
Faculteit Bètawetenschappen

Chip-firing games on graphs

Bachelor Thesis

Ruben Vink

Mathematics

Supervisors:

Dr. Valentijn Karemaker
Universiteit Utrecht

Dr. Marieke van der Wegen
Universiteit Utrecht

June 17, 2021

CONTENTS i

Contents

1 Introduction 1

2 Graphs and the chip-firing game 1

3 Chip-firing and the Laplacian 3

4 Dhar’s burning algorithm 7

5 Spanning trees and reduced divisors 14

References I

2 GRAPHS AND THE CHIP-FIRING GAME 1

1 Introduction

Chip-firing games have kept mathematicians busy since the early 1980’s. A simple game with simple rules
defined on graphs allows for a deceptively easy approach. However, it turns out there is a lot more to it.

All throughout the 1980’s many different mathematicians separately came to different definitions of the
same idea: the reduced divisor. This reduced divisor allows us to relate seemingly different chip-firing games
as the same, and even lets us prove certain games are unwinnable under certain rule sets.

To this end, divisors are put into groups that are generated by the structure of the graph, hinting at the
connection to other graph properties such as the Laplacian matrix.

In this thesis we will focus on algorithms to determine the reduced divisors in a way that is efficient, but still
intuitive and doable on paper. Some prior knowledge of graph theory and linear algebra is recommended,
but most ideas are conveyed informally in addition to the formal mathematical groundwork.

The (informal) ideas in this thesis are combinations of understandings found in papers [1], [2], and part
of the book [3], in order to set forth the ideas found in [4] that were also found independently by many other
mathematicians as mentioned in the introduction in said paper.

2 Graphs and the chip-firing game

Definition 2.1. A graph G is a triplet (V,E, ω) such that V is a set of vertices, and E a set of ordered pairs
of vertices such that when x, y ∈ V and (x, y) ∈ E there exists a directed connection from x to y. Finally, ω
is a function acting on E that assigns a value to every edge.

x

z

y

Figure 1: A graphical representation of a graph given by V = {x, y, z} and E = {(x, y), (y, z), (z, x), (z, y)}
with ω(e) = 1 constant for all edges.

For graphs we can define certain properties.

Definition 2.2. A graph G is undirected when for every edge (x, y) ∈ E, we have (y, x) ∈ E. Otherwise,
the graph is directed.

Definition 2.3. A graph G = (V,E, ω) is unweighted when ω(e) = 1 for all e ∈ E. Additionally, when the
weight function is left out (G = (V,E)), the graph is assumed to be unweighted.

Definition 2.4. A graph G is connected when for any pair x, y ∈ V , there exists a series of edges that form
a path such that:

(x, z1), (z1, z2), ..., (zp−1, zp), (zp, y) ∈ E,

where p is the number of other vertices in the path.

Remark 2.5. As a result of the definition of connectedness, we can quickly see that any graph exists of one
or more connected sub-graphs. In chip-firing games, unconnected graphs are simply multiple instances of the
game played on its connected components, so without loss of generality we restrict ourselves to connected
graphs.

Definition 2.6. In an undirected graph we denote the degree of a vertex v ∈ V by deg(v). The degree of a
vertex is the amount of edges incident to the vertex:

deg(v) = |{w : (v, w) ∈ E, w ∈ V }| .

2 GRAPHS AND THE CHIP-FIRING GAME 2

Remark 2.7. The set {w : (v, w) ∈ E, w ∈ V } used in the definition of the degree of a vertex is the set
that contains all the neighbours of v and will be denoted by N (v) where N : V → P(V).

y

w

zx

Figure 2: The degree of vertex z is 2, in blue we see N (z) = {y, w}

To talk about the chip-firing game, we first need to introduce chips to the graph. We do this by associating a
number with every vertex. Informally, we will then perform ‘moves’ on the graph, which consists of moving
chips around the graph in a controlled manner.

Definition 2.8. For a graph G = (V,E) we define av ∈ Z for every vertex v ∈ V , indicating the number of
chips on that vertex. Between moves we will talk about av as the number of chips before the move, and a′v
as the number of chips after the move. Note that av < 0 is possible, and we say that vertex v is in debt.

From here on in any examples, the numbers on the vertices will represent the number of chips on that vertex.
When relevant, the identifier will also be shown.

Before we define the chip-firing game, we will make a generalization for storing chips on graphs.

Definition 2.9. By looking at all the av at the same time, we can define the state of a game by looking at
a vector a ∈ Zn with an arbitrary ordering on V such that V = {vi : i ∈ {1, 2, ..., n} ⊂ N}. Such a vector is
also known as a divisor on G, and we call Div(G) the group of all divisors on G.

Remark 2.10. Since there exists a trivial isomorphism between Div(G) and Zn under addition, we will treat
elements of Div(G) as vectors in Zn any time we perform calculations or follow algorithms.

Definition 2.11. The amount of chips in the game is the sum of all components of D ∈ Div(G). This is
also known as the degree of the divisor D.

Definition 2.12. We denote Divk(G) the set of all divisors of degree k on G.

Remark 2.13. Combining Definition 2.11 and Definition 2.12, we note that Div0(G) forms a group under
addition. We can show that the degree of D1 + D2 where + adds components, is the sum of the degrees of
D1 and D2.

Remark 2.14. Note that Divk(G) for k 6= 0 is not a group under addition, since for D1, D2 ∈ Divk(G):

deg(D1 +D2) = deg(D1) + deg(D2) = k + k = 2k.

Therefore D1 +D2 /∈ Divk(G).

Definition 2.15 (Firing single vertices). By firing a vertex v, we remove deg(v) chips from v and add one
to each of its neighbours.

Definition 2.16 (Firing subsets). By choosing a subset A ⊆ V , we can fire multiple vertices in one move.
This is equivalent to firing all vertices in the subset sequentially, but is considered one move.

Definition 2.17 (The chip-firing game). Given an undirected, unweighted, and connected graph G = (V,E)
we let n = |V |, m = |E|. We can then play the chip-firing game as follows:

1. Assign a number av of chips to every vertex v ∈ V .

2. Pick any subset A ⊆ V such that after firing A, we have a′v ≥ 0 for all v ∈ A.

3. Repeat until certain goal is reached.

3 CHIP-FIRING AND THE LAPLACIAN 3

Definition 2.18. Using the chip-firing game as defined in Definition 2.17, given a state D ∈ Div(G), we can
calculate a new state D′ ∈ Div(G) after firing a single vertex v as follows:

1. For every vertex vi we define mvi ∈ Zn such that:

(mvi)j =


− deg(vi), if i = j,

1, if (vi, vj) ∈ E,
0, otherwise.

Then mvi is the vector that defines the change to the overall graph after firing vi, since all neighbours
of vi receive 1, and vi itself loses an amount equal to the amount of neighbours.

2. We then define D′ = D +mv where + : Div(G)× Zn → Div(G) simply adds components.

In order to talk about firing subsets, we generalize this to performing a set of moves at once for A ⊆ V by
defining:

mA =
∑
v∈A

mv,

and then calculating D′ = D +mA similarly. As such, any subset A ⊆ V generates a move vector mA.

The following example illustrates how the mvi encode the process of chip-firing on a small graph.

Example 2.19. Consider the following graph corresponding to D = (0, 0, 2, 0) ∈ Div(G):

0

0

20

(a) D, before firing

1

1

00

(b) D′, after firing

Figure 3

The vector mv3 corresponding to firing the vertex with 2 chips on it is given by:

mv3 = (0, 1,−2, 1).

Indeed, we can see that giving one chip to each of the neighbours yields the configuration shown in Figure 3b
which is indeed given by D′ = D +mv3 = (0, 0, 2, 0) + (0, 1,−2, 1) = (0, 1, 0, 1). 4
Remark 2.20. Note that mV = ~0, since when every vertex gives one to each of its neighbours, and receives
one from each of his neighbours, the net result is 0.

3 Chip-firing and the Laplacian

In order to more effectively discuss the properties of the chip-firing game and the groups associated with it,
we look at a few theorems appropriate for computation of moves, and move toward a general idea of defining
an equivalence relation on divisors under chip-firing moves. We will first look at some theorems that follow
from the generalizations we made to firing subsets, to show how the Laplacian of the graph is connected to
chip-firing games in Remark 3.10.

Lemma 3.1. When we have two disjoint subsets A,B ⊆ V , mA +mB = mA∪B.

Proof. Since no elements are shared between A and B we get:

mA +mB =
∑
v∈A

mv +
∑
v∈B

mv

=
∑

v∈A∪B
mv

= mA∪B ,

which completes the proof.

3 CHIP-FIRING AND THE LAPLACIAN 4

Theorem 3.2. Firing a subset A ⊆ V has the opposite effect of firing Ac.

Proof. Combining Remark 2.20 and Lemma 3.1 we know:

mA +mAc = mA∪Ac

= mV

= 0.

This means that mA = −mAc . In other words, firing the complement of a subset A undoes the move.

Example 3.3. An example of an application of Theorem 3.2 is showing that firing everything but one vertex
is the same as reversing the effect of firing that vertex. See the following graph:

v1

v3

v2

(a) Ordering of the graph

2

1

1

(b) Initial configuration s

We know that mv1 = (−2, 1, 1). It is thus expected from Theorem 3.2 that m{v2,v3} = (2,−1,−1). We now
show the result of first firing v2 and then firing v3. Reversing the order results in the same final configuration.

3

2

-1

(a) Firing v2 first.

4

0

0

(b) Firing v3 second. Final configuration D′.

We can see here that the change to the graph by firing m{v2,v3} is indeed equal to (2,−1,−1). 4

Corollary 3.4. As a result of Theorem 3.2 we can always calculate a new move by looking at firing at most
bn2 c vertices by looking at the complement of A whenever |A| > n

2 .

Corollary 3.4 is mostly useful for on-paper evaluations.

Before we use these properties to show some alternative representations of graphs, we need one more property
associated to divisor groups.

Proposition 3.5. The rank of Div0(G) is n− 1.

Proof. Any element of Div0(G) can be represented as a vector v in Zn like:

v =

(
v1, v2, ..., vn−1,

n−1∑
i=1

−vi

)
.

Now define ui as the vector with:

(ui)j =


1 if j = i,

−1 if j = n,

0 otherwise.

Notice that we can now write v as a linear combination of ui like:

v =

n−1∑
i=1

vi · ui.

Therefore Div0(G) is spanned by {ui : 1 ≤ i ≤ n− 1, i ∈ N} since all the ui are linearly independent, and is
therefore of rank (n− 1).

3 CHIP-FIRING AND THE LAPLACIAN 5

In order to define another group of divisors, we first take a look at some matrices determined by graphs.

Definition 3.6. Given a graph G = (V,E) we can construct the n × n degree matrix D of the graph by
putting the degrees of all vertices on the diagonal as follows:

Di,j =

{
deg(vi) if i = j,

0 otherwise.

Definition 3.7. Given a graph G = (V,E) we can construct the n × n adjacency matrix A of the graph
by putting the weight of edge (vi, vj) at Ai,j . Since we look at unweighted graphs, our edge weights are
considered to be 1:

Ai,j =

{
1 if (vi, vj) ∈ E,
0 otherwise.

With the degree matrix and the adjacency matrix defined, we can look at the subtraction of the two, called
the Laplacian matrix.

Definition 3.8. The n× n Laplacian matrix L of a graph G is given by:

L := D −A.

Per entry this means:

Li,j = Di,j −Ai,j =


deg(vi) if i = j,

−1 if (vi, vj) ∈ E,
0 otherwise.

As mentioned earlier, the Laplacian is strongly connected to the chip-firing game. We will use our earlier
findings to construct a matrix Q such that Q is equal to the negative Laplacian.

Since we have defined n vectors mvi in Definition 2.17, each of length n; we can stack these vectors fol-
lowing the ordering chosen on V and create a matrix Q that can be used to compute the same mA as in
Definition 2.18 using a matrix-vector multiplication.

Definition 3.9. Let the n × n matrix Q be the matrix obtained by using mvi (see Definition 2.17) as row
vectors for a given graph G such that:

Qi,j =


−deg(vi) if i = j,

1 if (vi, vj) ∈ E,
0 otherwise.

Remark 3.10. Notice that L = −Q, as we can quickly see in Definition 3.8 and Definition 3.9.

As a result we can now compute simple moves of firing a subset using a multiplication.

Proposition 3.11. Let A ⊆ V be a non-empty subset, then χ
A is the characteristic {0, 1}-valued column

vector obtained by:

(χA)i =

{
1 if vi ∈ A,
0 otherwise.

Then mA is also defined by:
mA = QχA.

Proof. Since Q consists of the mvi we need to construct mA, multiplication with χA performs the exact sum
required as in Definition 2.18.

3 CHIP-FIRING AND THE LAPLACIAN 6

In fact, this definition allows us to compute the change to a divisor by firing any vertex any positive number
of times.

Definition 3.12. Given a sequence of moves, decomposed in subsets Ai ⊆ V , we can define the column
vector (f) ∈ Div(G) such that:

(f) =
∑
i

χ
Ai .

We can then compute the change to the graph by:∑
i

QχAi
= Q

∑
i

χ
Ai

= Q(f).

This idea leads us to another interesting group.

Definition 3.13. Let Prin(G) be the group of principal divisors. A divisor D ∈ Prin(G) is such that there
is a (f) ∈ Div(G) such that:

D = Q(f).

Since Q = −L, this is equivalent to the group of all divisors D such that:

D = L(f),

which allows us to use known properties of the Laplacian.

More concretely, the group of principal divisors are all the changes that can happen to a divisor on a graph
under any sequence of chip-firing moves. We will show next that it is in fact the group of changes that can
happen under any ‘legal’ sequence of chip-firing moves. Legal in this context means that we only use positive
components in (f), but still span the entire group.

Proposition 3.14. 1 ∈ ker(Q) and by extension also 1 ∈ ker(L).

Proof. We know that mV = ~0. Since mV = QχV = ~0, and we also know that χV = 1, we can conclude that
1 ∈ ker(Q).

Corollary 3.15. Given (f) a sequence of moves. If and only if (f)v = (f)w for all v, w ∈ V , then Q(f) = 0.
That means, ker(Q) is spanned by 1.

Proof. From Proposition 3.5 we know that the rank of Q is n− 1. We know that the rank of a matrix plus
the dimension of the null space (Rank Theorem in [5]) is equal to n. This means that the dimension of the
null space is one, and we know from Proposition 3.14 that 1 ∈ ker(Q). We conclude that ker(Q) is spanned
by 1.

Lemma 3.16. Q(f) = Q(g) where (g) = (f) + c · 1 and c ∈ Z.

Proof. By distributivity of matrix multiplication and Proposition 3.14:

Q(g) = Q((f) + c · 1),

= Q(f) + c ·Q1,
= Q(f).

Remark 3.17. The group Prin(G) is generated by the divisors Q(fi) such that the i-th component of (fi)
is one, and the rest is zero, for 1 ≤ i ≤ n − 1 and i ∈ N. Note that we do not need Q(fn), since using the
complement property described in Theorem 3.2,

Q(fn) = −Q
∑

1≤i≤n−1

(fi).

4 DHAR’S BURNING ALGORITHM 7

Important to notice is that since every row sum of Q is 0, we know that any D ∈ Prin(G) is also in Div0(G).
Therefore, Prin(G) ⊆ Div0(G).

We have now reached a point where we can define an interesting equivalence relation on divisors, or in the
context of the chip-firing games, starting configurations of the game.

Definition 3.18. We call two divisors D1 and D2 linearly equivalent, denoted by D1 ∼ D2, if there is a
sequence of moves such that we can move from D1 to D2. In other words D1 ∼ D2 implies the existence of
a ∆D ∈ Prin(G), the result of a sequence of moves such that D2 = D1 + ∆D.

This might raise the question, what if our ∆D ∈ Prin(G) is generated by an (f) ∈ Div(G) with a negative
component? To solve this, we need one more idea, namely effective divisors.

Definition 3.19. A divisor D ∈ Div(G) is called effective if Dv ≥ 0 for all v ∈ V .

This means that we can assume a given (f) to be effective without loss of generality, since Lemma 3.16 tells
us there always is a (g) such that (g) is effective and Q(f) = Q(g). We will later use this definition more
generally by saying that a divisor D is effective outside a subset A ⊆ V , which means that the divisor is
non-negative for all vertices in the complement of A.

4 Dhar’s burning algorithm

Since Prin(G) is an infinite group, it is not trivial to check whether D1 ∼ D2. We can however, show that
there exists some notion of a shortest path.

Theorem 4.1. We can find the shortest number of moves between effective divisors D1 and D2 given that
we know some effective (f) ∈ Div(G) such that ∆D = Q(f) gives D2 = D1 + ∆D and thus D1 ∼ D2.

Proof. Using Lemma 3.16 we know we can add 1 to (f) any number of times. Therefore we can subtract 1
in such a way that (f) is not only effective, but the minimum component is 0. Our maximum component
M = maxv∈V (f)v is now the minimal number of subsets we need to fire in order to move from D1 to D2.

Lemma 4.2. If we have divisors D1 and D2 such that D1 ∼ D2, and we know effective divisors (f) and (g)
such that:

D2 = D1 +Q(f),

D1 = D2 +Q(g).

Then (f) + (g) = M · 1 where M ∈ Z is such that M ≥ maxv∈V (f)v.

Proof. Adding both equations gives us:

D1 +D2 = D1 +D2 +Q(f) +Q(g),

0 = Q(f) +Q(g),

Q((f) + (g)) = 0.

And therefore (f)+(g) ∈ ker(Q). Since ker(Q) is spanned by 1 by Corollary 3.15, we know that for all v ∈ V
that (f)v + (g)v = M for some M ∈ Z. Since both (f) and (g) are effective, both (f)v ≥ 0 and (g)v ≥ 0
following Theorem 4.1, and we can conclude that M is at least equal to maxv∈V (f)v.

Perhaps a more interesting concept to look at is the concept of equivalence classes under the relation described
in Definition 3.18. A nice set of representatives for these equivalence classes are the q-reduced divisors. We
will use the definition as described in the paper by Baker-Shokrieh [4].

Definition 4.3. Choose any vertex q ∈ V . A divisor D ∈ Div(G) is called q-reduced if it satisfies the
following conditions:

4 DHAR’S BURNING ALGORITHM 8

1. Dv ≥ 0 for all v ∈ V \ {q}, or in other words, D is effective outside q.

2. There is no subset A ⊆ V \ {q} that can be fired such that after firing all vertices in A still have a
non-negative number of chips.

Note from Property 1 that it is possible that the amount of chips at q is negative. This is to allow this
definition to span all divisors of any degree.

We can now show that the equivalence classes created under ∼ are represented by the q-reduced divisors. To
this end, we need to show that q-reduced divisors are unique. In other words, we will have to show that if
D1 and D2 are both q-reduced divisors, and we have an arbitrary divisor D such that D ∼ D1 and D ∼ D2

hold, then this implies that D1 = D2 and the q-reduced divisor is therefore unique. In order for this to be
possible we first need some intermediate steps. The following proof is based on Baker-Norine [1, Proposition
3.1].

Remark 4.4. In the following proofs we will use the notion of ‘lending’ chips. This means that we force the
vertex we want chips from to fire, resulting in the informal idea of lending chips.

Lemma 4.5. Any divisor D ∈ Div(G) is equivalent to a q-reduced divisor.

Proof. We take two steps in order to show that any D ∈ Div(G) can be reduced with respect to q.

1. Order the vertices in V arbitrarily such that q is the first vertex and every vertex has a neighbour
preceding it in the ordering (except for q). Then start, from the last vertex, by lending from one of its
preceding neighbours until the amount of chips on that vertex is greater than or equal to 0. Repeat
this process for every vertex (except q) by only lending from vertices preceding it in the ordering. We
now have that all Di ≥ 0 for i 6= q. The divisor then satisfies the first property as in Definition 4.3.

2. To achieve the second property, we simply keep firing all subsets A ⊆ V \ {q} until we are not able
to anymore. This is guaranteed to terminate since chips will end up on q, thus reducing the amount
of chips in the rest of the graph. Since the amount of chips is finite, there will eventually not be any
subset left to fire and the second property is also fulfilled.

With both properties of Definition 4.3 fulfilled, we have succesfully reduced an arbitrary divisor D to vertex
q.

The interesting part about Lemma 4.5 is how we can efficiently perform the two steps in the described
algorithm.

Theorem 4.6. For any divisor D ∈ Div(G) there is a unique q-reduced divisor D′ such that D ∼ D′.

Proof. Using Lemma 4.5 we know any D is linearly equivalent to at least one q-reduced divisor. Suppose we
have D1 and D2 such that D1 ∼ D2 and D1 6= D2. Assume D1 and D2 are both q-reduced such that D is
linearly equivalent to both. Suppose we know (f) such that D2 = D1 + Q(f). Informally, this means that
(f) is a characteristic function for what vertices we should fire in D1 to get to D2. From Theorem 4.1 we
can assume (f) effective without loss of generality such that:

min
v∈V

((f)v) = 0. (4.1)

Since this argument needs to work both ways; there exists (g) such that D1 = D2+Q(g) and (f)+(g) = M ·1
following Lemma 4.2 since Equation (4.1) holds for both (f) and (g). Since D1 6= D2, we know that there is
a vertex v ∈ V \ {q} such that (f)v 6= (f)q. Since we know that (f) + (g) = M · 1, we can assume that there
is a (f)v > (f)q without loss of generality. As a result there is a subset A ⊆ V \ {q} with v ∈ A that can be
fired, contradicting the fact that D1 and D2 are both q-reduced, thus proving that D is linearly equivalent
to a unique q-reduced divisor.

Now we know that we can properly represent the equivalence classes, we can in fact figure out whether two
divisors belong to the same equivalence class, and thus whether they are linearly equivalent. From now on
we will only look at effective divisors unless explicitly stated. To efficiently reduce a state to its q-reduced
representative, we can employ Dhar’s [6] algorithm (Algorithm 1) to take a divisor D and perform moves on
it such that it is q-reduced. Before we formally describe Dhar’s algorithm, we need an extra function:

4 DHAR’S BURNING ALGORITHM 9

Definition 4.7. Let N (v) be the neighbours function as described before. We generalize (with A ⊆ V) by:

NA(v) = N (v) ∩A.

This allows us to look at the number of incident edges from a subset of V to an arbitrary vertex v. Furthermore
we define N (A) as follows:

N (A) =

(⋃
v∈A
N (v)

)
∩Ac.

In other words, N (A) gives all vertices adjacent to A but not in A.

Next we will be looking at an algorithm based on work by Dhar [6] and adapted from the algorithm in
Baker-Shokrieh [4] that is used to determine whether a given divisor is q-reduced. This algorithm takes in
any divisor D and a vertex q, and returns the same divisor reduced with respect to q, assuming the input
is effective, as opposed to Algorithm 1 in Baker-Shokrieh, which gives a true or false depending on whether
the divisor is q-reduced or not. If the divisor D is already q-reduced, it returns that divisor in the same time
complexity as the algorithm described by Baker-Shokrieh, otherwise it performs chip-firing moves to perform
the reduction.

In order to understand the algorithm we present the following analogy. We assume the chips on the graph
represent firefighters, and we start a fire at vertex q. Edges do not have firefighters stationed on them, so
all edges adjacent to q ‘burn’. Any vertices with an incoming burning edge are now at risk. If they have
enough firefighters stationed there, they are safe and nothing happens. However, in the case that the amount
of burning edges exceeds the number of firefighters, the vertex is unfortunately lost to the fire, and all of its
adjacent edges burn.

As a result of these steps, when the fire is controlled and nothing burns anymore, all vertices that are
still unburned together form a subset A ⊆ V \{q} that can be fired. A formal proof is given in Theorem 4.11.

Algorithm 1: Dhar’s Burning Algorithm

Input : Effective divisor D and vertex q ∈ V
Output: q-reduced divisor D′ such that D ∼ D′
D′ := D
while B 6= V do

B := {q} // Set of burned vertices

while B changed do
A := N (B) // Set of vertices with burning incident edges

for a ∈ A do
if D′a < |NB(a)| then

// a burns through

B ← B ∪ {a}
end

end

end
D′ ← D′ + k ·mBc // Fire all unburned vertices

end

In the current shape this algorithm runs particularly badly in specific cases, since we are firing every vertex
only once. Figure 6 shows the graph of 2 vertices connected by one edge for example. Put an arbitrary large
amount N of chips on the second vertex, and then reduce the graph for the first vertex. We would have to
step through the outer while loop at least that large number N times to move every chip one at a time.

4 DHAR’S BURNING ALGORITHM 10

0 N

(a) Initial configuration

1 N-1

(b) Configuration after firing once

Figure 6: Example of bad case

To achieve a significant speed up in cases like this, we take a look at the line where we fire the unburned
vertices:

D′ ← D′ + k ·mBc .

We can find a coefficient k ∈ Z to mBc such that we perform the same firing move as many times as possible.
We can find the change to the amount of chips for every vertex v ∈ Bc as follows:

∆v = |NB(v)| = (mBc)v = a′v − av.

Using this idea we can calculate the number of times we can fire without going into the negative as:

k = min
v∈N (B)

(⌊
Dv

−∆v

⌋)
.

This solves in particular the earlier example of 2 vertices with a lot of chips on one vertex, but for any
divisors with a large number of chips (degree of divisor much larger than n) this allows for more efficient
computation. However, we have not yet proven that this does indeed do what it says. First, we will state
why this algorithm terminates.

Proposition 4.8. In every step of the algorithm, one of two things happens:

1. The amount of chips on V \ {q} goes down and the number of chips on q goes up.

2. The unburned portion Bc of the graph changes and the amount of chips on V \ {q} stays the same.

Proof. We know that if q ∈ N (Bc) that Dq will grow. We also know that the amount of chips in the game
does not change and thus the number of chips on V \ {q} goes down. This shows the first property.

For the second property, we now consider q /∈ N (Bc). Since we fire the subset exactly as many times
as is possible, we know that subset Bc has to change from one iteration to the other.

Lemma 4.9. Algorithm 1 terminates.

Proof. Firstly, the inner while loop terminates, since B can only grow to be as big as V . Then, N (B) is
empty, and thus B can no longer change and the loop will terminate.

From Property 2 in Proposition 4.8 we know that each iteration, we have a different Bc. As a result,
any movement we make in the chips can only be undone by firing the complement, which includes q. We
never fire q and thus it is impossible to return to previous states. Since there are finitely many chips, there
are finitely many states we can have before q will be a part of N (Bc) (Property 1 in Proposition 4.8), or the
entire graph will burn.

Since the amount of chips on the graph is finite, eventually the number of chips on V \ {q} will be suf-
ficiently low, and thus the graph will burn and we have B = V and the outer while loop terminates. We
conclude that Algorithm 1 indeed terminates.

Lemma 4.10. Algorithm 1 only does legal moves.

4 DHAR’S BURNING ALGORITHM 11

Proof. We know that for any legal move from effective divisor D to D′, all D′v should be non-negative. Firstly,
all vertices in B are not fired, and thus do not lose any chips and remain at a nonnegative amount of chips.
Secondly, for all v ∈ Bc we know the following relation:

D′v = Dv − |NB(v)|.

In the algorithm we check for every vertex adjacent to B (so |NB(v)| > 0)) whether the following holds:

Dv < |NB(v)|.

If this holds, we add v to B, which results in v not being fired and thus not losing any chips. That ensures
that D′v ≥ Dv and since D is effective, we know D′v ≥ 0. If it does not hold, then Dv ≥ |NB(v)| must be
true, and thus D′v ≥ 0.

Theorem 4.11. Algorithm 1 reduces any effective divisor with respect to q.

Proof. We need to show that when the algorithm terminates, there is no more subset A ⊆ V \ {q} such that
it can be fired and all D′v ≥ 0 for v ∈ V \ {q}.

When the algorithm terminates, we have B = V . This means that all vertices in V \ {q} have been added to
B. A vertex v is added to B if and only if it has fewer chips than it has burning neighbours. Any burning
neighbour can not fire and therefore v will lose one chip per burning neighbour. If v is then added to B, this
is because v itself can not fire without D′v going below 0.

Using this idea, we know that q never fires. This means that there is a vertex w ∈ N (q) that can not
fire since q will not fire. Propagate this through the graph and we can conclude that there is no more subset
A ⊆ V \ {q} that can be fired, and the second property of Definition 4.3 is fulfilled.

Using Lemma 4.10 we know the first property of Definition 4.3 is also fulfilled, and thus D′ is q-reduced.

Lastly, we will cover an example of Dhar’s burning algorithm in an informal way.

Example 4.12. We will use Algorithm 1 to v5-reduce the following graph and configuration:

(a) Labelling (b) Configuration

We will now use colours to represent the steps in Algorithm 1. In green we will show the vertex we are
reducing to, q in the pseudo-code. In red we will indicate burning edges and vertices. In blue we will show
those untouched by the fire. In terms of the algorithm, the set B consist of all the red vertices and the green
(since q is always burning), and Bc, which will be fired, consists of all the blue vertices.

Informally, we can consider these blue vertices to be safe because they have enough firefighters (chips)
stationed there to fight off the amount of incoming fires. Firing a vertex would then, in the same analogy,
be equivalent to sending out the fire fighters to help the neighbouring vertices.

4 DHAR’S BURNING ALGORITHM 12

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

Figure 8: Steps of Dhar’s algorithm

As we can see in Figure 8f, the algorithm terminates when everything is marked (B = V) and we can no
longer fire any subset of V \ {q}. Between step 1-2 we can also see how the number of chips only changes in
blue nodes that have a red or green neighbour, and vice versa.

Note that in all steps but 1 and 6 (in which we do not fire at all), the firing is done multiple times. It
is most clear in step 5, where we fire all blue vertices 4 times to reach the configuration in Figure 8f.

Our (f) in this case is equal to the sum of all blue nodes multiplied by how many times they were fired
in that step. As Example 4.12 shows:

Step χBc k
1 (1, 1, 1, 0, 0) 1
2 (1, 1, 1, 1, 0) 2
3 (1, 0, 0, 0, 0) 2
4 (1, 1, 1, 0, 0) 2
5 (1, 1, 1, 1, 0) 4
6 (0, 0, 0, 0, 0) N/A

Table 1: Steps taken in the example, where k is the number of times we fire Bc.

Our total for (f) is then the weighted sum of the χBc column. In this case:

(f) = 1 · (1, 1, 1, 0, 0) + 2 · (1, 1, 1, 1, 0) + 2 · (1, 0, 0, 0, 0) + 2 · (1, 1, 1, 0, 0) + 4 · (1, 1, 1, 1, 0),

= (11, 9, 9, 6, 0).

This also shows how the algorithm can be adapted to keep track of this (f) vector and return it in addition
to the q-reduced divisor. 4

Lastly we offer an algorithm for reducing any divisor (including non-effective divisors) with respect to a
vertex q on paper. This is less efficient than Algorithm 5 in Baker-Shokrieh [4], but does not require the user

4 DHAR’S BURNING ALGORITHM 13

to compute a rather cumbersome matrix (L(q) in [4]) on paper. Since we have already provided Algorithm 1
to q-reduce any effective divisor, we now note that any divisor effective outside of q is also q-reduced since
Definition 4.3 does not require the amount of chips on q to be positive. This means that we can introduce
an ordering on V using the following lemma.

Lemma 4.13. We can order all vertices v ∈ V \ {q} such that any v has a neighbour preceding it in the
ordering.

Proof. Start by setting q to be the first vertex in the ordering, say v0. Then for all neighbours of q we can
set them to be v1, v2, ..., v|N (q)| arbitrarily, since any of them will have q as a neighbour preceding them.
Proceeding with this process for all newly labelled vertices and assigning the ordering achieves the intended
result.

Since our goal is to do this on paper, the following step is not computationally optimal but allows for manual
computation.

Lemma 4.14. There exists an ordering, such that by starting at the last vertex in the ordering, and lending
only from neighbours that precede it in the ordering, we can make any graph G effective outside q.

Proof. Suppose the ordering as in Lemma 4.13 is used. Then starting at the last vertex, and lending from a
preceding vertex is always possible, since every vertex v ∈ V \ {q} has a preceding neighbour.

In practice, it is recommended to choose the preceding vertex with the lowest degree such that the number of
affected vertices by repeated firing is lowest if the intent is to make the divisor effective outside q. However, if
the goal is to q-reduce the divisor, it is advised to first borrow from all neighbours that can still fire without
going negative. In many cases this reduces the number of vertices that need to do any lending. The following
example shows the difference between the two, and how it affects the resulting divisor.

Example 4.15. First we look at the initial ordering and chip assignment:

(a) Ordering on G. (b) Chips on G.

Figure 9: Graph G.

We will first look at the resulting choices when first firing as many neighbours as possible that can still fire
without going negative. We will indicate in red the vertex that fired to reach that particular state.

(a) Before changes. (b) After firing v1 twice.

Figure 10: Lend from rich neighbours first.

As shown in Figure 2, we are done after just one move of firing v1 twice, the divisor is now effective outside
q. Next we will see why this is beneficial.

5 SPANNING TREES AND REDUCED DIVISORS 14

(a) Before changes. (b) After firing v2 twice.

(c) After firing v3 4 times. (d) After firing q 4 times.

Figure 11: Lend from lowest degree neighbour

We see that we get a different result, but not only is it a different result it required twice as many steps, and
in total 9 individual chip-firing moves were performed, in contrast to the 2 of the other method. It is left to
the reader to check that both of these divisors do indeed reduce to the same q-reduced divisor represented
by (1, 0, 0, 3). 4

5 Spanning trees and reduced divisors

In this chapter we will discuss the relation between spanning trees and q-reduced divisors on graphs and show
a bijection between spanning trees and q-reduced divisors.

Definition 5.1. A spanning tree on an undirected, connected graph G is a subset T ⊆ E such that |T | = n−1
where n = |V |, and the graph G′ = (V, T) is still connected.

Remark 5.2. Any spanning tree T of a graph G = (V,E) is a subset of E of minimal size such that
G′ = (V, T) is connected.

Since we will be working more with edges we generalize N once more.

Definition 5.3. We define N T (v) to be {w : (v, w) ∈ T} where T is a subset of E. More concretely, N T (v)
gives all neighbours of v such that for any neighbour w, the edge in between is included in T .

To show how we can go from any q-reduced divisor to a spanning tree, we give an informal example.

Example 5.4. We first present a graphical representation of the algorithm that is based on the same idea
as Algorithm 1, except now we deterministically traverse edges. We use colours to indicate a few properties;
green for the vertex to which the divisor is reduced to. Purple are edges to be considered, and red are the
edges and vertices that have been burned.

Informally, the steps taken in this algorithm are almost the same as in Algorithm 1. We start at the
vertex to which the divisor is reduced. We then, for each vertex, burn all of its neighbours. In contrast to
Algorithm 1, where we choose neighbours arbitrarily, we now choose the neighbour along the edge that comes
first in the ordering, all other edges we mark for later (purple).

When we burn (process) an edge, we check if the number of firefighters (chips) is enough to fight the incoming
fires. If not, we burn the vertex and add that edge to the tree; all surrounding neighbours are added to the
edges that will burn (purple). In this way we deterministically burn through all vertices in an order that we
will use to show that Algorithm 3 is indeed the inverse of Algorithm 2.

5 SPANNING TREES AND REDUCED DIVISORS 15

(a) Labelling of vertices and edges. (b) Initial state.
(c) Edge e4 burns, but v2 does not
burn.

(d) Edge e5 burns and is added
to T . Vertex v5 burns.

(e) Edge e3 burns and is added
to T . Vertex v1 burns.

(f) Edge e1 burns and is added to T .
Vertex v2 burns.

(g) Edge e2 burns.
(h) Edge e6 burns and is added
to T . Vertex v4 burns.

(i) Edge e7 burns and is added to T .
Vertex v6 burns.

Figure 12: From v3-reduced divisor to spanning tree.

We see that in Figure 12i the blue lines represent the tree obtained from the v3 reduced divisor (0, 1, 4, 1, 0, 0):

T = {e1, e3, e5, e6, e7}.

4

5 SPANNING TREES AND REDUCED DIVISORS 16

We now present the algorithm formally, after which we prove its properties.

Algorithm 2: Divisor to spanning tree

Input : q ∈ V and q-reduced divisor D
Output: Spanning tree T
T := ∅
H := N (q) // Set of unburned edges between burned and unburned vertices

B := ∅ // Set of burned edges

X := {q} // Set of burned vertices

while |H| > 0 do
(x, y) := min{e : e ∈ H} // Current edge

if (x, y) ∈ B or x, y ∈ X then
// In this case the edge has or the vertices have already been burned

Pass
end
// Assume x ∈ X, y /∈ X
if Dy = |NB(y)| then

// y burns through and (x, y) is therefore added to the tree

X ← X ∪ {y}
T ← T ∪ {(x, y)}
for w ∈ N (y) do

// For all neighbours, add the corresponding edge to the set to be handled

H ← H ∪ {(y, w)}
end

end
H ← H \ {(x, y)} // Current edge processed, remove from H
B ← B ∪ {(x, y)} // Add the edge to the burned edges

end
Output T

Remark 5.5. Comparing Algorithm 2 to Example 5.4, we see that the red vertices (and the green starting
vertex q) are contained in X at every step. The blue edges are contained in T and B, and the red edges in
B exclusively. The purple edges that are marked for processing are contained in H at every step.

Theorem 5.6. Algorithm 2 outputs a spanning tree of G.

Proof. Recall properties of a q-reduced divisor from Definition 4.3. It holds that there always is a (x, y) ∈ H
such that Dy = |NB(y)| and thus has exactly as many burning incident edges as it has chips since otherwise
the divisor would not be q-reduced. The resulting T is by definition a tree since if edges (x, y) and (y, z) are
added to T , that means x, z ∈ X and thus the edge (x, z) is not handled and can never be added to T . We
can extend this to a path with the same argument.

Remark 5.7. Note that Algorithm 2 returns a spanning tree deterministically since we obey the ordering
on E when picking the minimal edge, and q-reduced divisors represent their equivalence class uniquely.

Next we will formally show the inverse algorithm, which takes a vertex q to which the resulting divisor is

5 SPANNING TREES AND REDUCED DIVISORS 17

reduced, a spanning tree T as a base, and a degree d of the desired resulting divisor.

Algorithm 3: Spanning tree to reduced divisor

Input : q ∈ V and spanning tree T and degree d
Output: q-reduced divsor D
D := (0, ..., 0) // Vector in Zn

H := N (q) // Set of unburned edges between burned and unburned vertices

B := ∅ // Set of burned edges

X := {q} // Set of burned vertices

while |H| > 0 do
(x, y) := min{e : e ∈ H} // Current edge

if (x, y) ∈ B or x, y ∈ X then
// In this case the edge has or the vertices have already been burned

Pass
end
// Assume x ∈ X, y /∈ X
if (x, y) ∈ T then

// y burns through and we assign it a number of chips

X ← X ∪ {y}
Dy := |NB(y)|
for w ∈ N (y) do

H ← H ∪ {(y, w)}
end

end
H ← H \ {(x, y)} // Current edge processed, remove from H
B ← B ∪ {(x, y)} // Add the edge to the burned edges

end
Dq = d−

∑
v∈V \{q}Dv // To guarantee the right degree

Output D

Now to show that the divisor defined in Algorithm 3 is a indeed q-reduced divisor, we will first informally
describe the proof. Since we are looking at all edges incident to burning vertices, there has to be at the
very least one vertex that can not stop the incoming fire in the first iteration. Since we have an unweighted
graph, this results in the fact that at least one vertex has 0 chips. We can now assume that the firefighters
as mentioned before, are always enough to stop any incoming fires, except for when the burning edge is part
of tree T . By stepping through the edges in the same ordering as in Algorithm 2 we obtain the same result.

Remark 5.8. We can look at Figure 12i in Example 5.4, and notice the aforementioned property. We see
that the vertices with one chip on them, are the vertices with one ‘incoming’ burned edge that is not part
of the resulting tree. The notion of ‘incoming’ only makes sense when we consider the order in which the
algorithm burned the edges.

We will now formalize this argument based on the idea provided in Baker-Shokrieh [4].

Theorem 5.9. Algorithm 3 returns a q-reduced divisor.

Proof. At the moment any v ∈ V burns through, we set Dv = |{burned edges adjacent to v}| − 1 since the
edge that the fire is coming in on has not been added to the burned edges B yet. This means that following
Algorithm 1 we know that v would burn when running Dhar’s algorithm for checking for q-reduced divisors.
Since this holds for any v ∈ V \ {q}, the entire graph will burn and thus the divisor is q-reduced.

It is however more interesting to note that the ordering on E does indeed provide a bijection by means of
Algorithm 2 and Algorithm 3:

Theorem 5.10. Algorithm 2 and Algorithm 3 are each others inverse and thus provide a bijection between
q-reduced graph divisors and spanning trees.

5 SPANNING TREES AND REDUCED DIVISORS 18

Proof. This can be seen by the structure of the algorithm, since both traverse through the graph over the
same edges as a result of using the same ordering on E and starting from the same vertex q.

Any time we add an edge to T in Algorithm 2, the condition under which this happens is explicitly en-
forced whenever an edge is part of T in Algorithm 3.

Vice versa the same holds: the condition under which we set the amount of chips on a vertex in Algorithm 3
is explicitly enforced by adding the edge to T in Algorithm 2.

Lastly, we give an example of Algorithm 3 such that it is the inverse of Example 5.4.

Example 5.11. We use the same graph as in Example 5.4. We wish to obtain a v3-reduced divisor of degree
six. In order to do so we start with the tree given by:

T = {e1, e3, e5, e6, e7},

which we found in Example 5.4. Like in the other example, we show in green q, in purple edges marked for
processing, and in red burned edges and vertices. We use thick edges to indicate that an edge is part of T .

(a) Labelling of vertices and edges.
(b) Initial state with no chips on
the graph.

(c) Edge e4 burns, but v2 does not
burn because e4 /∈ T .

(d) Edge e5 burns and zero chips
placed on v5 because v5 burns.

(e) Edge e3 burns and zero chips
placed on v1 because v1 burns.

(f) Edge e1 burns and one chip
placed on v2 because v2 burns and
e4 already burned.

(g) Edge e2 burns, but v4 does not
burn because e2 /∈ T .

(h) Edge e6 burns and one chip is
placed on v4 because v4 burns and
e2 already burned.

(i) Edge e7 burns and zero chips are
placed on v6 because v6 burns.

Figure 13: From spanning tree to v3 reduced divisor.

In the last step in Figure 13i we place 4 chips on v3, since at the end of all iterations we simply fill it up to
satisfy the degree given as a parameter of the function. 4

Remark 5.12. Note that in each image in Example 5.4 and Example 5.11 we handle the same edge exactly.
We also end up at the end of Example 5.11 with the divisor we started Example 5.4 with, showing the
bijection.

REFERENCES I

References

[1] Matthew Baker and Serguei Norine. “Riemann-Roch and Abel-Jacobi theory on a finite graph”. In:
Advances in Mathematics 215 (May 2007), pp. 766–788.

[2] Anders Björner, László Lovász, and Peter W. Shor. “Chip-firing Games on Graphs”. In: European Journal
of Combinatorics 12.4 (1991), pp. 283–291. issn: 0195-6698.

[3] Scott Corry and David Perkinson. Divisors and Sandpiles. 2018, pp. 20–55. isbn: 978-1470442187.

[4] Matthew Baker and Farbod Shokrieh. “Chip-firing games, potential theory on graphs, and spanning
trees”. In: Journal of Combinatorial Theory, Series A 120.1 (Jan. 2013), pp. 164–182. issn: 0097-3165.

[5] David C. Lay, Steven R. Lay, and Judi J. McDonald. Linear Algebra and its Applications (fifth edition).
Pearson, p. 251. isbn: 978-1-292-09223-2.

[6] D. Dhar. “Self-Organized Critical State of Sandpile Automaton Models”. In: The American Physical
Society 64.14 (Apr. 1990), pp. 1613–1616.

	Introduction
	Graphs and the chip-firing game
	Chip-firing and the Laplacian
	Dhar's burning algorithm
	Spanning trees and reduced divisors
	References

