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Abstract

We use Iterative Boltzmann Inversion to discover pair potentials that yield cluster
fluids. To do this we need a target radial distribution function, which we sample
from a system with a many-body potential that was designed to yield cluster fluids.
Prearranged clusters do tend to stay together with the potentials we find, but when
starting from a random configuration, clusters do not form properly. When we slowly
increase the potential with a random configuration the results are slightly better, at
least the radial distribution function matches its target better. Our current simulation
technique is perhaps not very well suited for the interaction between clusters, since it
is difficult to move clusters using only single particle moves.
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1 Introduction

Everything in our world is made out of materials, materials with vastly different properties:
they can be liquid, solid or gaslike, or perhaps something in between. Some materials are
very dense and others are not, some solids are fragile and others are flexible, some liquids
are very viscous like honey and some are not, like for example gasoline.

What all materials have in common is that they are made out of small particles, like
molecules. These particles come in different kinds of shapes and sizes. Sometimes they
attract each other and sometimes they repel each other, and sometimes it is a mix of those
two at different distances. The interaction of particles can be described by an interaction
potential. Much research goes into looking how exactly particles interact with each other
and thus finding this interaction potential, like for example in [I].

But what exactly is the relation between these two views: the properties of a material and
the properties of the particles it exists of? If we know exactly how certain particles interact
with each other, we would like to know how a system of many of those particles together
would behave. For this system, we can in theory write down a differential equation which
describes the system. One of the simplest potentials is the gravitational potential. Newton
was able to solve the differential equation of two particles with a gravitational potential, if
we add more particles however this becomes practically impossible. What we would like to
do is for a system of many (about 10** or more) particles with an arbitrary complicated but
known potential, to describe the properties of the material that forms.

Statistical Mechanics seeks an answer to this question. This has been very successful and
has solved many practical problems. This approach is not a general solution, a different prob-
lem often requires a different approach, and almost always we have to make approximations,
for which it is not always obvious how valid these are. Since the advent of the computer
an important technique within statistical mechanics was invented, namely computer simula-
tions, using for instance the Metropolis algorithm. This allows us to use the same approach
to describe materials of particles with arbitrary interaction potentials. Classical analytical
methods are still useful as they provide more insight and require less computation time. The
combination of analytical methods and simulations is very common and can be used to solve
a very wide range of problems.

This is however only one side of the story: is it possible to, using only the description of
a certain material, discover what particles it is made out of? Thus, given certain material
properties, what potential must a particle have so that a system of these particles has those
properties? With new experimental techniques to make all different kinds of particles, this
question has only become more relevant. This problem is called inverse design, and it is
exactly what we will be doing in this thesis. This does not mean we will not need any
simulations. In fact, the inverse design technique we will be using needs a lot of simulations,
since at every step of the inverse design method we do a simulation with a certain interaction
potential, and based on the results of this simulation we change the interaction potential
slightly until, hopefully, the simulation gives the right result. We will try to use this to find
interaction potentials that will form cluster fluids, see for example the figure on the front

page.
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2 Theory

2.1 Canonical ensemble

Here we present a short description of the NVT-ensemble, also known as the canonical
ensemble, which stands for systems where the number of particles N, the volume V' and the
absolute temperature 71" are fixed. Let us say we work in a d-dimensional space and let A
be a region of space with volume [ A dr = V. The phase space of this system is the set of
phase space points T' = (r"¥, p"), where r"V is a n-tuple of all the positions of the N particles
in A, and p" is a n-tuple of all the particle momenta. We also have a interaction potential
®, which has units of energy, for each configuration of particles r. The Hamiltonian of the
system is defined as

2
HrY oV = oV |pil
w0 = 2 + 35

where m is the mass of an individual particle. Each phase space point I' has a probability
to occur, which is proportional to the Boltzmann factor exp(—H (T')/kT), where by defini-
tion k& = 1.380649 - 102 J/K is called the Boltzmann constant. The probability of finding
the system in a certain positional configuration can easily be shown to be proportional to
exp(—®(r")/kT) by integrating over the momentum part of the phase space.

2.2 Reduced units

For our purposes it is practical to work with reduced units, for this we need a length scale
o, which will be the diameter of the particles. With this we can divide all positions by
o, thus for each position r € V we define x = r/o, which is unitless. We also define
A = {x € R¥|ox € A}, which is unitless and has a volume V = ¢~9V. The reduced
interaction potential is defined as

this is a function on AY. Thus, when we have a certain configuration of particles described
in reduced coordinates x" we can calculate the original coordinates r" by multiplying with
o, with this we can calculate the interaction potential ®, and if we multiply this with % we
get a unitless quantity which we call U. Now it is easy to calculate the Boltzmann factor

using
exp(— @ (") = exp(~U(x")).

We define f : AN — R to be proportional with this Boltzmann factor but normalized,
meaning | an S (xV)dx" = 1. From this point on we will only work with reduced units.

2.3 Pair potentials

In principle, U can be anything, but there is an interesting special subset on which we will
focus, namely (isotropic) pair potentials. These are interaction potentials we can write as
UxN) = > i ulTij), where z;; = |x; — x| is the inter-particle distance and u : Ryg — R
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is also called the pair potential. Interaction potentials that are not pair potentials are called
many-body potentials. The use of this class of interaction potentials greatly reduces the
complexity, also note that many potentials in nature are pair potentials, like the gravitational
or Coulomb potential. One pair potential we would like to highlight is the hard-sphere
potential, u(z) = oo if z < 1 and u(z) = 0 if > 1, where "00” is a symbol such that the
exponential of a negative number times oo is zero.

2.4 Metropolis algorithm

A fundamental problem is to calculate or approximate ensemble averages of quantities. Say
that we have a quantity A : AV — R, its ensemble average is

<A>:/A AN f(xN)dxN.

In case there is no analytical solution available, which is practically always, we will have
to settle for some sort of numerical integration. A naive approach is to set out a grid over
the entire domain of the integral and calculate a Riemann sum. This grid would have to be
rather fine because interactions between particles can also be rather fine. The reason this
does not end up working is the dimension of the domain of the integral, for N particles in
an d dimensional box, the dimension of the domain of the integral is N - d, and thus for a
grid with in each dimension k steps, the number of grid points is k&¥*¢. With a number of
particles N of a few hundred this quickly puts astronomical scales to shame.

A better way to do the numerical integration is to use Monte Carlo methods, which
involves a random component, to get a better and better approximation over time. One
important Monte Carlo method is the Metropolis algorithm. The idea of the Metropolis
algorithm is to randomly sample a sequence of configurations such that the probability of
sampling a configuration is the probability of finding the system in that configuration. We
pick an initial configuration x)’, and then randomly generate a sequence x x5 x¥ ...
of configurations. This sequence will be a Markov chain, meaning that the probability of
finding the sequence at a certain step in a certain configuration only depends on the previous
configuration that was reached.

Assume we have a configuration x) at step n in our Markov chain, we then pick one
particle at random and move it to a uniformly random position within a certain box centered
around its original position with side lengths of § to create a new configuration xV. We
now either accept or reject the change, if we accept the change then we set x =X N and
if we reject then we set x2',; = x'. We accept with a certain probability S(x),, — xV),
this probability is chosen such that the stable probability distribution of our Markov chain
reaches the desired probability distribution as dictated by the NV T-ensemble. To find the
acceptance probability we use the so called detailed balance condition.

2.5 Detailed balance

Detailed balance is a condition which ensures that, over time, the sequence reaches the right
distribution [2]. Tt requires that for any two configurations a and b the sequence can reach,
the probability of finding the system in configuration a times the probability of the chain
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transitioning from a to b is equal to the probability of finding the system in b times the
probability of transitioning from b to a, or in a formula f(a)w(a — b) = f(b)w(b — a). The
transition probability m(a — b) is the chance of proposing a trial move to b while in a times
the chance of accepting this trial move, in a formula 7(a — b) = a(a — b)f(a — b). In
many cases, as in our case, « is symmetric, meaning a(a — b) = a(b — a) for all a and b.
Because we move one particle in a certain box centered around its old position, and from
the new position we can always pick the same particle and move it in the opposite direction
to get the old position again, thus all inverses of possible moves are possible. Since we pick
the particle uniformly and the position in the box uniformly, all possible moves are equally
likely, thus indeed « is symmetric in our case. For a possible move a — b we thus have

pla—=0b) _ f(b)

o 5~ el - U
We are now free to choose f such that this equality is satisfied, we will do so by maximizing
f with B8(a — b) = min(1, exp[—(U(b) — U(a))]), such that our sequence moves more quickly
through phase space. Now that we have a sequence, we can sample from it using

n—o00 N, 4

(A(x™)) = lim 1 iA(fo)

An advantage of the Metropolis algorithm is that we only need the quotient LZ) and never
the actual value of f, and we know this quotient very well from our treatment of the NVT-

ensemble, thus saving us the step of normalizing f.

2.6 Practical considerations in the Metropolis algorithm

We have not specified what the initial configuration x{’ should be and if it matters. In general,
it does matter and our ensemble averages might depend on this choice. If the sequence can
move through the entire phase space, meaning that from every configuration, all possible
other configurations can be reached with a non-zero probability in a finite number of steps,
the initial configuration does not matter for an infinite sampling. For low enough densities
this should be the case, but we will just assume it for this thesis.

For an infinite number of steps the initial configuration x)" might not matter and the
ensemble averages will be the same. But since we work with a finite number of steps (being
able to read this means this thesis has in fact ended), choosing it right can give a better
result. Our sequence will spend most of its time in configurations that are likely to occur,
thus it pays to choose an initial configuration with a low U value. This way the first few or
many steps it does not only reach very unlikely configurations. One should at least avoid
picking an initial configuration with vanishing probability.

The choice of the side lengths of the box within which we perform the particle move, 9,
is just like our initial position not important in case of an infinite sequence, but the right
choice can give a better result in fewer steps. Most of the phase space is, especially in systems
with a high density, extremely unlikely, if there are for example two particles that overlap.
Therefore if we move particles far away from their original position by choosing  too high,
the acceptance rate, that is the fraction of moves that are accepted, will be very low, wasting
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computational time on generating moves that are in the end rejected. If ¢ is too low on the
other hand, particles are barely moved and the phase space is not explored as fast as possible,
this is characterized by a very high acceptance rate. We therefore need a value for § which
keeps the acceptance rate close to one half. We do this by either fixing the right ¢ in advance,
or fine-tuning it during the simulation based on the acceptance rate. This continuously fine-
tuning based on the result of the sequence breaks some of the mathematics, for example the
Markov property, thus we will have to use a fixed § when sampling the ensemble averages.

2.7 Periodic boundary conditions

The Metropolis algorithm helps us to simulate a system of particles, with the purpose of
calculating ensemble averages. As is usually the case with computer simulations, the greatest
constraint we face is simulation time. For the Metropolis algorithm, this time depends on the
number of particles. This is because we have to make a certain number of attempted moves
for each particle before the system reaches equilibrium Also, in equilibrium we again need a
certain number of attempted moves per particle before the system is reasonably uncorrelated
with the last sampling point, in order to sample ensemble averages. For this reason we can
only afford to simulate a system of a limited number of particles, say 2048 in [3], or in our
case about 300. This is in sharp contrast with bulk systems in nature in which we are actually
interested, a cup of water for example consists of roughly 10?° molecules.

We will not worry too much about this, still we should try to do the best we can with
our limited resources. One important aspect is the boundary of the system. In a small
system a relatively large portion of the particles is located at the boundary of the system,
and thus at one side there are no other particles for them to interact with. This can have
a serious impact on the characteristics of the system. A trick to overcome this is to use
periodic boundary conditions, the idea is to copy the system in all directions to create a grid,
and let particles interact between different systems. For this, the simulation volume A has
to be a box, in our case A = [—%L, %L]d, if we use d dimensions. We then use the nearest
image convention. To this end we calculate the distance between two particles by minimizing
the distance vector while trying to add or subtract the simulation box side length L in each
dimension. To make sure particles do not interact with other particles more than once, we
impose a maximum interaction distance, which cannot be more than one half times L. If the
distance x between two particles is more than this so called cut-off distance, their interaction
potential is zero. If a move of the Metropolis algorithm moves the particle outside of the
particle box, we place it back inside the box by adding or subtracting multiples of L in each
dimension. Periodic boundary conditions help to simulate a relatively small system without
having any boundaries.

2.8 Radial distribution function

We will now introduce the Radial Distribution Function (RDF), which is the relative density
at a certain distance of a particle compared to that of an ideal gas. The RDF is thus a
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function g : R>¢p — R>. If we compare it to the pair correlation function

p? A% = Rsp,  (x,X) <Z Z d(x —x;)0(x' — Xj)>

i=1 j=1j#i

we have p®(x,x') = p’g(|x — x/|), with p = N/V the density. This is because g as-
sumes a fixed particle we have to multiply one time with p for the probability of finding
a particle at x, and since g is relative to an ideal gas it is divided by p which we cancel
by multiplying another time by p. At large distances, densities are uncorrelated meaning
PP (x,x') = pM(x)pM(x') = p? thus lim, .., g(r) = 1. The RDF is useful to characterize
inter-particle distances and in a system with an isotropic pair potential the thermodynamics
follow completely from the RDF. In practice we obtain the RDF by making a histogram
of inter-particle distances with a simulation and normalize it by dividing it by a similar
histogram for an ideal gas.

2.9 Iterative Boltzmann Inversion

For each pair potential v : R>y — R we now know how to approximate the RDF g : R5y —
R>o. An interesting problem is if there is a way to inverse the process, thus for a given g(z)
at a certain fixed density find a pair potential u(x) such that if we simulate the system with
u we again get back g. This problem is further motivated by the importance of the RDF,
since it encodes a lot of properties of the system we might be tempted to think that systems
with similar RDF's also behave similar in a lot of other ways. Thus, if we have a system with
desired properties, we could measure its g(x) and if we could find a u(x) with approximately
the same g(x), our hope at least is that a system with « would behave similarly as the original
system, even while the original system might have had a many-body potential. Not all RDF's
have a corresponding pair potential, but if it exists, Iterative Boltzmann Inversion [3] is a
simple method to find it.

Let gi4:(x) be the targeted radial distribution function. We have to make an initial guess
for the pair potential, for example we can take what we will call the inverse Boltzmann
potential

up(r) = _log(gtgt<x>>‘

The idea is for each pair potential u; to simulate it at density p and measure its RDF ¢;, and
then alter the pair potential in order to bring g; closer to g4, as in

i1 (z) = w;(x) + alog ( 9:(z) ) ,

gt ()

where « is a small positive constant. If at a certain distance r from a particle g;(x) is too
high, that is, higher than g, (x), then the pair potential at that distance is increased, making
it less likely there will be particles there and thus decreasing the density there, and vice versa.
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3 Approach

Our goal is to find a pair potential which at a certain density yields a cluster fluid of a
certain cluster size. We define an ideal cluster fluid to be a system of particles that consists
of clusters of a fixed number of particles that are packed closely together like a liquid, while
the clusters themselves behave like a hard-sphere fluid, thus their only interaction is short-
ranged and repulsive. Our approach to finding such a pair potential has two steps: the first
being the simulation of a system with an artificial many-body potential specifically designed
to promote an ideal cluster fluid in order to measure its radial distribution function (RDF),
and the second being the previously described Iterative Boltzmann Inversion (IBI) with the
aim of finding a pair potential with the same RDF, which will be our final result. This rests
on the assumption that there exists a pair potential with a similar enough RDF as the one
of the many-body potential, and the assumption that their RDFs being reasonably similar
would mean that other properties would also be reasonably similar.

Our simulations will be two-dimensional, according to the principle that in education
one should use the simplest example, be it the lowest dimension, of the problem that still
has all the complexity of the general problem, and also to save simulation time. There are
two main parameters for our cluster fluid, namely the cluster size n (number of particles in
each cluster) and the density p = N/V. For each choice of n and p, we expect to need a
different pair potential and also a different RDF. For n we try three different values, namely
n =5,15,25, in order to get a view of a broad range of different cluster sizes and to roughly
see in what region our approach works. We let our simulation box be

2
Ao |-ip i)
2 2

and for the side length of the simulation box we choose L = 40, 80,120, again to have a
broad spectrum of possible densities, note that L is unitless, and this has the meaning of
number of particle diameters. This gives us nine different combinations and thus we look
for nine different pair potentials. The density is p = N/L? where for N, the total number
of particles, we pick N = 300, which is divisible by all values of n. The value of N is an
important factor in the simulation time; that said, in general, we try to simulate bulk systems,
thus values of N that are too small might give wrong results, we therefore pick N as high as
our computational resources reasonably allow us to. This general approach is adapted from
a paper [3] where they look into three dimensional cluster fluids and compare the properties
of the pair potential they found using IBI with a more classical model for a pair potential
that also yields cluster fluids.

3.1 Many-body potential

The result of this step should be a RDF of an ideal cluster fluid, but especially it should be a
function that is smooth, thus without sharp peaks. This requirement is supposed to help the
reverse engineering process we will do later on the function. We can only hope to find a pair
potential with roughly the same RDF as the one we find here, therefore the RDF should be
smooth such that small details do not affect its general shape. Also, from a more practical
point of view, our RDF will have a finite resolution, even more so, the lower the resolution,
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the less simulation is time required to sufficiently sample the RDF, and thus for this reason
we want to avoid having sharp peaks in our target RDF.

We design a many-body potential and then simulate the system with the Metropolis
algorithm. The first component of our many-body potential is a hard-sphere pair potential,
such that the particles do not overlap.

3.2 Keeping clusters together

Before the simulation starts, we assign the particles to clusters and then one component of
the many-body potential is designed to keep the cluster together. We thus need a measure
for how compact our cluster is. To reward more compact clusters, we define

R= Z x’?ja

1< jEcluster

thus R is the sum of the squares of all inter-particle distances within one cluster. We select
two constants, A and [y, and for each cluster add to our many-body potential the term
A(R— Ryy)?. The constant Ry, describes the targeted, or desired, value of R, such that each
value of R that is different from R,y costs energy and thus is less likely. The constant A is
positive and describes how strongly wrong values of R are punished.

For each choice of n and p we have to make a choice for A and R;;;. We could simply
pick A very high and R, very low to ensure that the clusters are as compact as they can be,
but the chances of the resulting RDF being reproducible with a pair potential would decline
since the particles would not have a lot of space to move and thus the RDF would have very
sharp peaks. In general our approach will be to choose the lowest potential that works. To
this end we want to choose A as low as possible and R,y as close to the resulting real value of
R as possible, while still keeping the particles in the clusters close enough together. Ideally
one would want to choose A and R just so that Ry is slightly less than R, such that there
will be a balance between the higher entropy of a less compact cluster and the lower energy
of a more compact cluster, for the most realistic cluster fluid. For practical reasons, we have
made our choice slightly different, we chose R,y as low as possible under the constraint that
in the simulation the resulting R becomes equal to R;y. In this case we have a compact
cluster that has no sharp peaks in its RDF, but with the advantage that the precise value of
A is not as important, and we can just choose one value that seems reasonable and use it for
all cluster sizes and densities, we choose A = 250. This leads to values of R, = 4.5,24,52
for the respective cluster sizes n.

3.3 Separation between clusters

The third component we add to the many-body potential is a term to keep the clusters
from touching each other. We could for example keep track of the centers of mass and add
increase the many-body potential if the distance between the centers of mass becomes too
small. Within periodic boundary conditions, it is not trivial and in some cases not even
possible to determine the center of mass of a cluster. One nice way to calculate the center of
mass in one dimension is to transform the line segment the particles are on to a circle, then
calculate the center of mass in two dimensions and then intersect the line segment between
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this point and the center of the circle with the circle to finally transform this intersection
back from the circle to the original line segment. It is however not necessary to use such a
complicated method, and the trigonometric functions that would be needed could take up a
lot of simulation time.

Most of the time the cluster is already quite compact and the rest of space quite big, thus
we make an approximation. We calculate the center of mass in the normal way, but in case
a cluster is on the edge of the simulation box, we move all particles that have crossed the
edge over to the rest of the cluster before calculating the center of mass in the normal way.
In practice, we pick one pivot particle for each cluster, and for each dimension if a particle is
further away from the pivot than half the box side length we move it over with one box side
length and then calculate the center of mass. We calculate distances between two centers of
mass the same way as with particles within periodic boundary conditions. To the many-body
potential we add for each pair of clusters with a distance between them of xcops the term

B

Tcom

eXP(—l'COM/Z)’

where B and z are positive constants. For low values of z and corresponding values of B this
potential approaches a hard-sphere potential. We pick z = 0.12 for all situations. For this
z, in each situation, we choose B as low as possible while keeping the clusters from touching
each other, yielding values of B = 10'2,10%!, 107 for the respective values of n.

We do not only label the particles to be in clusters, in the initial configuration we also
place the particles physically in clusters. This is to save time simulating the process of the
particles assembling themselves in the predefined clusters, which could take a long time if the
particles in the clusters were not already close together. Also we do not allow the particles to
overlap in the initial configuration (and also not later on). We place the first particle of the
cluster randomly in the simulation box without overlap with other particles. For the other
particles we keep trying random positions close to the first particle until no overlap occurs.

We then simulate the system with the Metropolis algorithm, each step we propose a new
position that differs slightly from the previous one and based on the energy difference it
causes accept or reject it with a certain chance. We make two different kinds of moves, 90%
of our moves are particle moves and 10% are cluster moves This is because we have more
particles than clusters, but the exact ratio is not important. Particle moves, as described
before, are moves where we pick one particle randomly and move it randomly in a small box
around its original position, for the side length of this box we choose 0.01 in order to keep
the acceptance rate close to 0.5. For a cluster move we pick one cluster at random, pick
a random displacement in a box centered around the origin and give every particle in the
cluster that displacement. In our case we let this box be the size of the simulation box, but
this could also be a smaller box.

In theory, after each step, rejected or accepted, we sample the quantities we want to
measure, in practice however, we do this sampling after every few steps. Sampling can be
computationally expensive, and after a single step most particles are still in the same place
thus doing the same computations multiple times. Therefore in our case we sample every
N = 300 steps, where every step is either a particle or cluster move that is either accepted
or rejected. The quantity we sample is the RDF, but we also keep track of the energy and
average value of R over time, to monitor if we have reached equilibrium.



3 APPROACH 10

3.4 Measuring the RDF

To measure the RDF we make a histogram of the inter-particle distances and then normalize
it by dividing it by a similar histogram of an ideal gas. We need a range [a,b] and also a
resolution n,.s, for this range we take [1, z.,] where z., is a parameter we will describe in
the next section. The lower bound is 1 because below this value, due to the hard-sphere
potential, g(x) is 0. The resolution should be high enough to smoothly describe the RDF
and all its features in detail. There is also significant virtue in choosing it low enough, since
a lower resolution means a larger interval size to count particle pairs and thus we need fewer
simulation steps to get an accurate estimate of the function value. Thus, the resolution is
inversely proportional to the simulation time to sample the RDF.

Then we divide [a, b] in n,.s equally sized subintervals. We measure the average number of
particle pairs whose mutual distance is in such a subinterval. When we multiply this number
with 2, the number of particles in a pair, and divide it by the total number of particles, we
get the average number of particles that is at a certain distance of a fixed particle. We then
divide it by the expected number of particles at a certain distance of an ideal gas, which is
the density p = N/V times the volume around a particle where a particle would have the

correct distance, that is 7(r3 —rj ) with r,, and 7y, the upper and lower bound of the

3
subinterval. We consider the obtained value for a subinterval the function value of g(z) at

the center of the subinterval.

3.5 Iterative Boltzmann Inversion

Now that we have a RDF the next step is to find a pair potential with the same RDF. For
this we use Iterative Boltzmann Inversion, for which we already gave a short description in
the theory section. One thing to notice is that our many-body potential had a hard-sphere
component, this has the effect on the RDF that g(z) = 0 for all x < 1. To make sure our pair
potential has the same RDF in this region of x, we add a hard-sphere potential to our pair
potential before doing anything else. Thus from now on we are only concerned with g(x) for
x > 1. We determine a maximum range ., such that for x > x., we have g(z) = 0. We
have to do this because of the periodic boundary conditions To make sure a particle can only
interact with other particles once, we have to choose x.,; < L/2 with L the side length of the
simulation box. There are also other reasons to make this adjustment, we want the clusters
in the cluster fluid to only have short range interactions. Perhaps the most important reason
is to save on simulation time, if x., is smaller fewer interactions have to be calculated for
each particle move.

To determine what x.,; should be we look at the diameter of the clusters, if we assume a
3v2

circular perfectly packed cluster of n particles, the cluster has a diameter of 1/ =**n in terms
of particle diameters. For our largest cluster size n = 25 this gives a cluster diameter of
5.8. To allow particles on one side of the cluster to interact with a neighbouring cluster on
the other side we pick a z.,; of 9 for all cluster sizes. In principle we only update the pair
potential in the range z < x.,;. We want to avoid sharp discontinuities in the pair potential,
therefore every time after we update the potential we shift it vertically such that w(xey) is
zero, just like values just above .

To start the algorithm we need an initial guess for the pair potential. The simplest guess
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one can imagine is u(z) = 0, thus we will try this. Another try is to use make use of the
Boltzmann distribution directly. If we consider one fixed particle which interacts with the
other particles around it with a pair potential u(x), but the other particles do not interact
with each other, we can calculate the distribution of particles around this one particle, and
it would be a Boltzmann distribution g(z) = ¢ - exp(—u(z)) with some constant c¢. Thus,
if we choose u(x) = —log(gis(x)) for a targeted RDF ¢4, this pair potential will yield the
targeted radial distribution function g;5. Of course the other particles do interact with each
other, thus it is not an exact solution but we will use it as an initial guess.

Using this initial guess ug, we will now improve it in the subsequent steps wuq,us, ...,
but to do this we need to measure the RDF for each pair potential gg, g1,92.... We take
a system of N = 300 particles as before. For ug(x) = 0 we initialize the particles in our
system randomly with the constraint that the particles do not overlap, IBI with this initial
pair potential and initial configuration will be called IBI0. For ug(z) = —log(geg(z)), we
initialize the particles in clusters, in fact, we use the final configuration of our simulation of
the many-body potential, IBI with this initial pair potential and initial configuration will be
called IBI1. The choice of this initial configuration should be made such that the system
with the pair potential ug is already close to its equilibrium in the initial configuration. This
way we do not have to simulate this process of reaching the equilibrium. In later steps we
use as initial configuration the final configuration of the previous step. This is because we
only alter the pair potential slightly, and thus if the last step had reached its equilibrium,
this one will almost be in its equilibrium.

The targeted RDF is only known at points (the centers of certain intervals), and thus we
limit ourselves to describe the pair potential u at those same points. To find the potential
in between two points we use linear interpolation. Below the lowest interval, the potential
is infinite and above the highest interval the potential is zero. In the Metropolis algorithm,
the maximum distance 0 with which we make proposed particle moves is a parameter we
continuously update depending on the acceptance rate of the moves, if too few moves get
accepted we decrease the parameter and if too many moves are accepted we increase it.

We can now simulate the system and measure its RDF, we then use this to update the
pair potential as described in the theory, with a parameter .. This a determines the speed
at which u evolves. A higher speed does not always work, because small errors in sampling
the RDF would cause large errors in u if « is too large, but also for other reasons that are
more specific for the system. The best approach is to simply try out some values of o and
pick the highest that works, we have settled on 0.15. We do 200 consecutive steps. Apart
from the RDF and the energy over time we also measure the cluster size distribution.

3.6 Cluster classification

To automatically classify clusters we need a formal definition of what we consider to be a
cluster of particles. Two particles are directly connected if and only if they are close enough
together, we take the upper limit for this to be a distance of 1.3 times the particle-diameter
between the centers of the particles. Two particles are indirectly connected if and only if
they are either directly connected, or there exists a particle to which they are both indirectly
connected. We call the equivalence classes of indirect connection clusters.
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3.7 Last step

Once we have obtained a pair potential with the IBI, we use it to simulate a system that
starts either with all particles at random positions, the final configuration of the system with
the many-body potential or the final configuration of the system of the IBI. We simulate
for more cycles than in the IBI to make sure the system is in equilibrium and the RDF is
sampled accurately. We use these results to see how well our approach has worked.
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Figure 1: Radial distribution function g as a function of x of cluster fluids as they occur in a
system with the many-body potential, for several values of the cluster size n and simulation
box length L. These will be our targets during the Iterative Boltzmann Inversion.

4 Results

In figure[I|we can see the results of measuring the RDF of systems with many-body potentials,
which we will later try to reproduce with IBI. For large x = /o we see g(x) approaching
1, as should always be the case with the RDF. For large cluster sizes this is not very clear
since we do not measure the RFD over a large enough range. We have not included the part
x € [0, 1], because of the hard-sphere component of the particle here g(z) is zero.

The general shape of the graph is smooth, meaning we have sampled the RDF long
enough, although for n > 5, some graphs have some small peaks, which could be solved by
sampling for an even longer time. The absence of very sharp and very high peaks means our
many-body potential is at least not too high with the current parameters, since the particles
have enough space to move. It seems like the resolution of the measurement was high enough
to capture all the important information about shape of the graph.

Close to the particle (for small x) the g(x) is high, specifically more than one, meaning
that particles are often in clusters and one is more likely to find another particle right next to
a particle than at a random point in space. When we move to higher values of x we see a few
peaks, which are the layers of particles around one particle. These peaks get lower meaning
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Figure 2: Radial distribution functions g as functions of = of the many-body potential (target)
and several steps of the Iterative Boltzmann Inversion starting with a zero potential and all
particles starting at random positions, for several values of the cluster size n and simulation
box length L.

larger layers are less likely to occur, since some particles are on the edge of the cluster and
thus these layers are not complete for them. The lowest point in the graph is at the diameter

of the cluster, which matches the approximation 4/ %n we made in the Approach quite
well. This point is the lowest point of the graph since at this x no particles occur that are in
the same cluster, but other clusters are repelled slightly and thus are also unlikely to occur
there. At even larger x other clusters do start to appear and the graph goes to one, which
corresponds to the average density.

In figure 2] we have shown the RDF of a few intermediate steps in the Iterative Boltzmann
Inversion which started with the zero potential (IBIO). The first thing to notice is that the
shape of the graphs is quite rough, and thus a longer sampling could be useful. However,
this is partly planned since we only update the pair potential slightly each step and thus one
step we might move the potential slightly in the wrong direction because of this noise, but
the next few steps will correct this, on average the potential will move in the right direction.

As more steps are made the RDF starts to match the targeted RDF more and more. For
high densities and small cluster sizes, the end result is quite good. In some cases the RDF
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Figure 3: Radial distribution functions g as functions of = of the many-body potential (target)
and several steps of the Iterative Boltzmann Inversion starting with a nonzero pair potential
and the particles starting in clusters, for several values of the cluster size n and simulation
box length L.

stays well below the targeted RDF. In the region where x is less than the diameter of the
cluster, the minimum of the target graph, the shape of the graph is quite good, but it is
shifted down. This means there probably are clusters and they are roughly the right size,
but there are not enough of them. Thus, a lot of particles are not in clusters and are floating
freely or perhaps are part of a very small cluster. For the region where x is larger than the
cluster diameter, the low RDF tells us that the clusters probably repel each other more than
is the case in the many-body potential system.

In figure 3] we have shown the RDF of a few intermediate steps in the Iterative Boltzmann
Inversion which in this case started with the inverse Bolzmann distribution (IBI1). We again
see a lot of noise in the graphs. Since the particles start in clusters, the RDF matches the
targeted RDF from the start, and this remains to be the case for later steps as well. In some
cases there is some deviation from the targeted RDF in the region where z is greater than
the minimum of the graph. If we look carefully we can see that this deviation is already
present in the first step but gets less over time. This deviation is thus a result of the initial
configuration we chose, we only chose one configuration and in this particular configuration
the clusters were on average slightly too close or slightly too far apart. The effect is visible
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Figure 4: Root mean square difference between the target radial distribution function and
the radial distribution functions of the steps of the Iterative Boltzmann Inversion, starting
with a zero pair potential (IBIO) and a nonzero pair potential (IBI1), for several values of
the cluster size n and simulation box length L.

because we do not have a lot of clusters, and thus there can be some random errors.
In figure [4] we measured the distance between the targeted RDF and the RDFs of the
steps of the IBI. We measured this distance according to

1 Tcut
Erpr = —/ (9(r) — gtgt(l’))2dx-
[Tew — 1] J4

For IBI1, we have already seen that the RDF matches the target RDF from the start. In
this figure however we see that there is some nonzero distance, this is because of the noise
in the measurements of the RDF during the IBI. We see that this distance does not change
over time, thus almost no progress is made in matching the target RDF. Despite this noise
it is still possible to see if the graph of IBI0 matches the target, since the error the noise
causes in the distance is more or less added to the real distance. To see if the IBI0 matches
the targeted RDF, we have to look for where the graphs of IBIO and IBI1 match each other
in this figure, since at that point the distance between the graph of IBI0 and the target
is as large as the distance between two RDFs that do match each other. We see that for
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Figure 5: Radial distribution functions g as functions of = of the many-body potential (tar-
get), and the pair potential that resulted from Iterative Boltzmann Inversion that started
with a zero potential, starting with all particles at random positions (rand init), particles in
clusters (clust init) and the final configuration of the Iterative Boltzmann Inversion process
(IBI init), for several values of the cluster size n and simulation box length L.

high densities the RDF quite quickly reaches the targeted RDF, for intermediate densities
we could perhaps do with a few more IBI steps and for low densities the distance stays large
and will probably never vanish.

With the pair potential we obtained from IBIO, we ran simulations for a few initial
configurations and measured the RDF, as can be seen in figure [f] We also made some
visualisations of the final configurations, as can be seen in the appendix. In all cases when the
particles start in clusters the RDF matches the targeted RDF quite well, and the deviations
that do exist can mostly be accounted for by the initial configuration. This means that the
clusters persist under this pair potential, at least for as long as we simulated. When we start
from the final position of the IBI in some cases the RDF stays too low, which, as indicated
before, probably means not all particles are part of a cluster. In other cases the RDF does
match up, which is quite remarkable, considering that the initial configuration of the IBI itself
was completely random. When we start from a random configuration the RDF matches in
very few cases and even then not very well, in most cases it is completely wrong.

We do the same for the resulting pair potential of IBI1, as can be seen in figure [0]
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Figure 6: Radial distribution functions g as functions of = of the many-body potential (tar-
get), and the pair potential that resulted from Iterative Boltzmann Inversion that started
with the nonzero potential, starting with all particles at random positions (rand init), par-
ticles in clusters (clust init) and the final configuration of the Iterative Boltzmann Inversion
process (IBI init), for several values of the cluster size n and simulation box length L.

When we start in clusters or the final configuration of the IBI, the RDF matches that of the
targeted RDF really well, meaning the clusters persist under this pair potential as well as
under the previous one. Note that the IBI in this case itself started from clusters, thus it
is perhaps unsurprising that the RDF matches in this case. When we start from a random
configuration in almost all cases the RDF does not match the targeted RDF, and usually is
even more spectacularly wrong than in IBIO.

To see how well the particles group in clusters of the right size, we classified the clusters
and measured the frequency of each cluster size occurrence. To give a score of how well the
particles are placed in clusters of the right size, we came up with

1
Eclust — N Z n; - |nz - ntgt|

i cluster

where we sum over the clusters, n; is the size of cluster ¢ and n;y is the targeted cluster size.
This is equivalent to the average distance between the cluster size it is in and the targeted
cluster size, averaged over the particles. A plot over time during the IBI can be seen in
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Figure 7: Average distance between the cluster size particles are in and the targeted cluster
size during the steps of the Iterative Boltmann Inversion that started with a zero (IBIO)
and nonzero (IBI1) pair potential, for several values of the cluster size n and simulation box
length L.

figure [ When we start the IBI in clusters of the right size, as in IBI1, this error starts at
zero, and usually it stays quite low. In some cases we see a spontaneous jump up or down,
this means a cluster has split up or two clusters have merged. Only for n = 5 and L = 40
the error increases dramatically, to a level above that of the error of a completely random
configuration, this is because the clusters get too big. If we start from a random configuration
and a zero pair potential, the error starts quite high, but quickly starts to decrease. However,
the error stays quite high and in some cases even goes up again after a while, even in cases
where the RDF starts to match the target RDF quite well. When the error goes up again
the clusters formed probably get too large.
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Figure 8: Pair potentials u as a function of x from the Iterative Boltzmann Inversion starting
with a zero potential (IBI0) and a nonzero potential (IBI1) for several values of the cluster

size n and simulation box length L.

In figure [§| we see the pair potentials that were obtained from IBI. In general at a short
range the potential is negative and increasing, this means it is attractive, then hits a max-
imum, decreases in a small region, which means there is repulsion, and then stays more or

less constant.

Some variations of this also occur, in some cases IBI1 has a much higher peak than IBIO,

because of the starting potential of the IBI.
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5 Conclusion

We created an artificial many-body potential to get the radial distribution function (RDF)
of a typical cluster fluid, this graph turned out to look quite reasonable, having the shape
we would expect and being smooth. We then used Iterative Boltzmann Inversion (IBI) to
try to reproduce this RDF with a pair potential, starting from a zero potential in a random
configuration (IBI0), and an inverse Boltzmann potential in clusters (IBI1). For IBIO, the
RDF of the pair potential ended up matching the target quite well, although for low densities
and large target clusters the RDF stayed structurally too low close to the particle, meaning
some particles do not form clusters. For IBI1, the particles start in clusters and thus the
RDF matches the target from the beginning, and this remains to be the case and no visible
progress is made.

Using the final pair potential we find with IBI on an initial configuration of clusters, the
RDF stays the same and keeps matching the target, meaning the clusters persist. If we use
this pair potential on a random configuration, for high densities the RDF matches the target
but not very well, but for lower densities gives a completely different RDF not resembling
the target, with IBI0 being slightly better. One interesting result is that when using the
final pair potential of IBI0 on the final configuration of IBI0, the RDF matches the target
quite well, even though IBIO started from a random configuration. When we use the pair
potential of IBIO directly on a random configuration the RDF is a lot worse than when we
slowly evolve the pair potential while simulating.

In some cases we can find a pair potential that produces a RDF that matches the target
quite well, but this does not mean clusters of the right size are produced, as our original goal
was. For high densities and small target clusters in almost all cases the RDF matches really
well, but the clusters are not the right size. Other situations are slightly better, but never
get close to systems that were initialized in clusters.
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6 Discussion and Outlook

In all cases we have set x.,;, = 9. However for the larger cluster sizes, as we can see in figure
1], at this distance the RDF has not reached one, which is the limit for x — oco. It would be
advisable to choose x.,; higher such that this is the case. This way, even without shifting
the pair potential after every step there will be no discontinuity in the pair potential at this
distance since the RDF will probably match the targeted RDF from the start at this distance.
We would advice to use a x.,; of about two times the cluster diameter.

An important constraint of this research was computation time and computation power,
which we probably should have tried to obtain more of, even though it is inherent to this
kind of research that there is never enough of it. Looking back, the sampling during the
steps of the IBI should have been longer, at least to confirm that it does not influence the
results. With the current parameters there was a lot of noise in the RDF's, which probably
has limited the accuracy with which we could optimize the pair potential. Perhaps with a
more accurate pair potential and a more accurate match in the RDF the clusters would have
formed better.

One constraint, for which more simulation time is only a partial solution, is the simulation
of cluster fluids, and then specifically the movement of clusters. Remember that when we
simulate the many-body potential, we make both particle moves and cluster moves. Later,
during the IBI we cannot make cluster moves since the clusters are not well defined, we could
classify the clusters like before and try to move those, but it would break the detailed balance
condition since this way we could merge two clusters with a cluster move but we cannot split
it the next step. Using single particle moves to move clusters is highly inefficient. In order
to move a cluster, we would need to do so one by one. We would need to move the first half
of the particles away from the majority of the particles before starting to move the particles
towards the majority of the particles again, thus the energy threshold would be very high.

With single particle moves, the phase space of a cluster fluid cannot be explored properly
within a reasonable time. If we look at the IBI starting in clusters, at the end of the IBI the
clusters are still more or less in the same place. This means our research does not tell us
anything about the interaction between clusters with confidence. That being said, our results
of how the clusters themselves behave should still be valid. This constraint is probably the
most important one to be addressed in future research. One idea is to pick a particle and
a radius r, and move all the particles within this radius around the particle with the same
displacement. But only if afterwards no new particles are within a distance of r from the
new position of the particle. This should in theory satisfy the detailed balance condition,
but we are not sure if this would work in practise.

One important parameter is «, but we have not given a very good argumentation for
its current value. We suggest to try a few values and then pick the one that works best,
the problem is that simulating the IBI is the most computationally expensive step of this
research, and we cannot just try a lot of values for a. Perhaps its value should change during
the IBI. We could try to measure if the RDF is moving in the right direction, and if so how
quickly. If this speed is then too low we could increase «, and if we move in the wrong
direction on some parts of the graph or perhaps too fast, we could decrease a.

Self assembly is the process of forming a certain material or structure from a random
unordered configuration. This has implicitly been a part of this research, in our case this
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target structure was a cluster fluid. Starting from a random configuration, as we have seen
when we continuously update the potential during the IBI we get a better result than when
we use the same potential during the entire simulation. It should be noted that the former
approach ended up having a lot more simulation steps, thus this can be one reason why the
result is better. However, if we look at for example the energy during the latter simulation,
it seems to almost have reached equilibrium, since not a lot of change is visible. It would
therefore be very interesting to see if the longer simulation time really is the reason for the
better result, or perhaps the approach of starting with a very small potential and increasing
it during the simulation helps the process. This last approach resembles a technique called
Simulated Annealing, like described in [4]. The difference being that we do not continue to
zero temperature (infinite potential), and the decreasing of the temperature (increasing the
potential) is a implicit result (almost a side effect) of the way IBI works.

When one uses IBI, one finds a pair potential with hopefully the right RDF. In practice
however one still needs to physically create a particle with this pair potential, which can be
a challenge. A more realistic scenario than being able to create an arbitrary potential is that
one is able to modify a handful of parameters which have an influence on on the shape of
the potential. To determine the value of these parameters one has too choose some sort of
measure of how well the system behaves, in our case how well the clusters form, and then
one can apply one out of numerous optimization schemes.
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Appendix A Snapshots

In this chapter we give some visualisations of a few snapshots of our simulation. We do this
for the final configurations of the ” Last Step” simulations we described in the Approach. We
also classified the clusters, as described in the Approach, and gave each cluster an unique
color. All these visualisations, including the one on the cover of this thesis, were made using

[5].
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Figure 9: Visualisations of the final configuration after simulating with the pair potential
that resulted from Iterative Boltzmann Inversion that started with a zero potential, starting
in the final configuration of the Iterative Boltzmann Inversion process for several values of
the cluster size n and simulation box length L. (IBIO - IBI)
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Figure 10: Visualisations of the final configuration after simulating with the pair potential
that resulted from Iterative Boltzmann Inversion that started with the nonzero potential,
starting in the final configuration of the Iterative Boltzmann Inversion process for several
values of the cluster size n and simulation box length L. (IBI1 - IBI)
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Figure 11: Visualisations of the final configuration after simulating with the pair potential
that resulted from Iterative Boltzmann Inversion that started with a zero potential, starting
in clusters for several values of the cluster size n and simulation box length L. (IBIO - clust)
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Figure 12: Visualisations of the final configuration after simulating with the pair potential
that resulted from Iterative Boltzmann Inversion that started with the nonzero potential,
starting in clusters for several values of the cluster size n and simulation box length L. (IBI1
- clust)
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Figure 13: Visualisations of the final configuration after simulating with the pair potential
that resulted from Iterative Boltzmann Inversion that started with a zero potential, starting

in a random configuration for several values of the cluster size n and simulation box length
L. (IBIO - rand)
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Figure 14: Visualisations of the final configuration after simulating with the pair potential
that resulted from Iterative Boltzmann Inversion that started with the nonzero potential,
starting in a random configuration for several values of the cluster size n and simulation box

length L. (IBI1 - rand)
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