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Abstract

Black holes pose fundamental challenges in theoretical physics. It is believed that its resolutions reveal
important features of quantum gravity. One such problem involves the black hole information paradox.
From the discovery of Hawking radiation on, for years, physicists have tried find out the precise mechanism
by which information of matter, that collapses into a black hole during the formation process, can be
retrieved from its Hawking radiation at later times. It is essential to understand how unitarity is preserved
in semi-classical or quantum gravity, in order to exclude the possibility of information loss.

In this thesis, we dive into black holes and the information paradox. In order to understand black holes
and the information paradox, we investigate the fundamental theories of quantum mechanics and general
relativity. Hereafter we take a look at important properties of black holes, and the emergence of Hawking
radiation. Next, we study the information paradox and especially the Page curve closely, just as proposed
solutions to the paradox. We also take a look at the AdS/CFT-duality, from which becomes clear that
information is preserved. Finally, we will explore recent advances in the field by Alhmeiri et al. (2019)
and Penington et al. (2019). These studies provide a possible explanation to the information problem by
a new mechanism for information retrieval, called ”islands”. We arrive at a unitary Page curve via the
island formula, a gravitational fine-grained entropy formula for the Hawking radiation. The island formula
is derived from the replica trick by including new saddles: the replica wormholes.
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1 Introduction

Sir Isaac Newton [2] was the first to introduce the formulation of absolute space and time by his law of universal
gravitation. Introducing his law in 1687, Newton believed that there exists an attractive gravitational force
between two point masses proportional to the product of the masses, and inversely proportional to their squared
distance. In 1905, Albert Einstein extended our knowledge of space and time by a theory of special relativity, in
which he introduced the fundamental concept of spacetime [3]. In 1915, from inconsistencies in special relativity,
Einstein formulated his famous theory of general relativity. In this theory, gravity is considered no longer as a
force, but rather as a consequence of the curvature of spacetime.

From the Einstein equations, one instinctively tries to find solutions with maximal radial symmetry. Later
on, more general solutions to the equations with less symmetry were found. However, from these solutions, there
appeared some physical difficulties such as singularities that were hard to understand. After all, it became clear
that once moved inside such region of spacetime, nothing, including light, is able to escape. John Archibald
Wheeler [4] was the first to name these curious objects ’black holes’.

At first, just like many other scientists, Einstein believed that the emergence of black holes from his theory
were the result of an incomplete physical description. Nonetheless, the current understanding of the black hole
solution is much more complete and the existence of black holes is widely accepted. Furthermore, we have
gained more knowledge about the formation of black holes. Above all, the existence of black holes is one of the
most exciting predictions from Einstein’s theory of general relativity .

In 1973, Jacob Bekenstein [5] proposed that a black hole has a finite entropy, proportional to the area of its
event horizon. Not much later, in 1974, Stephen Hawking [6] came up with a spectacular discovery: black holes
behave as thermal objects and thus emit thermal radiation, which we denote as ”Hawking radiation”. Hence,
black holes are not completely ”black”. Hawking’s discovery of black hole evaporation has lead to deep puzzles in
general relativity, quantum mechanics and especially in quantum information theory. By Hawking’s argument,
black hole evaporation seems to violate a fundamental property in quantum mechanics, called unitarity, which
means that quantum information in a system is preserved over time. Unlike other quantum and classical
systems, black holes might not hold its information. Indeed, at first, Hawking concluded that information from
black holes will eventually be lost.

However, many physicists did not like the idea of information loss, and from Hawking’s discovery on, much
research has been done in order to find a solution to the paradox. It was soon proposed that a full theory of
quantum gravity, that should fit general relativity and quantum mechanics into one complete description, is
needed to resolve the problem. Yet, just as Hawking proposed, some scientists speculated that this theory must
be non-unitary.

In the years after Hawking’s discovery, many ideas about and solutions to the problem have been formulated.
At first, these ideas offered some new insights, though they did not fully solved the problem, and researchers
were still left with many questions. For example, in 1993, radical insights came from the idea of black hole
complementarity [7]. This research offered a new understanding of the paradox, but still, not all scientists were
convinced.

In the ’90s, results from string theory considering quantum gravity suggested that information indeed must
come out. Major progress came from the AdS/CFT-correspondence discovered by Juan Maldacena [8]. In
AdS/CFT, one is allowed to compute the entropy of a black hole in d ` 2-dimensional anti-de Sitter (AdS)
spacetime, involving a dual d` 1-dimensional conformal field theory (CFT) on the AdS boundary. Specifically,
unitarity on the CFT boundary implies that information is preserved. Hence, Maldacena showed evidence that
information can escape the black hole. However, boundary unitarity is not enough to solve the paradox, and
a broader understanding is necessary. Furthermore, the question remained whether these results apply to the
real universe. Due to the evidence found in AdS/CFT, even Hawking reconsidered his view [9].

After all, by recent research [10][11][12][13], it seems that we have found a definite, more general solution
to the information paradox, which is based on findings in AdS/CFT. However, the new understanding is much
more general: the results apply to asymptotically flat Minkowski space, and anti-de Sitter spacetime is not
required.

The new proposal states that Hawking did not use the right formula for calculating the black hole en-
tropy. The correct formula is the gravitational fine-grained entropy, which was originally studied by Ryu and
Takayanagi [14] in AdS/CFT, but has now been both extended and generalized by new research. The new
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formula results in spatially disconnected regions in the black hole interior, which we call ”islands” [15]. The
formula is often named as the ”island formula” [16][10], and can be derived by a mathematical tool called ”the
replica trick” [13][11]. The island formula ultimately results in a unitary ”Page curve” [17], which denotes the
unitary behaviour of the black hole. However, the fact that unitarity is preserved by the computation of the
Page curve, is only a part of the paradox, since one would like to know exactly how information ends up in the
outgoing Hawking radiation.

In this thesis, we will take a look at black holes, the information paradox and new research that describes
the island formula. In chapter 2 and 3, we discover fundamental theories in quantum mechanics and general
relativity. In chapter 4, we take a look at the properties of black holes. In chapter 5, we study Hawking
radiation, and we arrive at the information paradox in chapter 6. In chapter 7, we discover proposed solutions
to the paradox, which offer important insights in the understanding of the paradox. In chapter 8, we consider
the AdS/CFT-correspondence in some detail. Finally, we discover the island formula in chapter 9. Furthermore,
we use the conventions that c “ 1, unless specified otherwise. In general, we will study uncharged, non-rotating
black hole, though we will make a note about this in chapter 4.
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2 Quantum Entanglement

Quantum entanglement is a quantum mechanical property. It states that pairs or groups of particles cannot be described
independently of each other. So, a member of the state can only be described relative to all the other states involved.
Essentially an entangled system is defined to be one whose quantum state cannot be seen as a product of states of
its parts: the system can be described by one wave function which we cannot separate into a wave function for every
subsystem involved. So, these parts are individual independent particles, but are inseparable as a total system [18].

Consider two subsystems, S1, S2 with corresponding Hilbert spaces H1,H2. We define the states |ny P H1 and
|my P H2. The space of these two states is spanned by the tensor product of the two Hilbert spaces, H1 bH2. We can
form a basis |nbmy “ |ny b |my and can compute a general state. A general state

|Φy “
ÿ

n,m

anm |nbmy (2.1)

is defined to be entangled when the state cannot be written as a product state.
The general state can be written as a tensor product of two states of the different Hilbert spaces, with |φy1 P H1

and |φy2 P H2 so that |φy1 “
ř

n cn |ny and |φy2 “
ř

m dm |my , only if the coefficients can be written as a product too:
anm “ cndm. States that can be written as a product state form a subset of the Hilbert space, but not a subspace. This
also holds for a more general example. When a state cannot be written in the form of |Φy “

ÂN
i“1 |φyi when considering

a joint Hilbert space H “
ÂN

i“1 Hi with |φyi P Hi, we have an entangled state.
We will give an example for this. Lets define a couple two spin-1/2 particle

|Ψy “ 1
?

2
p|Öy ´ |Œyq (2.2)

where |Öy “ |Òy b |Óy and |iyj P Hj , with i P tÒ, Óu. This state is entangled. Here we have spin-up and spin-down in
different Hilbert spaces. The full state here is in a pure state, but the separate components are not. We cannot define
a pure state for one of the systems until we made a measurement on the total state, so as a whole the system will be in
one of the two states. Therefore, the complete description of this state is about the parts of the different Hilbert spaces
seen relative to each other.

When one makes a measurement on one of the systems, we observe the following. When we measure a spin-up state
of system 1, this immediately gives a spin-down state of system 2. Though both systems may be cut apart or distant
by a space-like gap, so no information could be exchanged between the two, we will always get this outcome. When we
measure a spin-down on system one, this will give a spin-up for the state of system 2. What we experience here, is the
non-local character of quantum mechanics. Quantum entanglement is widely discussed by the EPR-paradox. 1[19].

Figure 1: An impression for quantum entanglement: a measurement on one systems, affects the outcome for the other
system. [19]

Quantum bits are often named as qubits. In fact these qubits are the quantum mechanical equivalent of the classical
bit. The qubit is the most fundamental unit of quantum mechanical information . It can be seen as a two state system,
for example a particle with spin-up or spin-down. When we take two possible states, the classical bit is always in the
state |0y or |1y. For the quantum bit, linear combination are also possible:

|ψy “ α0 |0y ` α1|1y (2.3)

Here the qubit is presented by a wave function, where one has a probability of |α0|2 to find a spin-down state and a
probability of |α1|2 to find a spin-up state. This is classically not possible: here one of the two coefficients must be equal
to 1, so the other will be zero. For qubits, entangled states are possible, which is not the case for classical bits.

1We will come back to EPR in section 7.4
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2.1 The density matrix

To study entanglement, we must study the density matrix. The density matrix essentially characterizes the quantum
state of the physical system. One can use this matrix to study pure and mixed states. The state of a system is defined
to be pure when we only need one wave function or state. A state is mixed when we cannot describe the state as just
one wave function. To describe the state, we need an ensemble of wave functions. In this case, we do not have full
knowledge about the full state of the system. Mixed states can be described by a density matrix where the eigenvalues
of the matrix give the probability to be in the state related to this eigenvalue. In fact, a pure state is a subset of a mixed
state. When we have a pure state, we know everything about the system, and so the exact state. The full system will
then have a density matrix with every eigenvalue set to zero except for one. We can define the density matrix as

ρ “
ÿ

i

pi |φiy xφi| (2.4)

Here the coefficients are probabilities that have the properties
ř

i pi “ 1 and 0 ď pi ď 1. Also, the wave functions are
orthonormal states. Properties of this density matrix are ρ “ ρ:, Trpρq “ 1 and xφ| ρ |φy ě 0, @ |φy. An important
property is that for every state the trace of the matrix is unity, but only for a pure state we see that Tr

`

p2
˘

“ 1 holds.
In general, a state is pure if Trpρnq “ Trpρqn, for n P N. For a mixed state, this is not the case: Tr

`

p2
˘

ă 1. So, the
density matrix can be used to see whether the system is in a pure or mixed state.

To illustrate this principle, we look at an example. We study the state |Ψy “ 1?
2
p|Óy ` |Òyq called the Bell state.

Computing the density matrix gives, according to the definition , the form

ρ “ |Ψy xΨ| “ 1

2

¨

˚

˚

˝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

˛

‹

‹

‚

Here we make use of the basis t|Òy , |Öy , |Œy , |Óyu. When taking the trace of the squared matrix, one can easily show
that Tr

`

ρ2
˘

“ 1. So, this Bell state is a pure state. Later on, we will see an example for a mixed state.

2.2 The reduced density matrix

The entropy of a system is a property that is used to measure the state of disorder. It measures the amount of microstates
that creates its macrostate. We define the thermodynamic entropy to be S “ kB log Ω, with kB the Boltzmann constant
and Ω the number of microstate that a macrostate can have. Here every microstate has an equal probability to arise. In
the theory of quantum information, the entropy is often used.

2.2.1 The reduced density matrix: the entanglement entropy

We can construct the von Neumann entropy. It is defined as

S “ ´Trpρ log ρq (2.5)

It is often used to define the entropy of a quantum system. The von Neumann entropy also shows the availability of
information and the mixture of the state. For a pure state, the von Neumann entropy equals zero, S “ 0. When the state
is pure, we know all the information about the state. Calculating the von Neumann entropy of our previous example
shows indeed that this entropy is zero. On the other side, when a state has a von Neumann entropy S ą 0, this state
will be mixed. A state is said to be maximally mixed when its entropy is given by S “ logpNq, with N the dimension of
the system. More specifically, this is the case when the density matrix is a diagonal matrix.

We can also define a reduced density matrix. This can be useful, for example when we would like to study a subsystem
of a larger total system. Let’s take two subsystems, 1 and 2, so the total larger system will be 1` 2 . We construct the
reduced density matrix to be a partial trace of the reduced density matrix of the full system

ρ1 “ Tr2pρq (2.6)

with ρ1`2 “ ρ, or alternatively stated ρ1 “
ř

n,n1 ρ1,nn1 |ny
@

n1|. Now we computed the reduced density matrix, we can
also compute the entanglement entropy. In fact, the von Neumann entropy of the subsystem is the entanglement entropy
of a subsystem i

SEE “ ´Trpρi log ρiq (2.7)
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When the entanglement entropy is greater than zero, SEE ą 0, we have entanglement. It is for example easy to see that
the entanglement entropy of the previously mentioned Bell state is greater than zero. Here, the density matrix is given
by

ρ1 “
1

2
p|Òy xÒ|` |Óy xÓ|q “ 1

2

ˆ

1 0
0 1

˙

Then the reduced density matrix S1 “ logp2q. Via this example, we see that the total system is in a pure state, while
the entanglement entropy is nonzero, so the subsystem acts as a mixed state. Thus the entanglement entropy shows the
entanglement between system 1 and 2. This can also be interpreted as the amount of missing information of the total
system when only considering system 1.

Another example for this is the singlet state for two spin-1/2, for which the state is given by

Φ “
1
?

2
p|Öy ´ |Œyq (2.8)

When computing the density matrix and hereafter the trace, we arrive at Tr
`

ρ2
˘

“ 1. Thus, the state is a pure state.
By looking at the reduced density matrix,

ρ1 “
1

2

ˆ

1 0
0 1

˙

and the corresponding entanglement entropy, we see that the substate acts again as a mixed state: SEE “ ´trpρ1 log ρ1q “

logp2q.

2.2.2 The reduced density matrix: coupling to thermodynamics

The formalism of a reduced density matrix can be very useful in many applications as well, for example a system which
is coupled to a heat bath, see the figure.[18] Here the reduced density matrix can describe the Hilbert space of the
subsystem, including the effect of the coupling to the other subsystem. The density matrix can also be used to describe
the time evolution of a system, to arrive at the von Neumann equation of a subsystem

ih̄
Bρptq

Bt
“ rHptq, ρptqs, (2.9)

One can compute a similar equation for the reduced density matrix:

ih̄
Bρ1ptq

Bt
“ rH1ptq, ρ1ptqs `

ż t

´8

dt1
ÿ

pt, t1qρ1pt
1
q (2.10)

Here, the second term is given due to the coupling to H1. Furthermore, one is able to show that the density matrix for
a setup given in the figure below is given by ρ “ 1

Z
e´βH , where the partition function Z “ Tr

`

e´βH
˘

is involved, with
H the Hamiltonian for the system. Here we can make a coupling to thermodynamics, specifically to the free energy,
entropy and the specific heat:

F “ ´kBT logpZq (2.11)

S “ ´
BF

BT
(2.12)

C “ T
BS

BT
(2.13)

In this case, the density matrix is given by maximizing the entropy under the constraint that the average energy is fixed
due to the heat bath.

Figure 2: A system with Hilbert space H1 coupled to a heat bath.
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2.3 Properties of entanglement entropy

In this section, we discuss some interesting properties of the entanglement entropy. We will look at the statement of
strong subadditivity and the Schmidt decomposition.

2.3.1 Subadditivity

The entanglement entropy has some interesting properties. First of all, the entanglement entropy of two systems obeys
the general triangular law |S1 ´ S2| ď S12. Also, for a system for three or more systems involved, with Hilbert space
H123 “

Â3
i“1 Hi, one will find

Spρ123q ` Spρ2q ď Spρ12q ` Spρ23q (2.14)

for a tripartite system. This is the statement of strong subadditivity.
For a bipartite system, subadditivity states that

Spρ12q ď Spρ1q ` Spρ2q (2.15)

For a Hilbert space H12 “
Â2

i“1 Hi

2.3.2 The Schmidt decomposition

The von Neumann entropy for pure states is a well-defined measure for the entanglement entropy, which is a consequence
from a theorem called the Schmidt decomposition.[20] It is stated as follows.

Assume we have a pure state which is a composite system AB. Then we can find for both subsystems orthonormal
states such that the composite wave function can be described as

|Ψy “
ÿ

n

λn |nyA b |nyB (2.16)

with 0 ď λi ď 1 and
ř

i λ
2
i “ 1. These coefficients are called the Schmidt coefficients. In fact, in this way it can be seen

that each of the states of system A will be correlated to a state in system B. We can proof this theorem.
Suppose we have a subsystem A with basis |ΦyA “

ř

n |nyA and that we have a subsystem B with basis |ΦyB “
ř

j |jyB , where |nyA and |jyB are orthonormal states. Then we can express the wave function of the total system as
|ΦyAB “

ř

nj anj |nyA b |jyB . Here anj are matrix elements of a certain matrix A. We can express these elements in
some basis tli,miu as

anj “ xn|AA |jyB “ xn|A r
ÿ

i

bi |liy xmi|s |jyB “
ÿ

i

bi xn|A |liy xmi|jyB (2.17)

When we insert this in the expression for the total state.

|ΨyAB “
ÿ

nj

r
ÿ

i

bi xn|A |liy xmi|jyBs |nyA b |jBy “ (2.18)

ÿ

i

bir
ÿ

n

xn|A |liy |nyAs b r
ÿ

j

xmi|jyB |jyBs “ (2.19)

ÿ

i

bir|liyA b |miy
˚

Bs “ (2.20)

ÿ

i

|bi|eiθi r|liyA b |miy
˚

Bs (2.21)

here the introduced coefficients is bi P C. Now we can use another basis ki, vi, and define the states |kiyA “ eiθi |liyA
and |viyB “ |m˚i

D

B
. Here, λi “ |bi| P R. We just used a trick here, so that |bi| P R instead of bi P C. Now, we can

express the total state as
|ΨyAB “

ÿ

i

λip|kiyA b |viyBq (2.22)

Since we obtain for both subsystems the same coefficient λi, the reduced density matrices will look the same. They have
the same eigenvalues:

ρA “
ÿ

i

λ2
i |kiyA xki|A (2.23)

ρB “
ÿ

i

λ2
i |viyB xvi|B (2.24)
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One can state therefore that the entanglement entropies of the subsystems will be the same:

SA “ ´TrpρA log ρAq “ ´λ
2
i log λ2

i (2.25)

SB “ ´TrpρB log ρBq “ ´λ
2
i log λ2

i “ SA (2.26)

This is an interesting result which we will interpret later, when studying the Page curve. In general, when there will be
more than one coefficient that is non-zero, the state is entangled. The total state is only separable if there is only one
coefficient which is either 1 or 0. Hence, this composition tells us something about the separability of the state.

2.4 The Rényi entropy

In chapter 9, we will make use of a quantity called the Rényi entropy. It is defined as

Sα “
1

1´ α
logpTrpραqq (2.27)

α P p0, 1q Y p1,8q (2.28)

We arrive at the von Neumann entropy when taking the limit αÑ 1:

lim
αÑ1

Sαpρq “ SvN pρq (2.29)

Furthermore, we can show the following. We define λi to be the eigenvalue of ρ. Then we can write

logpTr ρnq “ log

˜

ÿ

i

λni

¸

(2.30)

Now, we take the derivative of this with respect to n:

´
B log Trpρnq

Bn
|n“1 “ ´

ř

i λ
n
i logpλiq
ř

i λ
n
i

|n“1 “ ´

ř

i λi logpλiq
ř

i λi(2.31)

Now, since Trpρq “ 1, we have
ř

i λi “ 1. Hence, we arrive at [21]

´
B log Trpρnq

Bn
|n“1 “ ´

ÿ

i

λi log λi “ ´Trpρ log ρq (2.32)

2.5 Unitary time evolution

Time evolution can be written in terms of an evolution operator. A state is defined as [18]

|ψptqy “ Upt, t0q |ψpt0qy (2.33)

by the time evolution operator Upt, t0q, which thus describes the time evolution of a quantum state. Here the operator
is unitary. An operator is unitary if it obeys UU: “ 1 “ U:U . Whenever we make a measurement in time, the sum of
all the probabilities of the possible outcomes of the involved state must be equal to one: probabilities are conserved over
time.

2.6 Fine-grained and coarse-grained entropy

Basically there are two kinds of entropy that we might consider in physics. We already defined the simplest one, the von
Neumann entropy. When we have all knowledge of the system, the von Neumann entropy reduces to zero.

Another kind of entropy is the coarse-grained entropy. The difference between the Von Neumann entropy and the
coarse-grained entropy is that we do not take a measure of all the observables involved. We just measure a subset of so
called coarse-grained observables Ai. The coarse-grained entropy is defined in the following way. We look at all possible
density matrices ρ̃ which produce the same values as the observables we study. So this implies Trpρ̃Aiq “ TrpρAiq .
From this, we state the already known von Neumann entropy of the studied matrices. As a last step, we maximize
over all possible outcomes of the density matrices involved. This entropy is used in thermodynamics. Take for example
some observables we would like to study, such as the energy and volume of a system. Then one is able to find the
thermodynamic entropy by just maximizing the von Neumann entropy over all these states with the studied energy and
volume.
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Figure 3: A causal diamond for a spatial slice Σ.Another slice Σ̃ has the same causal diamond.[22]

A property of the coarse-grained entropy is that it increases under unitary time evolution. So, it obeys the second
law of thermodynamics. In general, the von Neumann entropy - which, as we have seen earlier, has much to do with
quantum entanglement – is often named as ‘quantum entropy’ or ‘fine-grained entropy’, in comparison to the ‘coarse-
grained entropy’. Essentially the fine-grained entropy must be smaller than the coarse-grained entropy.

SV onNeumann ď SCoarse´grained (2.34)

This is a result of the way we defined these entropies. The coarse-grained entropy puts an upper bound to the amount
of entanglement of the system: it measures the total amount of degrees of freedom that is accessible to the system.

Furthermore, one can also state the fine-grained entropy on a spatial region. We define this spatial region on a fixed
time slice. This spatial part has its own density matrix, and we define the fine-grained entropy of this part as

SV N pΣq “ SV N pρΣq (2.35)

The spatial region Σ is a Cauchy slice. It describes a causal diamond, a region of which we can understand physically if
we know the initial properties of the surface. This is not the case of the outside of the slice. The von Neumann entropy
of another spatial slice is the same, as long as they have the same causal diamond, see the figure.When we have just a
part of the complete slice, the von Neumann entropy on this slice is often time-dependent. So, it can increase or decrease
with time if we change its place in time.

This is a manifold from general relativity which can be seen as a collection of pairs of locations and times. Typically,
a Cauchy surface gives a notion of direction and time. Especially in a curved spacetime manifold, it is hard to study
time evolution of physical quantities by the fact that there is no natural direction of time. A Cauchy slice can be seen
as a slice at a fixed time: between these points, there is no time difference. So, from this slice at a fixed time, one may
predict the future or past of the physics on this slice.

When we treat gravity in the semiclassical approximation– that is, when we treat gravity classically adding quantum
mechanical theory – we can also describe the semiclassical entropy of the spatial slice. Here, the semiclassical entropy is
simply the von Neumann entropy of quantum mechanical fields in the semiclassical approximation: it is the fine-grained
entropy described by quantum field theory in curved spacetime.
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3 General Relativity

General relativity (GR) is a theory by Albert Einstein that describes gravity in a geometry of curved spacetime. Specif-
ically, Einstein’s theory defines gravitation to be a consequence of the curvature of spacetime. For example, other
consequences of general relativity include gravitational time dilation, redshifts, light bending an the presence of horizons.

In general relativity, we work in four-dimensional spacetime: one time dimension and three spatial dimensions. Just
as in regular 3D-coordinates, the space is described by points in three dimension. Spacetime is then an extension to this,
by adding a time coordinate, so we end up with a four-dimensional set of points tt, x, y, zu. A main difference between
Newtonian physics – Newton also described gravitation – and general relativity is that the first takes a look at time and
space separately, while the latter interprets it as one. In practice, when calculating physical quantities in GR, on has
always a fourth dimension due to the time coordinate which has to be taken into account.

For his laws of universal gravitation, Newton considered two elements: an equation for the gravitational fields as
influenced by matter, and an equation for the response of matter to this field [23]. Newton manifested these elements
into his equations:

~F “
GMm

r2
êprq (3.1)

~F “ m~a (3.2)

which describe the forces between particles and the resulting acceleration. Equivalently, one can state these expressions
in terms of the gravitational potential Ψ and the mass density ρ as

~∇2Ψ “ 4πGρ (3.3)

~a “ ∇Ψ (3.4)

These equations define Newtonian gravity, and have to be described,or even replaced, by a description which involves
the curvature of spacetime.

Figure 4: Spacetime curvature in general relativity. In order to describe the curvature, we use manifolds: mathematical
complex topological spaces. For example, a consequence of curvature is that light is deflected from its original path.

To describe the curvature of spacetime in GR, we use manifolds. Manifolds are defined as topological spaces which,
locally, have comparable properties to n-dimensional flat Euclidean space. Though, globally these manifolds may be
curved, so they can be seen as a clever mathematical tool, a structure, to describe curvature in spacetime. Manifolds
that correspond to a curved space, often have a complicated topology. Interestingly they look locally just like Rn.
Besides, spherically symmetric manifolds can be fit together into n-spheres. In mathematics, an n-sphere is defined as a
set of n`1 points that are located at a constant value from a certain central point. This sphere is mathematically defined
as Sn “ tx P Rn`1 : ‖x‖ “ ru, using a standard norm ‖x‖. For a unit radius, we simply have r “ 1. A simple example
for this is in 3D-Euclidean space, namely a 2-sphere. For higher dimensions, we obtain more complicated manifolds.
Furthermore, it is possible to keep spherical symmetry without an origin: an example for this is a wormhole.

3.1 The metric

Another basic element in the description of spacetime is the metric tensor gµν . The metric contains the geometry of
space. The Riemann curvature tensor can be derived from the metric, a property that is used in the Einstein equations
which describes the curvature of manifolds. There are some restrictions on the components of the metric tensor: for
example, the determinant of the metric tensor does not vanish, detpgµνq “ 0. It also has an symmetric inverse metric
gµνgνσ “ gλσg

λµ
“ δµσ , with δµσ the Kronecker delta. In GR, the metric tensor has some interesting properties. For
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example, it is used to find the shortest distance between two separate points. Also, by the metric tensor, we can define
physical properties, such as the inner product, in four-dimensions instead of three. From the metric tensor, we can define
a line element, by using the Einstein convention, as

ds2
“ gµνdx

µdxν (3.5)

with dx an infinitesimal distance. For example, in three dimensional flat space, the metric tensor is given by

gµν “

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚ (3.6)

with corresponding metric
ds2

“ dx2
` dy2

` dz2 (3.7)

in Cartesian coordinates. In spherical coordinates tt, r, φ, θu, the line element takes the form

ds2
“ dr2

` r2dθ2
` r2sinθ2dφ2 (3.8)

In Special relativity, we often use the Minkowski metric tensor ηµν , which describes four-dimensional flat spacetime. It
is defined as

ηµν “

¨

˚

˚

˝

´1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

(3.9)

This is used to define the line element as

ds2
“ ηµνdx

µdxν (3.10)

“ ´c2dt2 ` dx2
` dy2

` dz2 (3.11)

In spherical coordinates, this Minkowski metric becomes

ds2
“ ´c2dt2 ` dr2

` r2dθ2
` r2 sinpθq2dφ2 (3.12)

By this metric, the time-coordinate is distinguished by a minus sign in comparison to the other coordinates involved. In
special and general relativity, this is often the case, while in flat Euclidean space, with only spatial coordinates, the signs
will be the same.Therefore, a metric with only positive eigenvalues is called Euclidean, while metrics that contain a single
minus sign, are called Lorentzian. For example, a Schwarzschild metric2 tensor can be defined in spherical coordinaates
px0, x1, x2, x3

q “ pct, r, θ, φq as

gµν “

¨

˚

˚

˝

p1´ 2GM
r2
q 0 0 0

0 ´p1´ 2GM
r2
q
´1 0 0

0 0 ´r2 0
0 0 0 ´r2 sin2 θ

˛

‹

‹

‚

(3.13)

Furthermore, one can define co-vectors and contra-vectors which are related by the metric tensor:

xµ “ gµνx
ν (3.14)

xµ “ gµνxν (3.15)

In four-dimensional spacetime, the four vectors have the form

xµ “

¨

˚

˚

˝

x1

x2

x3

x4

˛

‹

‹

‚

“

¨

˚

˚

˝

t{c
x
y
z

˛

‹

‹

‚

(3.16)

The same procedure can be generalized in other dimensions, for a line element

ds2
“ gijpxqdx

idxj (3.17)

for gij a symmetric matrix. [24]

2we will encounter this metric later on.
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3.2 The Equivalence Principle

In general relativity, the dynamical field that causes gravitation is the metric tensor , which describes the curvature
of spacetime. It is the metric tensor itself that describes curvature in spacetime, rather than some other field moving
through spacetime. This significant observation inspired Einstein to state the Principle of Equivalence. The principle
is described in many forms, and we start with the Weak Equivalence Principle (WEP). It states that the inertial mass
and gravitational mass of an arbitrary object are equal. The inertial mass can be seen in Newton’s Second law, and the
gravitational mass is the proportionality constant in Newton’s laws of gravitation.

~F “ mi~a (3.18)

~Fg “ ´mg∇Φ (3.19)

mi “ mg (3.20)

So, putting it simply, WEP is stated by the last equation, mi “ mg . A consequence of this statement is that the nature
of a free-falling particle is quite general: the acceleration is independent of the mass, ~a “ ´∇Φ, due to gravity. In
particular, the WEP-statement implies a universality of gravity. It also states that one cannot distinguish an uniform
accelerating object to an object in a gravitational field, when we look at small enough regions of spacetime. In larger
regions, we will find inhomogeneities in the fields of gravity, which will lead to tidal forces.

We also have the Einstein Equivalence Principle (EEP). It states that the laws of physics can be seen as the laws
of special relativity, if we take the studied region of spacetime to be small enough. This statement comes from the idea
that gravity is something universal: it must act on all particles.From this, it makes sense to state that a particle which
feels no acceleration, is freely falling. This relates to the often stated idea that gravity is not a force, because a force
eventually creates the acceleration. Additionally, the strong equivalence principle defines all the laws of nature to be the
same, when in a uniform static gravitational field and in the corresponding reference frame of acceleration. In fact, it
says that the laws of gravitation do not rely on the velocity and location involved.

3.3 Special relativity

Special relativity (SR) is the theory of spacetime without gravity, and so without curvature. Hence, it is a special form
of general relativity. Special relativity describe Newtonian mechanics, which is also about the structure of spacetime. In
Newtonian physics, we have different slices of space at different times. Particles move forward in times, along worldlines,
at any speed. In this theory, there is a universal agreement on when and where events in space occur. Hence, in this
theory, it is clear when two events happen at the same time. In special relativity, there is no well defined slice of space,
with all of the space at a single moment of time. However, this spacetime is not completely structureless, since we
can define a light cone. A light cone describes a set of trajectories that can be taken by particles and it defines the
causal structure of spacetime. From the origin of the light cone, there is no particle that can reach a point of space
out of the light cone. Specifically, all future and early paths of a particle at the origin are defined by the light cone. A
light cone consists of two parts, the future and the past. Particles move via time-like or light-like worldlines, paths in
four-dimensional spacetime. On these worldlines, particles move with less than (time-like) or equal to (light-like) the
speed of light. In special relativity, we assume that it is impossible to exceed the speed of light. Space-like regions lay
outside the light cone, and we cannot define a causal relation between a body at the origin and a space-like point, since
we have v ą c here. When different events happen in different light cones, we cannot define which event took place
earlier in time. So, the formalism of the light cone replaces the formalism of spacetime that is divided into unique parts
of space parametrized by time. [23] Special relativity relies on the theory that every law in nature is invariant under a
set of transformations of space and time:

xµ
1

“ Λµνx
ν (3.21)

or in simple matrix notation x1 “ Λx. More specifically, a Lorentz group is a general rotation group. It is the rotation
group 3 SO(3) which states that a three dimensional length d~x, and the line element ds2, must be invariant. The Lorentz
group can be defined as

xµ
1

“ Λµνx
ν : Λµν P SOp3q (3.22)

In special relativity, it is indeed stated that physical properties are invariant under this Lorentz group. [24] In Minkowski
space, the spacetime interval between different events, points in spacetime, should be preserved. Hence, if the space-
time interval is not invariant, the Lorentz transformations cannot be used. An ordinary Lorentz transformation is a
transformation from one coordinate frame in spacetime to another one, where one of the reference frames moves with a
constant velocity relatively to the other. We can distinguish different forms of reference frames: an inertial frame, that

3In mathematics, one can define a special orthogonal group, SO(n), which contains all orthogonal matrices with determinant 1.
SO(3) describes the rotation around a line.
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Figure 5: The light cone, which describes the causal structure of spacetime. When different events happen in different
light cones, we cannot know which event took place earlier in time.

moves with a constant velocity, and a non-inertial, that has an acceleration or moves along a curved path. By Lorentz
transformations, we only consider inertial frames. When these properties stated above hold, we call the matrix Λµν in
(36) a Lorentz transformation, which is Lorentz invariant. An example is given by the most common form, for a velocity
in the x direction, given by the matrix

Λµ
1

ν “

¨

˚

˚

˝

γ ´βγ 0 0
´βγ γ 0 0

0 0 1 0
0 0 0 1

˛

‹

‹

‚

(3.23)

where γ “ 1
c

1´ v
2

c2

. In this way, one finds

ct1 “ γpct´ βxq (3.24)

x1 “ γpx´ βctq (3.25)

y1 “ y (3.26)

z1 “ z (3.27)

with β “ v
c
.

in each reference frame, an observer is able to measure physical quantities such as lengths and time intervals. By the
Lorentz transformations, the coordinates of the different reference frames are expressed relative to each other.

3.4 Properties in spacetime curvature and curved coordinates

Spacetime curvature relies on the metric that describes the geometry of the manifold. The way curvature is expressed
depends on some kind of mathematical property called a ‘connection’, as we will see. For measuring and describing
distance and time, Cartesian coordinates are used. Now, we take a look at different coordinates u “ tuµ, µ “ 0, .., 3u.
We already defined the line element, which we now state by using new coordinates

ds2
“ gµνdx

µdxν “ g1µνpuqdu
µduν (3.28)

From this, we can state

g1µνpuq “
Bxα

Buµ
Bxβ

Buν
gαβpxq (3.29)

In the original coordinates, a particle will move via a straight line when there is no force: B2xµ

Bτ2 “ 0, with τ the proper
time.The new coordinates are curved coordinates: the particles will move on curved lines here, in stead of straight lines.
This becomes clear form the following equations:

dxµ

dτ
“

dxµ

duλ
duλ

dt
(3.30)

d2xµ

dτ2
“

B
2xµ

BuλBuκ
duκ

dτ

duλ

dτ
`
Bxµ

Buλ
d2uλ

dτ2
(3.31)
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For the new coordinates, in stead of B
2xµ

Bτ2 “ 0, we arrive at

d2uµ

dτ2
` Γµκλpuq

duκ

dτ

duλ

dτ
“ 0 (3.32)

Γµκλpuq “
Buµ

Bxα
B

2xα

Buκuλ2 (3.33)

Thus while a particle, with no force acting on it follows a straight line, this no longer holds in terms of the curved
coordinates [25]. The property in the above equation is called the connection field, or the Christoffel symbol:

Figure 6: A transformation to curved coordinate frame tx1, y1u[25]

Γµκλ “
1

2
gµνpBµgνσ ` Bµgσµ ´ Bσgµνq (3.34)

The Christoffel symbol is symmetric under change of subscript indices, Γρµλ “ Γρλµ. Though it looks like a tensor,
this is not the case. Moreover, it is a symbol. This connection is used in the geodesic equation.In general relativity, free
particles move via geodesics. A geodesic is essentially a curved-space generalization of the description of a straight line
in Euclidean space. As we have seen, without spacetime curvature, these particles would move in straight lines, however
due to the curvature, they follow a path xµpλq parametrized by the geodesic equation

d2xµpλq

dλ2
` Γµρσ

dxρ

dλ

dxσ

dλ
“ 0 (3.35)

Still, in a gravitational field, a particle follows a path which comes close to a straight line. It does not feel an acceleration,
since the particle is free falling. The nature of the geodesic motion of particles is important in GR: it is relevant in the
claim that gravity is not just a force, but a result of the curvature of spacetime.

We can also define the Riemann tensor, which describes the curvature of spacetime:

Rρσµν “ BµΓρνσ ´ BνΓρµσ ` ΓρµλΓλνσ ´ ΓρνλΓλµσ (3.36)

Naturally, the Riemann tensor vanishes when we have a flat metric. It can be shown that this tensor obeys the Bianchi
identity ∇rλRρσsµν “ 0, or equivalently,

DαR
µ
κβγ `DβR

µ
κγα `DγR

µ
καβ “ 0 (3.37)

where DµA
κ
pxq “

BAκ

Bxµ
` ΓκµνpxqA

κ
pxq (3.38)

and DµBλpxq “
BBλ
Bxµ

´ ΓλµνpxqAνpxq (3.39)

(3.40)

for Aαpxq and Bβpxq a vectorial function. This identity appears to be useful in a description of general relativity. One
can also find the Ricci tensor Rµν from the Riemann tensor, which is a symmetric tensor. Then, the trace of the Ricci
tensor is the Ricci scalar, Rµµ “ R. This scalar is used in Einstein’s field equations. These equations capture the response
of spacetime curvature to the existence of matter and energy. Typically, Einstein’s field equations show in which way
energy and momentum affect the metric. The equations are quite complicated, since they are a set of non-linear second
order differential equations. The solution to these equations are spacetime metric tensors. The equation is stated as

Rµν ´
1

2
Rgµν “ 8πGTµν (3.41)
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The left-hand side of this equation measures the curvature of spacetime, while the right-hand side measures the
energy and momentum of matter: the equation presents a description of energy and momentum in terms of curvature.
The energy-momentum tensor Tµν is a generalization of a mass density: in a region of spacetime, it states the division
of energy and mass. In vacuum, one can state the equations simply as Rµν “ 0, since there will be no mass and energy
left. The right-hand side of the original equation, 8πGTµν , is often stated as he Einstein tensor Gµν .

3.5 The Schwarzschild metric

A spherically symmetric gravitational field is very interesting in a theory of gravity. It is also relevant when considering
for example the Earth or the Sun in good approximation, and especially in studying black holes. In general relativity,
a unique vacuum solution which involves spherical symmetry is the Schwarzschild metric. The Schwarzschild metric is
a non-trivial solution found by Karl Schwarzschild. Just as Minkowski space, it is a very important metric. By using
spherical coordinates, one can define the metric as

ds2
“ ´p1´

2GM

r
qdt2 ` p1´

2GM

r
q
´1dr2

` r2dΩ2 (3.42)

dΩ2
“ dθ2

` sinpθq2dφ2 (3.43)

Here M is the mass of the gravitational object, and the Schwarzschild radius is defined as rs “ 2GM . The Schwarzschild
equation is a description of a static, spherically symmetric vacuum solution to the equations Einstein postulated. When
the mass approaches zero, the metric will behave as normal Minkowski space. This is also the case when the value of
the radius reaches infinity: a property that is stated as asymptotic flatness.

3.6 Singularties and coordinate transformations

From the given Schwarzschild metric, one can see that some components of the metric diverge to infinity at two points,
for r “ 0, and r “ 2GM , at the Schwarzschild radius. At these points, we have a singularity. In terms of curvature,
a singularity of curvature appears when its curvature, which is measured by the Riemann tensor, grows to infinity.
However, the singularity at the Schwarzschild radius can be ruled out by a proper coordinate transformation. What
we will see, is that an event horizon can be found when the radius is equal to the Schwarzschild radius. Still, for the
breakdown in the metric at r “ 0, there is a real physical singularity where gravity diverges to infinity.

Also, the Schwarzschild coordinate system is not very suitable for describing near-horizon physics: when approaching
the horizon in these coordinates, light cones close up. In this way, it looks like a light ray that arrives at the horizon will
never reach it.

Figure 7: Future light cones in the Schwarzschild metric. Far away,the slope of the cones is ˘1. Near the horizon the
slope reaches ˘8. Behind the horizon, coordinates t and r have changed: they become time-like instead of space-like,
and vice-versa.

3.6.1 Eddington-Finkelstein coordinates

In order to do avoid the singularity at Schwarzschild radius and the light cones to close up at this point, we look for
other coordinate systems that describe the metric of the black hole properly. We start by parameterizing the radial null,
light-like curves of the Schwarzschild solution, dt

dr
“ ˘p1´ 2GM

r
q
´1, by using Tortoise coordinates:

t “ ˘r˚ ` C (3.44)

r˚ “ r ` 2GM log
´ r

2GM
´ 1

¯

(3.45)
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With C P R. Next, we define coordinates that fit into the description of null geodesics:

v “ t` r˚ (3.46)

u “ t´ r˚ (3.47)

Here infalling and outfalling null geodesics are described by v, u P C1, C2 P R.
Now the metric can described in Eddington-Finkelstein coordinates:

ds2
“ ´p1´

2GM

r
qdv2

` pdvdr ` drdvq ` r2dΩ2 (3.48)

Via these transformations, the light cones behave normally at the Schwarzschild radius: we can still describe the paths
of light-like and time-like particles behind this radius. Here, the Eddington-Finkelstein metric makes clear that the
singularity at the Schwarzschild radius is just a coordinate singularity.

3.6.2 Kruskal coordinates

We can extend this by going to Kruskal coordinates. We do this by defining the following coordinates

U “ ´e´
U

4GM (3.49)

V “ e
V

4GM (3.50)

Here, constant U and V can be seen as radial null geodesics. These coordinates obey UV “ p1 ´ r
2GM

qe
r

2GM , thus a
singularity is found for UV “ 1. The horizon is reached when either U or V equals zero. Up to now, the metric has
off-diagonal term, which we can remove by defining a time and space coordinate

T “
1

2
pV ` Uq (3.51)

X “
1

2
pV ´ Uq (3.52)

so that the metric becomes

ds2
“

32G3m3

r
e

r
2GM p´dT 2

` dX2
q ` r2dΩ2 (3.53)

in terms of Kruskal coordinates pT,X, θ, φq. As expected, in this coordinate system, there is no singularity to be found
at r “ 2GM .

Furthermore, the metric has some interesting properties. First of all, the radial null (light-like) curves take the same
form as in flat space: T “ ˘X ` C , C P R. The horizon is defined at T “ ˘X. Also, constant surfaces, r “ constant,
are given by hyperbolae: T

X
“ tanh

`

t
4GM

˘

. The region that is covered by the coordinates T and X is given by

´8 ă R ă `8 (3.54)

T 2
ă R2

` 1 (3.55)

We can draw a spacetime diagram for the T-X plane, which is the Kruskal diagram, where every point in this diagram
is a two-sphere. By this description, we expect to describe the full manifold of the Schwarzschild geometry, see figure 7.

We can divide the diagram into different parts. In the first part, I, our original coordinates are well-defined. The
future-directed null rays can be found in the second region II and the past-directed null rays in the third region, III.
Spacelike geodesics will be found in the fourth region IV. Here, region two corresponds to a black hole: when something
moves from region I to II, it actually will never return. The third region is the time-reverse of the second region, simply
a part from where something might escape to us. However, one can never reach this part and it is therefore a white hole.
The boundary of this region is the past event horizon, while in the second region, we have a future event horizon.

The fourth region is also an asymptotically flat region in spacetime, just like the first region. It looks like a mirror
image compared to our space in region I. Yet, we cannot reach region IV from region I. Still, these parts are connected
by a wormhole, a configuration that joins two separate parts in space: an Einstein-Rosen bridge.

Specifically, we can create wormholes by taking slices of space-like surfaces of constant T in the Kruskal diagram.
Like this, two asymptotically flat regions from both region I and II are connected by a wormhole for some small time,
but will eventually disconnect. It will be impossible for a time-like observer to travel through the wormhole, since it will
vanish too quickly to actually pass it. One cannot send a signal from one region to the other, but it seems that both
singularities of both regions meet each other.
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(a) (b)

Figure 8: On the left: the Schwarzschild solution in Kruskal coordinates. Lines of constant r and t are drawn, just as
the event horizons at r “ 2GM . Light cones are all at ˘45 degrees.[23]. On the right: We can divide the diagram into
different parts. Asymptotically flat spaces are connected by a wormhole. [23]

3.6.3 Penrose diagrams

Kruskal diagrams are very useful for studying black holes, but one might also want to pu describe Schwarzschild solution
by a finite region. We will do this by constructing Penrose diagrams. Penrose diagrams are used to describe complex
curved spacetime manifolds by their general properties and their causal structure. We often call Penrose diagrams
also conformal diagrams. In this diagram, we try to capture a normal metric by a proper coordinate transformation.
Specifically, we try to fit infinite coordinate values into finite values. We also want to keep the light cones at 45 degrees
everywhere, which correspond to a slope of ˘1 for the light cones: the radial null waves satisfy dT

dX
“ ˘1. So, we would

like to find a metric that is conformally related4 to another metric for which the 45 degrees hold for the light cones.
Starting from the Kruskal metric, we define coordinates to capture infinity in some finite coordinates

A “ arctan

ˆ

V
?

2GM

˙

(3.56)

B “ arctan

ˆ

U
?

2GM

˙

(3.57)

´
π

2
ă A ă

π

2
,´

π

2
ă B ă

π

2
,´

π

2
ă A`B ă

π

2
(3.58)

In this coordinate system, the singularities are straight lines which go from one asymptotic part to the other, both in time
like infinity. The full diagram for a black hole is given by the figure. In this Penrose diagram, we can now distinguish
five different regions, similar to Minkowski spacetime.

i` “ future time-like infinity (3.59)

i0 “ spatial infinity (3.60)

i´ “ past time-like infinity (3.61)

J
`
“ future null (light-like) infinity (3.62)

J
´
“ past null (light-like) infinity (3.63)

Hence, light-like geodesics move from J´ to J` and time-like particles from i´ to i`. Space-like geodesics begin and
start at i0.

Not to mention, in the diagram, time runs upwards. By this construction, the light cone is preserved and so the
causal structure. Here, the light cones in the diagram are all again at ˘45 degrees. Also by using Penrose diagrams, we
can get an insight in the causal structure of a black hole and its surroundings.

4Two metrics which only differ via a multipliciation of a positive scalar function, related by g1µν “ e2ωpxqgµν with ωpxq a smooth
real function, are named as conformally equivalent. Here time-like and space-like curves in one metric will be the same in the other
metric. [26]
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(a) A Penrose diagram for the full Kruskal expansion of
Schwarzschild spacetime.[23] (b) Similarly, the full Penrose diagram for a black hole.

Figure 9

4 Black holes

Black holes are one of the most fascinating objects in our universe. Black holes are regions of spacetime where gravity is
so strong, that it is impossible for particles, and even for light, to escape the black hole. Black holes have been predicted
by Einstein’s theory of general relativity. According to this, high mass is able to form spacetime into a black hole. Since
light cannot escape the black hole, we cannot see it, and therefore it is called black. Once fallen in, it is impossible to get
out. Still, due to quantum fluctuations, radiation seems to come out. By this, black holes have created some troubles in
a theory of quantum information. This is stated by the information paradox in section 6. In this section, we will look at
some important properties of black holes, which will also be important later on.

4.1 Black holes: the collapse of heavy stars

Black holes can be created by collapse of heavy stars. Primordial black holes, which are created short after the big bang,
exist too, but we will not study them here. In the full Penrose diagram for a black hole, we have seen the appearance
of a white hole and a second asymptotically flat region, which are connected by a wormhole to our universe. For stellar
collapse to a black hole, however, we won’t see this: the full Schwarzschild solution does not describe such a past of the
spacetime here.

(a)

(b)

Figure 10: On the left: A Penrose diagram for a black hole formed out of stellar collapse. The shaded region presents
matter. The horizon is given by the dotted line and there is a singularity at r “ 0. [23]. On the right, an example of
stages is stellar evolution.

The non-vacuum region that is shaded can be seen as the stellar evolution. Gravitational collapse can be the final stage
of stellar evolution, but it is not a mandatory condition. General relativity states certain requirements for gravitational
collapse to a black hole. Essentially, from a certain amount of mass, the collapse will always create a black hole.

For a star to exist, the pressure from heat production of light nuclei into heavy ones by fusion is essential. When this
process stops, the temperature will lower and the star will shrink due to gravity. This process might be slowed down by
an outward pressure due to the Pauli exclusion principle: squeezing the electrons further together will put them in the
same state, which is not possible according to this principle. When a star finds itself in such an end state, it is called a
white dwarf. However, when the mass is high enough, the gravitational pull will be stronger than the outward pressure,
and the star will collapse further to a smaller radius. Then, neutrons and neutrinos are created by putting protons and
neutrons together. Now what’s left is a neutron star. It is also possible that the white dwarf collapses to a black hole
immediately, mainly if the mass is high enough. For a white dwarf to be stable, there is a limit on its mass, which is the
Chandrasekhar limit. This is about 1.4 times the solar mass. Neutron stars have a typical radius of around 10 km. Quite
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often, these stars are fast spinning objects and consist of strong magnetic fields. Together, this gives rise to pulsars.
Pulsars give an acceleration to particles in jets emitted from the magnetic poles.

Eventually, massive neutron stars will collapse even further to a black hole. We estimate the maximum possible
neutron-star mass to be around three or four time the solar mass. This limit is called the Oppenheimer-Volkoff limit. It
is believed that the collapse to a black hole is the final stage in the stellar evolution.

4.2 The event horizon

From the event horizon on, particles are never able to escape to infinity when they passed this horizon. Thus, since
nothing is able to escape the event horizon, there is no-one to see what’s inside. Therefore, we use the name black
holes. Thus, black holes can be seen as a region that separates a part of spacetime, by its event horizon, from outer
infinity. Essentially, an event horizon is a hypersurface that separates spacetime points that are connected to infinity
by timelike paths that are not. For us it is not of great interest what happens far away, but we define infinity as being
“well outside the black hole”, and we approximate the spacetime far away from the black hole to be Minkowski space
and thus asymptotically flat [23]. We can distinguish two kinds of event horizons: a future and past event horizon. The
future event horizon is a surface from which timelike curves are not able to escape to infinity. Similarly, the past event
horizon is a surface that one can only pass by curves in the direction of the past. When arrived inside, all matter is
forced out, and finally out of the past horizon, one is not able to enter the region behind this horizon again. Looking at
the Schwarzschild solution, at the event horizon, light cones are tilt over: at the Schwarzschild radius we have a light-like
surface rather than a time-like surface. In general relativity, singularities are hidden behind event horizons [23].

Figure 11: Past and future event horizons.We have asymptotically flat Minkowski spacetime. J˘ and i0 have the same
structure as flat Minkowski space. The space between the dashed lines can be a different form of spacetime.[23]

As we have seen, in a Schwarzschild metric, an event horizon corresponds to the region in spacetime where r “ 2GM .
From the event horizon on, light will move radially inwards approaching the singularity. We can easily see this. Consider
the Schwarzschild metric and a light ray that moves radially inward. Then we can express such a light ray via [25]

dt

dr
“

1

1´ 2MG
r

(4.1)

ds2
“ 0 and dΩ2

“ 0 (4.2)

A solution for this expression is

t “ t0 ˘ rr ` 2GM logpr ´ 2GMqs , t0 P R (4.3)

Choosing now the minus sign, so that when r comes very close to 2GM , we can express it as

rptq Ñ 2GM ` e
t0´t

2GM´1 (4.4)

In a similar way, radially outgoing rays are given by

rptq Ñ 2GM ` e
t´t10

2GM´1 , t10 P R (4.5)

One can see that both light rays will never pass through the horizon at r “ 2GM . Also at other angles, this will indeed
not happen.[25] More general, looking at the Kruskal diagram, from region I the geodesics can move to a boundary at
infinity at a future direction. In contrast, geodesics starting in region II can never reach to a boundary at infinity. The
boundary between those regions is the horizon: a surface composed of light-like geodesics that move radially outwards.
According to the equivalence principle, an observer traveling across the event horizon will not feel anything special [27].

21



Also, the size of a black hole is captured by the area of its event horizon. According to the laws of black hole
thermodynamics, black holes never shrink in size too: from this laws, it becomes clear that the area of a future event
horizon in asymptotically flat spacetime is never decreasing. For Schwarzschild black holes, this automatically implies
that black holes can only become heavier, looking at the increase of mass. However, this is not the case for spinning
black holes, since the area then depends not only on the mass, but also on the angular momentum. Can the mass then
never decrease? It can, due to Hawking radiation as we will discover in the following chapters.

4.3 No-hair theorem

Though black holes are created from massive amount of energy and matter, and above all seem quite complicated objects,
only a small number of parameters define the black hole. Asymptotically flat black hole solutions can be fully stated by
their mass, magnetic and electric charge and angular momentum. This is a fundament of the no-hair theorem. However,
in order to fully describe the black hole, one would think of including all the matter that has fallen into the black hole.
It is a remarkable result, since many microscopic systems can be described by more parameters than the three describing
the black hole. For accurately describing other cosmological fenomena, such as planets for example, we would often need
much more information. Also, the matter falling into the black hole is stated by many parameters, but when arrived at
the black hole, it seems that this is not necessary anymore.

Ultimately this will lead to some puzzles in physics. In our physical theories, we want that by the information of
a state at an arbitrary moment in time, one is able to predict the state of another moment of time. Consequently, we
would like the information in these states to be preserved. However, it now seems that in general relativity that this is
not the case. In GR this does not seem a big problem: information could hide itself behind the horizon without being
lost. But as we will see, black holes evaporate as discovered by Hawking, and information seems to be lost forever.

Figure 12: An impression for the no-hair theorem.

4.4 Black hole thermodynamics

Black holes can be described by a small number of macroscopic parameters, but ”the microscopic degrees of freedom
that lead to their thermal behavior have not yet been adequately identified” [28]. Black holes seem to behave as thermal
object, and these properties are described by four classical laws of black hole mechanics, with great analogy to the four
laws of thermodynamics. Every law of thermodynamics has an equivalent in the laws of black hole mechanics. [28]

The zeroth law of black hole mechanics states that the surface gravity κ of a stationary black hole is constant over
its event horizon. In thermodynamics, the zeroth law states that the temperature for a system in thermal equilibrium is
constant. The first law is an expression for the conservation of energy. It states that the change in the black hole mass
M equals a certain change in its area A, angular momentum J and electric charge Q:

δM “
k

8πG
δA` ΩdJ ` ΦδQ (4.6)

analogous to the well-known first law of thermodynamics dE “ TdS ´ pdV . One can extend the zeroth law by also
stating that the angular velocity Ω and the electrostatic potential Φ, the other constants that appear in (4.6), are constant
values over the black hole event horizon. The second law of black hole mechanics states that the area of the horizon
never decreases, analogous to the statement that entropy never decreases. Finally the third law states that the surface
gravity cannot become zero in any physical process, analogous to the thermodynamic statement that the temperature
of a system cannot become zero. Here, the third law applies to some situations, but is not in fact a truly fundamental
property, since there are physical systems that violate it.

As Hawking showed that black holes radiate, we can state SBH “
A
4G

as the actual entropy for the black hole, called
the Bekenstein-Hawking entropy. Furthermore, Bekenstein came up with a generalized second law, which defines the
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total entropy of matter and the black holes can never decrease:

δpS `
A

4G
q ě 0 (4.7)

Normally, we think of the entropy of a system as a logarithm of a number of available quantum states. However, according
to the no-hair theorem, there is only one possible state for a black hole with a constant charge, spin and mas: here we
experience some awkwardness between quantum mechanics and general relativity. The question still remains what to
do with the accessible states which are calculated by the ordinary thermodynamic entropy: where are the degrees of
freedom of the black hole, and what exactly are they?

Many ideas about this have been proposed. The most common one, and also the simplest one, is that these degrees
of freedom are inside the black hole, by matter that has fallen in or by particle-antiparticle production. The question
remains how and if information by these degrees of freedom is able to come out. For example, it has been proposed
that quantum gravity does not make a distinction between the outside and inside of the black hole, in contrast with the
semiclassical approximation. In this way, information that would be hidden in semiclassial physics, would be able to
come out in a theory of quantum gravity.

4.5 Euclidean gravity

One can express properties in space-time coordinates by complex values of the same coordinates. Here, the original
equation still hold. In particular, it is interesting to look at the imaginary time t “ itE . Often we call the Euclidean time
the imaginary time and the Lorentzian time the real time.[22] [25] Using these coordinates, the Schwarzschild metric
becomes

ds2
E “ p1´

rs
r
qdt2E `

dr2

1´ rs
r

` r2dΩ2 (4.8)

with rs the Schwarzschild radius. Interesting here is that imaginary-time periodicity can be seen as a temperature in
such an Euclidean geometry. The partition function in a thermal state is Tr

`

e´βH
˘

. Such an observable is periodic under
certain conditions. In quantum field theory, the trace can be computed via a path integral. In order to do this, we need
to look for a geometry that is a spherically symmetric solution of the Euclidean Einstein equation [26]. Via imaginary-
time evolution e´βH , we can compute a path integral on such a Euclidean geometry. In quantum field theory, one can
calculate the trace of imaginary-time evolution via a path integral on a Euclidean cylinder with conditions θ “ θ ` β.
Being in Euclidean geometry, a black hole does not have an interior. The geometry of the Euclidean Schwarzschild black
hole looks like a sigar, see the figure.

Figure 13: A Schwarzschild black hole in Euclidean geometry. There is no singularity to be found on this geometry. [25]

The tip of sigar corresponds to the horizon. We can then look at the path integral as the partition function with
contributions of both gravity and quantum fields:

Zpβq „ e´IclassicalZquantum (4.9)

The gravitational part is found in the Einstein action, which can be found by evaluating it on the Euclidean Schwarzschild
geometry , while the quantum part can be found by the partition function of quantum fields in this geometry.

We take a closer look at path integrals. For a quantum system, we can find the ground state by acting on a state |ay
wit e´HT , wit T a long time. This is stated as [26]

xφ|by “
1

xb|ay
lim
TÑ8

xφ| e´HT |ay (4.10)

In the formalism of the Euclidean path integral, this wave function is stated as

xφ|by „

ż φ̂ptE“0q“φ

φ̂pTE“´8q“0

Dφe´IE (4.11)

with IEpφ̂q “
1

2

ż

d3xdtErpBtE φ̂q
2
` p∇φ̂q2 `m2φ̂2

s (4.12)
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Here, Dφ defines the integration over all possible paths on the denoted interval and IE the Euclidean action for a free
massive scalar field [26]. Now we evaluate the integral from ´8 to 0. Alternatively, one can evaluate the integral by
angular directions.

For the horizon to be smooth at the point corresponding to the black hole horizon in the Schwarzschild metric, we
do not have a singularity in this geometry. This is because an observer will, when approached classically, not notice
anything special when passing the horizon. Via the computed partition function, one can obtain the generalized entropy
via the common thermodynamic formula S “ p1´ βBβq logpZpβqq.

By Euclidean path integrals, it seems we have found a nice method for computing thermodynamic quantities of
systems in which gravity is involved.[26]

4.6 Rotating and charged black holes

In this thesis we consider non-rotating, uncharged black holes, but let’s have a small note about them here. Describing
the metric for a rotating black holes is slightly more difficult, because here we do not have spherical symmetry. Kerr was
the first to find the description for this metric. It is stated by the Kerr metric [23]:

ds2
“ ´p1´

2GMr

ρ2
qdt2 ´

2GMar sinpθq2

ρ2
pdtdφ` dφdtq `

ρ2

δ
dr2

` ρ2dθ2
`

sin2
pθq

ρ2
rpr2

` a2
q
2
´ a2δ sin2 θdφ2

s (4.13)

with δprq “ r2
´ 2GM ` a2 (4.14)

and ρ2
pr, θq “ r2

` a2 cos2
pθq (4.15)

with a “ J
M

, the angular momentum per mass. Rotating black holes are often created in gravitational collapse of a
spinning star or in a collision of cosmological objects with a nonzero angular momentum. As far as we know, many stars
rotate and realistic collisions do consist of a nonzero angular momentum. Therefore, rotation is a realistic property of
black holes.

Black holes with a nonzero charge do exist too. This feels a bit counter-intuitive, since stars do not have a charge
and black holes are created by stellar collapse. Still, they do exist. They were discovered soon after the Schwarzschild
solution by Reissner and Nordström. Their solution is called the Reissner-Nördstrom metric. [23] It is given by

ds2
“ ´∆t2 `∆´1dr2

` r2dΩ2 (4.16)

where ∆ “ 1´
2GM

r
`
GpQ2

` P 2
q

r2
(4.17)

Here, M is the mass of the hole, Q the total electric charge and P the total magnetic charge. Also, Reissner and
Nordström found out that the horizon of a charged black hole is found at the point

r˘ “ GM ˘
a

G2M2 ´GpQ2 ` P 2 (4.18)

By this, we have to solutions for the horizon: we will get an inner and outer horizon.
Charged, rotating black hole with nonzero angular momentum are described by the Kerr-Newman metric [29], which

gives a general solution for a spacetime region surrounded by a charged, rotating mass. It is a solution to the Einstein-
Maxwell equations from general relativity.

Of course, the physics that describe rotating, charged black holes, differ from the description of non-rotating, un-
charged black holes. We will simply not discuss this here, though it is nice to mention some properties of such beautiful
objects.
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5 Quantum field theory: the Unruh effect and Hawking radiation

General relativity is a fully classical theory. Still, the world we live in is fundamentally described by quantum mechanics.
Ultimately, by combining both as a theory for quantum gravity we might come closer to a full understanding of black
holes. By studies using quantum field theory, Hawking [9] found out that black holes do actually radiate.

Quantum field theory (QFT) is a theory that specifically defines fields by infinite sets of harmonic oscillators. QFT
describes particles in the form of excited states of their quantum fields. Each of these harmonic oscillators has its own
vibration, namely via its eigenfrequency. By using interaction terms in the Langrangian description of these quantum
fields, interactions of these particles can be described.

The radiation emitted by black holes is called Hawking radiation and is exactly thermal, without any correlations
between the outgoing particles. Eventually, this radiation will lead to the famous information paradox. The basis for
the Hawking radiation comes from the Unruh effect, which states that an uniformly accelerating observer, that takes a
measure of normal Minkowski vacuum, will see a thermal spectrum of particles, a thermal bath. However, an inertial
observer in the Minkowski vacuum would not be able to see this bath.

The Unruh effect and the derivation of the Hawking temperature is described in many papers and by many researchers.
We will give a compact derivation here, though for a full derivation one can take a look at [30] or [31].

5.1 Rindler space

First of all, we will define Rindler space, which is a space to understand the observation of space by an observer that is
uniformly accelerated. The observer follows a path with a constant acceleration that obeys the expression

x2
pτq “ t2pτq ` α2 (5.1)

with α a constant acceleration, called the proper acceleration. It is felt by the accelerating observer, called the Rindler
observer. The path has the shape of a hyperbola, and thus the motion is hyperbolic. For this motion, the asymptotes
are null paths given by x “ ˘t. By choosing new coordinates in the original two-dimensional Minkowski space, we can
create a coordinate system fitted for an accelerated observer:

t “
1

α
eαξ sinhpαηq (5.2)

x “
1

α
eαξ coshpαηq (5.3)

´8 ă η, ξ ă `8 and x ą |t| (5.4)

These coordinates have ranges stated above and indeed they cover the region between the asymptotes as seen in the
figure. The path for an observer that has a constant acceleration is

Figure 14: Minkowski spacetime in Rindler coordinates.Region I is the region that is accessible for the Rindler observer,
H˘ are the past and future boundaries. Just like region I, region IV can be described by (η, ξ).[23]

ηpτq “
a

α
τ (5.5)

ξpτq “
1

a
log

´ a

α

¯

(5.6)

for α “ a we have η “ τ, ξ “ 0 (5.7)

Then,the metric of the Rindler space is given by

ds2
“ e2αξ

pdη2
´ dξ2

q (5.8)
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It can be shown mathematically that this metric is the same as the Schwarzschild metric, if we come close to the event
horizon. Physically seen, this is a consequence of the equivalence principle, since uniform acceleration is locally the same
as a gravitational field.

Note that the Rindler space is still just a part of Minkowski space. Here straight lines starting at the origin are lines
of constant time for the Rindler observer, while for this observer, the hyperbolic lines correspond to a constant position.
Furthermore, this observer will experience the presence of an event horizon. One can interpret this horizon in Rindler
space just as in the Kruskal coordinates. Consequently, a signal from region IV will never reach region I, when one is
constantly accelerated. Thus all observers that move with a constant acceleration will have an event horizon, just like a
black hole event horizon: the Rindler wegdes four and one are causally disjoint spacetimes.

5.2 The Unruh effect

We will study the Unruh effect. We start with the wave equation for a massless scalar field, obtained from the Klein-
Gordon equation lφ “ 0. The field equation for this solution is

ψpt, xq “

ż `8

´8

dk
?

2π

1
a

2|k|
re´i|k|t`ikxâk

´
` ei|k|t´ikxâk

:
s (5.9)

using creation and annihilation operators âk
´, âk

:. By using the Rindler metric, we find a similar field equation for the
right Rindler wedge

ψRindlerpτ, ξq “

ż `8

´8

dk
?

2π

1
a

2|k|
re´i|k|τ`ikξ b̂k

´
` ei|k|τ´ikξ b̂k

:
s (5.10)

with b̂k
´
, b̂k

:
specified for Rindler space. We now looked at the right wedge, but for the left wedge, the equation has the

same form. We define the zero eigenvector for the vacuum state for all annihilation operators, and in the same way, the
vacuum state in the Rindler vacuum is defined by:

âk
´ |0My “ 0 @k (5.11)

b̂k
´
|0Ry “ 0 @k (5.12)

By introducing light cone coordinates ũ “ τ ´ ξ, ṽ “ τ ` ξ, we can put the equation for the Rindler wedge in another
form

ψRpũ, ṽq “

ż `8

´8

dω
?

2π

1
?

2ω
re´iωũb̂ω

´
` eiωũb̂ω

:
` e´iωṽ ˆb´ω

´
` eiωṽ ˆb´ω

:
s (5.13)

Now the Klein-Gordon solutions to the field equations are B2φ
BũBṽ

“ 0. From this, we can compute two independent
solutions for a wave moving from the left and to the right. Now these parts do not interact and we can decompose the
field into two parts: right-moving waves and left-moving waves.

ψpũ, ṽq “ A´pũq `B`pṽq (5.14)

with A´pũq, B`pṽq respectively right-moving and left-moving waves. Now, because these parts do not interact, we can
for example compose the wave function for all the modes that move left:

B`pṽq “

ż `8

0

dω
?

2π

1
?

2ω
pe´iωṽ ˆb´ωr

´
` eiωṽ ˆb´ωr

:
q `

ż 0

´8

dω
?

2π

1
?

2ω
pe´iωṽ ˆb´ωl

´
` eiωṽ ˆb´ωl

:
q (5.15)

Here we defined the operators for the right (r) and left (l) Rindler wedge. Both operators for the left and right wedge
obey a commutation relation. The operators in Minkowski space obey such an equation:

”

b̂´Ω , b̂Ω
:
ı

“ δpΩ´ Ω1q (5.16)
”

â´ω , âω
:
ı

“ δpω ´ ω1q (5.17)
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with ω,Ω P R. Now, by the Bogoliubov transformations, we can see the relation between the Rindler and Minkowski
operators. These transformations state that the Rindler operators can be written as

b̂Ω
´
“

ż 8

0

dωrαωΩâω
´
` βωΩâω

:
s (5.18)

b̂Ω
:
“

ż 8

0

dωrα˚ωΩâω
:
` β˚ωΩâω

´
s where (5.19)

αωΩ “

c

Ω

ω
F pω,Ωq (5.20)

βωΩ “

c

Ω

ω
F p´ω,Ωq (5.21)

Here we use some assisting functions F p˘ω,Ωq.

Now the amount of particles in a certain state is measured by the operator NΩ “ b̂Ω
:
b̂Ω
´

. It is interesting to look at
the amount of particles that is observed by an accelerating observer in Minkowski space:

ă NΩ ą“ x0M | b̂Ω
:
b̂Ω
´
|0My (5.22)

“

ż

dω|βωΩ|2 (5.23)

The mean density with momentum Ω is found to be

ă NΩ ą“ rexp

ˆ

2πΩ

a

˙

´ 1s´1 (5.24)

Considering theory from statistical physics, this expression looks like the Bose-Einstein distribution, which is defined as

ă NBE ą“ rexp

ˆ

E

T

˙

´ 1s´1 (5.25)

Then we arrive at Ω “ E, T “ a
2π

. So, an accelerating observer sees particles with an energy in the Minkowski vacuum.
Also, the observer finds a temperature of T “ a

2π
, or in SI-units:

T “
ah̄

2πkBc
(5.26)

the Unruh temperature. With this, we will be able to calculate the temperature of the black hole. Furthermore, what
Unruh found, is that the we can describe the Minkowski vacuum as an entangled state. This can be stated as [30]

|0My “
ź

j

rNj
ÿ

nj

e
´πnjΩi

a |nj , ryR b |nj , ryRs (5.27)

with Nj from, and |nj , ryR is a state with nj particles in the right (r) Rindler wedge. From this, one can see the strong
correlations between the left and right region: particles in the right and left Rindler wedge are entangled.

5.3 The Hawking temperature

By the equivalence principle we can assume locally that acceleration and gravity are for now the same. The gravitational
acceleration of a body near the horizon is α “ 1

4M
, seen by an observer far away. For this observer at infinity, the

Hawking temperature of the black hole is then TH “
1

8πM
, or in SI-units

TH “
h̄c3

8πGMkB
(5.28)

Here, the radiation that is emitted is the same as the radiation that a blackbody of the same temperature would emit.
Interestingly according this formula, the higher the mass, the lower the temperature will be. This temperature is a
temperature measured by an observer far away. At distances very close to the black hole, the temperature becomes
incredibly high.

Still, the discovery that black holes radiate is quite counter-intuitive since general relativity states that it is impossible
for particles to escape from behind the black hole event horizon. What is going on, is the creation of particle-antiparticle
pairs. Normally, these particles would annihilate, but due to the event horizon the particles will be separated: one
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Figure 15: The particle-antiparticle creation discovered by Hawking [32]

particle falls into the black hole, while the other escapes to infinity. The particle that escapes out of the black hole is the
particle we denote and observe as Hawking radiation. Since the total energy must be zero, the particle that falls into
the black hole will have a negative energy. The outgoing particle has a positive energy. In this way, the black hole will
lose mass and will eventually evaporate completely.

Yet, in QFT, we make the assumption that information is defined to be located in a region of space. However,
quantum gravity might be different, and information might be available somewhere, non-locally, around the black hole.

Figure 16: A Penrose diagram for an evaporating black hole that has been fromed by stellar collapse. (a) - (d) correspond
to spatial slices, defining stages in black hole evaporation. Eventually, by the Hawking particle-antiparticle creation, the
black hole will vanish. The Hawking particles will head to the future J`, where we have causal Minkowski space. [22]
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6 The Information paradox

By the fact that the radiation emitted by the black hole is exactly thermal, with no correlations between the outgoing
particles, information, which is used to specify the states, seems to be lost. Imagine that we put different states into
different black holes with the same mass, charge and spin. Then, after they have completely evaporated, the radiation
of these two black holes - due to the effects Hawking described – seems completely the same. Here it looks like that the
information, previously thrown into the black hole, has disappeared. This is what we call the ”black hole information
paradox”. Both quantum field theory and general relativity state that information at early times has to be available at
later times, by the description of their equations of motion. This is unitary evolution, which thus must be conserved.
However, as we have seen, combining these two important theories seem to give the result that unitary is not conserved.

So, it is a problem then if black holes radiate. Stars for example radiate too, however, the radiation that comes
from a star depends on what fell into the star: there are correlations between matter that fell down to the star and
the outgoing radiation. So, when the star and its outgoing radiation are in a pure state, it will remain in a pure state.
Exactly this seems not the case for black holes and their Hawking radiation. The Hawking radiation is fully thermal
and the density matrix corresponds to a fully mixed state: this violates the essential principle in quantum mechanics of
unitary time evolution.

6.1 The S-matrix

Essentially, the question is what happens to a pure quantum state that collapses to a black hole will emit radiation.
Hawking believed that the black hole would disappear, and that we would be left with a mixed state: information would
be lost in the black hole, and we would not have a certain matrix S to bring an initial pure state to a final pure state.
[26]

Figure 17: The S-matrix maps an initial state to a final state. Here massless particles are given by orange lines, massive
particles are denoted by blue. For a black hole, we would like to have an S-matrix that maps an initial pure state to a
final pure state. [26]

Still, if a pure state is brought to a mixed state, this would violate important principles in quantum mechanics.
Indeed, it has been believed by many researchers that it should not be the case that information is lost. For a quantum
system, the ordinary time evolution is stated by φfinala “ Uabφ

initial
b . Here, a pure state is mapped to another pure

state. However, what seems to be the case, is that the black hole can be stated as a matrix $ that brings the density
matrix of a pure state to a mixed state, such that ρmixedaa1 “ $aa1,bb1ρ

pure
bb1 . Now, if $aa1,bb1 “ UabU

˚
a1b1 , unitary will be

preserved. After all, this is what one would like to see to avoid complicated problems with well-known laws of physics.
It is believed, and hoped, that a full theory of quantum gravity is able to solve the problem. [28]

Thermal aspects of Hawking radiation arise because we split the initial vacuum in two parts via the particle-
antiparticle production: one of the particles moves to the interior, the other to the outside of the horizon. The two
particles are entangled and form together a pure state. Still, looking at one of the particles will give a mixed state. This
is not a problem, since quantum systems often radiate (close to) thermal radiation. The problem here is that information,
stored at the ingoing particles, cannot influence the outgoing radiation to arrive at a total pure state, which is due to
the event horizon. Therefore, according to Hawking, the entanglement of Hawking radiation will increase till the black
hole has completely evaporated. This differs from an ordinary quantum system, for example example a piece of coal: the
late radiation has encoded information in the early radiation that has been emitted. In this way, the entropy will start
decreasing at some point, and finally we arrive at a pure state, just as the initial state.Thus, if we want to end with a
pure state, the entropy must decrease at some point.

6.2 Information in black hole radiation

One of the first to propose that unitary must be preserved, was Don Page. In many famous articles, he argued his belief
that the essential principle of unitarity should not be violated. He argued that there might be other solutions to the
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problem of information loss. Indeed, according to Page, Hawking’s calculations are a problem: thermal emission of the
black hole may lead to information loss since the black hole might fully evaporate into a mixed state. By his calculations,
he showed that ”information might come out initially so slowly, or else be so spread out, that it would never show up in
an perturbative analysis” [17].

Page shows the following.[17] We study a black hole subsystem with dimensionn „ esh with sh “
A
4

the semiclassical
entropy of area A. Also, assume that we have a radiation subsystem with dimension m „ esr with sr the radiation
entropy. We propose that the information is not lost in the process of black hole evaporation. Hence we assume that the
subsystems form a total system. We describe the system by a Hilbert space with dimensions mn, with density matrices
ρrh “ ρ2

rh. Both subsystems will be correlated if they are in a mixed state, so

ρr “ Trhpρrhq ρh “ Trrpρrhq (6.1)

The corresponding entanglement entropies are

Sr “ ´Trrpρr log ρrq “ Sh “ ´Trhpρh log ρhq (6.2)

The information, which is defined as the deviation of the entanglement entropy from its maximum, is given by

Ir “ logpmq ´ Sr » sr ´ SR Ih “ logpnq ´ Sh » sh ´ Sh (6.3)

It is useful to know how much information one has in the radiation at different stages of the black hole evaporation.
The information Ir lies close to the average information of a subsystem with dimension m when the total system is in a
random pure state mn. Now, if m ď n, then this average information is

Im,n “ logpmq `
m´ 1

2n
´

mn
ÿ

k“n`1

1

k
(6.4)

For 1 ăă m ď n one can show that
Im,n »

m

2n
» esr´sh (6.5)

for m ě n, the previous equations imply, toghether with the fact that Sr “ Sh, that

logpmq `
n´ 1

2m
´

mn
ÿ

k“m`1

1

k
„ logpmq ´ logpnq `

n

2m
(6.6)

The average information is shown in the figure, together with the average entanglement entropy Sm,n “ logpmq ´ Im,n
It becomes clear from the second equation that there is little information accessible in the radiation when the

subsystem is small compared to the black hole. After it has evaporated for a while, much more information becomes
available. Still, if one measures a part of the radiation so that it has smaller dimension than the rest of the system, one
would still only see a small amount of radiation. After half of its entropy, at the Page time, information leaves the black
hole.

Figure 18: A plot for the entanglement entropy and the information of the radiation, calculated by Page. After the Page
time, information stored in the black hole comes out.[28]
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6.3 The Page curve

Page considered [17] the entanglement entropy for the black hole and its radiation. Since we assume to start at a pure
state for the black hole, we finally have to arrive at a pure state again if we assume the conservation of unitary. The
entanglement entropy of a pure state is zero, so the entropies of both the begin state and end state should be zero.
Hence, the entanglement entropy of the black hole at first should be equal to the entropy of the total radiation at the
end. Between these point, there will be entanglement, and the entanglement entropy can only be determined by a
reduced density matrix of the radiation that lives outside the black hole.

Page argued that the entropy of a black hole must follow a curve that we call the Page curve, [33] in contrast to
Hawking’s idea of the curve of the black hole entropy. According to Hawking, the entropy of a black hole keeps increasing
until the black hole has completely evaporated. At this moment, all the radiation from a black hole is emitted. From
Page’s perspective, the maximum entropy is reached at the Page time. This time occurs when around half of the final
radiation is emitted. After the Page time, the entropy decreases down to zero.

From the black hole particle-antiparticle production, one is able to calculate the entanglement entropy of the particles
that move out by their reduced density matrix. WE consider both the subsystems, the black hole and the radiation, as
a bipartite system. Since we start at a pure state, the entanglement entropy of the radiation equals the entanglement
entropy of the black hole according to the Schmidt decomposition. This is also why the curve is symmetric up to
the Page time, so Sblackhole “ Srad. This is also true, since the radiation and the black hole must produce a pure
state. Furthermore, we know have that the fine-grained entanglement entropy must be less than the Bekenstein-Hawking
entropy, the coarse grained entropy. So, after all, we must have Sblackhole ă SBek.´Haw.. This is also why the Page curve
should bend down after the Page time. The Page time is exactly at the point SBek.´Haw. “ Sradiation. [22]

Figure 19: The Page curve, which captures the behaviour of black hole radiation.The green line shows Hawking’s result.
The thermodynamic, coarse-grained entropy is given by the orange line. For the process to be unitary, it is predicted
that the entropy of radiation should be smaller than the thermodynamic entropy. At the Page time, these entropies are
exactly equal. [22]

The entanglement entropy of the radiation will increase by emitting more radiation. At the same time, the Bekenstein-
Hawking entropy should decrease since the area of the black hole shrinks.From the halfway point on, the Bekenstein-
Hawking entropy, the thermodynamic coarse-grained entropy, will be smaller than the entropy of the radiation. If the
black hole entropy follows the Hawking curve, we will arrive at a contradiction on this point: since entropy can be seen
as an amount of microstates compared to the black hole macrostate, the coarse-grained entropy should always be bigger
than the entanglement entropy. By looking at the entropies, we expect that before the Page time, the black hole should
follow the curve Hawking predicted. After the Page time, the curve must bend down since the coarse-grained entropy
becomes smaller than the entropy for the radiation. This should happen to arrive at a pure state.

Arguments for the Page curve rely on fundamental properties of the fine-grained entropy. Therefore, it is a strong
argument. Also, as we will see, it looks like the problem cannot be fixed by small corrections to the Hawking state
and this holds for all orders in perturbation theory. Therefore, if there is a solution for the problem, it should be
non-perturbative in gravitational coupling GN . [22]

Still, at the Page time, the black hole is a giant hole. A major question in the construction of a solution, is how to
bend the curve down in order to preserve unitarity. Sometimes, this is called the real ”information puzzle”, since it is
hard to establish that the entropy indeed follows this curve. Loads of work has been done to show it is the case. After
all, as we will see, the Page curve is important in recent studies which claim to solve the paradox.
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7 Proposed solutions

In order to resolve the paradox, wildly different solutions have been developed. Some of them claim to solve the paradox,
while others give some insight towards the solution. Many of them are still under investigation, since the search for a
solution has appeared to be difficult. By trying to solve the information paradox, one might have to deal with energies
at the Planck scale. Here the known laws of physics seem to fall apart. In order to fully describe the black hole in a
physical way, we might need a new theory of quantum gravity, also for a solution for the information paradox. Quantum
gravity has to agree on both quantum mechanics and general relativity. Since Hawking found out black holes radiate, a
lot of research has been done in order to find and define such a theory. Here, we take a look at some famous proposed
solutions involving the information paradox.

7.1 Black Hole Complementarity

Black Hole Complementarity (BHC) is a theorem constructed by Leonard Susskind , Lárus Thorlacius and John Uglum,
which suggests that black holes have a stretched-horizon. [7] A stretched horizon can be seen as a physical membrane that
contains physical characteristics while it also absorbs and emits information that falls into the black hole.The stretched
horizon can be found above the real event horizon, around a Planck unit of proper distance, a very small distance.
According to BHC, observers outside see the stretched horizon as a place where quantum information, that has moved
into the black hole, is stored. A free falling observer that passes this horizon does not notice it. Still, this horizon has a
high temperature and we might need a description by quantum gravity to understand its dynamics.

Important for the theory of BHC is the fact that only an outside observer is able to see the stretched-horizon.
Furthermore, another aspect of the theory is that it has given up on the principle of locality. BHC can be stated by
three main postulates [7]:

• Postulate 1: The process of formation and evaporation of a black hole, as viewed by a distant observer, can be
described entirely within the context of standard quantum theory. In particular, there exists a unitary S-matrix
which describes the evolution from infalling matter to outgoing Hawking-like radiation.

• Postulate 2: Outside the stretched horizon of a massive black hole, physics can be described to good approximation
by a set of semiclassical field equations.

• Postulate 3: To a distant observer, a black hole appears to be a quantum system with discrete energy levels. The
dimension of the subspace of states describing a black hole of mass M is the exponential of the Bekenstein entropy
SpMq.

The first postulate implies that purity is preserved: information is not lost inside the black hole, rather it is emitted
by Hawking radiation. The second postulate states that semiclassical gravity is allowed outside the horizon: there is
nothing strange about the physical description outside the horizon. The third postulate implies that the description
of black hole thermodynamics is valid: from a distance, a black hole can be defined as a quantum mechanical system.
Another important note of BHC is that a free falling observer, that crosses the event horizon, sees nothing special in
accordance with the equivalence principle.

Still, quite the same postulates are used to describe how the black hole paradox is caused. By looking at the views
of different observers and the stretched horizon, BHC claims to offer a solution. The main argument in BHC is that
physical laws are not violated when one takes a look at only one view at a time. So, we can look at the interior of the
black hole and the exterior, but not at both the same time. Precisely, for an observer outside, the horizon looks like a
hot place, with information put into the horizon that comes out by Hawking radiation.

7.1.1 BHC and no-cloning

Say we have an outside observer, called Bob. Then, this observer from the outside will see a body, say Alice, that comes
closer to the black hole. Due to gravity, Alice appears to move slower in time. Also, light gets more and more redshifted
as Alice moves closer to the event horizon. Finally, Alice seems to be standing still above the horizon, and will seem to
be more flat by the effects of special relativity of length contraction. Furthermore, Bob cannot see what falls into the
black hole, though everything that falls into the black hole should somehow be presented at a membrane surrounding
the black hole. Finally, Bob will lose Alice out of sight and he will see this high-temperature membrane. According to
his view, Alice has gone being destroyed and has been occupied by the membrane. Following this view of Bob, Alice
never passes the event horizon.

Still, the observer moving through the horizon sees nothing special (no drama) and will follow its path to the
singularity. This is because for an observer, say Alice, that approaches the event horizon and is in free fall, no other

32



forces than gravity act on her. According the equivalence principle, Alice does not see anything special when falling
across the event horizon: she will not observe it. So, both observers see very different things happening.

According to the first postulate, the information that Alice carries is emitted after she has fallen apart at the horizon.
Then, if we estimate the information is send out, unitary seems preserved. Thus, following the lines of thoughts of BHC,
the information goes both through the black hole and becomes presented at the horizon: the particle going out the black
hole and the particle going inside have the same Hilbert space instead of two different Hilbert spaces: both views of the
observers seem complementary. Then, if we estimate the information is send out, unitary seems preserved. Yet, it seems
like the no-cloning theorem is violated in this way.

The no-cloning theorem says that it is impossible to copy information of a quantum state by linearity of quantum
mechanics. Still BHC claims that one cannot think of an observer that is able to study both copies of information of the
black hole inside and outside. So, it should be possible that information is available at different places at the same time.
Indeed, an observer standing outside the black hole as Bob does, would not observe cloning since he only observes the
infalling Alice and the emitted radiation. Bob can never see that Alice passes the event horizon as she observes, simply
because he cannot measure anything that passed the horizon. Alice does not observe cloning too: even if her information
is cloned and presented at a membrane surrounding the black hole, she will not be able to see the copied information.

One could think of a way to let Bob observe both entangled particles from the particle-antiparticle creation. Let’s
say that Alice follows the antiparticle going inside the black hole and Bob follows the emitted particle outside. If Bob
measures the particle outside, which contains a copy of the information of the infalling particle, and moves into the black
hole and measures information of the other particle send by Alice, Bob could see both the information of the particles: a
violation of no-cloning. Furthermore, this is a violation of the monogamy of entanglement: the antiparticle is entangled
with the Hawking radiation, which is entangled with the particle outside. Still, from the view of BHC, this seems not
possible since one would need energies of a Planck scale.

For Bob to get the information from the antiparticle, it will take some time. After the Page time, the black hole will
emit radiation which is entangled with early radiation. To get the total information, one has to find the early and late
radiation, namely the total system of the entangled particle-antiparticle system. Bob will simply not have enough time
to receive both the information from both the particles, also because Alice does not have an infinite lifetime: eventually,
she will be destroyed since she approaches a black hole singularity. In order to describe the information in both outside
and inside the black hole, we need Planck scale energies: beyond the Planck scale limit, the known laws of physics seem
to break down. Thus, according to BHC, when we know something about the inside or outside of the black hole, we do
know nothing about the other. Essentially, here we give up the fact that we know where and when something happens.

Figure 20: Information from A and B are entangled. If B enters the black hole and measures A, after measuring C, B
will violate principles in quantum mechanics. [34]

7.2 Hayden-Preskill

In their research, Hayden and Preskill [34] look at an interesting thought experiment in quantum information theory
considering the information paradox, which gives insights in the transmission and processing of information in quantum
systems. Above all, this might be very useful to broaden the understanding of the questions involved in the paradox.
Though they do not propose a solution for the information problem, they present useful information in certain relations
between infalling particles and outgoing radiation [34].

In their paper, Hayden and Preskill review what time it takes for a certain observer to decode information, that
has been thrown into a black hole, out of Hawking radiation. In their study, the authors assume unitary for the black
hole interior. They also assume that black holes proceed quantum information and do not destroy it, just like a normal
thermal system. Furhtermore, in their paper, it is believed that the black hole information will be thermalized rapidly.
Not to mention, the internal black hole dynamics are defined by a random unitary transformation. Like this, black holes
come close to being optimal thermalizers.

The setup used by Hayden and Preskill is shown in the figure. At first, we consider Alice. She falls into the black
hole with information M , and Bob stays outside, trying to catch some measurements of the black hole radiation. Then
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we have Charlie, who has a reference system N , with a same dimension as the space of Alice, so |M | “ |N |: thus, these
two systems are maximally entangled. Therefore, the joint state of Alice and Charlie can be in a pure state:

|ΦyMN
“

1
a

|M |

|M|
ÿ

a“1

|ayM b |ayN (7.1)

Here N gives a purification of the state M . One can furthermore divide the black hole into two subsystems, the interior
of the black hole and its early radiated system E. Here logpBq is defined to be the Bekenstein-Hawking entropy. Also,

we have |B|
|E| ąą 1 soon after the black hole formation, and one can argue that these systems are maximally entangled.

Eventually we will have |B|
|E| ăă 1 . Later on, we have a unitary transformation V B which operates inside the black

hole due to its interior dynamics. From here on, there appears to be another system that emits radiation, R. Bob
detects radiation, and measures a subsystem RE. This subsystem is almost maximally entangled with N . Hence, the
information that Alice has in possession is now owned by Bob. The rest of the black hole is denoted by B1.

In the experiment, we consider information that Alice owns, say a diary, containing k qubits, and an internal state
of a black hole with n´ k qubits [34]. An observer at the outside, Bob, knows the black hole internal state, but nothing
about the information Alice contains. Alice throws a k-qubit into the black hole that is entangled with Bob’s computer
that measures the quantum system. By looking at the collected Hawking radiation and putting this in his measuring
system, he is able to decode the information that Alice owned. The question is how long it will take for Bob to get the
information. The authors state that Bob needs k qubits or more from the radiation to get to know the information.

Figure 21: The setup for the experiment described by Hayden and Preskill. From the initial pure state on, the black hole
is entangled with the early radiation E. Then the information that Alice contains, M , is moved inside the black hole.
This information is maximally entangled with a reference system by Charlie, N . Now, V B is a strongly mixed unitary
transformation, which appears inside the black hole, due to its dynamics. From here on, there appears another system
which emits radiation, R. Bob detects radiation, and measures a subsystem RE. This subsystem is almost maximally
entangled with N. Hence, the information that Alice has in possession is now owned by Bob. The rest of the black hole
is denoted by B1.

Furthermore, it looks like the black hole can be seen as a quantum information mirror rather than a real black object,
since the information that is thrown in is getting out almost immediately: if Alice throws her diary in, it will simply
come back. Here, the time it takes, comes from the scrambling time and the radiation time to get the qubits out.

Thus, if Alice would like to hide her secrets that she wrote down in her diary, it would not be smart to throw it into
a black hole. When Alice throws her diary in after the Page time, Bob will immediately recover the information. If Alice
does the same but now before the Page time, Bob has to wait until half of the black hole qubits have come out, when the
black hole has become maximally entangled with the outside. However, if Hawking radiation comes out slowly, it will
take some time before the information will move out. Also, Bob must have knowledge of the initial state of the black
hole. If more than k bits have been radiated, these secrets will become fully clear to Bob. What’s interesting here is
that the authors originally constructed an experiment in which the black hole might hide information. Thus, the results
are rather the opposite.

When the black hole is at the Page time, where half of the entropy has been radiated, it turns out that the Hawking
radiation can be seen quite fast, much more quickly than we have expected at first. This occurs when the internal degrees
of freedom of the black hole are almost maximally entangled with the early Hawking radiation, which is expected for a
black hole after the Page time. Information stays in the black hole till the Page time, and from the Page time on, it is
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appears rapidly: k qubits of information, originally put into the black hole, can be found again by Bob after k qubits
have come out via Hawking radiation.

Furthermore, states in the black hole interior become mixed in a Schwarzschild time order of rs log
´

rs
lp

¯

with lp the

Planck length and rs the Schwarzschild radius. After the Page time, k-qubits of information absorbed by the black
hole will move out by a Schwarzschild time Oprs logprsqq or Opkr3

sq, depending on which one is most substantial. The
information that has fallen in, is rapidly thermalized in the black hole by a “Schwarzschild time” scale rs locally, when
considering non-rotating uncharged black holes. Thus, if one gives a kick to a classical black hole, after this time the
balck hole forgets about the kick. However, globally, the time it takes for the information of Alice to become mixed with
the black hole interior degrees of freedom, is of an order Oprslogprsqq.

According to the research, if information is dropped into the black hole from a distance of order rs, it will take a
Schwarzschild time of order rs logprsq to reach the stretched horizon. Interestingly it takes an same amount of time
for information from the stretched horizon to move to the observer outside. This indeed shows how a black hole seems
to behave as a mirror: it takes approximately the same amount of time for a particle to fall in the black hole as to
arrive at the observer outside from the stretched horizon. However, for this to happen, we need a global thermalization
time of Oprs logprsqq. Yet, the fact that quantum information comes out rapidly after the Page time, holds even if the
thermalization time5 is longer. For the latter, the thermalization must be faster than the evaporation, which happens
at a time order of r3

s .
The question rises if black holes are quantum cloners. If Bob is able to receive the information from Alice which is

available behind the event horizon, her information is cloned by the outgoing radiation. However, cloning violates the
principle of linearity of quantum mechanics. It is proposed that a theory of quantum gravity could solve this. BHC
believes that both descriptions of the information are suitable, as we have seen. Still, we would like to have a deeper
understanding of this, hopefully via quantum gravity.

After all, it seems that Alice is able to send a message to Bob using super-Planckian frequencies if Bob moves
into the event horizon in order to get the information of Alice. This is possible if she has less than a Planck time to
communicate with Bob. Yet it is not possible to understand such signals. If Alice’s proper time would be much larger
than a Planck time, Bob could see the cloning happening analyzed by semiclassical approximations.For cloning not
happen, the information in the black hole must be stored until a Schwarzschild time of Ωprs logprsqq with Ω a constant
to set the lower bound for asymptotically large rs. This result is consistent with the thermalization time stated earlier,
yet it is a close call.

Figure 22: The idea of cloning quantum information. The information that Alice contains, falls into the black hole.
Bob is able to receive the information via Hawking radiation. Then Bob moves inside the black hole too. If he is able
to measure the information put inside the black hole by Alice, the information will be cloned. According to Hayden
and Preskill [34], for cloning not to happen, the information that Alice carries must be stored in the black hole until a
Schwarzschild time of Ωprs logprsqq. [34]

The findings by Hayden and Preskill [34] seem to be hardly consistent with BHC, though they are. From the
experiment it becomes clear that some information is destroyed by the formation of black holes after gravitational
collapse. Nonetheless, information in a small subsystem can almost completely survive. So, at the end, according to
Hayden and Preskill, there might be partial information loss.

To conclude, Hayden and Preskill have shown that information from a small diary, thrown early into the back hole,
can be found from radiation at the Page time. However, when the diary is thrown into the black hole after the Page
time, one needs to wait a scrambling time to decode the information. This scrambling time is often stated by β

2πBH
, or

alternatively 1
TH

logSBH .

5The thermalization time is defined to be the time a black hole needs to reach thermal equilibrium.
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Why is this true? As we will see, at later times, the diary is not yet encoded in the entanglement wedge of the
radiation in the black hole interior.

7.3 Firewalls

According by studies in 2013 from Alhmeiri, Marolf, Polchinski and Sully (AMPS) [35], considering the weak equivalence
principle from general relativity and the conservation of unitarity from quantum mechanics, would ultimately result in a
firewall. This solution is often stated as the AMPS solution by the names of the authors. The AMPS-argument claims
that there are inconsistencies in BHC, and their solution is largely based on the idea that BHC is not finalized. The
solution is described by the argument that a high energetic surface arises around the black hole, a firewall, which destroys
anything that passes the black hole horizon.

Consider the particle-antiparticle creation and Hawking radiation that is emitted at an early stage. We assume the
particle and the antiparticle to be entangled. Also, we consider three subsystems here, the antiparticle (A), the particle
(B), and the early Hawking radiation (C), which can be seen as separable subsystems. Now, A and B are entangled, but
B is also part of the late radiation. Moreover, B is entangled to the early Hawking radiation C. Yet it is impossible for
B to be entangled with both A and C according to the principle of the monogamy of entanglement. Precisely, AMPS
states that it is possible to observe the three particles which results in the violation of the monogamy of entanglement.
According to the authors, one is able to measure C and then move to the inside of the black hole to measure A. While
doing this, it will encounter B so all three systems are measured.

If we assume that the monogamy of entanglement holds, then particles cannot be entangled to both the early radiation
and the black hole. Here, the entanglement to the letter is important for the preservation of unitarity. In order to fix this
problem, the firewall proposal suggests that the monogamy of entanglement must hold: if B and C are entangled, then
B and A cannot be entangled. Thus, if A and B are not entangled, the observed state is not the vacuum state but rather
an excited state: a firewall of high energy particles is found which destroys anything that falls in. The firewall consists
of a high energy to break the entanglement between A and B. Especially, the entanglement between the outgoing and
ingoing particles is necessary to keep the vacuum smooth, so there will be no large gradients in quantum fields available
in normal Minkowski space.

When we disentangle points close to the event horizon, we will get a large gradient at the horizon of the black hole,
which will generate high energies. When considering the Hamiltonian of a scalar field, we see that we arrive at high
energies when the gradient of the field becomes large, when breaking the entanglement between the particles:

H “

ż

d3xp
1

2
πpxq2 `

1

2
p∇φpxqq2 ` m2

2
φpxq2q (7.2)

Here πpxq is the canonical momentum of the quantum field φpxq. This equation shows the realization of a high-
energetic firewall.

Nevertheless, the idea of a firewall seems to violate the equivalence principle, since a free-falling observer does not
measure Minkowski space, but rather an excited state. This has appeared to be a big problem for many researchers. Still,
the AMPS-authors argue that the breakdown of the equivalence principle from general relativity is less problematic than
the violation unitary from quantum mechanics. Alternatively, if this would be the case, the AMPS-authors emphasize
that effective field theory would be violated, and this would be a much more radical proposal.

Though the stretched horizon in BHC and the firewall by AMPS sound like the same, they are clearly not. The
stretched horizon appears to have high energies for an accelerated observer near the horizon but still outside, while for
all observers, the firewall is found behind the horizon. The presence of the firewall does not depend on the observer,
while the stretched horizon does. Still, one can pass the stretched horizon, but not the firewall.

Since the AMPS-authors propose that the firewall is located behind the event horizon, an observer outside the black
hole will not see the firewall. Also, it is suggested that the firewall forms right after the Page time.

7.4 ER = EPR

Another theory that might give some new insight in the information problem is the ER = EPR proposal.[36][27] This
principle combines two ideas from Einstein, ER and EPR. For the first, Einstein described EPR as a ‘spooky action
at distance’, which is his note about the entanglement between quantum particles. The EPR-statement is named by
its authors: Einstein, Podolsky and Rosen. The EPR-statement describes how the physical definition of quantum
entanglement must be incomplete, which is partly solved by giving up locality. For the second, the idea of ER, which
finds its origin in general relativity, describes that black holes can be connected via a wormhole, called Einstein-Rosen
(ER) bridges. Such a solutions can be seen as black holes that are maximally entangled, thus forming an EPR pair.
Moreover, it is suggested by Susskind and Maldacena [36] that such ER-bridges can be used for other entangled states.
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(a) (b)

Figure 23: An impression for an Einstein-Rosen bridge between two black holes. Entanglement can be stated by
geometry as the ER-bridge. The entanglement is presented by coupling the different horizons via space-time interior
regions beyond the horizon of the black holes. On the right we have the Penrose diagram for an entangled black holes in
a extended Schwarzschild spacetime.Here, the asymptotic regions are connected by an ER-bridge. The regions εL and
εR are connected by an interface I. [37]

The duality between ER-bridges and quantum entanglement is famously called ”ER = EPR”. Interestingly, by studying
entangled black holes in this way, we might solve the AMPS firewall paradox.

In physics, the locality of spacetime is well-understood. By this, we state that it is not possible for systems or particles
to send information to each other faster than the speed of light. Still, it could be possible that locality is violated by
general relativity via ER-bridges and by quantum mechanics via EPR-correlations. In general, it is believed that these
do not violate locality for real. This is because, for EPR-particles, one is not able to transfer information faster than the
speed of light. It can be shown quite easily that non-local operations on a particle that is entangled, do influence the
other before information has been send to the other. Also, ER-bridges cannot bring information from one asymptotic
region to the other when certain energy conditions are embraced. In quantum theory, these conditions may not hold
since they appear for the classical theory, but still this would not be enough to make wormholes traversable. Thus, it is
assumed [36] that these wormholes are un-traversable in quantum theories. Maybe, via ER = EPR, one will be able to
describe how one might combine gravity and quantum mechanics to a full description of quantum gravity.

According to Maldacena and Susskind, it is stated that an ER-bridge is made out of EPR-correlations from two
different black hole microstates. So, for the ER-bridge, “there exists an EPR-correlation for which its quantum system
has an Einstein gravity description.” [36] Also by them, it is suggested that all EPR-systems consist of some kind of
ER-bridge, though these bridges can be difficult quantum objects. It is believed [36] that, for example, a singlet state of
two spins might be connected by such a quantum mechanical bridge.

Hence, by a theory of quantum gravity, ER-bridges might be the same as EPR-correlations. There could be a
Planckian bridge for all entangled particles, however this might be a quantum bridge which we cannot describe classically.
We know that Hawking radiation is highly entangled with the black hole, and by the proposal of ER=EPR, it is expected
that this entanglement creates the geometry of the black hole interior, see the figure. Essentially, it has become clear
that black holes are entangled if they have an ER-bridge, however it is more difficult to show that entanglement or two
different systems implies an ER-bridge. Following the theorem of ER=EPR, to Susskind, it seems that “geometry and
quantum mechanics are so inseparably joined that each may not make sense without the other”. [27] The main question
he proposes is whether “the identification of entanglement and ER-bridges are consistent with the standard rules of
quantum mechanics.”

Black hole that have one side, which are the normal black holes that come from example stellar collapse, can get two
sides at the Page time. This can happen due to outgoing Hawking radiation, that has at least the amount of degrees of
freedom that the remaining black hole has after this time. From this time, the radiation is maximally entangled with
the black hole. The early radiation, from before the Page time, can be seen as the second black hole in the previous
examples.

In studying ER=EPR, black holes are described as if they are in a specific entangled state. [36] Interestingly, the
creation of black hole pairs in magnetic or electric fields are exactly in this state. A geometry with a constant magnetic
field is also defined by Euclidean geometry. Also, it has become clear that extremal black holes have a fixed charge to
mass ratio, and that the acceleration of the black holes is fully defined by the magnetic field, and independent of the
black hole mass. The charged black holes in the Euclidean geometry go around in circles by Euclidean time, and by
their acceleration, which defines the circle, one can obtain its Rindler temperature. Now, these black holes have this
temperature, and they are in thermal equilibrium with outgoing radiation. The rate at which this happens has some
factor eS , with S the black hole entropy. What’s interesting here, is that this is exactly expected if these two black holes
would be entangled. [36]

Two black holes that are maximally entangled but do not interact, can be described by the extended Schwarzschild
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Figure 24: Entanglement between Hawking radiation and the black hole. It is expected that the entanglement creates
the geometry of the black hole interior. ER = EPR proposes that particles from Hawking radiation are connected by
particles from the black hole interior via wormholes. From these wormholes, the black hole looks like an octopus, where
the arms represent the wormholes.

spacetime Penrose diagram. The entanglement is drawn by the horizons that touch each other in the middle. In the
figure, two asymptotic regions are connected by an ER-bridge. Although these regions are connected, it is not possible
for information to get through the bridge, This is constistent with the view that entanglement cannot create information
signals that are not local. [36]

7.4.1 ER=EPR and firewalls

Maldacena and Susskind believe [36] that ER=EPR might be important for the question whether black hole horizons
are smooth. Yet, there has been no answer to this. However, they state that the firewall argument of AMPS does not
have to be true. Essentially, there is a main difference between AMPS and ER=EPR. AMPS believes that parts inside
and outside the horizon are independent, while ER=EPR believes that particles on the both sides are connected by a
wormhole.

Black holes, with a large distance between each other but connected via an ER-bridge, show that a black hole can be
maximally entangled with another system, while it still has a smooth horizon. However, the AMPS-authors believe that
a smooth black hole interior will be removed when this black hole will be entangled by the outgoing radiation. Indeed,
By AMPS, firewalls seem to solve the information paradox. Essentially, its solution comes from the fact that AMPS
does not considers important properties from quantum mechanics.

Though entangled black holes often do not have firewalls beyond the horizon, this can be the case. If we consider Alice
to sit far away from the left black hole, she is able to send information in the black hole by doing some manipulations
on the boundary. Bob is on the right side, and he will not be able to see information send by Alice if he does not pass
the right black hole horizon. The information can be seen if Alice will send the information early enough. Ultimately,
according to the authors of ER=EPR, the question whether Bob’s black hole has a firewall depends on the actions of
Alice.

One can consider two black holes on the same slice of space. If Bob is settled close to one of the black holes, while
Alice is placed far away from the other black hole, their communication can only occur via the outer space, and it is
impossible to do this via the ER-bridge. Still, when some conditions are preserved, they can meet at their singularities.
It turns out that it is now possible for Alice to make a firewall occur at Bob’s black hole by sending information, say
shock waves, though she must do this early enough.

After all, it has not become completely clear how ER=EPR solves the firewall problem, and if it does.In fact, to let
it work, we need specific kinds of space and entanglement, and so we need a specific kind of wormhole. ER=EPR seems
to work in specific situations, however the complete information problem seems broader than that. Still, ER=EPR has
been an interesting idea. In some way, it has been realized in the description of black holes, and even in solutions to the
paradox, by the Ads/CFT-correspondence and the Island proposal. We will encounter both later on.

7.5 Quantum error corrections

In the search for a solution to the black hole information paradox, it is sometimes believed that Hawking did not formulate
his statements well. Some physicists, for example Raju [38], believe that looking at quantum corrections to the leading
order Hawking state will eventually leave the radiation to be unitary. Specifically, Raju states in his recent article that
“exponentially small corrections in the radiation emitted by a black hole are sufficient to resolve the original paradox put
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forward by Hawking”.[38]. However, Mathur [39] stated earlier in his paper that this cannot be true, by showing that
“small corrections to the leading order Hawking computation cannot remove the entanglement between the radiation and
the hole” [39]. Mathur shows that, by using the known laws of physics at the horizon and the assumption that locality
holds, we will arrive at remnants or mixed states. Furthermore, he arrives at the conclusion that black hole interior must
have a ‘fuzzball’ structure.

In our universe, it is a common belief that we can do experiments with our current knowledge of the traditional
physics without taking details of quantum gravity into account. This is because we believe that there exists a limit
from whereon quantum gravity effects become significantly unimportant. Locally, we can use well defined approximate
evolution equations.[39] If we find ourselves in this limit, we deal with so called “solar system physics”. Here we can deal
with normal physics, because the spacetime curvatures are of the same order as the ones that can be found in our solar
system.

The state of created pairs of particles can be described by the Hawking state

|ΦyHawking “ |0yb |0yc ` |1yb |1yc (7.3)

for b and c ingoing and outgoing particles discovered by Hawking. This immediately shows the entanglement between
particles b and c. Hawking’s conclusion is right if this is indeed the state of the particle pairs. Still it is believed that
there are small corrections available that make black hole radiation the same as normal radiation from a hot body, so
that the information problem is solved.

According to Mathur, such corrections to the leading order state will not work out, unless “we make an order unity
modification to the leading order result”. [39] Though this is not possible since then “there will be a breakdown of the
solar system limit even if we are given the niceness condition N”. [39]

If we look at the entropy of particles that already have been emitted from the black hole, it is interesting to see
whether one can get rid of the entanglement between the emitted radiation and the black hole. Mathur [39] wonders
whether corrections lead to a decrease in the entanglement entropy. Eventually, he shows that it not possible to happen.
Indeed, by corrections to the leading order state, we cannot find a solution to the paradox in the form of purity: the
entanglement will only rise and we still have a mixed state if we assume that we cannot show that “corrections to
evolution are order unity instead of order ε ăă 1”.[39]

Furthermore, Mathur [39] believes, just as in black hole complementarity, that the horizon is not smooth. He also
points out [39] that if one likes to hold a smooth interior of the black hole, this will create a problem with the monogamy
of entanglement, since then the black hole interior will be entangled with degrees of freedom from the outside of the
horizon, and also with degrees of freedom further away. As we have seen, this problem is well described by the authors
of the firewall proposal.

7.5.1 Arguments for considering quantum error corrections

The question rises: why do we come up with quantum error corrections? We already defined a state for an entangled
pair of Hawking radiation. The complete state of the entangled pair is

|Φy “ r|0yb1 |0yc1 ` |1yb1 |1yc1 s b r|0yb2 |0yc2 ` |1yb2 |1yc2 s b r|0yb3 |0yc3 ` |1yb3 |1yc3 s b .... (7.4)

since every pair production is independent of the others. If we now add small corrections to create correlations between
the pairs, we will arrive at a state for the first pair to be

|φy “ 1
?

2
rp1` ε1q |0yb1 |0yc1 ` p1´ ε1q |1yb1 |1yc1 s (7.5)

with a small correction parameter |ε1| ăă 1. By this parameter, the emitted quantum is able to carry information about
the hole. For the second pair, the corrections are dependent of the first pair and the initial black hole. Thus we can
write the second pair as

|φy “ 1
?

2
rp1` ε2q |0yb2 |0yc2 ` p1´ ε2q |1yb2 |1yc2 s (7.6)

if the state of the first pair was |0yb1 |0yc1 . Here the parameter obeys again |ε2| ăă 1. For the other state, we
can write a similar-looking equation. In this way, the early created particles influence the late created particles. The
total state can be computed, which looks quite complicated. What is important here, is that the number of correction
parameters rises with the number of particles that are emitted. For N emitted particle pairs, we will have 2N´1 correction

parameters. This number may be written down as an exponential 2N “ eN log 2
„ e

αp M
mp

q2

. Here α is of order unity, mp

the particle mass and M the black hole mass. If N becomes extremely large, we can have an exponentially number of
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correction parameter, so we will have an exponentially large number of correction terms to the leading order state.[40]
Then each correction parameter can become exponentially small so that

|εi| ă ε where ε „ e
αp M
mp

q2

(7.7)

Such small corrections can come from quantum gravitational fluctuations of the black hole. Though such effects need
a description of quantum gravity, we can estimate that the black hole geometry is expected to have exponentially small
corrections from its quantum state. Hence, we do not end up with a paradox. By these corrections, the entanglement
between the particles bi and c1 will be removed in the leading order state. Furthermore, the information of the initial
black hole will be described in the outgoing radiation.

Now, the proof of Mathur shows that corrections cannot destroy the entanglement between the outgoing particles
and the black hole. We let N quanta be emitted in by 1, ..., N steps, tb1, b2, ..., bNu. After all, one is able to find the
relation

SN`1 ą SN ` logp2q ´ pε1 ` ε2q. (7.8)

This implies that the radiation state will not become pure. Thus, by corrections to the leading order state, we cannot
find a solution to the paradox in the form of purity: the entanglement will only rise and we are still left with a mixed
state. [39].

The proof by Mathur [39] uses a tool from quantum mechanics: the strong subadditivity of quantum entanglement
entropy, which is quite general. By this and other general assumptions, such as the locality of interactions, the proof
states that the entanglement will not stop growing by small corrections in general. Due to this proof, Mathur and other
gained more confidence in the description of black holes as fuzzballs. As we will see later, the research in islands agrees
in some way to the theories of Mathur. Namely, an island contribution can be seen as a correction of order Op 1

4GN
q,

which is non-pertubative and small in order to make it work. [22]

7.5.2 Raju: quantum corrections restore unitarity

Still, by some researchers it is believed that small corrections restore unitarity. For example, this is stated by Raju
in a recent article [38]. Specifically, he states that “Hawking’s argument is not precise enough that it will lead to a
paradox. This is because small corrections to Hawking’s calculation, which are exponentially suppressed by the black
hole entropy, are sufficient to ensure that information about the initial state is preserved”. Raju wonders “how different
density matrices and pure states are” and if there are calculations “precise enough to distinguish between the two”.
Therefore, Raju looks at the exact difference between a mixed state and a pure state. According to Raju, his results6

imply that “pure states are exponentially close to mixed states in a system with a large number of degrees of freedom”.
From his view, this is a general result that follows from kinematic considerations. Hence, the Page curve will be unitary
and will bend down.

7.6 String theory

Research in string theory provides some evidence for the argument that information should be preserved.[41] In string
theory, one-dimensional strings correspond to point-like particles described in particle physics, while ’branes’ generalize
point-particles into higher dimensions. This theory is often defined in 10 or 11 spacetime dimensions and it does describe
the higher dimensional ’branes’. In string theory, an important aspect is the supersymmetry between bosons and
fermions. In a theory of black holes, the black hole geometry can be described in many dimensions by supersymmetric
configurations of string and branes.

In string theory, we have a quantity that regulates the strength of forces such as gravity, called the string coupling.
The string coupling is found by the expectation value of a field that we call dilaton. If we decrease the string coupling,
at a configuration that describes black holes at a value of this parameter, then the Schwarzschild radius will become
smaller and smaller, till it has a smaller size than the configuration itself. Then it turns into a number of strings and
branes that are weakly coupled. By the high degrees of the supersymmetry, the essence of the state stays the same when
we alter the parameter. Specifically, in this theory it is predicted that the number of degrees of freedom do not change.
Still, looking in this weakly-coupled region we do not have a black hole. Here, we only have a gas, with the same degrees
of freedom, from which we can calculate the entropy.

By considering five-dimensional supersymmetric black holes with different charges, researchers found out that the
number of degrees of freedom of the system in this regime is precisely equal to the degrees of freedom of black holes
computed by their entropy in the strong-coupling regime. Similar research has been done at different kinds of black
holes, and remarkably the same result was found. Therefore, according to string theory, one may believe that the degrees

6See the appendix for an insight in the derivation of this result
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Figure 25: An impression for a black hole fuzzball. In this description, black holes do not have an event horizon, nor a
singularity.

of freedom provided by radiation from the black hole are representative, which is some evidence against information loss
[23].

Still, by counting states in string theory, we don’t know much about how the information of the black hole is eventually
coded in the Hawking radiation. Furthermore, we like to get an answer to the way that information from the black hole
is put into the Hawking radiation. Yet, evidence from string theory shows that information can be encoded in the black
hole’s internal degrees of freedom and eventually transferred to the outgoing radiation. [34]

7.6.1 Black hole fuzzballs

To avoid problems with singularities and event horizons, researchers in string theory have proposed to look at black holes
as if they are ‘fuzzballs’.

Mathur [41] has been one of the main researchers to argue that a black hole can be described as a ball of strings,
energy units that vibrate and, by this, describe spacetime. According to Mathur’s view, just as in BHC, the black
hole horizon is not smooth. From his view, the black hole interior microstates must have a ‘fuzzball’ structure, a ball
containing strings, with no horizon and singularity. He states that “The nontrivial [fuzzball] structure of microstates
resolves the information paradox, and gives a qualitative picture of how classical intuition can break down in black
hole physics”. [39] This is because, by the picture of a fuzzball, the black hole radiates like a normal thermal body, so
consequently there is no problem such as entanglement or information loss. Hence, in this view, the information problem
will be an illusion.

An advantage of the fuzzball idea is that the black hole interior structure can be described by the strings and branes,
which can be stated in various ways. By putting the strings and branes in the right way, they could generate an entropy
for the black hole fuzzball that equals the entropy given by the Bekenstein-Hawking law. By this, it is possible to count
the black hole microstates. Furthermore, fuzzballs seem to behave like real black holes: for example, they emit the same
Hawking radiation. In contrast with black holes, fuzzballs are also unique, while black holes can be described by the
same properties, according to the no-hair theorem. Hence, we might get to know the initial state of the fuzzball from
the end state. Also, according to some research, a firewall can be seen as nothing more then a hot fuzzball.

Still, mostly people working with general relativity find it difficult to accept a theory that relies on structures that
contain strings, branes and higher dimensions constructed by string theory. Furthermore, many physicist do not like the
idea since one must sacrifice many well-known principles as the event horizon and the singularity. However, researchers
such as Mathur, believe that a fuzzball must be the right quantum mechanical description for a black hole, since they
seem to resolve many difficulties black holes create. In contrast, by general relativity, the black hole will evaporate and
eventually the information might be stored in a remnant of a Planck mass. The construction of remnants gives some
problems. Remnant will have a large number of possible states in a very small region. In string theory, it is believed
that these remnants do not exist.

After all, there have been many proposals for a solution to the paradox. Still, from these solutions, a solution to
the paradox has not fully been understood. In the next chapters, we will discover some more interesting research in the
black hole information paradox, that finally might fully solve the problem.

41



8 Principles from AdS/CFT

In the previous section, we discussed various possible solutions that are involved in information paradox. They all
seem interesting in some way, yet they do not fully solve the problem. By holography and specifically the AdS/CFT-
corresondence , we have obtained some more insight in a solution towards black holes and the information problem.
Also, a major finding in AdS/CFT is the Ryu-Takayanagi surface. [14]

8.1 De Sitter and anti-de Sitter space

Both de Sitter and anti-de Sitter space are used to describe the universe. For example, de Sitter space is used for
describing an accelerating universe in a simple model. De Sitter space has been found to be a solution to Einsein’s field
equations with a positive cosmological constant. Moveover, evidence has been found for the argument that the universe
can be described as asymptotically de Sitter space. On the other hand, anti-de Sitter space would describe a universe
with negative cosmological constant, so this universe would be negatively curved. It is another way to describe the metric
of spacetime, which of course comes from general relativity.[42]

8.1.1 De Sitter (dS) space

n-dimensional de Sitter spacetime, dSn, is defined to be a set of points px0, x1, ..., xnq in Minkowski space Mn,1 of n` 1-
dimensions. Hence, it is a subspace of normal Mn,1 Minkowski space. Here, the metric for Minkowski space is R1,n

is

ds2
“ ´dx2

0 `

n
ÿ

i“1

dx2
i (8.1)

and it satisfies the equation

´x2
0 `

n
ÿ

i

x2
i “ L2

1 (8.2)

Here, the L1 is the de-Sitter length.
The metric looks almost the same for an pn` 1q dimensional sphere7, if we change xn`1 into x0. By this change, we

defined a version of the sphere, applied to Minkowski space. The de Sitter metric can be seen as a specific version of the
metric of a sphere in a certain dimension.

The line element of de Sitter space appears to be the most symmetrical solution of Einstein’s field equations. Einstein

introduced a cosmological constant Λ which satisfies L1 “

b

3
Λ

. Furthermore, de Sitter space is related to Euclidean

geometry. By a transformation x0 Ñ ix0, Euclidean the Sitter spacetime is defined as a sphere, and defined by an
Euclidean the Sitter rotation group SO(5). [42].

In cosmology, the de Sitter metric is of great importance. This is because, in cosmology, one makes a natural choice
of cosmic time, which makes the universe ”homogenous and isotropic at large scales” [42]. By maximal symmetry in de
Sitter spacetime and its topology, one can describe three kinds of spacetime (S3,H3,R3) on a de Sitter manifold, when
using the right coordinates. [42]. In black hole physics, one often uses static coordinates in de Sitter space. In this
system, nothing explicitly depends on time.

7Spheres and hyperboloids are discussed in the appendix.

(a)
(b)

Figure 26: On the left, we see a five-dimensional de Sitter space in yellow. In this picture, the blue parts are lightcones,
asymptotic to the de Sitter hyperboloid. As before, timelike geodesics are given by the intersection of hyperboloid and
two-spheres that pass the centre. The geodesics can be parametrized by ξ and η. On the right, we see a representation
of Euclidean the Sitter space. [42]
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8.1.2 Anti-de Sitter (AdS) space

In a similar way, we can define n-dimensional anti-de Sitter spacetime as a space with two time-like coordinates, for a
set px0, x1, ..., xn) in n` 1-dimensional Minkowski space Mn´1,2, with a metric

ds2
“ ´pdt0q

2
´ pdt1q

2
`

n
ÿ

i“2

dx2
i (8.3)

Similarly, it satisfies the equation

´t20 ´ t
2
1 `

n
ÿ

i“2

“ L2
2. (8.4)

Here, L2 is the anti-de Sitter length. [42] So, for example, five-dimensional anti-de Sitter space has two time-like, and
three spacelike coordinates. An important property of AdS is that it has positive curvature. For AdS, timelike geodesics
are ellipses.

Also, in Euclidean geometry, anti-de Sitter space can be expressed by an imaginary transformation x4 Ñ ix4, which
is a copy of H4 [42]. Yet, AdS is not a hyperbolic spacetime. Normally, in hyperbolic manifold, which are non global,
it is not enough for the full knowledge of time evolution to have the equations of motion and its initial data. In AdS,
there is ’global hyperbolicity’ [42], since we have a boundary at spacelike infinity. From here, information is able to flow
in. This gives some difficulties with the quantization of fields on AdS-manifold, but it also brings major opportunities:
the proposal of AdS/CFT.

Hence, for a nonzero vacuum, normal Minkowski space is not a solution to the Einstein equations. For a negative
vacuum energy, anti-de Sitter space (AdSd`1) is the solution. The metric can also be stated in polar-like coordinates,
such that the metric takes the form [26]

ds2
“ ´p1`

r

rAdS

2
qdt2 `

dr2

1` p r
rAdS

q2
` r2dΩ2

d´1 (8.5)

where
1

r2
AdS

“ ´
16πGρ0

dpd´ 1q
(8.6)

with t P p´8,8q, r P r0,8q. For r ăă 1, the metric looks like Minkowski space. We can also describe the metric by a
Penrose diagram. For this, we use a coordinate transformation r “ tanpρq. We arrive at

ds2
“

1

cos2 ρ
r´dt2 ` dρ2

` sin2 ρdΩ2
d´1s (8.7)

where ρ P r0, π
2
q. By including the boundary ρ “ π

2
, we can draw a diagram shown in the figure below. From this, it

becomes clear that AdS can be seen as a box. Massive and massless particles move from the center to the boundary
and come back from the perspective of a central observer, in a time of order 1 in AdS-units. By this, we can state that
the boundary is time-like. In general, roughly speaking, a spacetime is asymptotically AdS if its boundary is time-like,
and its boundary approaches the geometry of AdS at r Ñ 8. Considering quantum gravity, by particles that reach the

Figure 27: A Penrose diagram for AdS space. Signals can move to the boundary and return to the center in a finite
amount of proper time. In this view, the space is not compact since the future and past continue to exist ininitely far
away. By another coordinate transformation, this can be undone.[26]

boundary and return to the bulk within a finite amount of time, the geometry can be seen as ’gravity in a box’. [26].

8.2 Conformal field theory (CFT)

A conformal field theory (CFT) is of great importance in the study of the AdS/CFT-duality. A CFT is a ” rela-
tivistic quantum field theory which is invariant under a large set of spacetime transformations, generated by Poincare

43



(a)
(b)

Figure 28: On the left: anti-de Sitter space. Here, timelike geodesics are found by the intersection of two-planes that
pass through the center and the AdS-space. On the right: Euclidean anti-de Sitter space. [42]

transformations.” [26]. Specifically, this is done by a coordinate transformation

x1µ “ λxµ (8.8)

x1µ “
xµ ` aµx2

1` 2xνaν ` a2x2
(8.9)

by this transformation, in the conformal group, angles are preserved. The conformal group is isomorphic 8 to the group
SOpd, 2q, which already is a hint to a connection to AdSd`1.

An example for this is a CFT of a free massless scalar field in 3` 1 dimensional Minkowski space. This scalar field
is invariant under dilatation transformation [26]

xµ “ λxµ (8.10)

φ1px1q “ λ´1φpxq (8.11)

CFT’s have many interesting properties, yet some are most important. First, for all CFT’s, one is able to find a set
of primary operators that transform under conformal transformations

O1px1q “ λ´∆Opxq (8.12)

with ∆ a conformal dimension of the primary operator O. If this quantity is real and positive, and for O a scalar field, it
obeys ∆ ě d´2

2
. Such primary operators often do not have complicated correlation functions. For example, for a CFT,

a scalar primary O with dimension ∆ has a correlation function

xΩ|TOpx, tqOp0, 0q |Ωy “ 1

p|x|2 ´ t2 ` iεq∆
(8.13)

Also, CFT’s are often studied on a cylinder (RˆSd´1). One can find a basis of eigenstates to generate the time translation
in this metric. For CFT’s, there is a bijection between local operators with dimension ∆ and these eigenstate energies.
[26]

The main question in studying CFT’s is how the CFT leads to a proper semiclassical definition of a theory of quantum
gravity.

8.3 The holographic principle

The holographic principle considers non-local physics. The principle suggests that degrees of freedom in a region of
space are proportional to the area of its boundary, rather than proportional to its volume. At first, Susskind and ‘T
Hooft [43][44] came up with ideas about holography. Ideas of this principle also came from studies about the black hole
entropy. The black hole entropy is proportional to the area of the horizon. Hence, if this entropy describes the amount
of possible states, the holographic principle would explain why we only have to consider the area of the black hole. Still,
one could become worried about very small boundaries for large regions of space, such as an enclosed universe. This is
solved via replacing the enclosed universe by ‘light -sheets’ that lay beyond the boundary on.[23] Also by holography, it

8An isomorphism is mathematically defined to be a mapping between two objects, respecting in some sense the structure of the
objects. For two objects, A and B, a isomorphism is a bijection φ : AÑ B. For example, scalar multiplication can be respected.
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has been thought that the interior of a universe could be projected on its boundary in smaller dimensions as a hologram.
[23]

We can describe the holography of information as follows: ”In a theory of quantum gravity, a copy of all the
information available on a Cauchy slice is also available near the boundary of the Cauchy slice. This redundancy in
description is already visible in the low-energy theory.” [38]. According to the holographic principle, all the information
in the ’bulk space’ is is encoded on the boundary of this space. So, in a quantum theory of gravity, it should be possible
to describe its properties in a boundary theory. [44] Of course, from the principle, the question rose in which way the
exact information in the bulk is encoded in its boundary. [45].

Most importantly, the AdS/CFT-correspondence is a major example of the holographic principle. In this theory,
Ads/CFT is stated as ”a large limit N of a Conformal Field Theory (CFT) in d-dimensional Minkowski space which can
be described by string theory (or M-theory) on AdSd`1ˆK with K a suitable compact space. ” [45]. The exact relation
between the theories can be stated as [46]

ZAdSrφ0s “

ż

φ0

Dφ expp´Irφsq “ ZCFT rφ0s “ă exp

ˆ
ż

BΩ

ddxOφ0

˙

ą (8.14)

here φ0 is the value of φ at the boundary. On the right, φ0 is an external current that is coupled an operator O in
the CFT-boundary. In this way, the correlation function of the boundary CFT is described by the partition function in
AdSd`1.

The AdS/CFT involves a lot of mathematics, which is quite difficult. We will not dive in to this here, though it
would have been very interesting and I would have loved to. However, loads of research has been done in black holes and
the information paradox by AdS/CFT. It has been of great importance for finding a solution to the information paradox
and yet, it is still of great importance for describing black holes and its properties.

(a)
(b)

Figure 29: On the left: in AdS/CFT, a specific version of holography, all information from the ’bulk’ AdSd`2 is available
on the boundary CFTd`1. The figure shows a cauchy slice and its boundary. On the right: a black hole that forms in
AdS space. At time t1, the black hole has yet not been formed. This happens at time t2. At time t3, it has completely
evaporated into Hawking radiation. [38]

8.4 The AdS/CFT-duality

Juan Maldacena was the first to discover this AdS/CFT correspondence, which comes from holographic considerations in
string theory. [8]. In the AdS/CFT-correspondence, physical properties of quantum gravity in anti-de Sitter (AdS) space,
the bulk that has d ` 2 dimensions (AdSd`2), has corresponding properties on the boundary of AdS, a conformal field
theory with d ` 1 dimensions (CFTd`1). Specifically, there is a relativistic conformal field theory CFTd on R ˆ Sd´1,
that can be seen as a quantum gravity description in asymptotically Anti-de Sitter (AdSd`1 ˆM) spacetime. M is
some manifold here. [37][26]. So, all physical properties we measure in AdS have corresponding properties on a CFT-
boundary,which is non-perturbative and well-defined. The latter is an assumption that we make at almost every gauge-
gravity dualities. More important, the CFT-boundary is a holographic projection in a lower dimension for properties in
the ’bulk’-AdS/CFT, which is also non-local.Thus, holography is realized in AdS/CFT, and specifically, the entanglement
entropy studied in QFT is a non-local property. A non-perturbative construction such as CFT is very useful, since it can
describe gravitational theories over long distances properly. For example, in this way, the interior of a universe might be
projected on its boundary in smaller dimensions as a hologram.
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An important question for a solution to the problem, is whether we can find an independent, non-perturbative setup
of a theory about gravitation, especially for gravity on long distances. Also, the question is how we can define theories
of gravity in other cosmological spaces. What is important, is that the AdS/CFT duality tells us that the information
is preserved, but it does not explain how this happens: the results by AdS/CFT towards the paradox lead to a belief
among many researchers that information is not lost, including Hawking himself. [26][9] In a quantum theory such as
CFT, it is assumed that the Page curve holds, and so we can exclude information loss, and the possibility of remnants.
[47].

Still, the AdS/CFT-duality considers negatively curved anti-de Sitter space, while our own universe looks rather like
positively curved de-Sitter-space, looking like an expanding sphere.

in AdS/CFT, the Hilbert space of the bulk is identical to the Hilbert space of the CFT. Also, specific symmetry
generators in the CFT corerspond to bulk symmetry generators in asymptotically AdS space. [26]. At both AdS and
CFT, the Hamiltonian is the same too.

In AdS, we can define boundary limits on local bulk fields. In the description of AdS/CFT, a CFT operator, that is
a scalar primary O, has an equivalent bulk scalar field φ such that

lim
xÑ8

r∆φpt, r,Ωq “ Opt,Ωq (8.15)

Thus, if we connect a bulk field to a boundary, we arrive at a value that is exactly described in CFT by an operator with
dimension ∆.[26]

Furthermore, every CFT has an exclusive energy momentum tensor Tµν , that is, a d-dimensional spin two primary
operator of dimension d. One can find an equivalent bulk property, which is the metric tensor, stated in gravitational
theories. [26]

8.4.1 AdS/CFT and black holes

In AdS, an important property is that for a black hole, its Hawking radiation is reflected in a finite amount of time
by the boundary. For small black holes, this is not relevant since the black hole can completely evaporate before the
radiation has reached the boundary. However, for larger black holes, in AdS, it could be that radiation reflects back into
the black hole as soon as it is emitted.[26] Small black holes in AdS seem to behave as black holes in asymptotically flat
space. [38]. One can define a crossover point between a stable and unstable point for the black hole in AdS, which is
when the black hole is of order rAdS

lp
smaller than the AdS radius. For a radius larger than the AdS radius, by increasing

the energy, the entropy and Schwarzschild radius of the black hole both grow. Here, the black hole gains more entropy
by the fact that there is less space available for its radiation.Ultimately, for a radius larger than the AdS at a sufficient
large energy, ”nearly all states in the CFT consist of a bulk description as a single gigantic black hole”, which shows
a clear understanding of the statement by Bekenstein that entropy of a black hole stand for the amount of microstates
contained.[26]

Figure 30: On the left: A Penrose diagram for a two-sided AdS-Schwarzschild wormhole. On the right: a big AdS-black
hole created by collapse. [26]

Essentially, by applying AdS/CFT and holography to black holes, these two concepts tell us that the exterior of the
black hole will always own a full copy of the information in the bulk. By means of AdS/CFT , the information paradox
seems to be resolved: information is preserved. Even if the black hole interior would be completely evaporated, its copy
will continue to exist, [38]

By studying black holes and the information paradox in AdS/CFT, we hope to learn more about the information
paradox in a theory of quantum gravity.

8.4.2 AdS/CFT and ER=EPR

Similar to the symimptotically flat space, in the full AdS-Schwarzschild geometry, two asymptotic parts in space are
connected by a wormhole.[48]. Here, the exterior parts are asymptotically AdS regions. To see this more cleary, we

46



define a specific AdS-form of Kruskal coordinates:

U “ ´e
r˚´t

2 f 1prsq (8.16)

V “ e
r˚`t

2 f 1prsq (8.17)

Here, f 1prsq is a function necessary to make sure both coordinates U and V are real under analytic continuation. [26].The
main difference between the normal Kruskal coordinates, is that there are two boundaries to be found at UV “ ´1. To
describe the metric, we define U “ T ´X and V “ T `X:

ds2
“ 4

fprq

f 1prsq
e´r˚f

1prsqp´dT 2
` dX2

q ` r2dΩ2
d´1 (8.18)

At the horizon UV “ 0, the geometry is smooth. The metric can be described by a AdS-Penrose diagram. For the AdS-
wormhole that connects the two asymptotic regions, one can choose a proper ground state, which is the Hartle-Hawking
state. By the fact that the geometry consists of two asymptotically AdS boundaries, it is suggested that this wormhole
is described by a state in the Hilbert space of two CFT copies. [49][26] We can define this state as

|ψHHy “
1

Z

ÿ

i

e´β
H
2
∣∣i˚D

L
|iyR (8.19)

Here |iyR is an energy eigenstate of one of the CFT copies, and |i˚
D

L
“ Θ |iyR is created by the antiunitary operatur Θ

that relates both CFT’s. Also, by this operator, the time direction of each CFT. One is able to compute the state by
an Euclidean path integral. This state is frequently named as the thermofield double state. [37]. The CFT definition
of such a wormhole is quite stunning, and has some interesting properties. The Hamiltonian of the total system is the
sum of both CFT Hamiltonians, without any connection between the two CFT’s. More special, the two systems might
have a description in which a connecting geometry appears in which two different observers could meet each other in the
center of the wormhole. By this, the theory of ER=EPR has been proposed, relating geometry to entanglement.

Figure 31: The Hartle-Hawking state in CFT. Here, the CFT is defined on the boundary of the geometry: fields are
described by CFT field descriptions at Sd´1 at both ends. [26]

8.5 The Ryu-Takayanagi formula

From the AdS/CFT correspondence, it is proposed that one can obtain a holographic version of the entanglement entropy
in quantum CFT’s. Indeed, according to Ryu and Takayanagi [14], the entanglement entropy in d` 1 dimensional CFT
can be found by looking at a d-dimensional minimal surface area in AdSd`2. This has some analogies between the
computation of the black hole entropy as proposed by Bekenstein and Hawking. In accordance with this, the entropy
computed via the method in [14] gives the right entropy in two-dimensional CFT for a ’bulk’ AdS3.

Figure 32: On the right side, in figure (a), the AdS3-space with a boundary CFT2.Here, γA is a holographic screen as
seen by an observer from subsystem A. [14]
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We know that the gravitational Bekenstein-Hawking entropy of a black hole is given by its entropy

SBH “
Area of the horizon

4Gn
(8.20)

with Gn the Newtonian gravitational constant. This expression seems to present a connection between ”gravitational
entropy and the degeneracy of quantum field theory as its microscopic description.”[14]. Hence, this formula can be seen
as a specific example of a more general form in AdS/CFT.

We can define an entanglement entropy SEE in a certain CFT on R1,d or RˆSd, for a subsystem 1 with a boundary
BA P Rd (or Sd) that has d´ 1 dimensions. Then, in AdS/CFT, the ’area law’ is given by

SEE,1 “
AreapγAq

4G
pd`2q
N

(8.21)

here γA is a d dimensional minimal surface in AdSd`2. Its boundary is defined by BA. Also, 4G
pd`2q
N is the d ` 2

dimensional Newtonian gravitational constant. Here, it looks like the minimal surface acts like a holographic screen for
an observer from the studied subsystem S1. For example, in AdS3, the minimal surface γA is given by a geodesic line.
Furhtermore, basic properties such as subadditivity, S1 `S2 ě S1Y2 and S1 “ S2 are satisfied. In higher dimensions, for
example in AdS5 ˆ S

5, the formulation of the Ryu-Takayanagi area law also holds.
By the Ryu-Takayanagi, we can compute the fine-grained or von-Neumann entropy by a extremal surface in the bulk.

This extremal surface is a codimenisonal two extremal-area, which means that the area has two dimensions less than the
full spacetime. Also, the surface must obey BγA “ BA. For more than two of such surfaces, one should pick the smallest.

The Ryu-Takayanagi proposal has been proven to be important in different kinds of research, for example in studying
two-sided AdS Schwarzschild geometries. [50]
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9 The island formula

As we have seen, the information paradox is a fundamental problem in quantum gravity. By the fact that Hawking
radiation behaves as thermal radiation, the entanglement entropy outside the black hole naively seems to keep on
increasing. A major question in the information problem is how one can derive the Page curve from the entanglement
entropy of the Hawking radiation.

From last years, new research has proposed a definite solution, without the usage of firewalls, fuzzballs or other
complicated objects. By the understanding of and research on important principles and tools from AdS/CFT and
holography, it has been found that the entropy of a black hole, and ultimately its Hawking radiation, can be computed
from the usage of Quantum Extremal Surfaces (QES), and interestingly, this description only considers theory from
general relativity, quantum mechanics and quantum field theory. [51][15]

Essentially, the description of the QES is a generalized version of the Ryu-Takayanagi definition, which, as we have
seen, considers the von Neumann entropy of a subsystem in holographic quantum field theory [14] [51]. When computing
the gravitational fine-grained entropy, one will encounter two different QES: a new QES, a Ryu-Takayanagi surface, that
Hawking did not include in his calculations and an already known QES. Thus, compared to the calculations Hawking
did, a major finding is the existence of the new QES which is found close to the shrinking black hole horizon. Also, by the
new QES, the computed entropy will behave similar to the Bekenstein-Hawking entropy and the area of the evaporating
black hole. So, the entropy reaches a final vale of zero after the black hole has been completely evaporated, and so the
final state for the Hawking radiation will be pure. Furthermore, the QES relates entanglement to area, a geometrical
property, which might give an idea about the properties of a theory of quantum gravity. By the new research, it has
been proposed that the Page curve can be computed from the ”island” formalism, which studies a region inside the black
hole defined by the QES. The island formula can be derived from a mathematical tool called the replica trick. We will
take a look at these recent studies [12][10].

9.1 Gravitational fine-grained entropy

In the last couple of years, researchers have developed a more complete understanding of a gravitational version of the
von Neumann entropy. The description is based on an area of a surface, which is not the horizon. In contrast with
the Ryu-Takayanagi formula [14], the new description of the von Neumann entropy in gravitational systems is more
general. In this description, there is no need for anti-de Sitter space or holography. It is a general formula, resulting in
a fine-grained entropy formula for a quantum system connected to gravity [22].

The gravitational version of the von Neumann entropy consists of a generalized entropy, which describe the black
hole area and the entropy of fields outside the black hole. In this formula, we choose a surface which minimalizes the
generalized entropy. In this way, the fine-grained entropy can be stated as [22]

S „ minr
A

4GN
` Soutsides (9.1)

Still, the complete formula is somehow more complicated. For a gravitational definition of the entropy, we want a surface
that minimizes the equation above in the spatial direction. Yet, it should maximize the equation in the time direction.
By moving the surfaces in space and time, we look for specific extremal surfaces. In the case for more than one extremal
surface, we should take the global minimum. From this, one arrives at a specific formula for the entropy [22]:

S “ minXtextX r
AreapXq

4GN
` Ssemi´clpΣXqsu (9.2)

Here, ΣX is a region bounded by X and a cutoff surface. Ssemi´clpΣXq is the von Neumann entropy of the quantum
fields in ΣX , which comes from the semiclassical description. X is a codimension-2-surface, which is a surface that has
two dimensions less that the full available spacetime. Here, the part in the brackets is the generalized entropy. This
entropy obeys the second law of thermodynamics, ∆Sgen ě 0, and it increases as a result of Hawking radiation. In order
to compute the entropy, we start at a surface outside the black hole, and one moves it into the horizon, looking for its
minimum. Hence, the entropy relies on the geometry of the black hole interior. So, black holes with different interiors
will have different von Neumann entropies. The surface that extremizes the generalized entropy is called the Quantum
Extremal Surface (QES), which is a classical geometric surface in spacetime. However, it is named as a quantum surface,
since the generalized entropy contains the entropy of quantum fields. It is found at an OpGN q radial distance from the
horizon [10].

9.2 The fine-grained entropy for an evaporating black hole

We will take a look at the fine-grained entropy, applied to all stages of the black hole evaporation.
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Figure 33: From the cutoff surface on, one dives into the black hole, looking for an extremal surface. X represents a
surface, and ΣX is a region between X and the cutoff surface. By QES, we are able to describe a general formula for the
fine-grained entropy of a quantum system connected to gravity. [22][52]

Right after the black hole has formed, when yet no Hawking radiation has escaped the black hole, one will not find
an extremal surface in the black hole interior. So, when we move our surface X inside the black hole, the minimal surface
becomes zero. We call this the vanishing surface. Now, the area term becomes zero, and the fine-grained entropy is just
the entropy of the part in the black hole from the cutoff surface on. So, at the initial stage, this means that the entropy
will reduce to zero if we assume to start at a pure state. [22]

When the black hole starts to evaporate, the von Neumann entropy will increase, exactly similar to the entropy
growth of the outgoing Hawking radiation. Naively seen, from here, it looks like the black hole will reach a larger
entropy value than A

4GN
, which would be a problem (see chapter 6). However, this will not be the case. There appears

another non-vanishing extremal surface, soon after Hawking radiation starts to escape the black hole. The location of
the surface relies on the amount of radiation that has escaped, and depends on what time at the cutoff surface, one
computes the entropy. [22]

One can find this surface close to the event horizon, where an ingoing light ray, shot from a time order rs logSBH
back from the cutoff surface, intersects the horizon. Hence, the total generalized entropy has an area term plus a von
Neumann entropy term for the quantum fields.9

However, the entropy for the quantum field will be small since it does not describe many outgoing particles. Therefore,
approximately the area term will only be important for the generalized entropy, and this entropy takes the same path
as the coarse-grained thermodynamic entropy of the black hole. So, the entropy is approximately

Sgen «
Horizon Area (t)

4GN
(9.3)

Thus, by the fact that the area decreases as Hawking radiation starts to escape the black hole, such an extremal surface
causes the entropy to be lowered [22].

For the gravitational fine-grained entropy formula, we should consider the minimum of all available extremal surfaces.
Specifically, we have two kinds of such surfaces: a vanishing surfaces which causes the entropy to grow, and a non-
vanishing surface, which in turn causes the entropy to become lower. At the start of black hole formation , the vanishing
surface is available. From here, the entropy keeps on growing until the black hole has been completely evaporated.
Closely after the black hole has formed and starts to evaporate, a non-vanishing surface appears. At its starts, this
surface has a large area given by the available black hole area. From the evaporation, the black hole shrinks and so does
this surface [22].

From a certain point on, the change in the area of the non-vanishing extremal surface perfectly balances the change
of the entropy for the quantum fields. Starting at the cutoff surface, from the horizon on, the von Neumann entropy
Ssemi´cl will be lowered, since the included Hawking antiparticles have been purified by particles which moved to the
region outside, and are thus already included in the region, seen from the cutoff surface on. However, after all outgoing
Hawking particles have been purified by particles in the black hole interior, moving further inside the black hole would

9Note that the entropy contribution for the outside quantum fields, Ssemi´cl, denotes the quantum entropy, which is the
entanglement entropy. This is the same as the von Neumann entropy, or alternatively the fine-grained entropy. So, we use all these
terms but essentially they are often the same. Still, as we will see in the definition of the entropy for the radiation, one should be
careful with these definitions.

50



Figure 34: When moving to the inside of the black hole from the cutoff surface on, the entropy Ssemi´cl will decrease.
This happens since from here, Hawking modes are included that purify the Hawking particles outside the horizon, but
inside the region covered from the cutoff surface. However, Ssemi´cl will increase when moving further, at the time when
all the inside particles have been purified, because extra interior particles will be included. These extra particles purify
particles outside the cutoff surface, which results in an increase in the fine-grained entropy on this slice. The green line
represents the area spanned between the cutoff surface and the extremal surface. [22]

result in the inclusion of even more particles inside entangled with particles outside the cutoff surface. By this, the
entropy Ssemi´cl will be increased. Specifically, in the regime of this extremal surface, changes in the entropy exactly
compensate for the change in area.[22]

The vanishing surface is representative for the fine-grained entropy of the black hole, until the non-vanishing surface
generates a lower entropy. From this point, this surface gives the right representation for the fine-grained black hole
entropy. By this, the gravitational entropy of the black hole follows the Page curve, from which one can expect unitary
black hole evaporation [22].

Figure 35: On the left: A Penrose diagram for a black hole from stellar collapse, showing entangled Hawking particles
inside and outside the black hole horizon. Again, the green lines show the region spanned between vanishing surfaces
and the cutoff surface at different times. On the right: the Page curve for the black hole fine-grained entropy, computed
by the effects of a vanishing and non-vanishing surface. Up to the Page time, the vanishing surface generates the black
hole fine-grained entropy. After the Page time, the non-vanishing surfaces causes the curve to bend down. Hence, by
the contribution of the non-vanishing surface, unitarity is preserved. [22]

9.3 The fine-grained entropy for Hawking radiation

In order to solve the information paradox, one should take a look at the entropy of Hawking radiation. Though it is
important that the black hole entropy follows the Page curve, the radiation entropy has been a problem since it seems
to grow till the end of the black hole evaporation. Outside the cutoff surface, the entanglement entropy Ssemi´clpΣRadq
keeps on growing. Here, ΣRad is the region where the outgoing radiation lives, outside the cutoff surface. In this
spacetime region, gravitational effects are very small: as stated earlier, we approximate this as flat space.

For the computation of the entropy for the radiation, we need a gravitational description since we made use of gravity
to determine the radiation state. In the previous section, we studied regions inside the black hole. Now, we will move
our view to parts of space outside the black hole, and so outside the cutoff surface. It turns out that the gravitational
entropy formula can be applied to the radiation.

By an extra area term, the semiclassical entropy contribution of the radiation can be lowered by including the black
hole interior. This extra area in the black hole interior is called an ”island”. At late times, the island causes the entropy
to decrease, since the disconnected island region is included inside the black hole. [22][15]
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The fine-grained entropy for the radiation is expressed by

SRad “ minXtextX r
AreapXq

4GN
` Ssemi´clrΣRad Y ΣIslandssu (9.4)

Here, the area is the boundary of the boundary. The min/ext operates on the location and appearance of the island. On
the left, we have the full entropy for the radiation. The term on the right hand side rΣRad YΣIslands represents the von
Neumann entropy of the complete radiation and island state in the semiclassical description, which state differs from the
exact quantum state for the radiation. The latter is given on the left, which is the total entropy of the radiation by the
gravitational fine grained formula.

For using the gravitational fine-grained radiation entropy formula, one does not need full knowledge of the exact
quantum state of the radiation: the formula does not give a full quantum description of the state. Rather, it computes
the entropy of it. Essentially, the formula for computing the entropy of the radiation, called the ’island formula’, is just
a more general form of the gravitational entropy for black holes. Therefore, it considers the same principles. Though
there is no black hole involved in the formula, we have used gravity to arrive at the radiation state, so the gravitational
fine-grained entropy formula can be applied in this case. To derive the formula, we will take a look at the replica trick
later on.

A great advantage of the formula is the fact, as stated earlier on, that we do not need any complicated theories from
holographic AdS/CFT or higher-dimensional AdS spacetime. [15] Though we do not need it for the formula here, many
ideas for the principles come from AdS/CFT.

Figure 36: A Penrose diagram for the fine-grained entropy formula for the radiation. The ΣRad and ΣIsland together
contribute to this entropy. The latter is the island region. The area X, the boundary of the island, and the union of the
entropy of the two regions are important for the formula.[22]

By this formula, we want to find the entropy for the radiation that has escaped from the black hole. Hence, we study
the region from the cutoff surface to infinity, which is the region ΣRad. The region ΣIsland contains regions on the other
side from the cutoff surface on, inside the black hole. For computing the entropy, we extremize the right part of the
equation, which depends on the position of X. Hereafter, one minimizes the equation with respect to every available
extremal position and possible island.

9.3.1 Island an non-island contribution

For computing the entropy, it is possible to have multiple islands. Still, the simplest possibility is having zero islands. If
this is the case, we arrive at SRad “ Ssemi´clpΣRadq, since the area of X vanishes, just as the island part. In this case,
by evaporating of the black hole, the entropy will keep on increasing. However, just after the black hole has formed,
around a time order of rs logSBH a non-vanishing island appears. The island can be found around the origin and its
boundary lies close to the event horizon. At later times, it moves closer to the cutoff surface. In the island formula, the
von Neumann entropy term, defined for the outgoing radiation and the island together, is always small. This is because
the island consists of all interior particles that form a pure state together with the outgoing particles in the region outside
the cutoff surface, also defined in this term. Hence, what is left is the area term, defined by the black hole area. Here,
for early times, the entropy has a large value by the area of the horizon. At late times, the entropy will decrease and it
will reach a value of zero.

By taking the minimum of these two contributions, we obtain the fine-grained entropy for the radiation. By this, we
obtain the Page curve. Here, the first part comes from the no-island contribution. From around the Page time on, the
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Figure 37: The curve for the entropy of Hawking radiation, computed by two the non-island and island contribution. At
every moment of time, we take the minimum of these contributions. The result is the Page curve. At early times, yet
there has not appeared an island. At around the Page time, the island appears and bend the entropy curve down.[22]

island-contribution bends the curve down to zero. If we start at a pure state for the black hole, it is believed that the the
black hole entropy and the radiation entropy should have the same value. This is the case, since for both we have the same
surface X. When in a pure state on the total Cauchy slice, we have Ssemi´classicalpΣXq “ Ssemi´clpΣradYΣislandq.Hence,
if we now minimize and extremize both, we obtain the same function. Therefore, the entropy for the black hole and the
radiation follow the same curve.

9.3.2 A skeptic’s view

Yet, a skeptic’s view would be the following: one just include the interior, and we arrive at a pure state. So, by this
view, what we have done is just a simple trick to restore unitarity. However, we did not include the interior on purpose.
This is because the fine-grained entropy formalism is obtained via the gravitational path integral, similar to the method
of computing the entropy of a black hole by path integrals. By this, it is just gravity instructing one to take the interior
into account in the equations. By this, gravity states that unitarity must be preserved, though it does not tell anything
about the state of the outgoing particles.

9.4 Calculations on the island formula

We dive in some deeper in the island formula. In this section, we study eternal Schwarzschild black holes, which are time
independent and will not disappear. Looking at a full Schwarzschild Penrose diagram, the island formula can be stated
as [15]

SpRq “ minItextr
AreapBIq

4GN
` SmatterpRY Iqsu (9.5)

Here, the region of R is the region outside the black hole that contains Hawking radiation. It contains two regions R`
and R´. We can find the density matrix of R by taking the partial trace over its complementary region R̄. I denotes an
island region (I Ă R̄). Hence, the entanglement entropy of the radiation is SmatterpRY Iq. In the formula, we have the
gravitational generalized entropy, and the matter entanglement entropy for the specified regions. The first is proportional
to the total area of the island boundaries BI.

In four dimensions, in contrast to two dimensions, the matter entropy is

SmatterpRY Iq “
ApBIq

ε2
` SfinitematterpRY Iq (9.6)

with ε a cut-off scale at a short distance. By this, we can state another version of the Newton gravitational constant

1

G
prq
N

“
1

4GN
`

1

ε2
(9.7)

We call this quantity the renormalized Newton constant. Now, for higher dimensions, the island formula becomes

SpRq “ mintextr
ApBIq

4G
prq
N

` SfinitematterpRY Iqsu (9.8)

At late times, the distance grows between R` and R´. Eventually, it will be very large. Hence, it is expected that
the island contribution will be dominant.
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Figure 38: On the right, we have the full Penrose diagram for a Schwarzschild black hole, including an island. On the left,
we have a full Penrose diagram without an island. The region R contains the Hawking radiation and has two different
parts R˘. The boundaries of these parts are defined by b˘.The island is found between these parts, denoted by I. Its
boundaries are given by a` and a´. [15]

In the case of no islands, we are left with the matter entanglement on R` and R´. This is the minus of the mutual
information

SfinitematterpRq “ ´IpR`;R´q “ ´rSpR`q ` SpR´q ´ SpR` YR´qs (9.9)

At later times, we will have an island. In turns out that correlations between the two wedges are negligible, since its
boundaries act as having opposite charges. [15]. Both wedges give similar results, so we look at one of the wedges. In
this case, the matter entanglement entropy is

SfinitematterpRY Iq “ ´2IpR`; Iq “ ´2rSpR` Y Iq ´ SpR`q ´ SpIqs (9.10)

Assuming that the contributions of both wedges is the same. In curved spacetime, the mutual information IpR`; Iq is
not known. Therefore we should make some assumptions. For two boundary surfaces A and B, for a large distance
between them, the mutual information is

IpA;Bq “ ´
c

3
log dpx, yq (9.11)

Here, c is a central charge and dpx, yq the distance between x and y that denote the distance between the boundaries.
[15] For a small distance between the surfaces, the mutual information is

IpA;Bq “ κc
Area

L2
(9.12)

with κ a constant, c the number of free massless matter fields and L the length between the two boundaries, placed
parallel to each other. [15]

9.4.1 Case 1: no island

When no island appears, we have two points that form the boundary of the regions R` and R´. Here, for late times,
we have

Smatter “
c

3
log dpb`, b´q (9.13)

By some calculations, especially involving a conformal map and Kruskal coordinates, one arrives at an entropy

S “
c

6
r
16r2

hpb´ rhq

b
cosh2 tb

2rh
s (9.14)

Here rh is the horizon radius. For late times (tb ąą bq, one can approximate this by

S «
c

6

tb
rh

(9.15)

tb is the time coordinate for the boundary of R. Now, at late times, the entropy is much larger than the von Neumann
entropy, which results in a contradiction. We know that the island formalism fixes this problem, and we will see this.

We have used the following here. We used coordinates pt, rq “ ptb, bq for b` and pt, rq “ p´tb ` iβ, bq for b´. The
imaginary part denotes that one is in the left wedge.10 Furthermore, we used Kruskal coordinates and its metric:

10By this, the Kruskal coordinates will have an additional minus sign.
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ds2
“ ´

dUdV

W 2
` r2Ω2 (9.16)

r˚ “ r ´ rh ` rh log
r ´ rh
rh

(9.17)

U “ ´e
´
t´r˚
2rh “ ´

c

r ´ rh
rh

e
´
t´pr´rhq

2rh , V “ e
t`r˚
2rh “

c

r ´ rh
rh

e
t`pr´rhq

2rh (9.18)

W “

c

r

4rh

UV

r ´ rh
“

c

r

4r3
e
r´rh
2rh (9.19)

The latter is a ”conformal factor” of the Schwarzschild black hole geometry [15].

9.4.2 Case 2: a close look

In order to look at all degrees of freedom for the radiation, it is useful to look closely to the black hole event horizon. We
look at the case where the entanglement region R lies close to the horizon (b ´ rh ăă rh) Hence, formulas we will use
are valid (L ăă a). The exact boundaries for the island are given by pt, rq “ pta, aq for a` and pt, rq “ p´ta ` iβ, aq for
a´. It is assumed that we can treat both wedges separately, since these are separated by a volume that grows in time.
[15]

The total entropy will be

S «
2πa2

GN
´ 2κc

4πb2

L2
(9.20)

The distance L is defined as the geodesic distance

L “

ż b

a

dr
a

1´ rh
r

(9.21)

From here, the entropy must be extremized regarding the island boundary location. The enropy is extremized by a

”harmonic gravitational potential” and an ”attractive potential”, 2πa2

GN
and ´2κc 4πb2

L2 . The latter brings particles near
the point r “ b. The entropy is extremized via these contributions by considering it as a potential energy for particles
found at r “ a.

From this, the geodesic distance becomes

L « 2
?
rhp

a

b´ rh ´
?
a´ rhq (9.22)

With respect to a, we minimize the entropy. We do this by a variable change x “
?
a´ rh. Also, we look at BS

Bx
“ 0.

This is the same as, when we approximate x ăă 1 and b « rh, to state that

xp

c

b´ rh
rh

´ xq3 “
κcGN
2r2
h

(9.23)

Ultimately, by the fact that the minimization happens at small values for x, namely x ăă
b

b´rh
rh

. Also, the right hand

side of the equation above is small. By this notions, the island can be found at

a “ rh `
pκcGnq

2

4pb´ rhq3
(9.24)

Indeed, this point is very close to the black hole horizon. Putting the whole inside the entropy formula stated in this
section, we arrive at

S “
22
h

GN
´ 2πκc

rh
b´ rh

(9.25)

Hence, we arrive at a constant value for the entropy. In comparison to the contribution without an island, the entropy

value stops to grow. Also, the term
22
h

GN
is two times the Bekenstein-Hawking entropy. The term 2πκc rh

b´rh
presents the

effects of quantum matter. [15].
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9.4.3 Case 3: a distant view

Now, we take a look at a distant view: the boundary r “ b is far away from the horizon: b ąą rh. The entropy is given
by

Smatter “
c

3
log p

dpa`, a´qdpb`, b´qdpa`, b´qdpa´, b´q

dpa`, b´qdpa´, a`q
(9.26)

By the same Kruskal coordinates as before, the entanglement entropy is

S “
2πa2

GN
`
c

6
r
28r4

hpa´ rhqpb´ rhq

ab
cosh2 ta

2rh
cosh2 tb

2rh
s `

c

3
logr

cosh p
r˚paq´r˚pbq

rh
q ´ cosh p ta´tb

2rh
q

cosh p
r˚paq´r˚pbq

rh
q ` cosh p ta`tb

2rh
q
s (9.27)

where cosh
r˚paq ´ r˚pbq

2rh
“

1

2
r

c

a´ rh
b´ rh

e
a´b
2rh `

c

b´ rh
a´ rh

e
b´a
2rh s (9.28)

From this equation, one can do a few approximations. First, we assume that the island will be near the black hole
horizon, thus a „ rh. From this, the first term of the equation above can be ignored. Also, we look at a late time
approximation, where the distance between the wedges is very large. Also, we take another approximation. These are
stated as:

1

2

c

b´ rh
a´ rh

e
b´a
2rh ăă cosh

ta ` tb
2r ´ h

(9.29)

cosh
ta ´ tb

2rh
ăă

1

2

c

b´ rh
a´ rh

e
b´a
2rh (9.30)

From here, the entropy can be written in an approximate form, which is quite complicated. It is stated by

S “
2πa2

GN
`
c

6
logr

16r4
hpb´ rhq

2

ab
e
b´h
rh s ´

2c

3

c

a´ rh
b´ rh

e
a´b
2rh cosh

ta ´ tb
2rh

(9.31)

This approximation involves also the fact that, at late times, the entanglement entropy is approximated by

Smatter “
c

3
logrdpa`, b`qdpa´, b´qs

. What’s important, from this equation, we can extract a local minimum

a « rh `
pcGN q

2

144π2r2
hpb´ rhq

e
rh´b

rh cosh2 ta ´ tb
2rh

(9.32)

From this value of a, the entanglement entropy will be

S “
2πr2

h

GN
`
c

6
log

16r3
hpb´ rhq

2

b
e
b´rh
rh ´

c2GN
36πrhpb´ rhq

e
rh´b

rh cosh2 ta ´ tb
2rh

(9.33)

The entropy is extremized at ta “ tb. Now, inserting this in the entropy formula, we arrive at

S “
2πr2

h

GN
`
c

6
rlog p

16r3
hpb´ rhq

2

b
q `

b´ rh
rh

s (9.34)

Here we ignore higher order terms of GN . Also, this entropy does not grow when time becomes larger. Thus, just as
in the previous section, the first term looks like the Bekenstein-Hawking term. Hence, by the island contribution, the
entropy grow vanishes. Also, the island gives us a new form of the Bekenstein-Hawking entropy for Schwarzschild black
holes.

9.4.4 implications

Above all, the same result hold in higher dimensional space, for D ě 4. [16] We will not show this here, though it is
cleverly shown in both [15] and [16]. In summary, the no-island contribution entanglement entropy grows linearly in
time for D ě 4 dimensions:

S “
c

6
pD ´ 3q

t

rh
(9.35)
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Figure 39: The Page curve for a Schwarzschild black hole. One can ignore higher order terms cGN
rD´2
h

, since these are small

compared to SBH and tPage. Notice that, since we study eternal Schwarzschild black holes here, the Page curve will take
a certain value. However, the Page curve for real black holes does bend down. [15]

For the case where an island appears at late times, by saddle point analysis11 [11][13][15], this island can be found at
the point

a “ rh `Op
pcGN q

2
q

r2D´5
h

q (9.36)

and its entanglement entropy will be
S “ 2SBH `Opcq (9.37)

with SBH The Bekenstein-Hawking entropy, and Opcq comes from quantum effects of the matter. [15]
As we have seen in the previous sections, the contribution that is dominant will be the one with minimal entropy, and

at early times, the non-island contribution will be dominant. After the emergence of an island, the island contribution
will take over. We find the Page time by equating 9.36 to 9.37 and from this, the Page time for a Schwarzschild black
hole becomes

tPage “ 3
ΩD´2

D ´ 3

rD´1
h

cGN
`Oprhq (9.38)

Higher order corrections will depend on b, but the first, leading term is universal [15]. Using the Hawking temperature
TH “

D´3
4πrh

, we arrive at

tPage “
3

π

SBH
cTH

(9.39)

The entropy is equal to 2SBH after the Page time, which is the case in both wedges of the full Schwarzschild Penrose
diagram. So, looking at one of the wedges, it is approximately equal to SBH , which one would expect.

Furthermore, which we will not derive here but is shown in [15], the estimate scrambling time is

tscr « 2rh log

ˆ

r2
h

GN

˙

«
1

2πTH
logSBH (9.40)

which is indeed proportional to the predicted scrambling time 1
TH

logSBH [53][34].

9.5 The entanglement wedge

Another important question is whether the degrees of freedom, that describe the black hole from the outside, are sufficient
to describe the black hole interior. Essentially, we have three options here: the degrees of freedom do or do not describe
the interior, or just a part of the interior.

The formula for the fine-grained entropy for the black hole should present us the entropy, obtained from a density
matrix which defines the black hole seen from the region outside. What is important, it that the entropy depends on the
geometry from the cutoff surface up to the extremal surface. Hence, if we put a certain property with a random state
between the extremal surface and the cutoff surface, the fine-grained entropy will change. So, if the entropy describes
the exact state of the radiation, operators acting in the radiation entanglement wedge will influence the exact state.

By this observation, it has been predicted that the black hole degrees of freedom describe a part of the the black
hole interior. This part is exactly the part between the cutoff surface till the minimal surface. From this, we can define
a causal diamond for the region, which is named as the entanglement wedge. This wedge can be seen as the fine-grained
entropy region.[10][12]

As we have seen, before the Page time, we have a vanishing surface. This surface is found at the origin, so the
entanglement wedge will cover a huge part of the black hole interior, see the figure. After the Page time, we have

11This subject will be treated in the section 9.6.
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different entanglement wedges. One describes the degrees of freedom of the black hole, the other for the radiation.
Interestingly, the degrees of freedom for the black hole only define a small part of the black hole interior. Another
significant part of the interior is defined by a wedge that belongs to the radiation. The latter follows from the definition
of the fine-grained entropy. Since a serious part of the black hole interior belongs to the radiation at late times, the
radiation entropy will change if properties in the region are changed.After the black hole has been completely evaporated,
the entanglement wedge of the radiation will include the full black hole interior. The interior has become flat space.

Figure 40: In green, we have the entanglement wedge of the black hole. In blue, we have the entanglement wedge of
the Island. At later times, after the Page time, the black hole interior is largely described by the entanglement wedge of
the island. Here, only a small portion of the interior is described by the black hole degrees of freedom. After complete
evaporation, the black hole interior is fully described by the entanglement wedge for radiation. In order to describe the
white parts, we need information of the two different entanglement wedges.[22]

After all, a huge part of the black hole interior will be encoded in the radiation for times after the Page time. So,
most of the black hole interior will not be described by its degrees of freedom. It will just describe a small part, which
can be seen in the figure.

Inside the entanglement wedge, it is proposed that one can read off the state of qubits inside the wedge by doing the
right operations on the degrees of freedom. 12.

9.5.1 Hayden-Preskill, ER=EPR and BHC

Now, from the fact that early radiation is encoded in the entanglement wedge of the black hole, we can understand
why, after the Page time, we need a scrambling time of β

2π
logpSBHq to recover the information. This is shown in the

figure below. The figure shows a black hole in AdS-spacetime, with a boundary CFT. Furthermore, the fact that early

Figure 41: For a diary that was thrown into the black hole after before the Page time, its information will be found in
the entanglement wedge of the radiation inside the black hole. If the diary is thrown into the black hole after the Page
time, we need to wait for a certain time before the diary can be found in the entanglement wedge. [10]

radiation is encoded inside the black hole, can be seen as a realisation of ER=EPR. It can also be seen as a realisation of
BHC, since information is both stated inside and outside the black hole: BHC states that information is both reflected
into and outside the horizon.

12These degrees of freedom are not the same as the black hole degrees of freedom mentioned earlier on. Black hole degrees of
freedom are used to describe the black hole from the outside. Here, the degrees of freedom define the quantum field that live in the
black hole interior. Hence, degrees of freedom that lie outside the quantum extremal in the black hole entanglement wedge surface
describe the black hole, while in the radiation wedge, these degrees of freedom describe the quantum fields for the radiation
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9.5.2 Bags of gold

According to Wheeler [54], it could be possible that certain geometries have a larger entropy than the area of their
horizon would suggest. Such geometries may look like a black hole from the outside, and are referred to as ”Bags of
gold”. Such geometries are found in general relativity as a classical solution to the Einstein equations, but conflict with
the holographic principle. [55]. The formalism of the entanglement wedge solves the problem: when the interior entropy
exceeds the value, a value which one would predict from the area of the neck, the entanglement wedge for the degrees
of freedom for the black hole will only define a certain part of the interior. By this, the large entropy value will not be
taken into account. This is similar to what happens at black holes after the Page time. Specifically, the entropy for the
bag exterior is just proportional to the area of the neck.

Figure 42: The geometry for a ”bag of gold”, stated by Wheeler [54]. Its entropy value is much highter than one would
ordinarily expect from the area of its neck. In this case, the entanglement wedge of the black hole will only include a
small part of the bag.[16]

9.6 Derivation of the island formula: the replica trick

The fine-grained entropy for the radiation can be derived by a mathematical tool called the replica trick. The trick is
used to compute the von Neumann entropy in the case we do not have full knowledge of the density matrix elements ρij .
Essentially, replica wormholes explain how the black hole interior must be included in the definition of the fine-grained
entropy for radiation. The replica wormholes come from new saddles, which connect different spacetime copies. Unitarity
is recovered by including these new saddles in the gravitational path integral. [13] By the fact that the replica wormholes
come from gravitational theory, and therefore it is believed that one can apply the island formalism to every black
hole.[15] [13][11] At late times, the partition function of the replica geometry is dominant, and it generates the minimal
entanglement entropy. By using the replica trick, one arrives at the same statements as the description for QES. [15]

Specifically, for the replica trick, we use a certain manifold Mn from which we compute the n-th Renyi entropy. In
gravitational regions, we can use all kinds of manifolds that obey the boundary conditions. [13] Then, the entropy is
found by taking the path integral on this manifold. Hence, eventually, we can calculate the von Neumann entropy by
”analitically continuing the Renyi entropies to n “ 1”. [11]

Recall that the total state of an evaporating black hole is given by

|Ψy “ 1
?
k

k
ÿ

i“1

|φiyB |iyR (9.41)

Here, |φiyB is the black hole state, and |iyR is the state of the radiation.
In gravity, we should sum over all possible topologies, in order to calculate the purity using the Euclidean path

integral. By this, we must sum over various possible ways to connect the interior regions. The same is used in theories
involving AdS/CFT, where the sum is needed in order to couple properties from CFT.

For example, this should be done to calculate the purity

Tr
`

ρ2
R

˘

“
1

k2

k
ÿ

i,j“1

|xφi|φjy|2 (9.42)

ρR “
1

k

K
ÿ

i,j“1

|jy xi|R xφi|φjyB (9.43)

The latter is the density matrix of a system R, for example the radiation. k is the amount of possible states. Specifically,
for k ăă eSBH , the entanglement wedge covers the complete black hole spacetime, while at k ąą eSBH , an island
appears. The matrix elements of the density matrix are gravity amplitudes xφi|φjy. [11]. One can find these amplitudes
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Figure 43: The boundary condition for the gravity amplitudes xφi|φjy. [11]

by gravitational calculations with certain boundary conditions. These are given in the figure. The arrow shows the
direction of time evolution, starting at the ket, moving to the bra.

A leading configuration in gravity which satisfies the boundary conditions for xφi|φjy is the classical Hawking solution.
However, the purity Tr

`

ρ2
R

˘

looks like the Renyi 2-entropy. The boundary conditions for |xφi|φjy|2 are shown in the

Figure 44: A classical Hawking solution that satisfies the boundary conditions.[11]

figure below. Here, we obtain two different geometries that satisfy the boundary conditions. Option one is a disconnected
geometry with a topology of two disks, and the other a connected Euclidean wormhole13 such that it is one disk.
Specifically, the purity is found by summing over i and j, connecting the dashed lines. The disconnected geometry has a

Figure 45: On the left we have the boundary conditions for |xφi|φjy|2. On the right, two possible geometries that satisfy
the boundary conditions. [11]

so called one ”k index loop”.Here, two copies of the geometry define Z1, while the connected geometry has two ”k-index
loops” Z2. Here Zn “ Znpβq, n P N denotes the partition function via a gravitational path integral on such a disk
topology.[11] , so Zn “ ZnrMns. We can state this as

Tr
`

ρ2
R

˘

“
kZ2

1 ` k
2Z2

pkZ1q2
“

1

k
`
Z2

Z2
1

(9.44)

Here, the term in the denominator normalizes the density matrix.
For k very small, the disconnected geometries are dominant. However, for k very large, the connected geometry will

be dominant, and by this, the entropy will stop growing at a certain point.[11]
The von Neumann entropy is calculated via the replica method in the following way:

SR “ ´TrpρR log ρRq “ ´ lim
nÑ1

1

n´ 1
log TrpρnRq “ p1´ nBnq log TrpρnRq|n“1 (9.45)

We call the right side the Renyi entropy.14 [11] When n becomes large, many different geometries satisfy the boundary
conditions for the computation of Trpρnq. In a simplified situation, we can consider two extreme limits. For k ăă eSBH ,
the disconnected geometry with n disks are dominant. By a single k-index loop, this gives the result

TrpρnRq Ą
kZn1
knZn1

“
1

kn´1
(9.46)

In the situation k ąą eSBH , the connected geometry is dominant. Now we have n k-index loops. We arrive at

TrpρnRq Ą
knZn
knZn1

“
Zn
Zn1

(9.47)

In order to evaluate the von Neumann entropy, we should look at the region near n “ 1. This can be done by the fact
that the Zn geometry has a ”Zn replica symmetry”. [11]Ultimately, as the replica number moves to one, n Ñ 1, this

13Euclidean wormholes are spacetime wormholes. These differ from Einstein-Rosen bridges, since these are spatial wormholes
14In appendix F, we show that the von Neumann entropy can be calculated from the Renyi entropy.
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Figure 46: On the left, the boundary conditions are shown for Tr
`

ρ6
R

˘

, n “ 6. On the right, two geometries that satisfy
the boundary conditions are shown: one disconnected, and one connected topology. The connected region has a Zn
symmetry, and by this, there is a fixed point which rotates the replicas. [11]

leads to the appearance of the island formula.[13].Hence, the island formalism comes from a Renyi entropy which makes
use of replica wormholes. We will not show this explicitely here, though it is showed in [11]. After using the trick and
taking the limit n Ñ 1, the latter computation of the von Neumann entropy reduces to the thermodynamic entropy of
the black hole. In general, there are much topologies that may contribute to TrpρnRq. However, for k small, two topologies
dominate, the disconnected (Hawking) topology and the connected (replica wormhole) topology. Yet, fore n ě 2, an
analytic replica wormhole geometry has not been found.

Figure 47: Another representation of the two different saddle points that satisfy the boundary conditions. By these
replica’s, we can compute Tr

`

ρ2
R

˘

. On the right, the replica is called the replica wormhole. At late times, this saddle is
dominant and restores unitarity. [13]

Figure 48: Another representation of the topology of a replica wormhole with n “ 6.[13]

9.6.1 Computing the entropy by the replica trick: a completely evaporated black hole

Essentially, the procedure for using the replica trick can be summarized as follows. Starting at a state |Ψy, which for
example might be a star that has collapsed. Eventually, we will arrive at a final state for an evaporating black hole. We
do this by the gravitational path integral on a semiclassical geometry. Essentially, its density matrix can be obtained
from a gravitational path integral. As we have seen, for the density matrix ρ “ |Ψy xΨ|, its matrix elements are

ρij “ xi|Ψy xΨ|jy (9.48)

The gravitational path integral is given in the figure below. It illustrates how the trace of the density matrix and the
matrix elements can be found. We use the gravitational path integral to calculate TrpρRq

n. The path integral is dictated
by a saddle point, and the obvious saddle is the Hawking saddle. Here, we we have a geometry that consists of n copies
of the original black hole. By this, for the von Neumann entropy, we arrive at the result Hawking obtained. Yet, another
kind of saddles is given by the replica wormholes, that connects replicas of the black hole. This saddle will dominate the
gravitational path integral and will restore unitarity. [13][11]

We look at the purity of the end state to see whether its entropy will reach a value of zero. For large entropies, we
expect Tr

`

ρ2
˘

ăă rTrpρqs2. Now, Tr
`

ρ2
˘

is found by a path integral that connects two exterior regions.
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Figure 49: The density matrix elements can be computed by a path integral, just as the trace of the density matrix.
Here, the purple lines show entanglement. We choose a topology that we use in order to compute the entropy. This
topology is shown and used in the figure.[22]

We will take a look at the situation where the black hole has completely evaporated. Different examples for connecting
the interior are shown in the figure below. For a Hawking saddle, we arrive at a large entropy. So we have for the Hawking
saddle

Tr
`

ρ2
R

˘

Hawking saddle ăă rTrpρRqs
2 (9.49)

For a replica wormhole, we have
Tr

`

ρ2
R

˘

Wormhole saddle “ rTrpρRqs
2 (9.50)

We arrive at zero entropy at late times: the replica wormhole contribution will overshadow the Hawking saddle contri-
bution. Here, the replica wormhole saddle computation is leading and implies unitarity.

Figure 50: The Hawking saddle for a computation of Tr
`

ρ2
R

˘

.[22]

Figure 51: Replica wormhole saddle of Tr
`

ρ2
R

˘

. Here, the black holes are connected via their interior. The right figure
shows that Tr

`

ρ2
R

˘

“ rTrpρRqs
2.[22]

9.6.2 Euclidean geometry

The Hawking saddle and replica wormhole saddle can be computed in Euclidean geometry. To compute a Hawking
saddle point, we need two copies of the sigar geometry. For the replica wormhole, the black holes are connected trough
its interior, which is also shown in the figure. Yet, the saddle point geometry for a replica wormhole for an evaporating
black hole is rather complex, so these illustrations are simplified.

Also for calculating the von Neumann entropy, we make use of the replica method. We take a look at n copies of the
structure which describes the system. From this, we consider TrpρnRq. Here, ρR is the density matrix for the black hole
radiation, though it can also be used for the black hole itself. The entropy is given by

S “ p1´ nBnq log TrpρnRq|n“1 (9.51)
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For n ‰ 1, for n copies, we can connect the black hole interior in different ways. If these interiors are completely
disconnected, the result will be the entropy computed by Hawking. When fully connected, the entropy is described by
the non-vanishing quantum extremal surface. Here, at the end, taking the minimum of both contributions result in the
Page curve.

Figure 52: The Euclidean replica trick, studying the purity of radiation outside the cutoff surface. Here, the dotted lines
show different kinds of topologies that might be used. In general, such topologies are not dominant.[22]

After all, it is a fun fact that it was originally believed that wormholes would destroy information. After all, exactly
the opposite seems to be true. Yet, by the Euclidean path integral, we arrive at the computation of the entropy, but we
did not obtain a picture for the specific Hilbert space, nor a definition for the microstates involved.

9.7 Firewalls revisited

In the firewall paradox, it is stated [35] that it is impossible for a particle, after the Page time, to be entangled with
the interior antiparticle and the early radiation. Hence, entanglement of the particles must be broken, which creates a
firewall beyond the horizon. In the AMPS statement [35], two things have been assumed. First of all, we assume that
the black hole can be described as a quantum system. Here, its degrees of freedom are proportional to its horizon area,
seen from the outside. Also, the time evolution for the system is unitary.

The second assumption is important. It states that the degrees of freedom which describe the black hole from the
outside, are also sufficient to define the black hole interior. However, by the island formalism, we have seen that only a
certain part of the black hole interior can be described by its degrees of freedom, specifically its entanglement wedge.

Hence, the solution to AMPS [35] is that the antiparticle from the interior belong to early radiation. The particle
outside is entangled to this early radiation. In contrast with the solution to AMPS [35], we will have a smooth horizon.
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10 Discussion

As we have seen, by new research, it has been possible to reproduce the Page curve. From this, unitarity is preserved
and the paradox seems to be solved. In a theory of gravity, we have seen that the interior of the black hole is included in
the final state of the radiation. Hence, the radiation entanglement wedge lies inside the black hole interior. From this,
it looks like wormholes in the radiation reach into the black hole to get the information out. Still, important questions
remain. For example, we cannot derive an expression for the exact matrix elements from the density matrix for the
radiation. Still, we can compute the right entropy by the trace of the density matrix, or a function involving the density
matrix. In the same way, we do not know how to compute the exact elements of the black hole S-matrix, which describe
the specific evolution for each microstate. A major question in the information paradox remains how to describe the
elements of both the density matrix and the S-matrix from a theory of gravity, without the usage of AdS/CFT and
holography. Furthermore, we have seen that one is able to find the exact entropy of the Hawking radiation. Still, we do
not know how to describe the exact state of the radiation. This is a part of the black hole information paradox that has
not become completely clear yet.

Focusing on the most recent research on islands, a point of discussion is the fact that the derivation for the island
formula depends on the Euclidean path integral. Yet, in a theory of gravity, it is not fully clear how this quantity is
defined. The question arises which saddle points we should consider and which integration form we should use. Hence,
it might be possible that unitarity is preserved in some gravitational theories, while in other theories this would not be
the case.

Also, to derive the island formula, we made use of a cutoff surface. A full understanding of the island formula would
allow gravity to be everywhere, also beyond the cutoff surface. However, there are important arguments that seem to
validate the use of the cutoff surface. For example, in studying the black hole in AdS/CFT, this cutoff surface takes the
form of the boundary CFT.

Moreover, in the fine-grained entropy formula for the radiation, we considered two different quantum states: the
semiclassical state and the exact quantum state of the black hole. To arrive at the latter, we need to sum over all
geometries. However, in more complicated gravity theories involving quantum fields of Hawking radiation, it is also not
sure if this trick works out correctly.

It is important to mention that we have discussed results that involve only gravity. However, string theory and
holography have been very important in making sure these results are correct, and are used in famous articles that form
the basis for the island argument. For example, the important paper [10] describes black holes completely in AdS/CFT.

Not to mention, the result of the island formula has come from very recent research. Though the researchers have
tried to present a complete resolution, it is not completely sure if the results hold to be true. In the years from Hawking’s
discovery on, many solutions have been proposed, and after all it remains unclear whether this will be the final answer.
Still, looking at other proposed solution, we see the following. The island formalism gives a solution to the firewall
proposal, and as we have seen, it somehow realises the ideas of BHC and ER=EPR. It also explains a great deal of the
ideas given by Hayden and Preskill. Furthermore, the island formula seems to support the ideas of Mathur, since the
island contribution is a correction of the order Op 1

GN
q. However, this correction is not pertubative and small, which

should be the case to restore unitarity, indeed what Mathur argues. Still, the island argument differs from the idea that
nothing special happens at the horizon, in contrast to Mathur’s view of black holes as fuzzballs. Many scientists believe
that the fuzzball view is not right. Alternatively, we have encountered Raju’s argument, which states the opposite of
Mathur’s view. This view does not receive much support, though he might be right. Yet, what is sure, is the fact that
the black hole information problem is a very poorly understood problem. Though the new research is exciting, both
time and further research must show what will be a definite, complete solution to the problem.

Above all, an important motivation for studying the information paradox is to find a complete theory of quantum
gravity, which is essentially the search for a better understanding in the fundaments of spacetime. Another major
motivation for studying quantum gravity is the desire to gain more insights in the early days of our universe, where it
is believed that quantum gravity play a crucial role. Specifically, research on the island formula presents great insights
in how fundamental quantum degrees of freedom may construct the geometry of spacetime. Therefore, it has been
spectacular research towards a better understanding of quantum gravity.
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A The expectation value and the projection operator

Here, we define some useful quantum mechanical properties we encounter in this thesis. We define the expectation value
for an observable A and a state |φy to be

ă A ą“ xφ|A |φy (A.1)

“
ÿ

m,n

xφ|my xm|A |ny xn|φy (A.2)

by inserting a basis 1 “
ř

m |my xm|. We can write this then as

ă A ą“
ÿ

m,n

xn|φy xφ|my xm|A |ny (A.3)

“
ÿ

n

xn|PφA |ny (A.4)

“ TrpPφAq (A.5)

where Pφ “ |φy xφ| (A.6)

We call this latter quantity the projection operator.We can use this to express the full expectation value and the density
matrix:

ρ “
ÿ

i

pi |φiy xφi| “
ÿ

i

ρiPφi (A.7)

ă A ą“
ÿ

i

pi ă A ąi“
ÿ

i

pi TrpPφiAq “
ÿ

i

TrpρAq (A.8)

with orthonormal states |φiy and pi the probabilities with same properties stated in section 2.1.

B Derivation of the Schwarzschild metric: an explanation

The Schwarzschild metric can be derived by trial and error, and by a more, full systematic way. [23] To begin, we discover
the first.

Looking at the outside of a spherical body, in vacuum, one can see that Einstein’s equations reduce to Rµν “ 0. We
look at a hypothetic source that is static and spherically symmetric. We define ‘static’ here as two obey two conditions:
all metric components are independent of the time coordinate. Furthermore, there are no space-time cross terms in the
metric to be found: ds2

“ ´dt2 ` dr2
` r2dΩ2. Since we would like to find a time independent solution, it has to be

invariant under time changes. Thus, the cross terms have to be ruled out.
We start our investigation by writing the Minkowski metric of the studied space in polar coordinates: xµ “

pt, r, θ, φq.By looking at the requirements and doing some nice mathematical tricks, we finally arrive at

ds2
“ ´e2αprqdt2 ` e2βprq

` e2γprqr2dΩ2 (B.1)

Since we want to preserve spherical symmetry, this is stated by the last term. Also, the spheres have to be perfectly
round. This implies certain coefficients, which are only functions of the radial coordinate.However, one can choose its
radial coordinates such that the factor γprq will not exist. From then on, one can use the Einstein equations to solve the
coefficients αprq and βprq. Finally, in this way, we arrive at the Schwarzschild metric.

A full derivation can be given by Birkhoff.According to Birkhoff and his theorem, the Schwarzschild metric is indeed a
unique vacuum solution with spherical symmetry. He also states that a time-dependent solution cannot be defined. One
can prove these statements by showing multiple things. First, one needs to show that all points of the metric manifest
themselves on an unique sphere which is invariant due to the creation of spherical symmetry: put simply, a spherically
symmetric spacetime can be seen as two-spheres. Second, one has to prove that the metric can be stated in the form.

ds2
“ dτ2

pa, bq ` r2
pa, bqdΩ2

pθ, φq (B.2)

Third, we should put the metric into the Einstein equations in order to see that it is an unique outcome. Finally,
one will arrive at the conclusion that the unique solution is the Schwarzschild metric. We will not do the full derivation
here, but it is all very cleverly done in [23].
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C Penrose diagrams: bringing infinity into finite distances

We can construct a simple example of how infinity is brought to finite distances.[23] Consider the usual flat Minkowski
metric

ds2
“ ´dt2 ` dr2

` r2dΩ2 (C.1)

Here we have null trajectories at t “ ˘r so ´8 ă t ă 8, 0 ď r ă 8. First, we define null coordinates

u “ t´ r (C.2)

v “ t` r (C.3)

Then the ranges for this coordinate system are

´8 ă u ă 8 (C.4)

´8 ă v ă 8 (C.5)

u ď v (C.6)

This is also seen in the figure, where each point can be seen as a 2-sphere with radius r “ 1
2
pv ´ uq.

Figure 53: radial null coordinates in Minkowski space [23]

We take a step further and define coordinates to capture infinite coordinates into finite ones

U “ arctanpuq (C.7)

V “ arctanpvq (C.8)

These have ranges

´
π

2
ă U ă

π

2
(C.9)

´
π

2
ă V ă

π

2
(C.10)

U ď V (C.11)

After some calculations, the metric becomes

ds2
“

1

4 cos2pUq cos2pV q
r´2pdUdV ` dV dUq ` sin2

pV ´ UqdΩ2
s (C.12)

Then, we define a time-like coordinate and a radial coordinate.

T “ V ` U (C.13)

T “ V ´ U (C.14)

These have ranges

0 ď R ď π (C.15)

|T |`R ă π (C.16)

Finally, by using the new coordinates, we arrive at the metric

ds2
“ w´2

pT,Rqp´dT 2
` dR2

` sin2
pRqdΩ2

q (C.17)

where w “ cospT q ` cospRq (C.18)
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Hence, we arrive at a metric where infinite coordinates have been described in terms of a finite coordinate system.
Relating this to the original Minkowski metric, it seems similar except for the prefactor. In the final constructed metric,
there appears to be curvature. Thus, this is something unphysical: a physical metric has to be flat spacetime, independent
of the coordinates we choose. We can show the Minkowski space as a triangle. Here, the boundaries do not belong to
the original spacetime. In the diagram for Minkowski spacetime, all time-like geodesics start at i´ and end at i`. All
null geodesics start at J´ and will end at J`. The spacelike geodesics start and end at i0. For Minkowski spacetime,
this construction is nice, but we don’t learn much new about this. Still, when considering curved spacetime, Penrose
diagrams are a very useful tool to get an idea about the causal structure of the studied spacetime.

Figure 54: A Penrose diagram for Minkowski space.[23]
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D Black hole evaporation: an illustration

Here, we present an illustrative insight in the black hole evaporation. Stages in black hole evaporation are given by
spatial slices in the corresponding Penrose diagram.

For the first figure: ”After stellar collapse, the outside of the black hole is nearly stationary, but on the inside, the
geometry continues to elongate in one direction while pinching toward zero size in the angular direction”.[22]
In the second figure: ”The Hawking process creates entangled pairs, one trapped behind the horizon and the other
escaping to infinity where it is observed as (approximate) blackbody radiation. The black hole slowly shrinks as its mass
is carried away by the radiation.”[22]
In the third figure: ”Eventually the angular directions shrink to zero size. This is the singularity. The event horizon also
shrinks to zero.”[22]
In the fourth figure: ”At the end there is a smooth spacetime containing thermal Hawking radiation but no black hole.
” [22]

Figure 55: Stages in black hole evaporation. By the particle-antiparticle creation Hawking discovered, the black hole is
able to evaporate. After complete evaporation, what is left is just flat space.[22]
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Figure 56: A Penrose diagram for an evaporating black hole that has been fromed by stellar collapse. (a) - (d) correspond
to spatial slices, defining stages in black hole evaporation. Eventually, by the Hawking particle-antiparticle creation, the
black hole will vanish. The Hawking particles will head to the future J`, where we have causal Minkowski space. [22]

E Raju’s argument

In order to give an explanation of the argument, we will follow the lines of thought given by Raju [38] in his article.
Consider a system that has a density matrix

ρE “
1

W

ÿ

E0´∆ăEăE0`∆

|Ey xE| (E.1)

Here we have a sum around a certain energy E0, with a with of 2∆ and an energy E. W is a normalization that
finds its origin by the number of states, and it requires the trace to be equal to one TrpρEq “ 1. Now we define a pure
state. We look how close a pure state is to a mixed state, so we have to define ‘closeness’ more precisely.

Since the meaning of physical observations involves the probabilities of numerous measurements, which are given
by the expectation value of projection operators stated earlier. Hence, it is useful to understand how much probability
distributions of measurements vary between the density matrix and the pure state defined earlier. For a projection
operator P , we take a look at the quantity

|φy “
ÿ

E

aE |Ey (E.2)

We can estimate the deviation between a pure state and a (microcanonical) mixed state by
ż

dµφ xφ|P |φy “ 1

W

ÿ

xE|P |Ey “ TrpρEP q (E.3)

with dµφ “
1
V
δp
ř

E |aE |2 ´ 1q
ś

E d
2aE a natural probability distribution with V a normalization factor, and aE a

complex coefficient that can vary in an uncorrelated way if the norm of the state is unit. Finally, after doing some
mathematics, the average size of the deviation is also

ż

dµφrTrpρEP q ´ xΦ|P |Φys2 ď 1

W ` 1
(E.4)

Since these results have been exact all the time, one can look at a system that has a large number of degrees of
freedom W “ eS with S an entropy. According to Raju [38], this tells us that ”random pure states are exponentially
close to mixed states in a system with a large number of degrees of freedom”. [38]

F Spheres and hyperboloids

In order to get some extra insight in forms of space, which are related to the de Sitter and anti-de Sitter space, and so
in the AdS/CFT-correspondence, we will take a small look at some basic manifolds here: spheres and hyperboloids. An
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(a)
(b)

Figure 57: On the left: a spherical model of space. Geodesics are found by the intersection of the sphere and two-planes
that move through the origin. On the right: a model of space that is hyperbolic. The red surface, H3 is space-like. Once
again, geodesics can be found by the intersection of H3 and two-planes through the center.[42]

n-dimensional sphere, Sn with a radius L, centered at the origin. It has a set of points px1, ..., xn`1q in n`1-dimensional
Euclidean space En`1. Then its metric is defined as

ds2
“

n`1
ÿ

i“1

dx2
i (F.1)

which satisfies the equation
n`1
ÿ

i

x2
i “ L2 (F.2)

For a more general central point than the origin, take a point pc1, c2, ..., cn`1q, and this equation takes the form

n`1
ÿ

i

pxi ´ ciq
2
“ L2 (F.3)

The n-dimensional sphere, geodesics can be described by the intersection of the sphere and two-planes that move through
the center of the sphere. In this geometry, straight lines from flat space become maximal circles. [42]. The sphere has a
positive curvature.

However, for negative curvature, we can look at an upper sheet for two layers of hyperboloid sheets H. We define
this as

H
3
“ x PM4, x0 ´

3
ÿ

i“1

xi “ a2 (F.4)

for a P R In this geometry, the light cone does not meet the manifold. Hence, this surface is spacelike. Here, geodesics
are hyperbolae, which are the intersection of H and two-planes.
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G Islands in black holes: extra illustrations

The island solution is an interesting proposal to the black hole information paradox, and it is believed that it solves the
information problem. [12][10] Here, we take a look at some extra illustration that help to understand the concept.

G.1 Vanishing and non-vanishing surface

Figure 58: The contribution to the black hole entropy from the vanishing surface. The entropy grows, since more Hawking
particles escape the black hole. Just as the other figures, particles that are entangled behind and outside the horizon
have the same colours. The green lines represent the area spanned by the extremal surface and the cutoff surface at
different times. If nothing else would happen, unitarity would be violated in this way, looking at the curve on the right.
[22]

Figure 59: Around the Page time, the non-vanishing surface describes the right curve for the entropy of the black hole.
At the start of black hole evaporation, it is located around the black hole horizon. At later times, the surface moves
up to the event horizon in a spacelike direction. The generalized entropy will shirnk, since the quantum contribution
Ssemi´cl can be neglected, and the black hole area decreases. [22]
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G.2 Non-island and island contribution

Figure 60: The contribution to the entropy when no island appears. The entropy will grow until the black hole has
completely evaporated. [22]

Figure 61: The contribution to the entropy when island appear. By the island formalism, the entropy decreases. It
follows a same curve as the thermodynamic entropy of the black hole. [22]
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