N/
m ::;\\\ V) % Universiteit Utrecht

S

UNIVERSITY OF UTRECHT

Simulation of Water Droplets
using Metaballs on mobile phones

MASTER THESIS

THESIS NUMBER [CA- 3722252

Author: Superuvisor:
Cindy MULLENMEISTER Drs. Arno KAMPHUIS

August 2012

Abstract

In the game Hydrotilt, the player controls a water droplet that consists of meta-
balls. This droplet does not have all the physical abilities of a water droplet in the
game. For a newer version of Hydrotilt meant to run on mobile phones, Codeglue
seeks for a realistic water droplet simulation using metaballs. Earlier researches of
water droplet simulation used high computational resources device. Mobile phones
on the other hand are low resources devices.

Therefore, in the scope of this thesis we implemented in an experiment set-up a
simulation of water droplets using metaballs for mobile phones. In this implemen-
tation, you have two kinds of water droplets. The first one is a static water droplet
that waits until it is close enough to another droplet for merging. The other kind
of droplet is a moving water droplet. This droplet moves according to the tilt of
the mobile phone just like in the game Hydrotilt.

Furthermore, metaballs need another algorithm to be able to generate the surface.
In our implementation, two algorithms were used for that: octree and marching
cube algorithm. Octree is slower than the marching cube algorithm, but needs less
memory which is one of the low resources on mobile phones.

In the simulation of the water droplet, the moving water droplet will change its
shape while moving from a sphere-like shape to a water droplet like shape. Next
to this, there are two techniques implemented to calculate the movement of the
droplet. The first one is a following one that behaves like a spring and the second
one is an interpolation of the movement.

Testing of the experiment set-up showed that the simulation runs successfully on
mobile phones. Furthermore, the testing also showed that there is a tradeoff be-
tween visual graphics of the water droplets and the performance. Better visual
graphics (for example through high resolution) results in lower performance and
for high performance the visually of the droplet needs to be reduced.

Introduction

1.1 Previous Work
1.1.1 Water Droplets
1.1.2 Metaball

1.2 Outline.

Techniques and Algorithms

2.1

2.2

2.3

Surface oL
2.1.1 Marching cube algorithm
2.1.2 Octree
Movement
2.2.1 Following
2.2.2 Interpolation
Contact angle

Experiment set-up

Octree vs. Marching cube algorithm

4.1

Result

Interpolation vs. Following

5.1 Visual observation
51.1 Result
5.2 Speed of the calculation
5.2.1 Result
5.3 Conclusion
Static Water droplets
6.1 Number of static water droplets
6.1.1 Results.
6.2 Sinkin L.
6.21 Results.
6.3 Merging
6.3.1 Results.
Resolution
71 Octree
711 Results.
7.2 Marching cube algorithm
721 Results.

Contents

19

23

............. 24

27

............. 27
............. 28
............. 28
............. 29
............. 29

31

............. 31
............. 32
............. 32
............. 32
............. 34
............. 35

CONTENTS

8 Performance

9 Discussion

10 Conclusion

A Class Diagram and implementation
A1 Surface
A2 Movement,
A3 Sinkin,

A4 Water Droplet

B Test Environment

41

45

47

51
25
26
57
o8

61

ii

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

3.1

4.1

6.1

7.1
7.2

8.1

8.2

Al
A2
A3
A4
A5
A6
AT

List of Figures

Screenshots of the game Hydrotilt [3] 1
Plots of the different density functions 5
Examples of surface of two metaballs 6
The cube representation and the tree presentation of an octree. . . 9
Shape of a moving water droplet 10
A water droplet on a inclined plane with indications of the gravity . 10
Water Droplet with a slope degree of 45 12
Generated shape of a water droplet with a slope degree of 0 and 1 . 12

The moving direction of the water droplet changes with Interpolation. 15
The rotation possibilities of the droplet with marked area where the

interpolation will not be used. L. 16
A water droplet on a solid surface 17

Moving the water droplet by tilting the mobile and changing the
moving direction. Lo 20

This plot shows the measured calculation time for every the march-
ing cube algorithm in ten runs on five mobile phones 26

This plot shows the time needed until the application runs normal
with the static water droplets. 34

This plot shows the calculation time of the octree for different depths. 39
This plot shows the measured calculation time for every cube size
and the standard deviation.All the times are reported in milliseconds. 40

The plot shows the measures calculation time for every cube size
using the following technique and a grey area marks the area where
a good performance feeling is reached. 42
The plot shows the measures calculation time for every cube size
using the interpolation technique and a grey area marks the area

where a good performance feeling is reached. 43
The class diagram of the whole implementation. 52
The first half of the class diagram of Figure A.1. 53
The second half of the class diagram of Figure A.1. 54
Main structureo 5}
Implementation structure of the Surface 55
Classes structure of the complete implemented Surface 56
Class structure of the movemenet implementation 57

iii

LIST OF FIGURES

A8

A9
B.1

Changing the tilt of the mobile to change the moving direction of
the water droplet in the opposite direction. 58
Class structure for the class water droplet 59

The test environment that was used for the implementation and the
experiments. L L. L. 61

iv

Introduction

In 2008, Codeglue released a game called Hydrotilt for the iPhone and iPod Touch
[3]. Hydrotilt is a 3D puzzle where the user needs to guide a water droplet through
an environment. Figure 1.1 shows screenshots of this game. The water droplet

Figure 1.1: Screenshots of the game Hydrotilt [3]

is moved and controlled with the tilt function of the iPhone/iPod Touch. For
example lifting the left side of the iPhone will let the water droplet move to the
right.

Furthermore, the water droplet is able to change its liquid state to a solid state
(ice) or a gaseous state (water vapor), enabling the user to overcome obstacles
which are impassable for liquid.

The water droplet of Hydrotilt was implemented using two metaballs, according
to Codeglues programmer Harald Maassen. The metaballs were connected to each
other with a spring, so that the water droplet would be able to change shape when
the movement speed increases. The physics used in Hydrotilt were standard game
physics with sphere colliders for the metaballs. The sphere colliders were placed a
little higher than the metaballs to fake the impression of water on solid ground.
In this old version of Hydrotilt, merging with static water droplets was not possible.
Also, the physics used in Hydrotilt is unable to mimic the full physical behavior
of real water droplets. Because of this, the water droplet is not able to react
realistically in all situations.

Adding more physically behavior to the water droplet like merging would make it
possible to widen the game and offer new possibilities for levels.

CHAPTER 1. INTRODUCTION

Codeglue plans to develop a new version of Hydrotilt with more realistic and
physical behavior of water droplets. This planned new version of Hydrotilt should
run on mobile phones that have low resources.

The research on the simulation of water droplets focuses on the shape and physical
behavior of water droplets. For example the physical-based method in the research
of Wang et. al. [17]. Some of these methods, for example the research of Yu et. al.
[21], also use metaballs. All these techniques were developed for devices with high
computational resources. Mobile phones on the other hand have low computational
resources.

This all leads us to our main research question:

How to implement water droplets based on metaballs with the right
behavior on a device with low resources?

1.1 Previous Work

The simulation of water droplets and metaballs are not new research fields in
computer graphics. There is much research on water droplets and also on the use
of metaballs. In the next Sections we will outline the most important methods
and techniques.

1.1.1 Water Droplets

For at least two decades, the simulation of water has been an active field in com-
puter graphics and many different methods have been developed since then. Earlier
methods, developed in the 1980s, concentrated on the simulation of large bodies
such as oceans and seas. Iglesias et. al. [7] gives an overview of the earliest meth-
ods that were developed in the 1980s and the 1990s. In these simulations, particle
systems were often used to simulate the foam and spray that is generated when
water breaks on objects.

Only later, in the early nineties, researchers started to develop methods that con-
centrated on the simulation of smaller bodies of water such as droplets. The first
methods were modifications of previous particle systems to simulate the behavior
of water droplets, like the method of Kaneda et. al. [9]. This method is used to
simulate water droplets on a surface based on a particle system. Kaneda et. al.
further focused on the behavior of water droplets and developed methods using
not only particle systems but also subdivision of meshes to simulate the water
droplets [8].The concentration of their work was on the animation itself and not
on performance. Therefore, the performance of the method is not mentioned in
their research. However, subdivision of the mesh would require much calculation

1.1. PREVIOUS WORK

power due to its complexity.

Fournier et. al. [6] mainly used a mass-spring system to model the motion and
shape of a droplet. In this method, they also considered the surface tension and
volume conservation of water droplets. However, the merging of two or more water
droplets, also referred to as the merging process, did not work successfully in the
simulation.

Yu et. al. [21] concentrated on the shape of the water droplets, but instead of us-
ing a mass-spring system, they used metaballs. The resulting shapes of the water
droplets look quite realistic. Furthermore, the merging process was successful, un-
like the merging process of Fournier. With the focus on the shape and behavior of
the water droplet, the performance of the method was neglected. The computers
used by Yu had fewer resources than the computers nowadays and are therefore
slower. It might be possible that the technique from Yu et. al. is able to run on
low resources devices such as mobile phones.

Tong et. al. [14] extends the method of Yu et. al. to enable volume-preservation
of water droplets. Just like Yu, Tong did not take a closer look at the calculation
time and the performance.

The goal of most of these methods was to simulate the behavior and the looks
of water droplets as plausibly and realistically as possible, ignoring the physics
at least partially. In 2005, Wang et. al. [17] developed the first physics-based
method for simulation of water droplets. The physics of the method are mainly
based on the physical description of water droplets by Gennes [4]. The resulting
water droplets are realistic but require a high calculation time according to Chen
et. al. [2].

Chen et. al. [2] developed a method to make the merging process smoother. The
method is based on the method of Yu et. al. and uses a modified version of meta-
balls. The physics used for the motion of the water droplets is a highly simplified
version of the physical-based method of Wang et. al. because that method was
too computationally expensive for real-time rendering.

The latest method for the simulation of water droplets is by Zhang et. al.[22]. Tt
is a model that is capable of running in real-time using implicit surface generation.
The physics of water droplets are also considered in this method. The behavior
of the water droplet is based on the physics of droplets. The implicit surface is
generated using mesh splitting, merging and optimization instead of metaballs.

Of all these techniques, we will take a closer look at only two of them. First
the method of Yu et. al. [21] because of the simplicity of their calculation and the
use of metaballs. Metaballs are also used in the research of Tong et. al. [14], but
the calculations introduced there seem to complex to be of use in the simulation
introduced in this thesis. Second is the technique by Zhang et. al. [22]. This

CHAPTER 1. INTRODUCTION

method focuses on physics of the water droplet and not only on the shape like
the method of Yu. Nevertheless, this technique does not make use of metaballs.
Therefore, only part of this method is relevant for the simulation introduced in
this thesis.

1.1.2 Metaball

Not only the previous work of water droplets are of interest for the simulation of
the water droplet introduced in this thesis, but also the previous work and the
introduction of the metaballs.

Metaball are used to model implicit surfaces. Instead of modelling a surface by
a mesh a mathematical description of the shape is used [2]. Blinn was the first
to introduce metaballs [1]. He did not refer to them as metaballs, but as “blobs”.
Nishimura et. al.[13] , Murakami et. al. [11] and Wyvill et. al. [19] improved
the technique from Blinn and they coined the terms metaball and soft objects.
Since then, metaballs were often used to model soft objects like clouds and water
droplets.

For the modeling of water droplets the surface of metaballs is defined by the points
that satisfy the following equation:

f(z,y,2) :ZQifi_TOZO (1.1)
i=0

where n is the number of metaballs, T} is a threshold, ¢; is the maximum density
factor of metaball ¢ and f; is the density function of metaball .

There exist many different forms of density functions that can be used in the
equation for generating the shape of a water droplet. The density function from
Blinn is the following:

fi(r) = =) (1.2)

where 7 is the distance from point (x, y, z) to the center of the metaball.

The density functions from Murakami (equation 1.3), Nishimura (equation 1.4)
and Wyvill (equation 1.5) are the most commonly used density functions for gen-
erating the shape of water droplets.

1.1. PREVIOUS WORK

fi(r)=—g<%)6+g<}%)4—%<}%)2+1 (1.5)

where 7 is the distance between the center of the metaball and point (x, y, z) and
R; is the influence radius of metaball i.

The three density functions seem to be very different from each other. To see

4t 4 4+
¥ | 5]
10— / 10 —\ 10 1
_08 T+ / 0s . 0s \
wr / wr wr
[\
06 1 / 0.6 06 N\
/ N\

\ /
/
04 1 / 04 04 \

\ /
\ / \
02 T 02 7 02 7
\\‘ / N
. . . — |

025 05 075 1 3 1S 025 05 075 L0 125 5 025 05 075 10 125 LS
/R; 1/R; /R;

(a) Plot of Murakamis density (b) Plot of Nishimuras density (c) Plot of Wyvills density
function (1.3) function (1.4) function (1.5)

Figure 1.2: Plots of the different density functions

why those different functions could be used as density functions to generate sur-
face of water dropelts, we take a closer look at the plots of those functions. The
plot of Murakamis function (see Figure 1.2a) and the plot of Wyvills function
(see Figure 1.2¢) seem to be exactly the same at the beginning until the function
reaches the point where y = 0. From this point on, the functions behave dif-
ferently. Nishimuras function is divided into two function bound by a condition.
This explains the jump in the plot as seen in Figure 1.2b. Beside this jump in the
function, it is similar to Wyvills function and Murakamis function. Therefore, we
can say that all three density function seem to describe the same pattern (at least
at the beginning of the graph) and therefore should describe the same shape when
used to calculate the surface of metaballs.

The shape of one metaball is marble-like. When modeling more than one meta-
balls, the shape of it depends on the distance between both metaballs. For example,
modeling two metaballs would result in two round marble-like surfaces when the
distance between them is high enough. If the metaballs are closer to each other,
they seem to merge like water do as you can see in Figure 1.3.

CHAPTER 1. INTRODUCTION

]

Figure 1.3: Examples of surface of two metaballs

1.2 Outline

This thesis is outlined as follows: First, Chapter 2 shows all the techniques and
algorithms with made changes that will be used for the simulation of water droplets
introduced in this thesis.

To see how this simulation of water droplets works on mobile devices, experiments
need to be conducted. The setup for the experiments is shown in Chapter 3.
The experiments were conducted in Chapter 4 to Chapter 8. We then discuss
the results of these experiments in Chapter 9. At last, the research questions are
answered and a conclusion is drawn in Chapter 10.

Techniques and Algorithms

The water droplet of Hydrotilt is already able to run on an iPhone which is a
device with lower resources than a computer. Nevertheless, the water droplet in
Hydrotilt still does not behave as natural as some of the water droplets of other
researches and miss some of the physical abilities such as merge with another
water droplet. The method for simulating water droplets introduced in this thesis
aims at generating behavior for water droplets that resemble real-life droplets as
close as possible. For this, we will take a closer look at some of the algorithm
and techniques we want to use in this thesis. These techniques were all designed
and implemented on computers which offer more resources than mobile phones.
Therefore, some of those techniques and algorithm we want to use need to be
changed.

The algorithm and techniques were all designed with different goals in mind. Yu
et. al. [21] for example concentrates more on the form of the water droplet while
the research of Tong et. al. [14] concentrates more on the volume preservation of
the water droplets. Therefore, we will discuss these techniques and algorithm and
their changes in the following Sections: surface, movement and contact angle.

2.1 Surface

The surface of metaballs consists of all the points that satisfy the equation 1.1
as described in Section 1.1.2. In researches the surface of the metaballs is also
referred to as isosurface. An isosurface is defined as a surface that satisfies the
following equation

F(P)=a (2.1)

where « is an isovalue. Therefore, the isovalue of the metaballs would be 0 accord-
ing to the equation 1.1. The equation can be rewritten to the following equation:

Z%’fi =T (2.2)
i=0

CHAPTER 2. TECHNIQUES AND ALGORITHMS

where n is the number of metaballs, T} is a threshold, ¢; is the maximum density
factor of metaball ¢ and f; is the density function of metaball i.

With this, the isovalue is now the value of the threshold instead of 0.

For the calculation of this surface, different algorithms were developed. In the
scope of this thesis, two of these algorithms were considered: the marching cube
algorithm and the octree.

2.1.1 Marching cube algorithm

According to Newman et. al. [12] the marching cube algorithm is a popular but
not the oldest algorithm to extract the isosurface.

The basic marching cube algorithm consists of a “cuberille grid”[10], a grid made
out of cubes. For every corner of every cube in the grid, the algorithm calculates
the isovalue and uses a lookup table to estimate the surface belonging to that cube
[10]. There exist 256 different surfaces that a cube can contain [12]. Therefore,
the lookup table has 256 entries. Fifteen of these surfaces are the so called basic
topologies because the others are reflective and/or rotational symmetry to those
[12].

Going through the whole grid to look at every cube in the grid is an expensive
operation. Triquet et. al. [15] developed an optimization of the marching cube
algorithm which foregoes checking every cube in the grid. In their method, they
first search for one cube that is filled with a surface. From this cube, they take a
look at all the neighbors. The neighbors that are filled with the surface are then
visited and the procedure is repeated until the whole surface is found. A so-called
timestamp is tagged to every visited cube, so that a cube is not calculated twice.
This optimization helps to make the marching cube algorithm faster, but the
storage of the grid itself could cost much memory. Mobile phones have less memory
available than personal computers. Therefore, we have to be careful that the
marching cube algorithm does not use too much memory.

The data structure from Wyvill et. al. [19] is similar to the marching cube
algorithm. Because of the similarity and because the optimization of the marching
cube is far more recent than the structure of Wyvill, we did not consider the
implementation of the data structure of Wywvill.

Most research papers about water droplets and metaballs do not mention which
algorithm they use for surface calculation. We assume that some of the researches
use the marching cube algorithm or the data structure from Wyvill because Wyvills
density function is used in them such as in the research of Yu et. al. [21].

2.2. MOVEMENT

2.1.2 Octree

The octree describes (as the name already indicates) the object in a tree structure.
The starting node of the tree, the root, contains the whole object in a cube. This
cube is split into eight smaller cubes, which are represented by the nodes in the
next level [5].

The cubes that contain part of the surface will be further divided into 8 smaller
cubes. Cubes that are completely inside/outside of the object (and thus contain
no surface) will not be divided any further [5]. Figure 2.1 shows such an octree
structure. Furthermore, the division of the cubes also stops if the self defined
maximum depth of the tree is reached.

The depth of the tree defines the resolution of the object. The more levels (depth)
the tree has, the higher the resolution of the object will get.

level 0
level 1 Dm/i ,
level 2 .-i ’
fevel 3 DD

Figure 2.1: The cube representation of an object (left) with the tree presentation
of the octree (right [5, fig. 8.5]. The black cubes of the tree are completely inside
of the cube, the white cubes are completely outside of the object and the grey
once contain surface.

2.2 Movement

We want the simulation of the water droplet introduced in this thesis to also be
able to move around. A real water droplet is also able to move due to the gravity.
When you observe a water droplet moving down a window, the first thing you
notice is that it does not have a sphere-like shape but a so called water droplet
shape as seen in Figure 2.2. Yu et. al. [21] developed a way to deform the metaball
so that it would change the shape to the water droplet shape according to the slope
degree of a plane it is on.

CHAPTER 2. TECHNIQUES AND ALGORITHMS

(a) Photo of a moving water droplet (b) Drawing of Water droplet form
when it moves

Figure 2.2: Shape of a moving water droplet

In the research, Yu et. al. deform the points of the metaball before passing it to
the equation 1.1. For this deformation, they split the point itself into the vectors
i, U and W

= (z,0,0), 7= (0,y,0), @ = (0,0, 2) (2.3)

where x, y and z are the coordinates of the original point.
These vectors are then scaled to change the shape of the water droplet. For

the scaling Yu et. al. takes the gravity and the friction forces into consideration
as you can see in Figure 2.3. To calculate the scaling factor for the vectors u,

Figure 2.3: The water droplet on a plane with slope degree 6 according to Yu [21,
fig. 17]. The dotted line indicates the form of the original metaball. Fy is the
friction force, G, is the gravity, G, is the gravity component perpendicular to the
plane and G,, is the gravity component parallel to the plane.

and), the friction force has to be calculated first. This is done with the following

10

2.2. MOVEMENT

equation:

sind||v]|
R

where R is the radius of the metaball, 6 the slope degree of the plane and sign(w,)

the sign of the z value of the vector .

Fy = sign(w,)||Guw|| — (2.4)

7 9 15
h(ry) = <18 + =12 + =7, 2.5
(ra) = 7+ grh 2 (2.5
In equation 2.5 r, is the ratio of the magnitude of the vector « and the radius of
the metaball and is calculated as follows:

(2.6)

where R is the radius of the metaball and sign(w,) the sign of the z value of vector

w.

These two equations are then used to calculate the scaled vectors wuy, v, and wj
from the vectors 4, v and W according to:

i = a1 — MG (2.7
3
0, = V(|G| | + h(ry)sind) (2.8)

The new coordinates of the surface point can now be determined by adding the
calculated vectors wuy, vy and ws together.

With this scaling of the surface points, the shape of the water droplet changes to
the water droplet form according to the degree of the slope of the plane that lies
between 0 and 90 degree.

In an earlier paper of Yu et. al. [20] the calculation of v; is slightly different:

vs = 0(1.3 4 ||Gy|| + h(ry)sind) (2.10)

Here an extra value of 1.3 is added to the scaling value before scaling v with it.
So, we need to estimate whether or not we need to use this extra value in our
simulation of water droplets.

To see which one of these two equations to use (2.10 or 2.8), the resulting shape
those two generate need to be compared to each other. First, the equations are
tested with a slope degree of 45 as seen in Figure 2.4. This shows clearly that
a shape generated with equation 2.8 generates a peak which seems unnatural for

11

CHAPTER 2. TECHNIQUES AND ALGORITHMS

a water droplet. Using equation 2.10 results in a less high peak which is a more
natural shape of the water droplet.
Testing the equation 2.10 further shows that changing the slope degree from 0 to
1 result in instantly flattening of the sphere-like form. This change in shape is
visually not realistic.
Because of these two observation, we decided to use an extra value as in equation
2.10. This extra value we will use will not be not static, but ranges from —% to
1.3 depending on the slope degree. This way, the change of form from one degree
to another is less obvious and also the shape looks natural when a slope degree of
45 is used.

Although the droplet is now able to change its form, it will only face one direction.

(a) using equation 2.8 (b) using equation 2.10

Figure 2.4: Water Droplet with a slope degree of 45

(a) Shape of a water droplet with a (b) Shape of a water droplet with a
slope degree 1 2.8 slope degree 1 2.10

Figure 2.5: The shape of the Water droplet while changing the slope degree from
0 to slope degree 1 using the equation 2.10

To be able to move it around, the water droplet needs to be able to face other

12

2.2. MOVEMENT

directions as well. Furthermore, the water droplet needs to be able to change from
one plane with a slope degree to a plane with another slope degree because of for
example a ramp. This means, the water droplet needs to be able to face up or
down according to the visual plane.

Therefore, the solution for this is to align the coordinate frame with the orientation
of the water droplet before calculating the new water droplet. First, the coordinate
frame will be rotated around the y-axis to face the desired direction:

Tnew = Sin(a)z + cos(a)x (2.11)
Znew = cos(a)z — sin(a)x (2.12)
Ynew = Y (213)

where « is the angle between the facing direction of the water droplet and the
wanted facing direction and Z,ey, Xnew and ype, are the rotation of the coordinate
frame.

In addition to this rotation, the coordinate frame also needs to be rotated around
the x axis, so that the water droplet will face up or down and lies this way on
the plane. The rotation is done by recalculating the y and z coordinates of the
coordinate frame with equations 2.14 and 2.15.

Ynew = c08(B)y — sin(f)z (2.14)
Znew = SIn(B)y + cos(B)z (2.15)

where (8 is the angle between the surface of the horizontal floor and the incline
surface (for example a ramp or a slide) on which the water droplet is moving.
Furthermore, this angle also needs to consider the moving direction of the water
droplet (upwards or downwards).

Now, with these calculations, the water droplet is able to change the shape to
the water droplet shape and even face the desired direction.

Besides changing the shape, the water droplets need to move like a real water
droplet. The previous researches that uses metaballs (see Section 1.1) , do not
state how to move the water droplet. Yu et. al. [21] only considered static water
droplets without any movement.

Furthermore, just moving the water droplet and turning it straight with the new
direction does not look natural. Therefore, we came up with two different methods
to move the water droplet: Interpolation and Following.

2.2.1 Following

When you put a water droplet on a plane and let it move in one direction and
then change the moving direction of the droplet, you can observe that one part of

13

CHAPTER 2. TECHNIQUES AND ALGORITHMS

the water droplet will follow the direction changing directly, while the other part
of the water droplet will after some time. With the Following technique, we try to
simulate this behavior.

For this Following technique, the water droplet itself consists of two metaballs.
The two metaballs will react to each other as if a spring is between them. This
means that the second metaball will follow the movement of the first one step for
step after a little delay. The faster the first one moves, the more distance will
be between the two metaballs, until a maximum distance is reached. The second
metaball will, when the maximum distance is reached, follow faster so that the
distance will not be increased any further.

2.2.2 Interpolation

As the following technique needs two metaballs to work, the interpolation tech-
nique only needs one metaball for the water droplet. With one metaball it is
not possible to simulate the partly directional changing move of a water droplet.
Instead of that, the change of direction will be interpolated. This means that if
the turning of the water droplet is greater than the small angle o then the water
droplet will turn in steps of size & and move every step a little forward. Figure 2.6
shows the changing of the moving direction of a water droplet with interpolation
steps.

If the moving direction of the water droplet changes into the opposite direction,
changing the direction step for step and letting the droplet move in a circle is not
natural. Instead of that, the water droplet should change back its form and then
start moving in the desired new direction. The same goes for the direction that
is almost in the opposite to the current moving direction. Therefore, we define a
range in the opposite moving direction (see Figure 2.7). When the desired new
direction is in this range, the water droplet will first stop moving, letting this way
the form of the droplet go back to the sphere-like form. As soon as the form is
sphere-like again, the water droplet will immediately start to move in the new
direction and change the shape again according to the new moving direction. If
the new desired moving direction is outside of the grey area in Figure 2.7, the
direction is changed (as mentioned before) step for step.

14

2.2. MOVEMENT

) The water droplet moves (b) Change of moving direc-) The moving direction of
1nt0 the direction of the ar- tlon The broken arrow in- the water droplet is changed
TOW. dicates the previous moving first to an interpolated mov-

direction and the other ar- ing direction.
row indicaties the new de-
sired moving direction.

(d) The moving direction of
the water droplet is changed
again and is now moving in
the desired direction.

Figure 2.6: The moving direction of the water droplet changes. Interpolation steps
are used to change the direction.

15

CHAPTER 2. TECHNIQUES AND ALGORITHMS

Current heading direction
of the water droplet

Rang in the opposite
direction

Figure 2.7: Rotation possibility of a moving water droplet. When the new direction
falls into the rang (grey area), then no interpolation takes place.

16

2.3. CONTACT ANGLE

2.3 Contact angle

Next to the moving of the water droplet, the contact angle of a water droplet needs
also to be considered in the simulation introduced in this thesis.
If you put a water droplet on a solid surface, for example a glass plate, you can
observe that the form of the water droplet will not remain a complete sphere, such
as a marble. Instead, the water droplet will spread a little and appear to spread
and sink into the surface. How far the water droplet seems to sink in depends on
the contact angle. When a droplet comes in contact with a solid surface, the angle
between the surface of the liquid and the solid surface is a characteristic of the
liquid itself. This angle is referred to as contact angle [17] (see Figure 2.8).
According to Gennes et. al. [4] the water droplet reaches equilibrium with the

Figure 2.8: A water droplet on a solid surface [4, Figure 1a)], where 0, is the
contact angle, V is the air, S is the solid surface and L the liquid.

solid surface if the contact angle and the surface tensions satisfy the following
equation:
Ysa — Ysr — ycosth =0 (2.16)

where g4 is the solid surface air tension, ~gy is the solid surface liquid tension
and ~ is the surface tension.

The research of Wang et. al. [17] is about a physic-based model of water droplets.
Although the physics in this model makes the simulation of water droplets behave
natural, the calculation time is quite high. Furthermore, the device used for the
simulation has high computational resources. Therefore, running this simulation
on a low resources device such as the mobile phone would result in higher calcula-
tion time then on the high computational resources device.

To simplify this physical behavior for the use on low resources devices, we intend
to give the surfaces their contact angle instead of calculating it with the surface

17

CHAPTER 2. TECHNIQUES AND ALGORITHMS

tensions. Just like Zhang et. al. [22] we will use the normal of the solid surface
and the normals of the points of the water droplet surface to search for the points
that satisfy the contact angle between the solid surface and the droplet.

Just sinking into the ground makes the water droplet appear as if part of it will
disappear instead of spreading over the ground as real water droplets seem to do.
Therefore, the radius of the water droplet needs to be recalculated in such a way
that it visually seems as if the water droplet spreads out. What will be left of the
water droplet after sinking into the ground is not the total sphere but a so-called
spherical cap. This spherical cap should have the same volume as the total sphere
beforehand because the water droplet should visually not lose any volume, only
spread itself on the surface.

The volume of a spherical cap is calculated with the following equation [18]:

1
V= g7rh2(3r —h) (2.17)
where h is the heigth of the cap, r the radius of the sphere and V the volume.

Rewriting this so that the radius can be calculated gives:

1%
= 4h 2.18
r=_t (2.18)

where h is the height of the cap, r the radius of the sphere and V the volume.

18

Experiment set-up

The techniques and algorithm from the previous Chapter were used to implement
an experiment set-up.

In this experiment set-up, the main platforms for the water droplets are not com-
puters or laptops, as was the case with previous researches, but mobile phones.
Such a mobile phone can either run iOS or Android or others such as windows.
For the newer version of Hydrotilt, Codeglue prefers to implement this game in
Unity with C# for the scripts. Therefore, we will use Unity and C+# for the im-
plementation of the simulation of water droplets.

The Unity development tool [16] enables publishing on both platforms: iOS and
Android. Furthermore, it offers the possibility to use and add scripts to 3D con-
tent. These scripts can either be written in C# or in JavaScript. Unity also
provides out-of-the-box functionalities. The scripting part and the 3D enabled
world of Unity will enable the water droplet to be used in games later on. Also, it
offers the possibility to add other parts.

Before implementing the techniques and algorithms of Chapter 2, a test environ-
ment has been set-up in Unity. This test environment consist of four floors, one
slide and several ramps, as seen in Appendix B.

In the game Hydrotilt, the water droplet was moved through the tilt of the mobile
phone. In the experiment set-up, we decided to implement this type of control as
well. Therefore, in the implementation, the water droplet moves according to the
tilt of the mobile phone (see Figure 3.1). The speed of the water droplet depends
on how far the mobile is tilt.

As explained in Section 2.2, moving the droplet will also change the form of the
droplet according to a slope degree. When the mobile is tilt, it also looks like the
floor is tilt. We want to use this tilting of the floor and therefore decided to use
the tilt of the mobile for the slope degree. With this, the water droplet looks in the
experiment set-up as if the floor is tilt and the water droplet moves and changes
form according to gravity.

Another implementation choice for the experiment set-up we made was that there
are two kinds of water droplets. The first one is the moving water droplet. This

19

CHAPTER 3. EXPERIMENT SET-UP

: s : I LR
(a) Basic holding position of mobile where tilt is
(almost) 0 and therefore the slope degree is also

(b) Changing the moving direction into the opposite movement by chang-
ing the tilt of the mobile.

Figure 3.1: To change the moving direction into the opposite direction, the tilt of
the mobile has to change. In this movement, the mobile device is held shortly in
a basic. This causes the water droplet to change its form back before changing
movement into the opposite direction

water droplet is able to move around according to the tilt of the phone.

The other water droplet is a static water droplet. This one is not able to move
around. Instead, it waits until the moving water droplet is close enough to merge.
Another difference between these two kinds of water droplets is that the static
water droplet uses the contact angle to sink in. During the implementation of the
experiment set-up, we noticed that the calculation of the contact angle points take
too much calculation time as that this techniques could be used in the simula-
tion for the moving water droplet. Therefore, the moving water droplet is already
sunken in to half of the droplet and does not calculate the contact angle like the
static water droplet does.

A more detailed description of the implementation with class diagrams can be
found in Appendix A.

This experiment set-up was used to perform experiments. There exist many dif-
ferent mobile phones which run Android. They can have different hardware and
therefore different amounts of calculation resources. Because of this, we will per-
form the experiments on five different mobile phones: Samsung Galaxy S2, Nexus

20

S, Samsung Galaxy S, HT'C Desire and HTC Desire HD.

21

Octree vs. Marching cube algorithm

The first two experiments are about the octree and the marching cube algorithm.
The implemented marching cube algorithm and the octree can be used to calculate
the surface of the water droplet. The calculation in these two algorithms differs
from each other and can therefore have different effects on the water droplet on
mobile phones. For the use on mobile phones it is important to know which of
those two algorithms is more suitable and what influence it has on the behavior of
the water droplet. To test this, we have set up two experiments.

One of the lower resources in a mobile phone is the memory. The memory in the
mobile phones is more limited than that of a computer. Therefore, it is important
that the algorithm doesnt use too much memory, otherwise the mobile phone could
refuse to start up the simulation. This leads us to the first experiment: placing of
static water droplets and look at the memory usage needed for the calculation of
the surface.

Furthermore, we want to see which of these two algorithms is faster. Therefore,
in the next experiment we measure the time needed to calculate the surface of the
water droplet on the mobile phone.

To actually measure the calculation time, a stopwatch was implemented to measure
the time between the start and the end of the surface calculation in millisecond.
Because the calculation time of the merging and moving and such can differ, the
total time of one experiment will be the average time of all the measured times.
As mentioned in Chapter 3, the experiments are conducted on five different mobile
phones with different amounts of computational resources.

In order to compare the results of the second experiment on the different mobile
phones, the water droplet will be moved along the same route. First of all, the
water droplet will be moved towards one static water droplet until it is merged
with that one. Then, it will be moved up a ramp from which we will let it fall of
at the end. As soon as the water droplet reaches the ground, the route is finished
and the test stopped.

The water droplet is moved with tilting of the mobile phone. This can lead to
small deviation in the route that the water droplet will take. To compensate for

23

CHAPTER 4. OCTREE VS. MARCHING CUBE ALGORITHM

Experiment run number Samsung Galaxy S 2
39,8
38,6
37,4
38,9
36,8
39
36,1
39
39,3
10 35,2
average 38,01
stddv 1,5401

O 1O Ul W N

Ne}

Table 4.1: The table shows the measured time for the octree algorithm, including
the average of these ten runs and the standard deviation. All the times are reported
in milliseconds.

this deviation, the experiment is run 10 times on every mobile phone.

4.1 Result

The first experiment was only conducted on the Nexus S because it already showed
the difference in memory usage of the two algorithms.

Using the marching cube algorithm, it was not possible to run the simulation with
more than four static water droplets. The memory usage was too high for the
mobile phone resulting in termination of the simulation.

Using the octree instead of the marching cube algorithm, the Nexus S showed no
problem with even ten static water droplets. This shows clearly, that the octree
uses less memory than the marching cube algorithm to calculate the surface.

In the second experiment, the calculation time needed for the octree algorithm
was too high making it impossible to conduct the experiment on any other mobile
then the Samsung Galaxy S 2. Even on the Samsung Galaxy S 2 it was almost
impossible to keep it on the route we described and conduct the experiment (see
Table 4.1 for the calculation times).

The marching cube algorithm on the other hand needed less calculation time as
seen in Table 4.2 and Figure 4.1.

The marching cube algorithm was fast enough to be tested on all five mobile

24

4.1. RESULT

Experiment run Samsung Nexus S HTC Desire Samsung HTC Desire

number Galaxy S2 Galaxy S HD
1 16,2 48,7 29,6 38,5 32
2 15,4 41,6 29,8 39,1 26,7
3 16,5 38,9 28,7 40,6 274
4 16,3 41,1 28,8 37,4 26,7
5 15,6 42 29,3 39,6 26,3
6 17,5 38,2 27,6 38,8 26,4
7 16,7 45 28,1 37,6 25,9
8 16,5 39,7 29,4 37,5 26,4
9 16,2 43,4 29,1 38,1 25,9
10 15,6 43 30,2 36,9 26,6

average 16,25 42,16 29,06 38,41 27,03

stddev 0,6204 3,1074 0,7862 1,1415 1,7987

Table 4.2: This table shows the measured calculation time for the marching cube
algorithm in milliseconds, including the average and the standard deviation.

phones.

Furthermore, the result also shows the already mentioned difference between the
mobile phones and their resources because the time needed to calculate the surface
is different for each of these mobile phones.

The result of these two experiment show that the octree needs less memory than
the marching cube algorithm. On the other hand the marching cube algorithm is
faster than the octree. Therefore, we recommend to use the octree for the surface
calculation of the static water droplet as this needs to be calculated only once at
the beginning. For the moving water droplet, it is better to use the marching cube
algorithm instead, so that the water droplet will be able to move faster.

25

CHAPTER 4. OCTREE VS. MARCHING CUBE ALGORITHM

50

O SamsungGalaxyS2

o O NexusS

O HTCDesire

O SamsungGalaxyS
HTCDesireHD

45t S

o

40

Time (msec)

s Lo 9
0 1 2 3 4 5 6 7 8 9 10
Experimentrunnumber

Figure 4.1: This plot shows the measured calculation time for every the marching
cube algorithm in ten runs on five mobile phones

26

Interpolation vs. Following

Just like marching cube algorithm and octree, the interpolation technique and the
following technique are two different techniques to calculate the move of the water
droplet. Both techniques have advantages and disadvantages over each other. To
show these, we have to conduct two experiments. The first experiment is a visual
observation of the moving behavior. The second experiment is checking the speed
to calculate the move of the water droplet.

5.1 Visual observation

The experiment “visual observation”is done to verify and observe the physical
behavior of the movements of the water droplet and which one of the above men-
tioned techniques makes it look more realistic. For this, we move the water droplet
on the mobile phone Samsung Galaxy S2. Because this experiment is only about
the visual behavior and not the calculation times for the performance of the water
droplet, it is not necessary to test it on more than one mobile phone.

In the previous experiment, the water droplet was moved along one specified route.
In this experiment, the water droplet will be moved along almost the same route.
The difference to the earlier route is that the experiment will not be stopped di-
rectly after the fall of the water droplet. Instead, the water droplet is moved to
the slide (see for the position of the slide Appendix B) and slide down to the next
floor. Only then the observation is stopped. Because only the moving behavior
of the water droplet is within the scope of this experiment, the water droplet will
not merge with a static droplet as in the previous experiment. With this, the
route of the water droplet is as follows: Move to the ramp, move up the ramp,
the water droplet falls down, move towards the slide and letting the water droplet
slide down.

To see that the visual physic behavior is not a onetime occurrence, the experiment
is repeated five times for both movement techniques.

27

CHAPTER 5. INTERPOLATION VS. FOLLOWING

5.1.1 Result

The first difference between both techniques is already visible as soon as the water
droplet starts to move up the ramp. With the following technique, parts of the
water droplet stays on the ground while the first part of the water droplet starts to
move the ramp up, just like in real life. On the other hand, using the interpolation
technique made the whole water droplet move upwards on the ramp. This makes
it seems as if the water droplet flicks.

Another visual difference occurs when the water droplet falls. The water droplet
changed back to the sphere-like form as soon as it starts falling using the inter-
polation technique. This is different when the following technique is used instead.
The water droplet seems to stretch in the air, as if part of the water droplet falls
slower. This is more realistic because in real life the water droplet does not change
back to a sphere-like form when falling.

With these two observations, we can conclude that the following technique simu-
lates the movement of the water droplet more realistic.

5.2 Speed of the calculation

The calculations of both techniques differ from each other. Therefore, the time
needed to calculate the movement can also be different. This experiment is con-
ducted to find out what the time difference is between the two movement algo-
rithms.

First of all, a stopwatch is needed for this just like in the experiment for the octree
and marching cube algorithm. The stopwatch is implemented into the simulation
so that it will measure the time needed to calculate the movement in millisec-
onds. Furthermore, during the simulation, the movement of the water droplet is
calculated multiple times. The measured calculation time can vary during the sim-
ulation. To compensate for this variation in time, the average of these calculation
times is calculated and given as the result.

For this experiment, the experiment set-ups of Chapter 3 is used, including testing
on five different mobiles.

The water droplet movement is simulated the same on these five devices. First, we
move the water droplet towards the ramps. Then just before reaching the ramp,
we let the water droplet move to the right. Just before it reaches the border of the
test environment, we will move it back to the ramp again and stop the simulation
just before reaching the ramp.

Because the movement is not done automatically, small differences in the move-
ment can appear. To compensate for this, the experiment is repeated ten times

28

5.3. CONCLUSION

Samsung Galaxy Nexus S HTC Desire Samsung Galaxy HTC Desire

S 2 S HD
1 0,0838 0,0598 0,1225 0,0714 0,0944
2 0,0722 0,0766 0,1155 0,2622 0,1330
3 0,0524 0,0677 0,1325 0,0718 0,1012
4 0,0836 0,0716 0,1507 0,0909 0,1084
5 0,0733 0,0579 0,1190 0,0694 0,1052
6 0,0631 0,0564 0,1626 0,0745 0,0902
7 0,0666 0,1174 0,1282 0,0716 0,0830
8 0,0967 0,0741 0,1367 0,0848 0,0853
9 0,0772 0,1012 0,1696 0,1007 0,1021
10 0,0837 0,0990 0,1651 0,0905 0,0960
average 0,07526 0,07817 0,14024 0,09878 0,09988

stddev 0,012630668 0,020809562 0,020233976 0,058409394 0,0143015

Table 5.1: The table shows the measured time of the following technique for ten
runs, including the average of these ten runs and the standard deviation. All the
times in this table are in milliseconds.

on every mobile phone.

5.2.1 Result

As you can see in Table 5.1, the average calculation times for the following tech-
nique for all five mobile phones lies between 0,07ms and 0,14ms. On the other
hand, the interpolation technique has an average calculation time between 0,01ms
and 0,04ms as you can see in table 5.2. This clearly shows that the following
technique needs more time to calculate the movement than the interpolation tech-
nique.

5.3 Conclusion

As we found out in these two experiments, the follow technique simulates a more
realistic moving behavior than the interpolation technique. On the other hand,
the interpolation technique is faster with the calculation. Therefore, the choice on
which of these two techniques to use depends on the goal one want to reach: more
realistic or faster.

29

CHAPTER 5. INTERPOLATION VS. FOLLOWING

Samsung Galaxy Nexus S HTC Desire Samsung Galaxy HTC Desire

S 2 S HD
1 0,0098 0,01597 0,0606 0,0255 0,0229
2 0,0233 0,01897 0,0423 0,0324 0,0280
3 0,0104 0,02247 0,0401 0,0208 0,0300
4 0,0107 0,02693 0,0313 0,0217 0,0316
5 0,0111 0,03040 0,0408 0,0249 0,0353
6 0,0251 0,02464 0,0424 0,0179 0,0344
7 0,0155 0,02643 0,0409 0,0225 0,0217
8 0,0196 0,02735 0,0387 0,0262 0,0269
9 0,0118 0,01829 0,0523 0,0227 0,0315
10 0,0212 0,02561 0,0451 0,0204 0,0423
average 0,01585 0,023706 0,04345 0,0235 0,03046

stddev 0,005922321 0,004637246 0,007975832 0,004022161 0,006095025

Table 5.2: The table shows the measured time of the interpolation technique for
ten runs, including the average of these ten runs and the standard deviation. All
the times are reported in milliseconds.

30

Static Water droplets

Next to the choice of implementing two different algorithms for the surface calcu-
lation and the movement, the water droplet was split in the implementation into
static water droplets and moving water droplets as described in Chapter 3.

The static water droplets are implemented slightly different than the moving water
droplets. This leaves us wondering what the impact of the static water droplets
are on the whole simulation and the limitations. To investigate this, further ex-
periments were necessary. To be more precise, three experiments are necessary.
The first experiment is to test the limitation of the number of static water droplets
in the simulation. Second is an experiment about the sink in implementation of
the static water droplet and the last experiment is about the merging with the
moving water droplet. In all three experiments, the experiment set-up of Chapter
3 is used, including testing on five different mobile phones.

6.1 Number of static water droplets

In the simulation, it is possible to place more than one static water droplet. Be-
cause these water droplets need to be calculated at the start of the simulation,
they can be a burden to the memory of the mobile phone. Furthermore, the cal-
culations of the static water droplets need process time. Therefore, every added
static water droplets slows down the movement of the moving water droplet. Be-
cause the calculations of the static water droplets take place at the beginning of
the simulation, the simulation is only slows down there and speeds up again after
some time.

In this experiment, one till twenty static water droplets are placed in the simula-
tion and run on each of the five mobile phones.

To see how long it takes until the moving water droplet is able to move normal
again, a stopwatch is used. The stopwatch is started as soon as the simulation
starts up and stopped as soon as the moving water droplet seems to move as
smoothly as without any static water droplets.

Furthermore, the marching cube algorithm needs more memory to calculate the

31

CHAPTER 6. STATIC WATER DROPLETS

surface than the octree as we saw in Chapter 4. This is why the static water
droplets in this experiment use the octree for the surface calculation. As the static
water droplets do not use the movement, it is not necessary to decide between the
movements for them.

6.1.1 Results

On all the mobile phones it was possible to start and run the simulation with
twenty static water droplets. It was even possible to start the simulation with 40
static water droplets on the five mobile phones. However, the time the simulation
needed until the moving water droplet was able to move normal again increases
with every added static water droplet. Table 6.1 and Figure 6.1 show this time in
seconds for one to twenty static water droplets.

Furthermore, the measured time is different on each of these five mobile phones
as seen in Table 6.1. This shows that the measured time until the moving water
droplets move faster again depends on the resources of the mobile phones.

6.2 Sink in

In the experiment set-up, the static water droplet sinks in according to method
explained in Section 2.3. The moving water droplet is not implemented with this
algorithm. The sink in needs too much time for the calculation as that it would
be usable for the moving water droplet.

To show how much time the sink in actually needed to be calculated, this experi-
ment is done with one static water droplet. The static water droplet is placed near
the first ramp in the simulation. A stopwatch is used in the implementation of the
simulation to measure the time needed to calculate the sink in of the droplet.
Processes running in the background could influence the measured calculation
time. Because of this, the experiment will be run ten times on all five mobile
phones.

6.2.1 Results

As seen in Table 6.2, the sink in process needs at least 13 milliseconds to be
calculated. The mobile phone with the slowest calculation abilities needs even 21
milliseconds in average to calculate the sink in.

This shows clearly that the sink in process demands a lot of calculation time.

32

6.2. SINK IN

Number of Static Samsung Nexus S HTC Desire Samsung HTC Desire

Water droplets Galaxy S2 Galaxy S HD
1 <1 1 1 <1 <1
2 <2 2 3 2 2
3 2 3 4 2 2
4 3 4 4 3 4
bt 3 5 5 4 4
6 4 5 5 4 5
7 5 6 6 4 6
8 5 7 7 5 7
9 6 9 9 6 8
10 7 9 10 7 8
11 7 9 11 7 8
12 7 11 12 7 9
13 7 11 13 8 11
14 8 12 13 9 12
15 9 13 15 10 13
16 9 13 16 11 14
17 10 14 16 11 14
18 10 15 17 12 16
19 11 16 20 13 17
20 12 17 21 14 17

Table 6.1: The measured time needed until the moving water droplet was able to
move faster again. All the times are reported in seconds.

33

CHAPTER 6. STATIC WATER DROPLETS

—— SamsungGalaxyS2

— NexusS

—— HTCDesire

—— SamsungGalaxyS
HTCDesireHD

20

Time (sec)

.
0 2 4 6 8 10 12 14 16 18 20
StaticWaterDropelts

Figure 6.1: This plot shows the time needed until the application runs normal
with the static water droplets.

6.3 Merging

Another implemented ability of the static water droplets is to merge with the
moving water droplet as soon as the moving one is close enough. After merging,
the moving water droplet has increased in size. The marching cube algorithm,
however, only has a limited grid size. Therefore, the number of water droplet

34

6.3. MERGING

Experiment run Samsung Nexus S HTC Desire Samsung HTC Desire

Number Galaxy S2 Galaxy S HD
1 11,05 12,7 21,7 12,25 16,5
2 14,1 12,55 26,15 12,65 14,65
3 13,45 12,25 21,65 12,7 14,9
4 11,6 13,4 18,45 13,3 15,2
5 14,65 13,05 20,95 12,35 14,85
6 14,85 12,75 19,75 12,55 15,05
7 13,05 12,45 21,25 12,4 16
8 16,6 13,55 19,75 12,7 15,05
9 14,4 12,7 19,55 12,85 15,25
10 14,2 12,7 19,8 12,7 15,1

average 13,795 12,81 20,9 12,645 15,255

stddev 1,611 0,408 2,123 0,296 0,564

Table 6.2: This table shows the measured calculatime time of the sink in for all
ten runs in milliseconds, including average and standard deviation.

with which the moving water droplet can merge is limited. So in this experiment,
it was tested with how many other water droplets the moving one can merge
without having surface outside of the grid of the marching cube algorithm. For
this experiment, the resolution of the water droplet was chosen to be low so that
the water droplet is able to move as fast as possible. Furthermore, with every
merg the water droplet grows. This means that the resolution would change. To
prevent that, the cube size changes according to the number of calculated triangles
of the surface.

With this, the water droplet is moved around the test environment and merged
with the static water droplets in the environment.

The implementation is further changed, so that a log message is generated as soon
as surface calculations outside of the grid take place.

6.3.1 Results

In this experiment, we were able to let the moving water droplet merge with twenty
static water droplets. The simulation runs further without any noticeable changes
in speed. Furthermore, the marching cube algorithm did not give any message
that part of the surface was found outside of the grid.

At first, merging with more than six water droplets seemed to let part of the
water droplet disappear when moving to the left. After changing the texture, this
phenomenon disappeared. This shows that it was because of the texture and not

35

CHAPTER 6. STATIC WATER DROPLETS

because of the grid size that it seemed to disappear.
This shows that the merging with twenty static water droplet is not a problem for
the simulation on the mobile phones.

36

Resolution

Another experiment we need to conduct is the testing of the resolution.

The resolution of the water droplet is defined in its surface. With high resolution,
the surface would be very smooth and with low resolution the surface would be
bumpy and less smooth.

Calculating the surface can therefore be influenced by the defined resolution. Some
resolution might even be too high as that some mobile phones will be able to
handle with their low resources. Therefore, we need to test the influence of the
resolution on the calculation time of the surface. As mentioned in Section 2.1, we
implemented two different algorithms for the calculation of the surface: Octree
and Marching cube algorithm.

7.1 Octree

The resolution of the octree is defined in the maximum depth till where the algo-
rithm calculates the tree (see Section 2.1). The deeper the maximum depth is, the
higher the resolution of water droplets.

In Chapter 4, we already saw that the octree is too slow for the moving water
droplet on mobile phones. Therefore, the testing of the octree resolution will be
conducted with one static water droplet. The static water droplet is placed at the
beginning of the test environment. Again, a stopwatch is used to measure the time
needed to calculate the surface of the water droplet. The difference here is that
the surface is only calculated once at the beginning. Therefore, it is not necessary
to calculate the average of all surface calculation during the simulation.
Furthermore, we used four mobile phones for the testing of the resolution instead
of five as mentioned in the experiment set-up in Chapter 3: Samsung Galaxy S2,
HTC Desire, HTC Desire HD and Samsung Galaxy S.

Other processes running on the mobile phones in the background could influence
the needed calculation time which would result in different times for every run.
Therefore, we decided to run the simulation ten times on every mobile phone. The
maximum depths that were used in the experiments are two and three. We also

37

CHAPTER 7. RESOLUTION

tried with a maximum depth of four, but the calculations were for most of the
devices computational expensive and let them even crash.

7.1.1 Results

Running with a maximum depth of three makes the water droplet smoother than
when it is run with a maximum depth of two. But a greater maximum depth also
increases the calculation time as you can see in Figure 7.1. On most of the mobile
phones is the average time for the calculation of the surface with a maximum depth
of three even higher than 100 milliseconds and slows the performance down at the
beginning.

7.2 Marching cube algorithm

The resolution of the marching cube algorithm is not defined with a maximum
depth as the octree is, but with the size of the cubes in the grid (see Section 2.1).
Smaller cubes in the grid allow the surface of the water droplets to have higher
resolution.

In this experiment, the cube size of the lowest resolution is 0.2. Any lower resolu-
tion would result in having a not sphere like form anymore. Higher resolution than
with a cube size of 0.075 leads to resource problems on mobile phones. Therefore,
the cube size used in this experiment range from 0.075 to 0.2.

In Chapter 4, the calculation time with the marching cube algorithm was fast
enough to test it with the moving water droplet. Also, what we want to measure
is the same as in chapter 4, that is the time needed to calculate the surface, the
set-up in this experiment will be the same as the set-up used there. This would
be a stopwatch that measures the time needed for the calculation of the surface,
testing it on five different mobile phones and using the same route.

Furthermore, the experiment is repeated ten times on every device and for every
cube size.

7.2.1 Results

In Figure 7.2, you can see the average of the ten measured calculation times in-
cluding the standard deviation. As seen there, the calculation time will lessen
the higher the cube size (lower the resolution) gets. This shows clearly that the
resolution has a great impact on the calculation time of the shape.

The side effect of the lower resolution is that the surface of the water droplet gets
bumpier. With too low of a resolution, the water droplet even starts to have a

38

7.2. MARCHING CUBE ALGORITHM

160

—— SamsungGalaxyS2
—— HTCDesire

—— SamsungGalaxyS
—— HTCDesireHD

140

Time (msec)
g

80

60

40

. . .
20 25 30 35 4.0
OctreeDepth

Figure 7.1: This plot shows the calculation time of the octree for different depths.

cube like form instead of a sphere like form. A cube size of 0.2 starts already with
making the water droplet look like a cube.

39

CHAPTER 7. RESOLUTION

80

—— SamsungGalaxyS2

— NexusS

—— HTCDesire

— SamsungGalaxyS
HTCDesireHD

70

60

Time (msec)
I
&

30

20

.
0.06 0.08 0.1 0.12 0.14 0.16 0.18 02
Cubesize

Figure 7.2: This plot shows the measured calculation time for every cube size and
the standard deviation.All the times are reported in milliseconds.

40

Performance

To see how good an implementation actually is, one has to take a look at the
performance of it and see if the performance is good. A good performance means
that the movements in the simulation are fluid and not jerky. It is important to
have a good performance especially in games. In games having jerky movement
makes the player feels as if the object in the game is not completely under his/her
control and therefore breaking the game flow.

Because mobile phones have low resources the performance depends on the calcu-
lation times. In the previous experiments, the needed calculation time was already
measured, but the experiments only looked at part of the simulation and not at
the whole simulation fo water droplets.

During the experiment in Section 7.2, we noticed that the water droplet moved
smoothly when the calculation times was lower than or equal to 18 milliseconds.
As you can see in Figure 8.1, most of the mobile phones have a calculation time
below 18 msec when low resolution is used. The only exceptions are the Nexus
S and the Samsung Galaxy S. Even with the lowest of the tested resolution, the
calculation time of the marching cube algorithm is above 18 milliseconds on those
two mobile phones. The controlling of the moving water droplet with those two
phones did also not feel as smooth and good as with the other mobile phones
during the resolution experiment because the movement was more jerky.

In the experiment in Section 7.2, the following technique was used to calculate the
movement of the water droplet. As was seen in Chapter 5, the following technique
needs more time to calculate the movement than the interpolation technique. Us-
ing the following technique instead of the interpolation technique should therefore
lower the performance of the simulation.

Running the simulation again on the mobile phones with low resolution, but now
with the interpolation technique, did indeed increase the feeling of the performance
as seen in Figure 8.2. Even running on the Nexus S and the Samsung Galaxy S
did not give any jerky feeling and the simulation ran smoothly

So, the performance is affected by the resolution and the choice of the movement.
Lower resolution raises the performance. The performance is then again raised by

41

CHAPTER 8. PERFORMANCE

80

—— SamsungGalaxyS2
— NexusS

—— HTCDesire

—— SamsungGalaxyS
70 b HTCDesireHD

b2

60

40+

Time (msec)

30

20

. . .
0.0 0.05 0.1 0.15 02
Cubesize

Figure 8.1: This plot shows the measured calculation time for every cube size and
the standard deviation while using the following technique. The grey area marks
where the performance starts to feel like a good performance. A good performance
feeling is reached in the grey area.

using the interpolation technique instead of the following technique.

This shows that every calculation reduces the performance of the simulation.
The static water droplets also need to be calculated, but only at the beginning.
That is why the performance dropped at the beginning and rises later, as was seen

42

80
—— SamsungGalaxyS2
— NexusS

—— HTCDesire

—— SamsungGalaxyS
70 b HTCDesireHD

b2

60

40+

Time (msec)

30

20 |

. . .
0.0 0.05 0.1 0.15 02
Cubesize

Figure 8.2: This plot shows the measured calculation time for every cube size
and the standard deviation while using the interpolation technique. The grey
area marks where the performance starts to feel like a good performance. A good
performance feeling is reached in the grey area.

in Chapter 6.

43

Discussion

Previous researches simulate water droplets on high computational resource devices
and not on low resources devices such as mobile phones. The previous experiments
(Chapter 4 - 8) showed that the simulation of water droplets introduced in this
thesis is able to run on different mobile phones.

Still, how it runs on the mobile phones depends on the mobile phone. All the
experiments showed that the choice of the mobile phone has great impact on the
performance. For example, the simulation runs faster and better on the Samsung
Galaxy S 2 than on the Nexus S.

The low resources of the mobile phones made it necessary that more than one sur-
face calculation method has been implemented. As seen in Chapter 4, the march-
ing cube algorithm needs too much memory for the calculation of many static
water droplets. The octree on the other hand needs less memory, but is slower.
Therefore, both algorithms are needed in the simulation. Using the marching cube
algorithm for the water droplet that moves is chosen because it is fast. We use the
octree algorithm for the static water droplets because it uses less memory.

The behaviors of the two implementations for calculating movement are also dif-
ferent. The interpolation movement is faster, but visually less realistic than the
following movement.

This shows that when using one of these implementations, there is a tradeoff
between performance and visual graphics. Also, the choice of the resolution is an-
other tradeoff between performance and visualization of the water droplet as seen
in Chapter 7. A higher resolution makes the water droplet smoother and visually
better, but also decreases the performance of the program. A good performance on
different mobile phones is reached with a low resolution and interpolation move-
ment whereas high resolution and using the following movement is visually better
but has a bad performance (see Chapter 8).

In a game, the performance is important especially for the game flow. Visual qual-
ity is also important, but less than the performance. Therefore, it is advisable to
reduce the visual quality for the performance in game wise.

Static water droplets also decreases the performance in the beginning of the simula-

45

CHAPTER 9. DISCUSSION

tion for some time as seen in Chapter 6. The time before the performance increases
again, depends on the number of static water droplets. Nevertheless, merging is
one of the key abilities of water droplets and in the simulation of water droplet
introduced in this thesis only possible with static water droplets. This ability can
also be used for game elements in games such as Hydrotilt. The amount of static
water droplets in such a game would therefore only be limited by the time the
game is allowed to wait at the beginning, camouflaging this time with a loading
screen.

The decrease in performance with the static water droplet is because of the calcu-
lation time needed for the sink in. The sink in allows a more realistic placing of
the water droplet on a surface, but decreases the performance. Therefore, again a
choice can here be made between visual correctness of the water droplet behavior
(sink in) or performance. Not using the sink in would increase the performance,
but it would then again be visually incorrect to let the static water droplet not
sink into the ground.

46

Conclusion

In the scope of this thesis, we implemented in an experiment set-up moving and
static water droplets on mobile phones using the metaballs model, Unity and C#.
The physical behavior of water droplets (such as sinking in according to a contact
angle, merging and changing shape from sphere to droplet form when moving)
were considered and also implemented.

We tested the implemented set-up on five different mobile phones. On all these
five mobile phones, the simulation was able to start up and we were able to let
the moving water droplet move. This shows that the simulation of water droplets
with metaballs is able to run on low resources devices such as mobile phones.
According to the physics of a water droplet, the water droplet will sink into a solid
surface and form a contact angle with this surface. Another physical behavior is
the merging with other water droplets. A water droplet merges as soon as it is
close enough with another water droplet resulting in one bigger droplet. These two
physical behaviors are implemented in the experiment set-up. The only limitation
is that the moving water droplet does not sink in according to the contact angle
because the sinking in process is to slow and that would result in performance
issue on the low resources devices. Therefore, the moving water droplet is always
sunk in to half of the sphere form.

With a very good performance, real time behavior of the implementation is possi-
ble. Nevertheless, the experiments conducted show that the graphics of the water
droplets (visually) and the performance on the mobile phones conflict with each
other. This is why, using a movement that looks more realistic and high resolution
of the water droplet decreases the performance. On the other hand, using low
resolution and a movement that does look less realistic improve the performance
and even result in real time performance on the mobile phones. This shows that
real time performance is possible with our implementation with less realistic look
and behavior.

The main question of this thesis was:

How to implement a water droplet based on metaballs with the right
behavior on a device with low resources?

47

CHAPTER 10. CONCLUSION

Our implementation makes this possible and answers therefore this.

Future work

A game is implemented in such a way that it runs in real time. As was shown,
using low resolution and a less realistic movement, the water droplet in our im-
plementation is able to move in real time, without hesitations on low resources
devices. This indicates that this simulation of water droplets is usable in a game
for low resources devices such as mobile phones. It is possible that game elements
would slow the simulation down and decrease the performance resulting in running
not in real time. Therefore, testing the simulation of water droplets introduced in
this thesis with game elements is one possible future work.

Furthermore, the sink in process implemented was to slow to be usable for the
moving water droplet. Nevertheless the sink in is according to a contact angle
with the solid surface a natural and more realistic behavior than always sunk in
to the half of the whole droplet. Therefore, we want to look if there are other
possibilities and implementations for the sink in process in future researches.

48

[1]

2]

[10]

[11]

[12]

Bibliography

J. Blinn. A gerneralization of algebraic surface drawing. ACM Transaction
on Graphics, 2(3):235 — 242, 1980.

D. Chen and J. Zhang. Merging of water droplets base-on metaball. Inter-
national Conference on Digital Manufacturing and Automation, pages 716 —
719, 2010.

Codeglue. Description of hydrotilt from Codeglue on their homepage. http:
//codeglue.com/game.php?id=11\&game=HydroTilt, Mar. 2009.

P. de Gennes. Wetting: Statics and dynamics. Rev. Mod. Phys., 57:827 — 863,
1985.

P. Eisert. Chapter 8. reconstruction of volumetric 3d models. In O. Schreer,
P. Kauff, and T. Sikora, editors, 3D Videocommunication: Algorithms, Con-
cepts and Real-Time Systems in Human Centred Communication, pages 133
— 150. John Wileys & Sons, Ltd, 2006.

P. Fournier, A. Habibi, and P. Poulin. Simulating the flow of liquid droplets.
Graphics Interface, pages 133 — 142, 1998.

A. Iglesias. Computer graphics for water modeling and rendering: a survey.
Future Generation Computer Systems, 20:1355 — 1374, 2004.

K. Kaneda, S. Tkeda, and H. Yamashita. Animation of water droplets moving
down a surface. Journal of Visualization and Computer Animation, pages 15

- 26, 1999.

K. Kaneda, T. Kagawa, and H. Yamashita. Animation of water droplets on
a glass plate. Proceedings of Computer Animation 93, pages 177 — 189, 1993.

T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Efficient implementation
of Marching Cubes cases with topological guarantees. Journal of Graphics
Tools, 8(2):1 — 16, 2003.

S. Murakami and H. Ichihara. On a 3d display method by metaball technique.
Journal of papers at the Electronics Communication, J70-D(8):1607 — 1615,
1987.

T. S. Newman and H. Yi. A survey of the marching cubes algorithm. Com-
puter & Graphics, 30:854 — 879, 2006.

49

BIBLIOGRAPHY

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa, and K. Omura.
Object modeling by distribution function and a method of image generation.

Transactions of the Institute of Electronics and Communication Engineers of
Japan, J68-D(4):718 — 725, 1985.

R. Tong, K. Kaneda, and H. Yamashita. A volume-preserving approach for
modeling and animating water flows generated by metaballs. The Visual
Computer, 18(8):469 — 480, 2002.

F. Triquet, P. Meseure, and C. Chaillou. Fast polygonization of implicit
surfaces. International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG’01), 2:283 — 290, Feb. 2001.

Unity Technologies. What is Unity and what can I do with it? http:
//unity3d.com/create-games/, June 2012.

H. Wang, P. J. Mucha, and G. Turk. Water drops on surfaces. ACM Trans-
actions on Graphics (TOG), 24:921 — 929, 2005.

WolframMathWorld. the web‘s most extensive mathematics resource, Spher-
ical Cap. http://mathworld.wolfram.com/SphericalCap.html, July 2012.

G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects.
The Visual Computer, 2:227 — 234, 1986.

Y.-J. Yu, H.-Y. Jung, and H.-G. Cho. A new rendering technique for wa-
ter droplet using metaball in the gravitation force. Proceedings of the 6th
International Conference in Central Europe on Computer Graphics and Vi-
sualization, WSCG ‘98, pages 432 — 439, 1998.

Y.-J. Yu, H.-Y. Jung, and H.-G. Cho. A new water droplet model using
meatball in the gravitational field. Computers and Graphics, 23:213 — 222,
1999.

Y. Zhang, H. Wang, Y. Tong, S. Wang, and K. Zhou. A deformable surface
model for real-time water drop animation. IFEE Transactions on Visualiza-
tion and Computer graphics, 2011.

50

Class Diagram and implementation

Figure A.1 shows the diagram of the whole implementation. Because it was made
smaller to fit on a page, the names of the classes, functions and variables are not
readable. Therefore, We split the class diagram into two half that are shown in
Figure A.2 and Figure A.3.

51

CLASS DIAGRAM AND IMPLEMENTATION

APPENDIX A.

1011.

f the whole implementat

The class diagram o

Figure A.1

52

ISOFunction

“useOfTurm: bool

forces: foatl]

+foat,

“Ancton:lecor3, metabol st eabaltnct)s ot

oD ancnd; Sesrctan

foay s |

oat)
AL
, radius: foat)

FlForcelst)

<<enumeraton>>
Densi

e
SMURAKAML
ANISHIMURA

evooraetioon toat e

otz
+rumberOfcubes)

<merface>
Surface
Sofunce 150Funch
Iretabels: st ietabalStruct>
et Lat<vector3>
it Lat<Vectarz>
Tormaiust Lst<veciors>
“vindieLst: st<nt>
“Sutace)
calceshpesh: refest)
Zoeneratetiesh(): it <Trangie>
SertcesromTrangies) o
fodVertcelndex(a: Vecter3)
HarchingCube oaies
targetpoles: hesie: fos
e kg i m” d
v e crdpant> e
ibesize: foat e Yedars
ot GbeGrd i Lt
oot ea) AmiotEnpty: boo

ochelanir Vecor i ot e T et L vl e SOy

+getCenter(: eciors

st s
eOibesunberofcubes:)
m:cnwmm(mm
csaetone: o)
eenraihegl; st <l
vmcmm(slavh\qabemmlmn Grdpoint)

getieafsCubes(): Lst<Cube>
+getieafsComers(); Lst<Vector3>

+etotEmpty0:
‘=GenerateMesh(): List<Triangle>
Polygorise(solevel: foat): Lit<Trianige>

‘sepontiamalisheGont Vecto3)
gustidn int)
Determenptness)

recacaficibevabes)

oFunction)

‘CubeGrid

e Vetexcade

mhzwmm nm
orign: Ve
wm«seu o

e e vectar,cbet: o)

Mo gnsedlioodnates: GiPont)
s0gesedyoordnates; Gripont):bol

e ittt o)

Leranangine

, isoFunction: ISOFu bals:

<heckCube(cube: Cube)
foatComparefa: fioa, b foa, tolerance: foat): bool
, wordpostion: IscFunctions ISOFunct

EPeckedcubesOutsdeORGd: List<GridPont>

ertexcache)
4Reset)

Pont: GePont,neghiepont: isghiecPantions)
uscumnwrp it b
c Grdpont

+QetGrNIGtO: nt
eck(p: GrcPont):

Figure A.2: The first half of the class diagram of Figure A.1.

53

APPENDIX A. CLASS DIAGRAM AND IMPLEMENTATION

WaterDroplet

#surface: Surface
=mesh: Mesh SinkPosition

#sinkPos: SinkPosition
-metaballs: List<MetabalStruct>

-BLENDSTEPS: int
sColider: SphereColicer Fsiellatr 00
kel -number OfViavingMetabals: int

+Siart) le=—_|-colidersteps: Vector3
stepsTaken: int

=DEGREEDISTANCE: fioat

+F el)
+OnCalisionstay(callsion: Colision)

“calcvoiumeadus: fioat) 4skgoaton{ransforn: ransfor, umberoMoungetabal: 1)

+calcColiderPositon(colider: ref SphereCollder, mesh: Mesh, metabalk: List <MetabalStructs», colision: Collsion, contactange: float)
SN EA R oo HA O G er A SPhereCollder, metabals Lt SMetHbalSTCt)

oo PontwithCantac tAngie (cemiaciAnge: Roet, surfaceorml: Vector3, mesh Mesh)

~calcCantacthngle(normal: Vector3, surfaceNormal: Vector3)

~CalcMovingSteps(pointindex: int, contact: ContactPoint, mesh: Mesh, metaballs: List <MetabalStruct:, sColider: SphereColider)
-Blend(sColicer: SphereColider)

MetaballStruct

+Radus: foat
+Volume: float
+Position: Vector3
+turnAngle: float
+urnUpAngle: fiaat
+slopeDegree: fioat
+shapeValue: float
+headingDir: Vector3

+MetaballStruct{Radius: float, Volume: float, Position: Vector3)

F e ‘ VertexPositionHormalTexture
+lormal: Vector3
il B o -player: GameObject +Position: Vector3
0 :
e o playersScript: MovingWaterDropiet +UV; Vector2
LAST_METABALL: int +Awake0) +VertexPositionNormalTexture (Position: Vector3, Normal: Vector3, UV: Vector2)
-MAX_TILTVAL: fioat +5tart)
-FALLINGSTART: fioat +FixedUpdate() - - -
MAXFALLING_WITH_FOLLOW: float Triangle WeightedPointNormal
TEERsL +a: VertexPositionormalTexture +Position: Vector3
pcion oot -+b: VertexPositionNormalTexture +Hormal: Vector3
jome e e +¢: VertexPositonNormalTexture +Value: float
-maxshapeValue: float
-minshapeVal: fioat
-numberOfiergesteps: int
back: bool GridPoint LookUps
-mergSteps: Vector3
T it +edgeNumber: intl]
+chosenMovement: KindOfMovement +iint FedgeTable; intl]
+Z:int +riTable: int[.]

+Anake()
start) +GridPaint(i: int, vt int, z: i)
+FixedUpdate()
+Merge!
+addMetaball(pos: Vector3, radius: fioat, volume: fioat) Cube LookUps
+getTotaRadius(): float P
changeShepe(itfou: foat headDirs Vectord, needToChangeshape: boo) intl]
~calcRadi(vol: fioat): floa +Cube(points: WeightedPointhormai]) +edgeTable: intl]

Yectors, e +tiTable: int[.]
BolnterpolationMovement(translating: Vector3, mrnAngIE ﬂnat)
SetMetabalaBack()
DoFollowMovement(translating: Vector3, turnangle: float) S
-normalize(min: float, max: float, val: float): fioat

“+position: Vector3

= o +turnAngle: fioat
enumeration: +turnUpAngle: float

Kindoftovement ==

“+PosTurn (position: Vector3, turnangle: float, turnUpandge: float)

+nterpolation
+FollowOneMetaball

Movement

-input: Input

“whichKindOfMovementTolise: KindOfMovement
~otationSpeed: fisat

-maxBorderoppositeDir: float

-minBor der OppositeDir: float

-pasitions: List<PasTum:> nput
-moving: boal -acceleration: Vector3
-speed: float

-maxDistance: float | ————"] +getinput{): Vector3
-maxDistancePercentage: fioat ~getTidnput()
-IndexOfFollower: fioat ~getKeylnput()

“HMovement(useMovement: KindOfVovement, follower: int, speed: float)

“tmave{oldDir: Vector3, meta: List<MetabalStruct>, transform: Transform): Vector3
+setRotationSpeed(speed: fioat)

“+setBordersOppositeDir{min: float, max: fioat)

+5etMaDistance{maxDistance: float)

+5etviaxDistancePercent{maxDistancePercentage: fioat)

+ResetFolowMovement()

-Interpolate(transiate: Vector3, oldDir: Vector3): Vector3

FollowMetabal (translate: Vector3, metabals; List<MetabalStruct>, transform: Transform)
~CalcRadi(val: fioat)

Figure A.3: The second half of the class diagram of Figure A.1.

54

A.1. SURFACE

As the class diagram shows in Figure A.1, the whole implementation of the
water droplet is split into four classes/parts: Water Droplet, Surface, Movement
and Sink in.

In Appendix A, you can find a class diagram of the complete implementation.

Water Droplet Sink in

Surface

Movement

Figure A.4: Main structure

A.1 Surface

As mentioned in Chapter 2.1, we want to implement two algorithms that are
able to calculate the surface: the octree and the marching cube algorithm. The
water droplet can have either one of those two algorithms to calculate the surface.
Therefore, those two are subclasses of the class Surface as you can see in Figure
A.5. To make the marching cube algorithm faster, as mentioned in Chapter 2.1.1,

Surface

i : ; .
b .
¢ 3
g

Marching Cube Octree

Figure A.5: Implementation structure of the Surface

we implemented the timestamps. The class vertexCache is where we implemented
the timestamp. It keeps track of the current timestamp and the timestamp for

55

APPENDIX A. CLASS DIAGRAM AND IMPLEMENTATION

every cube in the grid of the marching cube algorithm.

The surface of the metaballs is calculated mathematically as mentioned in Chapter
1.1.2. Both algorithms need those mathematical functions to calculate the surface.
Therefore, the class Surface should have those function implemented so that both
algorithm can access them. But to maintain an object oriented implementation,
we decided to place those function into an extra class and let the surface have an
instance of this class.

In Figure A.6, you can see the complete implementation of the Surface.

<<interfaces>

ISOFunction
Surface

MarchingCube e

!

CubeGrid

ls

VertexCache

Figure A.6: Classes structure of the complete implemented Surface

A.2 Movement

The movement of the water droplet can either be an interpolation movement or a
follow movement. In the water droplet class, the kind of movement to be used has
to be defined at the beginning. For the interpolation is the minimum value and
the maximum value of the range defined by variables. Furthermore, so that the
user can move the water droplet as he/she wants it to, the movement has an input.
In the game Hydrotilt, the movement of the droplet depended on the tilt of the
mobile device. We want to imitate this behavior. Therefore, we implemented the
tilt and how much the mobile device is tilted as input. The speed of the movement
depends then on how much the mobile device is tilted.

As mentioned in Chapter 2.2, the shape of the water droplet has to change if it

56

A.3. SINK IN

moves. This change is done with the help of a slope degree. When the water
droplet does not move, the slope degree should be 0. Tilting the mobile phone
changes that. To give the user a natural feeling of the change of the shape, we
decided to use the angle of the tilt as the slope degree and change the shape
according to that. This ensures also that the water droplet will change its form
back before moving into the opposite direction as you can see in Figure A.8.

In Figure A.7, you can see the implementation structure of the movement.

< <enumeration ==
KindOfMovement

Movement +Interpolation

+FollowOneMetaball

Input

Figure A.7: Class structure of the movemenet implementation

A.3 Sink in

Unity already provides some physics and physics mechanisms such as colliders. The
colliders allow the detection of collisions between two objects. Because the shape
of a droplet is sphere-like when it is not moving, we will use the spherecollider for
the water droplets. That is a collider in the shape of a sphere.

With the spherecollider, unity detects every collision it will have with other rigid
bodies such as for example the ground the water droplet will lay on. In our
implementation, if the water droplet collides with another object, it should sink
into that one according to the contact angle. Therefore, we first provide all the
other objects, which the water droplet should sink into, in the environment of the
water droplet with a script that contains only the contact angle belonging to that
object.

Every time a collision is detected, our implementation will first check for that
script. If in the collision such a script is detected, it will then go through all the
points of the water droplet surface. Under all these points, the implementation
searches for a point that has the same or almost the same contact angle as is stated
in the found script.

To let the water droplet sink in, our implementation will move the spherecollider

57

APPENDIX A. CLASS DIAGRAM AND IMPLEMENTATION

: s : I LR
(a) Basic holding position of mobile where tilt is
(almost) 0 and therefore the slope degree is also

(b) Changing the moving direction into the opposite movement by chang-
ing the tilt of the mobile.

Figure A.8: To change the moving direction into the opposite direction, the tilt
of the mobile has to change. In this movement, the mobile device is held shortly
in a basic. This causes the water droplet to change its form back before changing
movement into the opposite direction.

step by step until the collision point between the water droplet and the surface
is at the same height as the determined point. At every step, the radius of the
water droplet is also recalculated depending on the volume of the water droplet
(see Chapter 2.3) and adjusted so that it seems like the water droplet is spreading
instead of sinking in.

These calculations make a moving water droplet too slow on mobile devices to
move around. Therefore, we decided to only calculate the sink in for water droplet
that will not move around. To prevent the moving water droplet from being placed
on the surface like a marble, we will let it sink in till only half of it is seen, just
like Yu et al. did in their research [21].

A.4 Water Droplet

Water droplet is the main class where all the behavior of the water droplet is
combined. Because we do not want only moving water droplets, but also droplets
that are static, the water droplet can either be a Moving water droplet that uses
movements or a static Water droplet as seen in Figure A.9.

58

A.4. WATER DROPLET

The static water droplets will sink in the ground according to the contact angle

‘WaterDroplet

1

MovingWaterDroplet StaticWaterDroplet

Movement

Figure A.9: Class structure for the class water droplet

and otherwise only wait until it is close enough to the moving one for merging.
Because, in Unity, every water droplet will be created as a game object on its own,
the static water droplet needs to add itself into the game object of the moving
water droplet as soon as that one is close enough to be able to merge.

The moving water droplet will move according to the tilt of the mobile device. As
soon as a metaball is added to the moving water droplet, it will stop moving to
merge with the static one.

The merging process works as follows: the metaballs of the moving water droplet
will move step by step towards the position of the static one. Because of the
mathematical description of the metaballs, it will visually seem like two water
droplets that are merging. As soon the positions of the metaballs are equal, the
radius and volume of the moving water droplet are adjusted and the static water
droplet deleted. The merging process is then complete and the water droplet will
then again move according to the tilting of the mobile and the chosen movement.

59

Test Environment

To test the behaviour of the water droplet, a test environment was set-up in Unity.
Figure B.1 shows how the test environment looks like. The moving watewr droplet
starts always at the most upper floor.

Figure B.1: The test environment that was used for the implementation and the
experiments.

61

