scheduler that at each bound depth i chooses a single thread to execute.
The right sub-formula of the conjunction in Formula 4.13 encodes all instructions in
every thread. One of the instructions is encoded if the thread that the instruction
belongs is chosen and the current location at this bound depth is equal to the current
program counter of the thread.

We define the encoding function J Kcon for concurrent programs as follows:

Jti, ∅Kcon = JtiK (4.14)

J(Br c), {pct, pcf}Kcon = (c ∧Πjpci+1 = pct) ∨ (¬c ∧Πjpci+1 = pcf) ∧
∧

g∈[0..tc−1]∧j 6=g

Πgpci+1 = Πgpci

(4.15)

Jti, {pci+1}Kcon = JtiK ∧ (Πjpci+1 = pci+1) ∧
∧

g∈[0..tc−1]∧j 6=g

Πgpci+1 = Πgpci

(4.16)

The concurrent encoding J Kcon is an extension to the sequential encoding to
handle the various program counters of the threads. To encode memory access in-
structions related to global variables, we introduce fresh variables to each store of
a global variable and a variable associated with the global variable that represents
the program counter of the store.

In Figure 4.4, the encoding of the store instruction with pc of 26 is:

Typc0 = 26 ∧ x0 = 3 ∧ pi1 = pi0 ∧ px1 = 26 ∧ Typc1 = 27 ∧ Txpc1 = Txpc0
(4.17)

pi0 and pi1 are the predicates related to store instructions of variable i. Since
this instruction is a store of x, we create a new fresh variable x0 and assign to px1
the value of the current program counter.

The encoding of the load instruction with pc of 1 is:

Txpc0 = 1 ∧ ((px0 = lx ∧ Txtmp = x) ∨ (px0 = 26 ∧ Txtmp = x0)) ∧ pi1 = pi0 ∧ px1 = px0 ∧ Txpc1 = 2 ∧ Typc1 = Typc0
(4.18)

In this formula, we assign a value to Txtmp depending on the value of px0, the
variable that represents the value of the last store. In this case, px0 is either lx
which is the program counter for the global variable initialization or px0 is 26 that
corresponds to the store above. This approach can also be used to encode the phi
instruction.

4.3 Back-End 29

Encoding Mutex Locking Operations

We model Pthread mutexes as predicates and for each bound depth we generate
fresh predicates that represent the current state of the mutex. We consider the
value of the mutex predicate as false if the current state of the mutex is lock and
true otherwise. We encode mutex lock and mutex unlock as:

Jmutex lock mKcon = m0 ∧ ¬m1 (4.19)

Jmutex unlock mKcon = ¬m0 ∧ m1 (4.20)

The complexity of our encoding algorithm is k× size(M), where k is the bound
and size(M) is the number of instructions in model M .

4.3.2 Mutation Framework

In this section, we describe our mutation framework that operates at the LLVM IR
level. Consider the instance of the framework for a SystemC metamutant generation
flow that is illustrated in Figure 4.5.

SystemC

LLVM IR

 clang++

Metamutantmutator

Fault
Model

Fig. 4.5: Metamutant Generation Flow

Given a SystemC program, we use clang++ [20], a C++ compiler front-end for
LLVM, to generate LLVM IR byte code. Then we apply Algorithm 2 based on a
fault model for SystemC through an LLVM pass to generate a metamutant.

Algorithm 2 describes our metamutant generation procedure. In line 1, we ini-
tialize the integer c to 0. This integer serves as a counter that represents the number
of instructions mutated so far and also is an argument to a new mutate function in
our mutation library. The mutate function implements a mutation operator. Then,

30 4 LLVM Verification Framework

Algorithm 2 Meta Mutant Generation

Input: LLVM IR Module M .
Output: Metamutant, Number c of mutation operators.
1: initialize counter c to 0;
2: for each function F in M do
3: for each basic block BB in F do
4: for each instruction I in BB do
5: if isSync(I) then
6: I ′ = mutate(I, c);
7: increment c;
8: end if
9: end for

10: end for
11: end for

we iterate over all instructions (lines 2 to 4) and check if the current instruction is
a call to a relevant SystemC synchronization function (line 5). In that case, in line
7, we mutate the callee of the instruction to point to our mutation library.

We currently explore a simple fault model that implements mutation operators
that remove synchronization functions related to SystemC events and time. Never-
theless, our framework is easily extensible to a complete set of SystemC constructs
and richer mutation operators.

void T1()
{

i f (cs1) {
// wait (e) ;

cs2=f a l s e ;
}
wait (10 ,SC NS) ;
cs2=true ;

}

void T2()
{

i f (cs2) {
cs1=f a l s e ;
e . notify () ;

}
wait (10 ,SC NS) ;
cs1=true ;

}

Fig. 4.6: Mutant Example for SystemC Design in Figure 2.8

Previous work [76] have investigated the relationship between SystemC TLM
synchronization operations and common concurrent error patterns such as dead-
locks, lost notifies or data races. Figure 4.6 shows an example of a mutant generated
from the SystemC design in Figure 2.8. In this case, Mutation #1 was enabled and
the mutation operator removed the call to wait(e). Independent of the scheduling
order, this mutant has a lost notify in thread T2 if the value of cs2 is true. This
information is useful for testers in fault identification and resolution.

4.3 Back-End 31

4.3.3 Generation of SystemC TLM Testbenches Using Mutation
Testing

We explore the dependency relation between input variables and synchronization
operations following the hypothesis that a suitable testbench for a concurrent pro-
gram should reach all possible synchronization operations. We are interested Sys-
temC designs that have free variables in at least one of their processes and support
a mechanism such that testing different values for those free variables is possible.
Also, note that although in this section we motivate our techniques through SystemC
models our approach is applicable to LLVM IR programs in general.

int sc main (int argc , char ∗argv [])
{

// I n i t i a l i z e cs1 and cs2 with argv

M1 M1(”M1” , cs1 , cs2) ;
s c s t a r t () ;

re turn 0 ;
}

Fig. 4.7: sc main of SystemC design in Figure 2.8

In Figure 4.7, we present a simple example of a simulation model for the SystemC
design in Figure 2.8. In sc main, we start by assigning cs1 and cs2 with the user
input arguments. Then, we create an instance of the SystemC module M1 with cs1
and cs2. Finally, we start the simulation with a call to sc start.

1 %struct .M1 = type { %” c l a s s . s c c o r e : : sc module ” , %” c l a s s . s c c o r e : : s c event ” ,
i8 , i 8 }

2 @.s t r = pr iva t e unnamed addr constant [3 x i 8] c”M1\00” , a l i gn 1
3 de f i n e i32 @sc main (i32 %argc , i 8 ∗∗ nocapture %argv) uwtable {
4 ; . . .
5 %M1 = a l l o c a %struct.M1 , a l i gn 8
6 %tmp1 = a l l o c a %” c l a s s . s c c o r e : : sc module name” , a l i gn 8
7 ; %tmp5 ˜= a r g v [1] , %tmp9 ˜= a r g v [2]
8 ca l l void @ ZN7sc core14sc module nameC1EPKc(%” c l a s s . s c c o r e : : sc module name

”∗ %tmp1 , i 8 ∗ gete lementptr inbounds ([3 x i 8]∗ @.str , i 64 0 , i64 0))
9 ca l l void @ ZN2M1C2EN7sc core14sc module nameEbb(%struct .M1∗ %M1, %”

c l a s s . s c c o r e : : sc module name”∗ undef , i 1 ze roext %tmp5 , i 1 ze roext %
tmp9)

10 ca l l void @ ZN7sc core14sc module nameD1Ev(%” c l a s s . s c c o r e : : sc module name”∗
%tmp1)

11 ca l l void @ ZN7sc core8sc startEv ()
12
13 ; . . .
14 }

Fig. 4.8: LLVM IR of sc main

Figure 4.8 lists the LLVM byte code relevant to sc main.
The sc main byte code starts by allocating a struct M1 (line 6). The definition

of the named type struct.M1 is listed in line 2. Note that it contains information

32 4 LLVM Verification Framework

about the class variables of M1. In line 9, there is a call to the constructor of
sc module name. Then, in line 10, an instance of M1 is defined with a call to the
constructor. Finally, sc start is called (line 12) after the call for the destructor of
sc module name (line 11).

1 Module
2 [NmdTy (Local ” s t ru c t .M1”) TyStruct (Local ” s t ru c t .M1”) [SyscMod , SyscEv , (

TyI 8) , (TyI 8)]]
3 [Global (Global ” . s t r ”) (TyArray 3 (TyI 8)) (Const (CString ”M1\00”))]
4 [FunctionDef (Global ” sc main ”) (TyI 32) [Param (Local ” argc ”) (TyI 32) ,

Param (Local ” argv”) (TyPtr (TyPtr (TyI 8)))]
5 [BasicBlock
6 [Al loca (Local ”M1”) (TyStruct (Local ” s t ru c t .M1”) . . .)
7 , Al loca (Local ”tmp1”) (TyStruct (Local ” c l a s s . s c c o r e : : sc module name”)

. . .)
8 , . . .
9 , Cal l TyVoid (Global ” s c c o r e : : sc module name : : sc module name”) [Ident (

Local ”tmp1”) , Ident (Global ” . s t r ”) , Const (CInt (TyI 64) 0) , Const (
CInt (TyI 64) 0)]

10 , Cal l TyVoid (Global ”M1 : :M1”) [Ident (Local ”M1”) , Const UndefC , Ident (
Local ”tmp5”) , Ident (Local ”tmp5”)]

11 , Cal l TyVoid (Global ” s c c o r e : : sc module name : : ˜ sc module name () ”) [Ident (
Local ”tmp1”)]

12 , Cal l TyVoid (Global ” s c c o r e : : s c s t a r t () ”) []
13]
14]
15]

Fig. 4.9: sc main Model

We start by generating a metamutant byte code file of a SystemC design using
the mutation framework described previously. Using the front-end of our framework
we extract a SystemC model by statically analyze the elaboration phase of a Sys-
temC simulation model. The method iterates over all instructions in the sc main
function and checks for calls to sc module constructors until it reaches the call to
sc start. In case of a call to a sc module constructor we retrieve the module in-
formation. This function analyzes the named type to retrieve the class variables
and inspects the constructor to gather information about the module processes and
communication.

Encoding Reachability Problem

Given a mutated instruction i in a basic block βi, and a SystemC model M , we
generate the following SMT formula in the theory of bit-vectors and arrays:

Ψ(i,M) =

inter βi analysis︷ ︸︸ ︷
⊗(i,M) ∧ ⊕(i,M)︸ ︷︷ ︸

intra βi analysis

(4.21)

Formula 4.21 encodes the reachability problem for LLVM IR with concurrent
constructs. We model this problem as a conjunction of the predicates given by
operators ⊗ (otimes) and ⊕ (oplus).
⊗ encodes the constraints related to local identifiers to reach the basic block of

instruction i and is formally defined as follow.

4.3 Back-End 33

⊗(i,M) =
∨

β′∈Π(βi)

�(Jτβ′ , βiK, Π(τβ′), M) ∧

recursion︷ ︸︸ ︷
⊗(τβ′ , M) (4.22)

To reach the mutated basic block βi, we iterate over its direct basic block pre-
decessors and for each basic block the operator � (odot) encodes the reachability
constraints. � performs an intra basic block backwards analysis with an initial pred-
icate that represents the reachability path to βi. The initial predicate is given by
Jτβ′ , βiK (Formula 4.23), where τβ′ is the terminator instruction of the basic block
β′.

Finally, we reach the entry basic block using recursion, and guarantee termina-
tion based on the assumption that there are no cycles in the basic block graph.

Note that Π is a polymorphic function; Π(βi) computes the direct predecessor
set of basic blocks and Π(τβ′) computes the predecessor set of instructions.

Jτβ′ , βiK =


true, (τβ′ = br βκ) ∧ βi ≡ βκ
ν ≡ 1, (τβ′ = br ν, βt βf) ∧ βi ≡ βt
ν ≡ 0, (τβ′ = br ν, βt βf) ∧ βi ≡ βf
false, otherwise

(4.23)

� is defined based on set induction. The base case, Formula 4, is the head of
the basic block and since there are no more instructions to interpret, we return
the predicate. In the induction step, Formula 5, we interpret the instruction ε with
the current predicate ψ. The interpretation function J K encodes the instruction in a
simple flat memory model supported by SMT solvers and applies logical conjunction
with the current predicate. If the instruction to be encoded is a mutated instruc-
tion, we apply function Ψ to generate the correspondent SMT formula. We can use
memoisation techniques to optimize our implementation.

�(ψ, ∅, M) = ψ (4.24)

�(ψ, ε ∪ Υ, M) = �(Jε, ψ, MK, Υ, M) (4.25)

When reasoning about sequential programs at the LLVM byte code level we can
assume reachability of any instruction in a basic block if we reach the entry point
of the basic block. However, in a concurrent program reachability from the head of
the basic block to the current mutated instruction is not guaranteed. The operator
⊕ (oplus) defined in Formula 4.26, encodes the constraints for the current thread
to be enabled (operator]i, uplus) and also considers previous deadlock scenarios
in the mutated basic block βi (operator]). The function Λ(i) returns the set of
predecessor operations in the basic block that may lead to a deadlock situation.

⊕(i,M) =]i(i,M)
∧

i′∈Λ(i)

](i′,M) (4.26)

We exploit the deterministic implementation of the SystemC scheduler to fix a
scheduling order. In a SystemC model M , we define a poset ≺proc composed of the
processes in the model. We build this relation based on the declaration order in the
original program. For the SystemC design in Figure 2.8, T1 < T2.

34 4 LLVM Verification Framework

]i(i,M) =

{
true , Ti minimal ≺proc∨
T<Ti

Ψ(i−1,M) , otherwise
(4.27)

Operator]i in Formula 4.27, checks if the thread executing instruction i, Ti is
the minimal element of ≺proc. In that case we can assume that Ti will be the first
thread to be executed. To guarantee reachability of i if Ti is not the minimal element
of ≺proc, at least one of the previously executed threads has to reach an instruction
i−1 that gives control to the scheduler. The operator] in Formula 4.28, encodes the
constraints for previous i−1 instructions in the basic block.

](i,M) =
∨
T<Ti

Ψ(i−1,M) (4.28)

Testbench Generation

We pass the generated SMT formula to a solver to generate a set of assignments. It
is not guaranteed that the formula generated will be satisfiable. This means that the
mutated instruction might be dead or that for that scheduling a deadlock occurs.

In the final step of test generation we map the thread local identifiers to user
input arguments of sc main. If the formula contains free variables, the SMT solver
will choose a default value according to its type.

We demonstrate our method with the mutant of Figure 4.6. In Figure 4.10, we
provide the relevant LLVM byte code instructions of thread T1.

1 bb :
2 %tmp = a l l o c a %” c l a s s . s c c o r e : : s c t ime ” , a l i gn 8
3 %tmp1 = gete lementptr inbounds %struct .M1∗ %this , i 64 0 , i32 2
4 %tmp2 = load i8 ∗ %tmp1 , a l i gn 1 , ! tbaa ! 6 , ! range ! 7
5 %tmp3 = icmp eq i 8 %tmp2 , 0
6 br i 1 %tmp3 , label %. c r i t e d g e , label %bb4
7
8 bb4 : ; p r e d s = %bb
9 %tmp5 = gete lementptr inbounds %struct .M1∗ %this , i 64 0 , i32 1

10 %tmp6 = gete lementptr inbounds %struct .M1∗ %this , i 64 0 , i32 0 , i 32 0 , i 32 1
11 %tmp7 = load %” c l a s s . s c c o r e : : s c s imcontext ”∗∗ %tmp6 , a l i gn 8 , ! tbaa ! 0
12 ca l l void @ ZN7sc core4waitERKNS 8sc event 13sc simcontextE(%” c l a s s . s c c o r e

: : s c event ”∗ %tmp5 , %” c l a s s . s c c o r e : : s c s imcontext ”∗ %tmp7)

Fig. 4.10: LLVM byte code for T1

In this example, the mutated instruction i is the wait(e) in line 12, and we use
the extracted model M for this example.

Ψ(wait(e),M) = ⊗(wait(e),M) ∧ ⊕(wait(e),M)

Since the basic block predecessor of bb4 is the entry basic block bb, the operator
⊗ is reduced to:

4.3 Back-End 35

⊗(wait(e),M) = �(Jτbb, bb4K, Π(τbb), M)

Then, we use the interpretation function in Formula 4.23 to further reduce ⊗ to:

�(tmp3 = 0, Υ, M) = struct.M1[2] 6= 0 (4.29)

Υ is the set of instructions from lines 5 to 2. In 4.30, we show the step-by-step
analysis execution for Equation 4.29.

�(%tmp3 ≡ 0, Π(τβ′), M)

= �(J%tmp3 = . . . , %tmp3 ≡ 0, MK, Υ1, M)

J%tmp3 = icmp eq i8 %tmp2, 0, %tmp3 ≡ 0, MK = %tmp2 6= 0

= �(J%tmp2 = . . . , %tmp2 6= 0, MK, Υ2, M)

J%tmp2 = load i8* %tmp1, %tmp2 6= 0, MK = %tmp1 6= 0

= �(J%tmp1 = . . . , %tmp1 6= 0, MK, Υ3, M)

J%tmp1 = getelementptr %struct.M1* %this, i64 0, i32 2,

%tmp2 6= 0, MK = %struct.M1[2] 6= 0

= �(J%tmp = . . . , %struct.M1[2] 6= 0, MK, ∅, M)

J%tmp = alloca %class.sc core::sc time, align 8,

%struct.M1[2] 6= 0, MK = %struct.M1[2] 6= 0

= %struct.M1[2] 6= 0

(4.30)

The ⊕ operator is reduced to true since T1 is the minimal element of MT and
there is no more call wait instructions before line 12. The simplified SMT expression
generated is:

Ψ(wait(e),M) = struct.M1[2] 6= 0 ∧ true

⊕(wait(e),M) =]i(wait(e),M)
∧

i′∈Λ(wait(e))

](i′,M) (4.31)

Λ(i) = ∅
]i(i,M) = true

Ti = T1 ≺M
⊕(i,M) = true

(4.32)

Table 4.1 shows a test suite for M using four mutants. In this case, we achieve
total input coverage. Note that some formulas can generate the same test case. This
information could be used as a heuristic to reduce the number of mutants.

36 4 LLVM Verification Framework

M# Simplified SMT Formula Input

M1 argv[1] = t (t,f)

M2 argv[1] = f ∨ (argv[1] = t ∧ argv[2] = t) (f,f)

M3 argv[2] = t (f,t)

M4 argv[1] = t ∧ argv[2] = t (t,t)

Table 4.1: Test suite generated for SystemC in Figure 2.8

Oracle Generation

A test oracle is a mechanism that determines the program correctness with respect
to a test [86]. We modify this notion of test oracle for our mutation testing based
technique as follows. Using the testbenches generated with our method, we pro-
duce oracles that represent the differences between a program and its mutant by
instrumenting the program with observers for all variables. The observers dump an
internal state triggered by any synchronization operation. Our state representation
is the thread identifier and the values of all variables in scope. We use execution
trace comparison as observable differences to obtain a complete definition of killed
mutant. Note that an assertion could also be an oracle for our technique.

Table 4.2 lists two execution traces generated when executing the original design
in Figure 2.8 and Mutant #1 with the input generated (t,f) from Table 4.1. Both
the original and mutant program start executing T1 with the initial input (t,f).
The original program will reach wait(e) and suspend itself. Then T2 will not call
notify since cs2 is false and wait 10 simulation time units. Since T1 is waiting for
the notification of the event, the scheduler will update the time to enable T2, which
will then execute cs1 = true and terminate leading to a deadlock. Mutant #1
starts executing T1 and skips the operation wait(e). The second line of the trace
corresponds to the dump of the assignment cs2 = false. Then both threads will wait
10 simulation time units. The fourth line of the trace corresponds to the assignment
cs2 = true and finally, T2 will reach the assignment cs1 = true.

Original Trace Mutant #1 Trace

T1:(t,f) T1:(t,f)

T2:(t,f) T2:(t,f)

Time Elapse Time Elapse

T2:(t,f) T1:(t,t)

Deadlock T2:(t,t)

Table 4.2: Execution Trace Comparison.

4.3 Back-End 37

Oracles provide useful information to find synchronization errors. Table 4.3 lists
all the schedulings for the test suite generated in Table 4.1. We can use the execution
traces for fault localization to explain why the program deadlocks in the original
version and not the mutant.

M# Input Original Schedule Mutant Schedule

M1 (t,f) T1; T2; TE; T2 (DL) T1; T2; TE; T1; T2

M2 (f,f) T1; T2; TE; T1; T2 T1; T2; TE; T2

M3 (f,t) T1; T2; TE; T1; T2 (LN) T1; T2; TE; T1; T2

M4 (t,t) T1; T2; T1; TE; T1; T2 T1; T2; TE; T1

Table 4.3: Schedulings. (TE = time elapse, DL = deadlock, LN = lost notify)

5

Experiments

It is better to have an approximate answer to the right question than an
exact answer to the wrong one.

John Tukey

In this Chapter, we present initial experimental results of the applications de-
scribed in the Chapter 4. We conducted the experiments using Ubuntu 11.10 in a
quad-core Intel Xeon Processor E5520 with 32 GB of RAM.

LLVM IR
Model

Abstract
Model

SystemC
Model

Pthread
Model

SMT Formula
z3

MathSat
...

Test suite

Fig. 5.1: Automated Test Generation Flow in llvmvf.

In Figure 5.1, we illustrate the test generation flow backend in llvmvf. Given
a LLVM IR Model, we can instantiate our abstract model to SystemC or Pthread
and then apply a verification procedure to generate a SMT formula. Hence, llvmvf
provides an infrastructure for comparison of different verification methods. Since the

5 Experiments 39

strategies described previously are orthogonal, in the future we can use the SMT-
based BMC to generate SystemC testbenches and compare the performance of our
BMC and our backwards analysis algorithm.

SMT-based Bounded Model Checker

We tested our SMT-based BMC with a small set of Pthread programs based on
testcases from the benchmark used by ESBMC [27] in their experiments. In Table
5.1, we present our results. Currently, we are restricted to multi-threaded programs
that have user assertions and our BMC only supports interleaving semantics and
mutex locking operations for Pthreads programs. The second column of the table
shows the size of the LLVM byte code file in number of lines and third column
represents the number of threads in the program. We run the BMC in a iterative
fashion with bound up to 50. The fourth column of the table shows the bound
where the formula became satisfiable (fifth column). In the case of deadlock01 bad,
the generated formula was always unsatisfiable because the program always hit a
deadlock scenario. One of the advantages of generating a SMT-LIB v.2 program
is that we are able to compare different SMT solvers that are compliant with the
standard. We present in the sixth and seventh column the execution time of the last
bound for two different SMT solvers, z3 and MathSat 5. Our initial investigation
indicates that MathSat 5 is more efficient to resolve programs in the theory of bit-
vectors.

z3 MathSat 5

Testcase # Lines # Threads Bound Result Time (s) Time (s)

account bad 107 2 30 sat 1.496 0.587

simple 90 2 11 sat 0.290 0.090

multiple 106 3 15 sat 9.830 1.709

deadlock01 bad 77 2 50 unsat 0.750 0.528

lazy01 bad 86 3 15 sat 0.186 0.129

Table 5.1: SMT-based BMC Results

In Table 5.2, we present an initial comparison between llvmvf and esbmc. esbmc
is a mature BMC with several optimizations flags such as options to control the
scheduling constraints or to restrict the number of context switches. We ran llvmvf
in a loop incrementing the bound depth until we have a satisfiable assignment or the
bound is 50; and esbmc without optimizations and with a timeout of 30 seconds.
Our preliminary comparison suggests that when the bound depth required for a
satisfiable assignment or the number of threads is higher, our framework seems to
have the similar execution times. In the case of lazy01 bad, esbmc does not achieve
a verification error with timeout of 30 seconds. Moreover, running esbmc restricting

40 5 Experiments

the number of context switches to three finds a verification error with at execution
time of 3.081 which is still outperformed by our framework. A possible explanation
for this situation may be related to the efficient of MathSat over z3 used by esbmc.

Testcase llvmvf esbmc

account bad 12.311 9.919

simple 0.792 0.165

multiple 7.901 0.386

deadlock01 bad 18.143 TO

lazy01 bad 1.368 TO

Table 5.2: Execution time (s) comparison between llvmvf and esbmc.

SystemC Testbench Generation using Mutation Testing

We have conducted initial experiments with 5 SystemC designs. We have modified
for our analysis four test cases from the SCRV [42] test suite and implemented an
instance of the producer consumer example. In Table 5.3, we present our results. The
second and third column of the table represent respectively, the size of the original
and optimized LLVM byte code in number of lines. In the fourth column and fifth
columns we present the number of generated mutants and test cases generated,
respectively. Note that the number of test cases is smaller or equal to the number
of mutants, since we generate at most a single test case for each mutant. The same
test case can kill multiple mutants. The last column presents our mutation coverage
results. Although we generated test cases that reached all mutations, the mutation
coverage scores were not always 100%. The reason is that some mutations do not
produce any observable effects in the traces, e.g., Mutation #2 in Table 4.3. Also
in the case of prodcod, the original program contains redundant synchronization
mechanisms, hence mutation these does not produce any observable effect.

5 Experiments 41

Design # Lines # Lines (Opt) # Mutants # Test cases MC

indexer 1785 1077 5 3 80%

sirac 1980 1110 9 4 89%

fiveteen 1986 1226 4 4 100%

prodcon 1907 1229 5 3 40%

srX 2972 1781 5 2 100%

Table 5.3: Mutation Coverage Results

6

Conclusion

The most exciting phrase to hear in Science - the one that heralds new
discoveries - is not “Eureka!” but “That’s funny...”.

Isaac Asimov

In general, the problem of verifying multi-threaded programs is undecidable [72].
Nowadays, the number of approaches that attempt at a partial or complete verifica-
tion of sequential and concurrent software strongly suggests that formal verification
is the holy grail of computer science. The number of approaches result in such a
vast number of tools with different capabilities that is not easy to name a new
tool with a three letter acronym. Considering the industrial trend of increasingly
complex software to meet the higher demands of a global population of consumers,
software developers are facing the paradox of choice with respect to which technol-
ogy to adopt to create faster, scalable and reliable solutions. Since the hardware
industry made the decisive factor to accomplish these goals through concurrency,
the programming languages that better support mechanisms to safely implement
such applications are more likely to strive.

In this thesis, we tackled the problem of finding a general verification solution
that can be applied to various programming languages and concurrent models. We
mimic the goals of the LLVM framework towards the compiler community and de-
scribe the first steps of a verification framework designed to support the state-of-art
verification approaches and with an implementation that scalable and reliable. We
have introduced a framework that operates at the LLVM byte code level, leveraging
its formal semantics. Our implementation operates at the domain of functional lan-
guages which are known to provide useful abstraction patterns for program analysis.
We generate formal models that have wider applicability in other formal verifica-
tion fields and we introduce two approaches for automated test-case generation: 1)
a SMT-based BMC for Pthread programs, and 2) a testbench generation flow for
SystemC designs using mutation testing. Our experiments show that we can gen-
erate test cases that violate user assertions for Pthread programs and testbenches
with high mutant coverage ratio for SystemC designs. We have conducted a prelim-
inary comparison between our SMT-based BMC and esbmc where we were able to
outperform esbmc in some scenarios.

In the future, we plan to compare both approaches described for automated test
case generation since we can use our SMT-based BMC to encode the reachability

6 Conclusion 43

problem of mutated instructions. We plan fully automate our SystemC testbench
generation and then to complete our approaches for Pthread and SystemC programs
by supporting more concurrent constructs, such as conditional variables in Pthread
programs. Furthermore, we want to extend our encoding infrastructure to reduce
state space exploration by the SMT solver using abstraction techniques, and in-
vestigate completeness thresholds to augment the verification power of our BMC.
Finally, we want to further extend our framework as an infrastructure for SMT
solvers comparison to understand which SMT solver produces faster results.

References

1. IEEE Standard for Standard SystemC Language Reference Manual. IEEE Std
1666-2011 (Revision of IEEE Std 1666-2005), pages 1 –638, jan 2012.

2. V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke. LLVA: A Low-
level Virtual Instruction Set Architecture. In Proceedings of the 36th annual
ACM/IEEE international symposium on Microarchitecture (MICRO-36), San
Diego, California, Dec 2003.

3. J. H. Andrews, L. C. Briand, and Y. Labiche. Is Mutation an Appropriate Tool
for Testing Experiments? In Proceedings of the 27th International Conference
on Software Engineering (ICSE), pages 402 – 411, 2005.

4. A. Armando, J. Mantovani, and L. Platania. Bounded model checking of soft-
ware using smt solvers instead of sat solvers. Int. J. Softw. Tools Technol.
Transf., 11(1):69–83, Jan. 2009.

5. J. Barnat, L. Brim, and P. Ročkai. Towards LTL Model Checking of Unmodified
Thread-Based C & C++ Programs. In NASA Formal Methods Symposium,
volume 7226 of LNCS, pages 252–267. Springer, 2012.

6. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
a modular reusable verifier for object-oriented programs. In Proceedings of the
4th international conference on Formal Methods for Components and Objects,
FMCO’05, pages 364–387, Berlin, Heidelberg, 2006. Springer-Verlag.

7. A. Biere. Bounded Model Checking, chapter 14, pages 455–481.
8. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking

without bdds. In Proceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, TACAS ’99, pages 193–
207, London, UK, UK, 1999. Springer-Verlag.

9. N. Blanc, D. Kroening, and N. Sharygina. Scoot: a tool for the analysis of
systemc models. In Proceedings of the Theory and practice of software, 14th
international conference on Tools and algorithms for the construction and anal-
ysis of systems, TACAS’08/ETAPS’08, pages 467–470, Berlin, Heidelberg, 2008.
Springer-Verlag.

10. N. Bombieri, F. Fummi, and G. Pravadelli. A Mutation Model for the SystemC
TLM 2.0 Communication Interfaces. In Proceedings of the Conference on Design
Automation and Test in Europe (DATE), pages 396–401. ACM, 2008.

46 References

11. N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton, and F. Letombe. Func-
tional Qualification of TLM Verification. In Proceedings of the Conference on
Design Automation and Test in Europe (DATE), pages 190–195. ACM, 2009.

12. J. Bradbury, J. Cordy, and J. Dingel. Mutation Operators for Concurrent Java
(J2SE 5.0). In Workshop on Mutation Analysis, page 11, Nov. 2006.

13. R. Brummayer and A. Biere. Boolector: An efficient smt solver for bit-vectors
and arrays. In Proceedings of the 15th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems: Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2009,,
TACAS ’09, pages 174–177, Berlin, Heidelberg, 2009. Springer-Verlag.

14. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers, 35(8):677–691, 1986.

15. T. A. Budd. Mutation analysis: Ideas, examples, problems and prospects. In
Computer Program Testing, pages 129–148. North-Holland, 1981.

16. C. Tinelli and C. Barrett. The logic of QF AUFBV, 2010.
17. C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic gen-

eration of high-coverage tests for complex systems programs. In OSDI, pages
209–224, 2008.

18. A. Chlipala. A verified compiler for an impure functional language. SIGPLAN
Not., 45(1):93–106, Jan. 2010.

19. A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri. Kratos - a
software model checker for systemc. In CAV, pages 310–316, 2011.

20. clang: a C language family frontend for LLVM, http://clang.llvm.org/, 2012.
21. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based

predicate abstraction for ANSI-C. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2005), volume 3440, pages 570–574, 2005.

22. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, pages
52–71, 1981.

23. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In Proceedings of the 12th International Con-
ference on Computer Aided Verification, CAV ’00, pages 154–169, London, UK,
UK, 2000. Springer-Verlag.

24. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ansi-c programs.
In TACAS, pages 168–176, 2004.

25. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. Vcc: A practical system for verifying concurrent
c. In Proceedings of the 22nd International Conference on Theorem Proving
in Higher Order Logics, TPHOLs ’09, pages 23–42, Berlin, Heidelberg, 2009.
Springer-Verlag.

26. D. R. Cok. The smt-libv2 language and tools: A tutorial. Technical report,
GrammaTech, Inc., 2011.

27. L. Cordeiro and B. Fischer. Bounded model checking of multi-threaded software
using smt solvers. CoRR, abs/1003.3830, 2010.

28. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 238–252, Los Angeles, Califor-
nia, 1977. ACM Press, New York, NY.

References 47

29. L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In TACAS, pages
337–340, 2008.

30. R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data genera-
tion. IEEE Trans. Softw. Eng., 17(9):900–910, Sept. 1991.

31. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, Aug. 1975.

32. B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, Aug. 2006.

33. E. A. Emerson. 25 years of model checking. chapter The Beginning of Model
Checking: A Personal Perspective, pages 27–45. Springer-Verlag, Berlin, Heidel-
berg, 2008.

34. R. W. Floyd. Assigning meaning to programs. In Proceedings of the Symposium
on Applied Maths, volume 19, pages 19–32. AMS, 1967.

35. P. G. Frankl, S. N. Weiss, and C. Hu. All-uses vs Mutation Testing: an Ex-
perimental Comparison of Effectiveness. Journal of Systems and Software,
38(3):235–253, September 1997.

36. G. Fraser and A. Zeller. Mutation-driven generation of unit tests and oracles.
In Proceedings of the 19th international symposium on Software testing and
analysis, ISSTA ’10, pages 147–158, New York, NY, USA, 2010. ACM.

37. M. K. Ganai. Bounded model checking for concurrent systems: Synchronous
vs. asynchronous. In High-Level Verification, pages 67–95. Springer New York,
2011.

38. K. Godel. On Formally Undecidable Propositions of Principia Mathematica and
Related Systems. Dover Publications, 1992. Translation B. Meltzer.

39. A. Griggio. A Practical Approach to Satisfiability Modulo Linear Integer Arith-
metic. JSAT, 8:1–27, January 2012.

40. P. Grogono and B. Shearing. Concurrent software engineering: preparing for
paradigm shift. In Proceedings of the 2008 C3S2E conference, C3S2E ’08, pages
99–108, New York, NY, USA, 2008. ACM.

41. M. Hampton and S. Petithomme. Leveraging a commercial mutation analysis
tool for research. In Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION, 2007, pages 203–209, Sept. 2007.

42. C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz. Full Simulation Coverage
for SystemC Transaction-Level Models of Systems-on-a-Chip. Formal Methods
in System Design, 35(2):152–189, 2009.

43. C. Helmstetter and O. Ponsini. A Comparison of Two SystemC/TLM Seman-
tics for Formal Verification. In Proceedings of the International Conference on
Formal Methods and Models for Co-Design (MEMOCODE), pages 59–68, 2008.

44. C. Hoare. An axiomatic basis for computer programming. Comm. ACM,
12(10):576–583, 1967.

45. G. Holzmann. Spin model checker, the: primer and reference manual. Addison-
Wesley Professional, first edition, 2003.

46. F. Ivancic, Z. Yang, M. Ganai, A. Gupta, and P. Ashar. Efficient sat-based
bounded model checking for software verification. Theoretical Computer Science,
404(3), 2008.

47. R. Jhala and R. Majumdar. Software model checking. ACM Comput. Surv.,
41(4):21:1–21:54, Oct. 2009.

48. Y. Jia and M. Harman. Higher order mutation testing. Inf. Softw. Technol.,
51(10):1379–1393, Oct. 2009.

48 References

49. Y. Jia and M. Harman. An Analysis and Survey of the Development of Mutation
Testing. Software Engineering, IEEE Transactions on, PP(99):1, 2010.

50. S. P. Jones, editor. Haskell 98 Language and Libraries: The Revised Report.
http://haskell.org/, September 2002.

51. R. A. Krzysztof and E.-R. Olderog. Verification of sequential and concurrent
programs. Springer-Verlag New York, Inc., New York, NY, USA, 1991.

52. C. Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s
thesis, University of Illinois at Urbana-Champaign, 2002.

53. C. Lattner and V. Adve. Architecture for a Next-Generation GCC. In Proc.
First Annual GCC Developers’ Summit, Ottawa, Canada, May 2003.

54. W. J. Legato. A weakest precondition model for assembly language programs,
unpublished manuscript, 2003.

55. G. Li, I. Ghosh, and S. P. Rajan. Klover: a symbolic execution and automatic
test generation tool for c++ programs. In Proceedings of the 23rd international
conference on Computer aided verification, CAV’11, pages 609–615, Berlin, Hei-
delberg, 2011. Springer-Verlag.

56. G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P. Rajan. Gklee:
concolic verification and test generation for gpus. In Proceedings of the 17th
ACM SIGPLAN symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’12, pages 215–224, New York, NY, USA, 2012. ACM.

57. N. Li, U. Praphamontripong, and J. Offutt. An Experimental Comparison of
Four Unit Test Criteria: Mutation, Edge-Pair, All-Uses and Prime Path Cov-
erage. In IEEE International Conference on Software Testing Verification and
Validation Workshop, pages 220–229, 2009.

58. L. D. List. The llvm compiler infrastructure: Llvm users, 2009.
59. Y.-S. Ma, J. Offutt, and Y. R. Kwon. MuJava: An Automated Class Muta-

tion System: Research Articles. Software Testing, Verification and Reliability,
15(2):97–133, 2005.

60. K. Marquet and M. Moy. Pinavm: a systemc front-end based on an executable
intermediate representation. In Proceedings of the tenth ACM international
conference on Embedded software, EMSOFT ’10, pages 79–88, New York, NY,
USA, 2010. ACM.

61. F. Merz, S. Falke, and C. Sinz. Llbmc: Bounded model checking of c and c++
programs using a compiler ir. In VSTTE, pages 146–161, 2012.

62. G. E. Moore. Cramming More Components onto Integrated Circuits. Electron-
ics, 38(8):114–117, Apr. 1965.

63. MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2, Septem-
ber 4th 2009.

64. F. Mueller. A library implementation of posix threads under unix. In In Pro-
ceedings of the USENIX Conference, pages 29–41, 1993.

65. J. Offutt. Automatic Test Data Generation. PhD thesis, Georgia Institute of
Technology, Atlanta, USA, 1988.

66. J. Offutt, P. Ammann, and L. Liu. Mutation Testing implements Grammar-
Based Testing. In Workshop on Mutation Analysis, 2006, pages 12–12, 2006.

67. J. Offutt and R. H. Untch. Mutation 2000: Uniting the Orthogonal. Kluwer
Academic Publishers, 2001.

68. K. Olukotun and L. Hammond. The future of microprocessors. ACM Queue,
3(7):26–29, Sept. 2005.

References 49

69. S. P. F. Fabbri, M. Delamaro, J. Maldonado, and P. Masiero. Mutation Analysis
Testing for Finite State Machines. In 5th International Symposium on Software
Reliability Engineering, pages 220–229, Nov 1994.

70. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th An-
nual Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57,
Washington, DC, USA, 1977. IEEE Computer Society.

71. I. Rabinovitz and O. Grumberg. Bounded model checking of concurrent pro-
grams. In CAV, pages 82–97, 2005.

72. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is unde-
cidable. ACM Trans. Program. Lang. Syst., 22(2):416–430, Mar. 2000.

73. H. Riener, R. Bloem, and G. Fey. Test case generation from mutants using
model checking techniques. In Proceedings of the 2011 IEEE Fourth Interna-
tional Conference on Software Testing, Verification and Validation Workshops,
ICSTW ’11, pages 388–397, Washington, DC, USA, 2011. IEEE Computer So-
ciety.

74. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and
redundant computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’88, pages 12–27,
New York, NY, USA, 1988. ACM.

75. D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation testing by check-
ing invariant violations. In ISSTA ’09: Proceedings of the 18th International
Symposium on Software Testing and Analysis, pages 69–80, July 2009.

76. A. Sen. Concurrency-oriented verification and coverage of system-level designs.
ACM Trans. Des. Autom. Electron. Syst., 16(4):37:1–37:25, Oct. 2011.

77. H. Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, 30(3):202–210, 2005.

78. H. Sutter and J. Larus. Software and the concurrency revolution. ACM Queue,
3(7):54–62, Sept. 2005.

79. S. D. Swierstra, P. R. A. Alcocer, and J. Saraiva. Designing and implementing
combinator languages. In Advanced Functional Programming, pages 150–206,
1998.

80. The Multicore Association. Multicore Communications API Working Group,
2012.

81. J.-B. Tristan, P. Govereau, and G. Morrisett. Evaluating value-graph translation
validation for llvm. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’11, pages 295–305,
New York, NY, USA, 2011. ACM.

82. A. Valmari. Stubborn sets for reduced state space generation. In Proceedings
of the 10th International Conference on Applications and Theory of Petri Nets:
Advances in Petri Nets 1990, pages 491–515, London, UK, UK, 1991. Springer-
Verlag.

83. A. Valmari. The state explosion problem. In Lectures on Petri Nets I: Basic
Models, Advances in Petri Nets, the volumes are based on the Advanced Course
on Petri Nets, pages 429–528, London, UK, UK, 1998. Springer-Verlag.

84. M. Vujošević-Janičić and V. Kuncak. Development and evaluation of lav: an
smt-based error finding platform. In Proceedings of the 4th international con-
ference on Verified Software: theories, tools, experiments, VSTTE’12, pages 98–
113, Berlin, Heidelberg, 2012. Springer-Verlag.

50 References

85. P. J. Walsh. A Measure of Test Case Completeness (software, engineering).
PhD thesis, State University of New York at Binghamton, Binghamton, NY,
USA, 1985.

86. E. J. Weyuker. On Testing Non-Testable Programs. The Computer Journal,
25(4):465–470, 1982.

87. F. Wiedijk, editor. The Seventeen Provers of the World, Foreword by Dana S.
Scott, volume 3600 of Lecture Notes in Computer Science. Springer, 2006.

88. J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formalizing the llvm
intermediate representation for verified program transformations. SIGPLAN
Not., 47(1):427–440, Jan. 2012.

