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Abstract

In this thesis we describe a generalization of two-dimensional Causal Dynamical
Triangulations (CDT) that relaxes the time-layering condition and was introduced
by Jordan [32]. We present two closely related models which we call bubble gen-
eralized CDT (gCDT) and spiral gCDT and we set the first steps towards finding
an analytical solution to both of the models. After reformulating the method of
solving two-dimensional CDT analytically via the transfer matrices, as presented
in [13], we devise a similar approach for the bubble gCDT model. We perform
the first calculations towards building several simplified versions of the model. We
then introduce the framework of matrix models in order to formulate the CDT
matrix model that was introduced in [15] and present a generalization for spiral
gCDT. We finish with a general discussion of other approaches to gCDT in two
dimensions.
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Introduction

This thesis is the result of a combined research project for a double masters degree in
Theoretical Physics and Mathematical Sciences at Utrecht University. I was supervised by
Professor Renate Loll from the Theoretical Physics Department in Utrecht and Professor
Tom Ilmanen from the Mathematics Department at the ETH Zürich. Professor Gunther
Cornelissen was my second mathematics supervisor at Utrecht University. The topic of
my research and this thesis is Quantum Gravity, in particular a two-dimensional version
of a new generalization of Causal Dynamical Triangulations (CDT), that relaxes the time-
layering condition of this non-perturbative approach to Quantum Gravity. The model was
proposed by Samo Jordan [32].

The unification of Einstein’s theory of gravity and quantum theory is a problem that has
eluded physicists ever since both theories were first developed, almost 100 years ago. In
expectation of a combined theory, the research in the field is known as Quantum Gravity.
For an introduction to the problems encountered in this field I would recommend Christopher
Isham’s articles [29, 30, 31].
The gravitational path integral is an approach to Quantum Gravity that is straightforward
in intention, but hard to define concretely. The problem lies mainly in the definition of a set
of geometrical spaces, the space of geometries, and a measure thereon, that are superposed
via an integral and weighted by the Einstein-Hilbert functional. CDT is a non-perturbative
approach to Quantum Gravity in which the space of geometries and the path integral are
explicitly constructed as the continuum limit of a sum over weighted discrete geometrical
spaces [11, 12, 7]. These discrete geometries are built up out of simplices and have strict
time-layering such that every spatial hypersurface has the same topology. This construction
turns out to have very promising results in two, three and four dimensions. The method
seems to deliver the classically expected de Sitter space as its average geometry, as weighted
by its path sum and computed using computer simulations.
If one does not require such a time-layering, but allows for any triangulation, the nice
behaviour does not present itself in three and four dimensions. We call this approach
Dynamical Triangulations (DT) and a summary of the results can be found in [36]. It
would seem that a typical geometry in the continuum limit even has a wrong macroscopic
dimension. This raises the interesting question what it is that makes CDT work while DT
does not. The difference seems to lie in the change of spatial topology, which is disallowed
in CDT but not in DT [4, 3].
A change of spatial topology in a Lorentzian space violates causality, in the sense that the
light cones, the future and past at a point, are not well defined on the branching point
of the space, which we call a Morse point [24]. In CDT the change of topology of the
spatial hypersurfaces is explicitly disallowed. But instead of these strict conditions of time-
layering and excluded topology change, one can also prevent spatial topology change by
solely requiring the light cone to be well defined at every vertex of the configuration. In
order to do this one should endow the edges of the configuration with a colour representing
their character, either timelike or spacelike. In section 2.3 we will discuss why this is a
sensible thing to do. In two dimensions demanding a light cone to be well-defined then
becomes straightforward. At every vertex, there should be timelike edges pointing up and
down and spacelike edges to either side. We call this the light cone colouring condition. The
two two-dimensional models of generalized CDT (gCDT) that we will present in this thesis
are based on this assumption.
As CDT can be solved analytically in two dimensions, the question arises whether the same
is possible for a generalized model that satisfies the light cone colouring condition. The
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quest for such a solution is the main topic of this thesis.

In the first chapter we introduce the problem of finding a discretization for the gravita-
tional path integral in two dimensions. Section 2.1 introduces CDT and shows that two-
dimensional CDT can also been seen as a model that locally satisfies a restricted version of
the light cone colouring condition. In the second section of Chapter 2 we propose two related
two-dimensional gCDT models, bubble gCDT and spiral gCDT, and prove some interesting
properties of the associated configurations. The third section concerns the relation between
a triangle in Euclidean space and a triangle in Minkowski space and shows why it is not a
bad idea to associate characters to the edges of the triangle.
Chapter 3 reformulates the method of strip propagators or transfer matrices that can be
used to solve two-dimensional CDT analytically. We construct a similar approach for bubble
gCDT and explore the options for solving or simplifying this model.
In Chapter 4 we submerge ourselves in the world of matrix models. After an introduction
to the required techniques we present a slight adaptation of the matrix model for CDT
introduced by Benedetti and Henson in [15]. We propose a generalized matrix model that
would generate the spiral gCDT configurations with appropriate weights and discuss pos-
sible methods for solving either model. Both CDT and spiral gCDT have another dual
representation as a matrix model and we briefly discuss these as well.
Chapter 5 discusses a few other approaches to the problem of solving two-dimensional gCDT.
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1 Quantum Gravity

1.1 The Gravitational Path Integral

1.1.1 Introducing the Gravitational Path Integral

The aim when trying to construct a theory of Quantum Gravity is to build a mathematical
model describing gravitational interactions at the shortest scales and highest energies, that is
internally consistent, but also yields the right limiting behaviour in the classical gravitational
regime. We would like it to both capture the probabalistic nature of quantum theories and
at the same time preserve some of the geometrical beauty of General Relativity (GR).
The gravitational path integral is one way to express this desire. One might view the path
integral itself, the weighted superposition of all possible options, as the essence of a quantum
theory, and the study of the geometrical Einstein-Hilbert action as the essence of GR. We
can then formulate the wish to unite the two as follows:

Z(GN ,Λ) =

∫
G(M)

Dg eiSEH [g], (1)

where we integrate over G(M), the space of all distinct geometries that we want to superpose
on the n-dimensional base manifold M . In the exponent we meet the Einstein-Hilbert action

SEH [g] =
1

16πGN

∫
M

dnx
√
−g (R− 2Λ) . (2)

Here R is the Ricci curvature of the geometry g, Λ is the cosmological constant and GN
is Newton’s gravitational constant. The measure dnx

√
−g stands for the volume measure,

where now we also write g for the determinant of the geometry g written out as a bilinear
form on the tangent space of M in a particular set of coordinates. Since this determinant
g and R are both scalar in a tensorial sense and therefore independent of coordinates, SEH
is a well-defined function from G(M) to R. The entire path integral, however, is not at
all well-defined. For most choices of the space of geometries G, it is neither clear how
to parametrize G, nor what kind of measure to define on it. Even if we consider only
smooth inequivalent Lorentzian metrics “Lor(M)/Diff(M)”, one cannot straightforwardly
make sense of the expression.

1.1.2 How to solve a path integral

The path integral formulation of Quantum Mechanics introduced by Feynman considers the
weighted superposition of all paths a particle can travel. Defining a measure on this space of
all paths brings similar difficulties as defining a measure on the space of geometries for the
case of the gravitational path integral. In Quantum Mechanics one solves this problem by
Wick rotating the time variable, considering piecewise linear paths as illustrated in Figure
1.1, performing the discretized path integral, taking a continuum limit and Wick rotating
back.
We would like to construct an analogous approach for the gravitational path integral. Wick
rotation transforms the phase factor in the path integral to a genuine weight factor by
rotating the time variable in the complex plane towards “imaginary time”, t→ iτ . We can
then interpret the path integral as an unnormalized probability functional.
The space of geometries can be discretized by considering piecewise flat geometries with
N building blocks of a certain type or multiple types. We then study the discretized path
integral and try to find a well-behaved N → ∞ continuum limit for suitable values of the
coupling constants. In the end we Wick rotate back.
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Figure 1.1: An illustration of the space of geometries for a path integral with given bound-
aries. In Quantum Mechanics we want to approximate a space of paths between the bound-
ary points as illustrated in (a) and we do this by discretizing to piecewise linear paths (b)
and taking an infinite refinement limit. In the gravitational path integral we similarly wish
to construct a space of higher-dimensional geometries (c) and we choose a set of discretized
geometries (d) and try to find an appropriate continuum limit.

1.1.3 What discretization to choose

In the case of Quantum Mechanics, the paths are discretized by considering piecewise linear
paths with a fixed number of pieces. One then takes the limit of the number of pieces going
to infinity. There is little freedom to choose this discretization because we are working in one
dimension. In the higher-dimensional gravitational path integral however, many different
discretizations of the space of geometries are possible, so the question is which one to take.
The choice of a discrete model might now seem like an arbitrary parameter influencing the
behaviour of the eventual theory, but luckily universality presents a force to counteract the
influence of this choice. Universality is a general concept that appears in many systems with
a large number of variables, where one considers the effective behaviour in the limit where
the number of variables grows. It states that, if a well-defined limit exists, in many cases
slight, or even major adjustments to the system affect the behaviour of this limit very little
or not at all. In the case of a continuum limit of discretized weighted spaces, it means that
many different discrete models will flow towards the same continuum theory if a continuum
limit can be defined at all. We have illustrated this behaviour in Figure 1.2.
Giving meaning to the gravitational path integral as a theory of Quantum Gravity now
comes down to building a discrete ensemble of piecewise linear geometries, such that its
universality class has a continuum limit with the right behaviour:

(i) There is a way to study the dynamics of the continuum theory;

(ii) We can construct an “average spacetime” by studying the expectation values of suitable
observables and on large scales this resembles a classical spacetime;

(iii) On short scales we expect exotic“quantum fluctuations” of geometry.

This is a method of building a Quantum Gravity theory that is in principle constructive. In
the continuum limit of the discrete ensembles, a certain space of geometries is constructed
together with a measure and a probability functional on it, such that they satisfy our
requirements. This does not deliver a direct description or effective theory of this space or
the behaviour of the functional itself.
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Figure 1.2: Different discrete models can, in the presence of a well-defined continuum limit,
yield the same continuum theory. For example using either triangles or squares as basic
building blocks in a particular two-dimensional discrete model, will in general yield the
same continuum theory, if there is one.

1.2 The path sum in two dimensions

In this thesis we will be studying the two-dimensional gravitational path integral and in this
section we work out the method for solving it in more detail.

1.2.1 From path integral to path sum

We Wick rotate the two-dimensional path integral and work in a Euclidean framework.
Wick rotation changes the relative sign of the kinetic and potential terms in the Euclidean
Einstein-Hilbert action, so the two-dimensional Euclidean path integral looks as follows:

SEucl
EH [g] =

1

16πGN

∫
M

d2x
√
g (R+ 2Λ) , (3)

where g now is a Riemannian geometry on M . We define a family TN of distinct allowed
geometries with N unlabelled building blocks, each with a flat Euclidean geometry. Sup-
pose for simplicity that these building blocks are all polygons of equal area A. Gluing them
together gives us a polygonization of M with a piecewise flat geometry on M inherited from
the geometries of the individual building blocks. Because we are dealing with a polygoniza-
tion, all curvature is located at the (n− 2)-bones of the structure. In this case it is located
in pointlike, conical curvature singularities at the vertices. The integral over the internal
curvature therefore becomes a sum over the deficit angles at every internal vertex:∫

M

d2x
√
g R =

∑
s∈S0

(2π − φs) . (4)

Here S0 is the 0-skeleton (the set of vertices) of the polygonization and φs is the sum over
the internal angles at the vertex s.
If M has a boundary, then in order to make the action additive under gluing two polygo-
nizations along their edge, we need to add a boundary term. This is the integral over the
geodesic curvature kg along the boundary, which in the discrete case becomes the sum over
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the angles of the “kinks” in the boundary.∫
∂M

d2x
√
g kg =

∑
s∈S∂M0

(π − φs) , (5)

where S∂M0 is the collection of boundary vertices. The Gauss-Bonnet formula tells us that in
two dimensions, adding this boundary curvature term to the internal curvature term gives
us precisely a topological constant.∫

M

d2x
√
g R+

∫
∂M

d2x
√
g kg = 2πχ(M) (6)

Here χ(M) is the Euler characteristic that depends only on the homotopy class of M . Taken
together with the cosmological term, the Einstein-Hilbert action therefore reduces to the
two-dimensional Regge action [39].

SRegge(T ) =
1

16πGN
(2πχ(T ) + 2ΛArea(T )) , (7)

for T ∈ TN . The Euclidean path integral can now in theory be written as the N → ∞
continuum limit of the path sum for fixed volume, if such a limit exists:

Z = lim
N→∞

∑
T∈TN

1

CT
e−SRegge(T ). (8)

The factor CT is the order of the symmetry group of the configuration T . We divide out
this factor because the gauge orbit of symmetric configurations is smaller than that of
asymmetric configurations when we divide out labelling from a set of labelled configurations
and we want the measure we construct to take this into account.

1.2.2 The existence of a continuum limit

If we work with a base manifold M for every configuration, then the curvature term is
constant, so we can ignore it in the path integral. We have:

Z ∝ lim
N→∞

∑
T∈TN

1

CT
e
− Λ

8πGN
Area(T ) ∼ lim

N→∞

∑
T∈TN

e−λAN , (9)

where we have defined λ = Λ
8πGN

and in the last step we make use of the fact that as the
configurations grow larger, relatively fewer will have an overall symmetry, so the factor CT
can be neglected in the limit. We take the area A of the individual building blocks to be
constant as N varies, such that the N → ∞ limit corresponds to the infinite-volume limit
of the configurations. We see here that in two dimensions, the difficulty of solving the path
integral lies not within the weight itself, which is very simple, but in controlling the sum
over all possible configurations. It is now clear that for such a model, an infinite-volume
limit exists precisely if the number of elements of TN grows exponentially with N , with some
exponent λcrit, such that

lim
N→∞

∑
T∈TN

e−λAN ∼ lim
N→∞

eλcritNe−λAN , (10)

and there is a critical point at λA = λcrit. Whether this limit gives rise to an interesting
continuum theory is a different question and has to be explored separately.
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Instead of the N →∞ limit, one can also consider the grand canonical ensemble, where we
let the number of building blocks N vary.

Z ∼
∑
N

∑
T∈TN

e−λAN =
∑
T∈T

e−λAN(T ), (11)

where T =
⋃
N TN . Because a negative exponential is a summable function, this sum will

exhibit the same critical behaviour.
Once we have calculated the limit of the path sum and its critical exponent, we can probe
what the average geometry looks like by taking derivatives of the path integral or calculating
expectation values of suitable observables. In the end we make sure to Wick rotate back in
order to obtain, in theory1, results for Lorentzian spaces.

1.3 Dynamical Triangulations

It is convenient to use triangles as basic building blocks to build our discrete geometries, or
in higher dimensions simplices. These have the smallest angles of all polygons or polytopes
and therefore can approximate curvature most accurately. How curvature is approximated
by triangles is illustrated in Figure 1.3.

Figure 1.3: Gluing six equilateral triangles together yields a flat surface (left). If we leave
out one or more of them, we obtain a positively curved cone (middle), and gluing more than
six together yields a negatively curved saddle shape (right).

Dynamical Triangulations (DT) is the most straightforward model within this approach.
As basic building blocks we use Euclidean equilateral triangles or, in higher dimensions,
equilateral simplices. It was initially introduced to study string theory and two-dimensional
quantum gravity [19, 5]. A brief summary of the method can be found in [36]. In two
dimensions the continuum behaviour comes out right and we obtain Liouville gravity. In
higher dimensions however, DT does not give us the right large scale behaviour in the
continuum limit. The average geometry will even have the wrong macroscopic dimension
[1, 10].

1This is not entirely straightforward because Wick rotation is not a one-to-one correspondence between
Riemannian and Lorentzian geometries. [37] discusses Wick rotation and its status in CDT.
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2 CDT and gCDT

For an introduction to the terminology and basics of graph theory and directed graphs I
refer to [17] and [14].

2.1 Causal Dynamical Triangulations

2.1.1 Introduction to CDT

Causal Dynamical Triangulations, as introduced by Loll and Ambjørn in [13], is a mod-
ification of DT where the set of allowed triangulations T is restricted to consist of only
triangulations with a strict time-layering. This means that there is a family of hypersur-
faces, that we call spatial, in the triangulation, that all have the same topology and are
separated by a single slice of the triangulation. All simplices are between two of these
layers, so the layers contain all the vertices of the triangulation.
It turns out that restricting our set of triangulations in this way brings us to a different
universality class of models which moreover in d > 2 exhibit exactly the desired behaviour
in the continuum limit. In four dimensions, there is a phase in the phase diagram of our
coupling constants in which the geometries are on average four dimensional and shaped like
a de Sitter space, which is exactly the expected classical behaviour [8]. On small scales, the
dimension seems to go down to two, thus revealing a hint of highly non-classical behaviour
in the geometry near the Planck scale.

2.1.2 CDT in two dimensions

In two-dimensional CDT we use a closed cylinder as the underlying manifold for our trian-
gulations. The spatial layers are now circles and the triangulations in between are annuli
that do not contain vertices. In Figure 2.1 we see an example of a two-dimensional CDT
triangulation. We encounter two types of edges, which we can endow with two different
labels or colours. The edges within the spatial circles we colour “s” for spacelike and the
internal edges of the annuli we colour “t” for timelike.

Figure 2.1: An example of a two-dimensional CDT triangulation on a cylinder, where the
two sides should be identified.

Definition 2.1. A bicoloured triangulation is a finite, regular triangulation whose edges
are partitioned into two sets (colours). By regular we mean that the triangulation is a
topological manifold, although in this thesis we may sometimes allow for the two boundaries
loops of a triangulated cylinder to (partially) overlap (which we call “collapsed boundaries”).

10
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Note that because the Euler characteristic is invariant under homotopy, it does not matter
for the curvature term in the action whether the two boundaries of a cylinder touch each
other or not, even though the topology is different.
We now give the following formal definition of a coloured CDT triangulation in two dimen-
sions:

Definition 2.2. A two-dimensional CDT triangulation is a bicoloured triangulation
of a cylinder satisfying the following conditions:

(i) (tts): Every triangle has two timelike (t) edges and one spacelike (s) edge;

(ii) (Timeslicing): Cutting along all spatial edges partitions the triangulations into strips:
triangulations of an annulus with only spatial edges on the boundary loops and only
timelike edges in the interior;

(iii) (No topology change): The way the strips are glued together defines a linear order on
them, and we label the initial and the final strip (such that the two directions of the
linear order define different configurations).

There is another way to describe these triangulations in terms of more local conditions, and
this was used in [15] to formulate a matrix model that generates the CDT path sum, which
will be described in Chapter 4.

Definition 2.3. A locally generated CDT triangulation is a non-empty bicoloured
triangulation satisfying:

(i) (tts): Every triangle has two t-edges and one s-edge;

(ii) (Colouring condition): Every vertex has precisely two adjacent s-edges;

(iii) (Boundary condition): The boundary of the triangulation consists of two circles of
colour s, one of which is labelled initial and the other final.

Figure 2.2 illustrates the first two conditions in this definition.

Figure 2.2: Illustration of the local conditions that generate locally generated CDT. The tts
condition (left) and the colouring condition (right).

Lemma 2.4. The set of locally generated CDT triangulations is equal to the set of CDT
triangulations.

Proof. Both ensembles are built out of tts-triangles.
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First we show that the CDT conditions on a cylindrical surface imply 2.3(ii) and
2.3(iii). A CDT triangulation can be partitioned into strips which are glued according
to a linear order. Since the triangulation is finite, there must be a first and last
strip. The boundaries of these strips are spatial loops, thus implying condition 2.3(iii).
Because of the (tts) condition, all vertices in a strip must be on the boundary of the
strip. Therefore every vertex is either on the boundary between two adjacent strips,
or on the boundary of the triangulation. In either case, the colouring condition 2.3(ii)
holds.

Now we show that definition 2.3 of locally generated CDT triangulations implies 2.2(ii)
and 2.2(iii) and cylindrical topology. Spatial topology change requires a Morse point,
see for example [24], which would require more than two spatial edges and is therefore
excluded by the colouring condition. See Figure 2.3 for illustration of the argument.
Since the spatial topology of the two boundary loops is a circle, all spatial hypersurfaces
have the topology of a circle. Note that here the boundary condition excludes the
formation of spirals. As there are only tts-triangles and there is no timelike boundary,
all triangles must lie in strips between two spatial circles. Collecting the information
that there is no topology change, that the triangulation is finite and that it has two
loops at the boundary, we can conclude that the topology must be cylindrical and the
strips can be endowed with a linear gluing order.

Figure 2.3: Change in the spatial topology of a configuration requires a Morse point. We
depict here an impression of a CDT strip that splits into two strips. On the left we represent
the configuration projected as before, with the corresponding gluing lines marked accord-
ingly. On the right we have glued the configuration along the marked edges. We see that
the splitting vertex, marked blue, is connected to four spatial lines, here shown in gray, thus
violating the colouring condition.

So we see that CDT in two dimensions indeed has a nice local description, which we will
need for the formulation of CDT as a matrix model in Chapter 4.

2.2 Generalized Causal Dynamical Triangulations

2.2.1 Introduction to gCDT

Generalized Causal Dynamical Triangulations (gCDT), a model introduced by Jordan [32],
relaxes the strict time-layering condition of CDT, while keeping an element of “causality”
in the definition. The two-dimensional version of gCDT is the central topic of this thesis.
We will define two different models that generalize two-dimensional CDT, which we call

12
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bubble gCDT and spiral gCDT. Both of these make use of the addition of a new triangle
with colouring sst, and a generalization of the vertex colouring condition we saw in the
previous section. The new light cone colouring condition states that at every vertex there
are timelike edges above and below and spacelike edges on either side, as is illustrated in
Figure 2.4.

Figure 2.4: In two-dimensional gCDT we deal with both the tts- and sst-triangles and a
light cone vertex colouring condition as depicted above.

A typical configuration now has added structure on top of the strips that were present in
CDT, as is illustrated in Figure 2.5.

2.2.2 Why generalize CDT?

There are various reasons why it is very interesting to study a generalization of CDT that
relaxes the time-layering condition. In CDT all spatial hypersurfaces have equal timelike
separation, and transition amplitudes can be calculated between two of these layers. In a
theory of Quantum Gravity, one of the goals would eventually be to be able to calculate
transition amplitudes between any two separated spatial hypersurfaces. Previously there
have already been attempts to locally increase the timelike separation of spatial hypersur-
faces in CDT by introducing wedges, and this did not alter the universality class of the
model. In gCDT this is generalized even further.
The time-layering of CDT is often criticized to be a very rigid structure. It would be nice
to study the role it plays in the results of CDT. By relaxing this condition, but not in a
way that brings us back to Dynamical Triangulations, and studying whether the resulting
continuum theory also has nice features, we can try to understand in what sense the strict
layering is necessary for CDT. If it is the lack of spatial topology change that plays a role
as has been suggested, then perhaps gCDT will present similar results, because, as we will

Figure 2.5: Example of a gCDT configuration. The thin edges are timelike and the fat edges
are spacelike. The sides should be identified to obtain a cylinder topology. We see that the
spatial circles of CDT are decorated with spatial “bubbles” (see section 2.2.3).
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Figure 2.6: A bubble contains two sst-triangles (yellow) and any number of tts-triangles
(blue).

see in the next few subsections, spatial topology is also excluded by the light cone colouring
condition.
The gCDT models in two and more dimensions will have more freedom than CDT. By this
we mean that there are more different configurations with the same number of building
blocks, because there are now more different building blocks and there are more allowed
ways to glue them to each other. This might mean that the continuum results are better
approximated with a smaller number of building blocks, which would be good news for
the Monte Carlo simulations that are used to study CDT in higher dimensions, for which
computational force is a limiting factor.
In two dimensions specifically, we note that the spiral gCDT model that will be introduced
below, restores the local symmetry between space and time that is also present in Minkowski
space. This illustrates that if gCDT were to present results that are similar to the results
of CDT, then this could shed some light on the connection between CDT and theories
that explicitly separate space and time, such as Hořava-Lifshitz theory. See [28] for an
introduction to the latter and [6] for its connection to CDT.

2.2.3 Bubble gCDT

In bubble gCDT we add to a CDT triangulation structures that we call bubbles. They
consist of two sst-triangles on either side and any number of tts-triangles in between, as
illustrated in Figure 2.6.

Definition 2.5. The spatial or timelike skeleton of a CDT or gCDT configuration is
the collection of s- or t-edges respectively, together with the attached vertices.

In the bubble gCDT model we require that all configurations can be obtained by gluing
bubbles and strips on top of each other one by one. This makes sure that we can define
bubble time, a linear order of spatial circles of which every s-edge is a part. In general there
are multiple ways to define bubble time on a configuration. Its definition is unique precisely
if there is a unique order of gluing the bubbles. An example of a bubble gCDT configuration
for which there is no unique definition of bubble time is shown in Figure 2.7.
We note that the configurations of bubble gCDT can be obtained from the CDT triangula-
tions, both by decorating spatial layers with bubbles or by collapsing strips to form bubbles.
In the case of the first, we should add the empty triangulations with completely collapsed
boundaries, that consist of a single ring of vertices, to the set of CDT configurations. Other-
wise one cannot obtain the bubble gCDT configurations whose spatial skeleton is connected
from the set of CDT triangulations. Note that because the Euler characteristic is homotopy
invariant, this does not affect the curvature term. In bubble gCDT we will also allow for
the initial and final boundary of the triangulation to overlap, partially or completely. We
will be studying this model in Chapter 3.
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Figure 2.7: This figure illustrates two distinct ways to define bubble time on a given bubble
gCDT triangulation. From top to bottom we define six subsequent slices of discrete time.
These slices overlap partially. We see that this order of spatial circles can be defined on this
configuration in (at least) two inequivalent ways.

2.2.4 Spiral gCDT

Spiral gCDT is the local symmetrization in s and t of locally defined CDT. It generalized
bubble gCDT in the sense that it drops the gluing condition on the bubbles. Therefore all
bubble gCDT configurations, and thus in particular all CDT configurations, are contained
in the set of spiral gCDT configurations. In this model we will exclude triangulations
with collapsed boundaries for simplicity, and assume all our bicoloured triangulation are
topological manifolds.

Definition 2.6. A (locally generated) spiral gCDT triangulation is a bicoloured trian-
gulation such that:

(i) (tts and sst): Every triangle has either two timelike (t) and one spacelike (s) side or
two spacelike and one timelike (s) side;

(ii) (Lightcone colouring condition): When walking around a vertex we encounter every
colour twice with any multiplicity, as illustrated in Figure 2.8, except for vertices on
the boundary, which have no outward pointing t-edges;

(iii) (Boundary condition): The boundary consists of two spatial circles, one of which is
labelled the initial boundary and the other the final boundary.

Because we are dropping the gluing condition of bubble gCDT, bubbles are now allowed to
overlap themselves and form spirals, as illustrated in Figure 2.9a. Another structure that
occurs are bubbles overlapping each other as in Figure 2.9b, so that the configuration cannot
be constructed by gluing bubbles on top of each other one by one.
At every vertex the edges can be divided into two groups, the two sides of the vertex, divided
by the spatial edges.
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Figure 2.8: The light cone colouring condition that we impose as a local condition at the
vertices in spiral gCDT.

(a) Example of a spiral. (b) Example of two mutually overlapping bubbles.

Figure 2.9: Example of two spiral gCDT configurations that do not appear in bubble gCDT.
Blue and yellow represent tts- and sst-triangles respectively and we leave out most of the
timelike edges.

Definition 2.7. We define a time walk on a spiral gCDT configuration to be a directed
walk along the timelike edges that, at every vertex, continues on the other side of the spatial
edges.

The spiral gCDT configurations then satisfy a discrete version of the theorem about infinitely
extendable timelike geodesics.

Lemma 2.8. A time walk can always be continued unless we encounter a boundary.

Proof. This is a direct consequence of the light cone colouring condition 2.6(ii).

Interestingly, even though the spiral gCDT configurations are generated from very local
conditions, they still have some nice properties that allow us to relate them to Lorentzian
spaces. In particular, we can endow the set of vertices with a causal structure, which is a
partial order that represents a time direction. We define this partial order via the timelike
skeleton, which we transform into an acyclic directed graph (digraph). In order to do this
we first have to check that it cannot happen that two time walks originating at the initial
boundary hit the same vertex on either side, as illustrated in Figure 2.10.

Proposition 2.9. In any spiral gCDT configuration, it cannot happen that two directed
time walks away from the initial boundary end up at opposite sides of the spatial edges at a
vertex.

Proof. Suppose two time walks away from the initial boundary end up at opposite
sides of a vertex v. We mark the two walks and the piece of boundary as illustrated
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Figure 2.10: Illustration of the situation that is excluded by Proposition 2.9. Two time
walks T1 and T2 are directed outward from the initial boundary and meet on opposite sides
of the vertex v. This divides the boundary into two pieces, and we choose the piece B such
that the surface Σ enclosed by T1, T2 and B does not contain the final boundary. The walks
T1 and T2 and B are redefined a few times until we hit a contradiction.

in Figure 2.10. The piece of the boundary B is chosen such that the final boundary is
not enclosed by the path C given by B, T1 and T2. The triangulation enclosed by C
we call Σ.

First we eliminate the internal vertices of B. From every internal vertex of B originate
time walks as defined in Definition 2.7. By Lemma 2.8, these do not end within Σ
unless they return to B. If they return to B, then we can redefine T1 and T2 to be
pieces of this path. We do this until there are no more walks from B returning to B
within Σ.

Other time walks originating from B, that do not return to B, must now cross either
T1 or T2 or connect to one of the sides of v. We can redefine T1 and T2 to (partially)
follow these walks in Σ in such a way that B does not have any internal vertices left.
We can do this because there is at least one timelike walk originating from every vertex
of B and all of these can be used to redefine either T1 or T2 and make Σ smaller. Note
that it might still be the case that B has an internal edge.

Claim Σ has at least one internal vertex.

Proof The vertex v per definition has at least one s-edge pointing inwards into Σ.
This edge cannot be connected to T1 or T2 because this would violate either
the triangulation condition or the colouring condition. It cannot connect to an
internal vertex on B because we have eliminated those. Therefore it must connect
to an internal vertex of Σ.

We pick an internal vertex w of Σ. We pick two opposite t-edges of w and extend
them to a time walk γ, until they hit T1, T2, B or end up on either side of v. Using
γ we can redefine T1 and T2 such that Σ has at least one internal vertex less, namely
w. Contradiction: The entire triangulation and therefore Σ is finite, so repeating this
procedure is in contradiction with the claim that Σ has at least one internal vertex.
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Definition 2.10. We define the timelike digraph of a spiral gCDT configuration induc-
tively in the following way:

(i) On the initial boundary we direct all timelike edges away from the boundary.

(ii) If a directed edge points toward a vertex, then we define the t-edges on that side of
the s-edges of the vertex as incoming and the t-edges on the other side as outgoing, as
is illustrated in Figure 2.11.

Figure 2.11: We direct the t-edges of a spiral gCDT configuration away from the initial
boundary by inductively defining an ingoing and an outgoing side of a vertex using the light
cone colouring condition.

Proposition 2.11. The timelike digraph does not have any internal cycles.

Proof. The proof that there can be no internal cycles once the digraph is defined is very
similar to the proof of Proposition 2.9.

Every vertex has a few adjacent t-edges so the timelike skeleton is a spanning graph of
the entire skeleton. Note that the definition of the sides depends on the embedding of the
skeleton as graph, because it depends on the order of the edges at a vertex. This is not a
problem because the skeleton originates from a triangulation and therefore is endowed with
a natural embedding.

Corollary 2.12. Every directed walk can be extended to start at the initial boundary and
end at the final boundary and the final boundary has only incoming t-edges at every vertex.

Proof. The directed walks can always be extended unless they encounter a boundary, as we
know from Lemma 2.8. As there are no cycles in the digraph, the configuration is finite and
the walks do not return to the initial boundary, we will always encounter the final boundary
if we extend a directed walk. The final boundary can per construction not contain any
outgoing edges. Reversing the position of the initial and final boundary in the definition of
the timelike directed graph tells us that from every vertex of the final boundary extends a
reversed walk to the initial boundary. It is straightforward to see that such a walk on the
reversely defined digraph is an anti-directed walk on the normal digraph.

This also implies that the configuration is connected.

Lemma 2.13. All spiral gCDT configurations have the topology of a cylinder.
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Proof. We already know that the configurations are connected and that their boundary is
given by two circles. There are no internal topological singularities because we required a
bicoloured triangulation to be a topological manifold. It might still be that there are changes
in the spatial topology along the way. Again this is excluded because it would require a
Morse point which is not allowed by the colouring condition, see Figure 2.12.

Figure 2.12: Impression of a splitting spiral gCDT configuration. Spatial topology change
again requires a Morse point which is excluded by the light cone colouring condition. See
also Figure 2.3.

The causal structure can now straightforwardly be defined as follows:

Definition 2.14. We say that for two vertices in a spiral gCDT configuration, a chronolog-
ically precedes b or a � b if there is a non-empty directed walk, along and in the direction
of the timelike digraph, from a to b.

Another interesting result concerns the exclusion of the sss- and ttt-triangles.

Theorem 2.15. Condition 2.6(i) is superfluous: the colouring condition and the condition
that the configuration is a triangulation exclude the appearance of ttt- or sss-triangles.

Proof. The proof of Lemma 2.9 and the similar proof that excludes cycles in the entire
configuration, do not make use of the tts and sst condition. If a ttt-triangle would appear
in the configuration, then necessarily one of the edges would connect two vertices on the
same side, so the definition of the timelike digraph would go awry, which is in contradiction
with what has been shown above.
A similar result can be obtained for the spatial skeleton, excluding the appearance of sss-
triangles.

Apparently any bicoloured triangulation of a cylinder that satisfies the light cone colouring
condition, will automatically exclude triangles that are coloured sss or ttt. In section 2.3
we will show that a triangle in Minkowski space whose sides have only timelike or spacelike
character do not have an interpretation as a triangle with the same edge lengths in Euclidean
space, so it is interesting to note that these are automatically excluded by the light cone
colouring condition. All the results we have presented here also hold for the bubble gCDT
and CDT configurations, which are a subclass of the spiral gCDT configurations.

2.2.5 On bubble gCDT versus spiral gCDT

It is not necessarily the case that bubble gCDT and spiral gCDT fall in the same universality
class, if a continuum limit can be found for either of them at all. They are both physically
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appealing generalizations of CDT and therefore it would be very interesting to know whether
this is the case and also whether they behave similar to CDT.
The definition of spiral gCDT might seem much more appealing because of the locality of
its conditons. But one should note that in a situation where the sst-triangles have a very
small area and are therefore suppressed in the path sum, we expect large spirals to become
very common in spiral gCDT configurations. The argument is as follows: if there are, for
example, only two sst-triangles in a triangulation with many tts-triangles, then the odds
are that they are relatively far apart. Because of the colouring condition, a large spiral
then forms with the two sst-triangles at either end. Very locally a spiral might resemble
a CDT configuration, but it is not precisely known what the combinatorial properties of
these spirals are. At any rate we will not be able to define propagation between nice spatial
hypersurfaces of which every spatial edge is a part.
In bubble gCDT on the other hand, two sst-triangles are not allowed to be further apart
than a single strip. If the sst-blocks are suppressed, many bubble gCDT configurations are
expected to look just like CDT configurations, but possibly with a single bubble on one
particular layer. One would therefore expect that bubble gCDT reduces to CDT in this
case.
In both spiral and bubble gCDT, the number of sst-triangles per configuration is always
even, otherwise the boundary conditions cannot be met.

2.3 On Euclidean versus Lorentzian geometries

2.3.1 Colouring the triangle

We use Euclidean geometries in our path sum, but the intention is that these somehow
represent the Lorentzian geometries that we would actually like to weigh. From this point
of view there seems to be a logical reason why the Dynamical Triangulations approach does
not deliver the right continuum behaviour in higher dimensions. A Euclidean triangle or
simplex, and therefore the entire geometries in the DT path sum, do not have a unique
interpretation as a Lorentzian geometry. The information that is missing is in fact precisely
the information we add by colouring our triangles in CDT, as these do have a unique
interpretation.

Proposition 2.16. A Euclidean triangle with edges of length a, b and c that are coloured t,
t and s respectively, can be mapped to a “tts”-triangle in two-dimensional Minkowski space,
with two straight timelike edges of temporal length a and b and one straight spacelike edge
of spatial length c, that is unique up to the symmetries of Minkowski space.

We will prove an even more general result: the above holds for every three positive numbers
a, b and c, not necessarily satisfying a triangle inequality.

Proof. We construct the triangle and show its uniqueness up to actions of the symmetry
group of Minkowski space, which is taken to be the Poincaré group consisting of boosts and
translations plus reflections in the spatial and temporal directions.

Existence We take a spatial geodesic of length c in Minkowski space. From either end point we
draw the future timelike directed Minkowski sphere with radius a and b respectively,
as illustrated in Figure 2.13. This is the collection of points y satisfying ‖y − x‖ = r
such that and y−x is future timelike directed, for x either end of the spatial edge and
r = a, b. The spheres have exactly one intersection point, and this can be connected
to either end point of the spatial edge with straight timelike lines of length a and b.
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Figure 2.13: A picture illustrating the construction of the tts-triangle in Minkowski space
with edge lengths a, b and c from Proposition 2.16.

Uniqueness The two choices for connecting the edges to the end points are related to each other by
a spatial reflection. One could perform the same construction with the past timelike
directed sphere and this would be related to the current construction by a temporal
reflection. As the two end points of the spatial edge are spatially separated, the future
directed sphere of one cannot intersect the past directed sphere of the other, so no
other triangle can be created. All choices of the initial spatial edge and the resulting
triangle are related to each other via boosts and translations.

Corollary 2.17. The equivalent statement holds for the sst-coloured Euclidean triangle.

Proof. This follows from Proposition 2.16 by the space and time symmetry of two-dimensional
Minkowski space.

Another interesting result is the following.

Proposition 2.18. A Euclidean triangle can never be mapped to a “ttt”-triangle in two-
dimensional Minkowski space with three timelike edges, such that the timelike length of these
edges equals the edge lengths of the Euclidean triangle.

Proof. For Euclidean triangles with edges a, b, c holds the Euclidean triangle inequality:

a ≤ b+ c, (12)

and all permutations thereof. For a triangle of three timelike geodesics in Minkowski space
however, there is one edge whose proper time is longer than that of the other two combined,
so a reversed triangle inequality holds:

a ≥ b+ c. (13)

This is the origin of the twin paradox in Minkowski space. The two inequalities can only
hold simultaneously in the case of equality, in which case the lines are parallel and there is
no triangle.
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Corollary 2.19. The same holds for the “sss”-triangle.

Proof. Again this follows from Proposition 2.18 by space and time symmetry.

Similar results hold in higher dimensions.

2.3.2 The geometry of the triangles in CDT and gCDT

Because we want our triangulation to fit together nicely, we choose only two edge lengths
in CDT and generalized CDT, one spatial as and one temporal at. In Minkowski space
the usual triangle inequalities do not hold and the ratio of these two edge lengths can vary
between zero and infinity, while still being able to form a nice tts- or sst-triangle. However,
for the triangle to have an interpretation as a Euclidean triangle, the edges need to satisfy
the triangle inequality. In order to be able form both the tts- and sst-triangle in Euclidean
space we should therefore require

1

2
≤ at
as
≤ 2. (14)

This parameter is irrelevant for CDT as we only have the freedom to choose the area of the
tts-triangle. For gCDT it does become important, because this ratio determines the relative
areas of the tts- and sst-triangles and with that their respective weights.
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3 Strip Propagator Approach

3.1 Solving a discrete model

By “solving” a model in a quantum theory, one usually means determining the spectrum of
eigenvalues of the Hamiltonian operator Ĥ and the associated eigenstates. In order to come
anywhere near this formulation and such a solution, starting from a discretized gravitational
path integral, one should first determine the behaviour of the discretized model, derive the
limiting continuum behaviour amd then study the resulting effective continuum theory. In
this thesis we will only concern ourselves with the study of the discrete path sum. This
in the first place comes down to partitioning the sets of discrete geometries in a way that
allows us to get a grip on the number of geometries. We then concretely perform the path
sum or a similar sum and determine its behaviour as a function of the coupling constants.
More steps are needed to obtain an effective continuum theory and an idea of the physics
generated by the model.

3.2 For CDT

The most straightforward way to solve the two-dimensional path integral of CDT is via the
method of transfer matrices or strip propagators, as presented in [13]. In this approach we
compute the Euclidean partition sum by partitioning the CDT triangulations into subsets
with an equal number of strips k. We then describe propagation over k strips in terms of
the propagator for one strip Gs. The behaviour of the path sum and its continuum limit
can then be determined.
In this section we consider the discrete path sum in an approach that is derived from the
partinioning into strips. It differs in terms of computation from [13], but is similar to the
approach taken by Durhuus et al. in [25].
We will sometimes refer to a spatial layer with a certain number of vertices a as the state a.

3.2.1 Partitioning

We consider the CDT path sum without fixed boundaries, so summing over all possible
boundary conditions. Neglecting prefactors, the grand-canonical sum we want to study is
the following:

ZCDT ∝
∑
T∈T

1

CT
gN(T ) =

∞∑
a,b=1

G(a, b), (15)

where N(T ) counts the number of triangles in a triangulation, g = e−λAtts is the weight of a
single triangle and T is the set of all CDT triangulations of any size. CT is the order of the
symmetry group of T . We work with a preferred time direction, so the only symmetries we
are dealing with here are discrete rotations that leave the triangulation invariant. The last
term defines the propagator2 G(a, b) between initial and final states a and b respectively3.
This is the amplitude for given boundary conditions of the geometries, which are summed
over to form the entire path sum.
Let {Sk}k≥1 be the partition of T into triangulations with k strips and k − 1 intermediate
virtual states. Note that N(T ) does not factorize over this partition because there can
be any number of vertices on the intermediate circles. We can subdivide Sk into classes
S(ai) that have the same ordered set of intermediate states (ai)

k
i=0. By this we mean that

2This is not what one usually calls a propagator, which is a quantity with a fixed time interval, while
G(a, b) is the amplitude of all configurations with boundaries a and b.

3Many papers use the reversed notation, i.e. G(b, a) with a the initial state and b the final state.
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the ith spatial layer has ai ∈ N≥1 vertices, where the initial and final state are labelled
0 and k respectively. Every class of triangulations S(ai) has the same number of vertices
and therefore the same number of triangles, so the volume function does factorize over this
subpartition. We have:

ZCDT ∝
∑
{Sk}

∑
{S(ai)

}

∑
T∈S(ai)

1

CT
gN(T ) (16)

=

∞∑
k=1

∞∑
a0,...,ak=1

 ∑
T∈S(ai)

1

CT

 gN((ai)) (17)

≡
∑
k

∑
a0,ak

G(a0, ak; k). (18)

In the last line we have defined the k-strip propagator G(a, b; k), which is the amplitude in
the partition sum for propagating from state a to state b with k intermediate strips.

3.2.2 The path sum in terms of one-strip propagators

The k-strip propagator satisfies the following rule:

Claim 3.1. We have:

G(a, b; k) =
∑

T∈Sk(a,b)

1

CT
gN(T ) (19)

=
∑
l

∑
T1∈S1(a,l)

∑
T2∈Sk−1(l,b)

(
1

CT1

l
1

CT2

)
gN(T1)+N(T2) (20)

=
∑
l

Gs(a, l) l G(l, b; k − 1), (21)

where we define the one-strip propagator Gs(a, l) = G(a, l; 1) and Sk(a, b) ⊂ Sk is the subset
of triangulations with k strips and fixed boundary states a and b.

Proof. We separate three cases: T1 and T2 both do not have any symmetry (I), only one of
the two has some symmetry (II) or they both have a non-trivial symmetry (III).

(I) If T1 and T2 both do not have any symmetry, so CT1 = CT2 = 1, then there are l ways
to combine the two to form different elements of Sk(a, b) and CT = 1. Indeed

1

CT1

l
1

CT2

= l. (22)

(II) If one of the two configurations, say Ti, has some symmetry, say CTi = m, which has
to be a divisor of l, then the number of distinct configurations one can create from T1

and T2 by gluing them along the state l is l/m. The union T of the two configurations
does not have any symmetry anymore. Indeed we have

1

CT1

l
1

CT2

=
l

m
. (23)

(III) Suppose both T1 and T2 exhibit symmetry, say CT1
= m and CT2

= n and let c =
gcd(m,n). The situation can be represented by the following diagram:
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Here Zm and Zn are the symmetry groups of T1 and T2 and they are embedded in
the group Zl of relative rotations of the two configurations. The patterns on T1 and
T2 repeat themselves every l/m and l/n vertices respectively. The symmetry group of
the glued triangulation is given by the intersection of the images of Zm and Zn in Zl
under the above maps, which is the image of Zc under the embedding:

so we have that the order of the symmetry group of the glued configuration CT equals
c.

To discover the number of inequivalent triangulations, we cyclically label the different
gluings of the two configurations with an element of Zl (so 1 to l), where adding 1 to
the label corresponds to rotating the two configurations relative to each other by one
edge, in a chosen direction. Two gluings x and x̃ are equivalent due to the symmetries
of the two configurations if

r = x− x̃ = q
l

m
+ q′

l

n
, (24)

for two integers q and q′. The periodicity of the gluing, which is the smallest difference
for which the patterns repeats itself, is the smallest number r for which (24) holds.
By Bézout’s lemma this is equal to

r = gcd(
l

m
,
l

n
). (25)

To calculate r, we realize that m|l, n|l and c|l, and we can thus write

l = p · m
c
· n
c
· c, (26)

where m
c and n

c are coprime and p ∈ N. Therefore

r = gcd(p
n

c
, p
m

c
) = p =

l c

mn
. (27)

So indeed we now have

r

CT
=

l c

mn

1

c
=

l

mn
=

1

CT1

l
1

CT2

. (28)
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Corollary 3.2. By induction we obtain from 3.1 that we can write our k-strip propagator
entirely in terms of one-strip propagators:

G(a0, ak; k) =
∑

a1,...,ak−1

 ∑
T1∈S1(a0,a1)

1

CT1

 a1 . . .

. . . ak−1

 ∑
Tk∈S1(ak−1,ak)

1

CTk

 g
∑
iN(Ti)

=
∑

a1,...,ak−1

Gs(a0, a1) a1 . . . ak−1Gs(ak−1, ak) (29)

This result is represented pictorially in Figure 3.1.

Figure 3.1: A pictorial representation of the strip propagator approach to partitioning the
set of CDT triangulations T : propagation along any number of strips G(a, b) is propagation
along k strips summed over k.

3.2.3 The one-strip propagator

We have expressed our partition sum in terms of one-strip propagators. In order to solve it,
we should take a closer look at the one-strip propagator Gs(a, b) itself. We have

Gs(a, b) =

 ∑
T∈S1(a,b)

1

CT

 ga+b ≡ N (a, b)ga+b. (30)

Claim 3.3.

N (a, b) ≡
∑

T∈S1(a,b)

1

CT
=

(a+ b− 1)!

a!b!
=

1

a

(
a+ b− 1

a− 1

)
(31)

Proof. First we mark one vertex on the starting ring with a vertices.

Every configuration has a rightmost edge connecting the marked vertex with an ele-
ment of the ring with b vertices. We cut the strip along this edge. There are a + b
edges inside the strip, so subtracting the cutting edge, there are a + b − 1 edges to
distribute into a triangulation.

For all b vertices on the upper ring we choose the rightmost edge that connects to it.
This completely determines the rest of the configuration. See also Figure 3.2.
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Figure 3.2: Example of a strip with a = 5 and b = 5. We have marked a vertex on the initial
ring (yellow) and cut along its rightmost edge (red). We then choose the rightmost edges
for every one of the upper vertices (green) and this determines the configuration because it
should be a triangulation. This amounts to choosing b out of the remaining a+ b− 1 edges.

We therefore have
(
a+b−1
b

)
different strips with a marked vertex. For an unmarked

strip without symmetry, there are a marked strips corresponding to it, so we should
divide the number by a. If an unmarked strip does have symmetry, say the order of
the symmetry group is C, then there are a/C marked strips corresponding to it. This
sums precisely to formula (31).

3.2.4 Computing the partition sum

We can now rewrite our partition sum as follows:

Z =

∞∑
k=1

∑
a0...ak

ga0N (a0, a1)g2a1a1N (a1, a2) . . . g2ak−1ak−1N (ak−1, ak)gak

=

∞∑
k=1

Ak(g) (32)

=

∞∑
k=1

∞∑
ak=1

Ãk(ak, g), (33)

where the functions Ãk can be related to each other via the following formula:

Ãk =
∑
ak−1

Ãk−1 · ak−1g
ak−1N (ak−1, ak)gak . (34)

Claim 3.4. We have

Ãk(ak, g) =
gak

ak
(−Bakk + Cakk ) , (35)

where Bk = f(Bk−1), Ck = f(Ck−1) with f(x) = 1
1−g2x , B1 = 1 and C1 = 1

1−g .

Proof. We prove the claim by induction.
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Induction basis

Ã1 =
∑
a0

ga0N (a0, a1)ga1

=
ga1

a1

∞∑
a0=1

ga0

(
a0 + a1 − 1

a1 − 1

)
=

ga1

a1

(
−1 +

1

(1− g)a1

)
=

ga1

a1
(−Ba1

1 + Ca1
1 ) (36)

Where we have used the identity:

∞∑
n=0

(
n+ k − 1

n

)
zn =

1

(1− z)k
(37)

Induction step We assume Ãk is of the form (35).

Ãk+1 =
∑
ak

gak

ak
(−Bakk + Cakk ) gakakN (ak, ak+1)gak+1

=
gak+1

ak+1

∑
ak

(
−(g2Bk)ak + (g2Ck)ak

)(ak + ak+1 − 1

ak+1 − 1

)
=

gak+1

ak+1

(
− 1

(1− g2Bk+1)ak+1
+

1

(1− g2Ck+1)ak+1

)
=

gak+1

ak+1

(
−Bak+1

k+1 + C
ak+1

k+1

)
(38)

We perform the sum over ak of the functions Ãk to obtain the functions Ak(g) that were de-
fined in (32). Note that Ak =

∑
a,bG(a, b; k) and might be viewed as the k-strip propagator

without fixed boundary conditions.

Ak =

∞∑
ak=1

gak

ak
(−Bakk + Cakk )

= log

(
1− gBk
1− gCk

)
(39)

For the path sum as we have defined it we can then write:

Z(g)CDT ∝
∞∑
k=1

Ak(g) =

∞∑
k=1

log

(
1− gBk(g)

1− gCk(g)

)
. (40)

3.2.5 Critical behaviour of the model

The limiting behaviour of the model now depends on the limiting behaviour of Ak(g) as the
number of strips k →∞. We have
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lim
k→∞

Ak(g) = lim
k→∞

log

(
1− gBk(g)

1− gCk(g)

)
(41)

so this behaviour is directly related to the limits of the two iterations.
The two iteratively defined functions Bk and Ck are both iterations of f(x) = (1− g2x)−1.
For different values of g, the functions Bk and Ck will behave differently. In some cases they
have a well-defined limit and we define

B(g) = lim
k→∞

Bk(g) (42)

C(g) = lim
k→∞

Ck(g). (43)

Note that if B 6= C, then Ak converges to a constant, while if B = C, Ak converges to 0.
For g > 1/2, f(x) does not have a fixed point and the values of Bk and Ck will vary
chaotically. In the case g < 1/2, f has two fixed points, but both functions will converge
to the lowest one. If g = 1/2, f(x) has precisely one fixed point, and this turns out to be
the critical point in the phase diagram. The next step is to study the continuum behaviour
and the expectation value of observables. This can be found in [13].

3.3 Constructing a similar approach for bubble gCDT

3.3.1 A similar partitioning for bubble gCDT

If we consider the configurations of bubble gCDT, we will soon notice that a similar partition
of shapes as we have seen in the strip propagator approach is also possible for bubble gCDT.
Instead of only the strips, the triangulations can now be thought of as consisting of two
macroscopic shapes, namely strips and bubbles. The strips can be thought of as gaps in
the spatial skeleton of the configurations. A piece of the configuration between two strips,
whose spatial skeleton is a connected component of the entire spatial skeleton, we call a
bubble complex.
The grand canonical path sum of bubble gCDT can be described as follows.

ZgCDT ∝
∑
T∈T

1

CT
gN0(T ) g̃N1(T ) =

∞∑
a,b=1

G(a, b), (44)

where now T stands for all bubble gCDT configurations, N0 is the number of tts-triangles
of a configuration, whose weight is g = e−λAtts and N1 is the number of sst-triangles, whose
weight is g̃ = e−λAsst . The functional can again be split up in “propagators” G(a, b) because
we know that both boundaries are given by spatial circles with a certain unconstrained
number of vertices a and b.
The proof of Claim 3.1 does not depend on T1 and T2 being strips, and can therefore
straightforwardly be generalized to the case where one of the two is a bubble complex and
the other a strip. We can therefore again split up our symmetry factors and construct a
similar approach as in the previous section. In generalization of the strip partitioning as it
was laid out in Figure 3.1, we can now make a partitioning of the configurations into strips
and bubble complexes as illustrated in Figure 3.3. In order to do this, we should define
the minimal bubble complex to be one without bubbles, so just a single spatial circle, such
that a CDT configuration can be thought of as a bubble gCDT configuration with zero
bubbles for every bubble complex. In that case however, we see that the minimal bubble
gCDT configuration in the first term of Figure 3.3 is also a single spatial circle, which does
not have the topology of a cylinder. This is why these configurations were included in the
definition of bubble gCDT in subsection 2.2.3.
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Figure 3.3: A pictorial representation of the generalized strip propagator approach for bubble
gCDT. The bubble gCDT propagator can be thought of as a sum over n of the amplitude
of configurations with n intermediate strips. Between those strips and on either end there
can also be any bubble complex, whose propagator we call B. In the picture the bubble
complexes are coloured dark and the strips light.

We again write the propagator G(a, b) in terms of n-strip propagators, where now between
and on either side of the n strips there is the more complicated structure of a bubble complex.

G(a, b) =

∞∑
n=0

G(a, b;n) (45)

G(a0, bn;n) =

∞∑
a1,...,an
b0...bn−1

=1

B(a0, b0)b0Gs(b0, a1)a1 . . . bn−1Gs(bn−1, an)anB(an, bn) (46)

The strip propagator Gs was calculated in the previous section. The question now is what
the bubble complex propagator B(a, b) should be. Every bubble complex consists of a
stacking of a certain number k of bubbles. It is therefore evident that the bubble complex
propagator should sum all these possibilities with their appropriate weights:

B(a, b) =

∞∑
k=0

Bk(a, b). (47)

The amplitude Bk(a, b) we call the k-bubble propagator.

3.3.2 Iterative model

It would be very nice if we could exactly generate all configurations by adding one bubble at
a time iteratively, irrespective of the position of the previous ones, such that the following
simple formula would hold for the k-bubble propagators.

Bk(a, b) = “Bk1 ” =
∑

l1,..lk−1

B1(a, l1)B1(l1, l2)...B1(lk−1, b) (48)

This would imply that the one-bubble propagator B1 could be viewed as a self-energy term of
the CDT layer, and we could formulate a Dyson equation for the bubble complex propagator,
as illustrated in Figure 3.4. We call this approach the iterative model.
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Figure 3.4: A Dyson equation formulates that the one-bubble propagator is viewed as a
self-energy of a spatial CDT layer.

Unfortunately the iterative method does not give us the right set of configurations, as is
illustrated in Figure 3.5. If two bubbles are added next to each other, then the order of
adding the two bubbles does not matter and we obtain the same configuration for both ways
of ordering. If the bubbles are added on top of each other, then two different configurations
can appear, depending on the order of the bubbles. This method therefore does not generate
every configuration exactly once, but some of them are overcounted.

(a) (b)

Figure 3.5: When we glue two bubbles on a spatial layer one by one, the order, here indicated
by the number inside the bubble, does not matter if the bubbles are placed beside each other
as in (a), but does matter if the second bubble is placed on top of the first as in (b). This is
why the iterative addition of bubbles does not generate every configuration exactly once.

It is interesting to note that the configurations that are overcounted are precisely the ones
for which there is no unique definition of bubble time. The iterative approach generates all
configurations as if the bubbles were labelled. Even though the iterative or labelled approach
does not have a one-to-one correspondence with bubble gCDT, the model might still be
interesting to study. There is a chance that it actually ends up in the same universality
class as bubble gCDT, although one should of course then also find a proof of this. In
section 3.5 we study the model in more detail and also compute the one-bubble propagator
B1 and start the computation of the two-bubble propagator of normal bubble gCDT by
compensating for the overcounting of the iterative model.

3.3.3 Characterizing topologies

The k-bubble propagator cannot be considered simply as the addition of k independent
bubbles, so instead of treating the bubbles as independent objects within a bubble complex,
we will have to classify the possible configurations of stackings of k bubbles. A convenient
way of treating the bubble complexes is to look at the topological structure of the spatial
skeleton, where we forget about the two-valent vertices of this graph. This is illustrated
in Figure 3.6. We will call this the topological graph of a bubble complex, and we will call
the set of possible topological graphs of a k-bubble complex Tk. We do keep track of the
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(a) (b) (c)

Figure 3.6: Three topological graphs of bubble complexes. Graph (a) is one of the two
elements of T1, (b) is an element of T2 and (c) is in T3.

(a) (b)

Figure 3.7: The line elements of two topological graphs.

embedding of the graph in the cylinder, i.e. we know “which way around” every line runs.
This is necessary because the two different choices for a line to go around the cylinder give
rise to intrinsically different bubble complexes. We will also assume that this information
is available for a spatial skeleton.
In the topological graphs, we call the pieces of line between the (three- or higher-valent)
vertices line elements. For a given topological graph, we label the line elements 1, . . . , n(T ),
where n(T ) is the number of line elements of the graph. In a realization of a topological
graph as a bubble complex, every line element i will be endowed with a certain number of
two-valent vertices ai. If for every line element in a topological graph we have defined the
number of two-valent vertices, then we are back to a spatial skeleton, as in Figure 3.7.
For every topological graph, we can add any number of vertices greater or equal to one, to
any of the line elements, and the resulting spatial skeleton will still have a realization as a
bubble complex. So in this description the lengths of the line elements become unconstrained
parameters over which we can sum freely in the computation of the bubble propagator. This
is expressed by the following formula:

Bk(a, b) =
∑
T∈Tk

∞∑
a1,...

an(T )=1

AT (a1 . . . an(T ))g
N0(T,a1,...,an(T ))g̃2k, (49)

with

AT (a1 . . . an(T )) =
∑
B∈

ST,a1...an(T )

1

CB
, (50)

where ST,a1...an(T )
is the set of distinct bubble complexes with a spatial skeleton of the

topological graph T with line element lengths a1, . . . , an(T ), with n(T ) the number of line
elements of the topological graph T . AT is the combinatorial factor that stems from deco-
rating the spatial skeleton with timelike edges. The number of tts-triangles N0 is completely
determined by the spatial skeleton. The number of sst-triangles is always 2k for a complex
with k bubbles.
We define ai to be the length or the number of spatially two-valent vertices on the line
element i. If ai = 0, then the length of element i is a single spacelike edge. This is possible
for some of the lines, but not for others. For example, in Figure 3.7b, the labels a1, a3, a4
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Figure 3.8: Illustration of how the vertices covered by the bubble (N) and on top of the
bubble (M) are defined.

Figure 3.9: Example of a bubble with M = 5 (blue) and N = 6 (red). From left to right
we choose the first edges that connect to each upper vertex and this completely determines
the configuration. The first one is already determined.

and a5 are allowed to take value zero, but a2 and a6 are not, because a bubble consists of
at least two sst-triangles. For simplicity we will write that the ai run from 1 to ∞. Which
line elements are allowed to have length zero is well-defined for the topological graph and
does not depend on the lengths of the other line elements.
The topological graphs are not degenerate, i.e. two different topological graphs cannot give
rise to the same configuration by choosing the lengths of the line elements in a certain way.

3.3.4 Decorating a bubble

We will investigate the amplitude AT of decorating a spatial skeleton with timelike edges
in a bit more detail in the next few subsections. From this point on we will neglect the
symmetry factor of the entire bubble complex CB in (50). The bubbles themselves do not
have any internal cyclic symmetry because they have two ends. First we will discuss the
decoration of a single bubble with timelike edges.

Claim 3.5. There are M(M,N) ways to decorate the spatial skeleton of a single bubble
with timelike edges, with M the number of vertices on top of the bubble and N the number
of vertices covered by the bubble as illustrated in Figure 3.8, with

M(M,N) =

(
M +N − 2

M − 1

)
=

(M +N − 2)!

(M − 1)! (N − 1)!
. (51)

Proof. As there is now a beginning and an end vertex, we do not have to deal with marking
and unmarking. There are M +N − 1 timelike edges inside the bubble. From left to right,
we choose the rightmost edges of every upper vertex and this completely determines the
rest of the configuration, as illustrated in Figure 3.9. The first one is already chosen for us,
so we are left with M − 1 choices out of a set of M +N − 2.
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3.3.5 Partitions of line elements

We consider a spatial skeleton with topological graph T ∈ Tk and line elements a1, . . . , an(T ),
with n(T ) the number of line elements of the topological graph. We have

k − 1 ≤ n(T ) ≤ 3k. (52)

The number of line elements is at most three times the number of bubbles, because every
bubble can maximally divide a line in three pieces, see also section 3.4. The minimal number
of line elements occurs if all vertices of the topological graph coincide.
Consider the set {1, . . . , n(T )} of fixed labels for the line elements of T . Every line element
either appears once on the bottom of a bubble or it is on top of the bubble complex. At the
same time every line element appears once on top of a bubble, or is on the bottom of the
bubble complex. We choose a labelling of the bubbles in T from 1 to k. We can define two

partitions of the set of line elements labels {i}n(T )
i=1 .

Definition 3.6. The bottom partition xj

We define xj for j = 1, . . . , (k + 1) to be a partition of the line element labels {i}n(T )
i=1 , such

that xj , j = 1, . . . , k consists of the line elements at the bottom of the jth bubble and xk+1

consists of the line elements on top of the bubble configuration.

Definition 3.7. The top partition yj

We define yj for i = 0, . . . , k to be a partition of the line element labels {i}n(T )
i=1 , such that y0

consists of the line elements on the bottom of the bubble configuration and yj , j = 1, . . . , k
consists of the line elements on top of the jth bubble.

Figure 3.10: Example of the bottom and top partitions of a topological graph.

Figure 3.10 gives an example of the partitions xj and yj for a given topological graph in T2

with a certain labelling (1 and 2) of the bubbles and (1 to 6) of the line elements. There are
a few things one can say about these two partitions. In the first place, they are partitions,
so we have

k+1⋃
j=1

xj =

k⋃
j=0

yj = {1, . . . , n(T )}. (53)

Furthermore we have that the jth bubble has the line elements xj at the bottom and yj on
top. We have

xj ∩ yj = ∅ (54)

The number of vertices on either side of a bubble is the added line element lengths plus the
intermediate vertices between the line elements, which are vertices of the topological graph.
Let Nj be the number of vertices covered by bubble j and Mj the number of vertices on
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top of the bubble j. We have

Nj =
∑
i∈xj

ai + |xj | − 1 (55)

Mj =
∑
i∈yj

ai + |yj | − 1. (56)

For a bubble with M,N vertices, the number of tts-triangles is M +N − 2, so the number
of tts-triangles in the bubble j is:

N0(j) = Nj +Mj − 2 =
∑
i∈xj

ai +
∑
i∈yj

ai + |xj |+ |yj | − 4. (57)

We see that to obtain the minimal size of the bubble, so N0(j) = 0, we still need to have
Mj = Nj = 1 as there are two sst-triangles inside the bubble. This can be realized either
because there is an intermediate vertex between two line elements on top or below the
bubble or because the length of the line element is 1. This is why some line elements are
not allowed to have zero vertices.
If the labelling of the bubbles in T is compatible with a definition of bubble time on the
bubble complex, then we can furthermore say that

|x1| = |yk| = 1 (58)

xj ⊂
j−1⋃
i=0

yi (59)

1 ≤ |y0|, |xk+1| ≤ 2k. (60)

3.3.6 The bubble propagator amplitude

With the knowledge and definitions from the previous subsections, we can now write for the
amplitude of a spatial skeleton with topological graph T and line element lengths {ai}:

AT ({ai})gN0 g̃2k =

k∏
j=1

M(Mj , Nj)g
Mj+Nj−2g̃2

= g̃2kg2
∑n(T )
i=1 ai+2n(T )−4k−Vy0−Vxk+1

k∏
j=1

M(
∑
i∈yj

ai + |yj | − 1,
∑
i∈xj

ai + |xj | − 1). (61)

The expressions Vy0 and Vxk+1
stand for the vertices on the bottom and the top of the

bubble complex respectively, for which holds

Vy0
=

∑
i∈y0

ai − |y0| = am (62)

Vxk+1
=

∑
i∈xk+1

ai − |xk+1| = bm, (63)

where the am and bm refer back to equation (46), if the bubble complex is in position m.
Note that the term gbm+am+1 appears in Gs in (46), so these terms in (61) will be cancelled
in the final expression.
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Obtaining an expression for the bubble complex propagator and, via this, an expression
for the entire bubble gCDT propagator, now only depends on finding a classification of the
topological graphs together with the information that is contained in the bottom and top
partitions xj and yj . These classification problems are in general not straightforward to
solve. In the next section we will simplify the problem somewhat to obtain an insight into
the structure of the sets of topological graphs.

3.4 Restricting to two or three valence in the spatial skeleton

In this section we will simplify the problem of classifying the possible topological graphs
somewhat by restricting the set of allowed configurations such that the spatial valence of
the vertices equals two or three. This means that at every vertex, maximally one bubble is
allowed to either begin or end. This simplification has the advantage that the number of
line elements n(T ) is always precisely equal to its maximal value of 3k. We give a graphical
overview of the elements of Tk with this restriction.

We present only a few topological graphs of T3, which has 57 elements. The elements of
Tk can be generated iteratively by considering every element of Tk−1 and connecting the
line elements that are on top of the configuration to each other both ways around the
cylinder. If an element A of Tk−1 has n = |xk| line elements on top of the configuration,
then this produces 2 · 1

2n (n+ 1) configurations that are in Tk. This procedure generates all
the elements of Tk, but again overcounts the graphs that can be formed by different gluings,
which were exactly the ones that did not have a unique definition of bubble time and that
were overcounted in the iterative model. Perhaps a method can be found to generate all these
graphs uniquely, or a characterization of the top and bottom partitions of line elements.
However, we can give an upper limit of the number of topological graphs in Tk with this
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restriction:

|Tk| ≤
∑

T∈Tk−1

2 · 1

2
|xk| (|xk|+ 1)

≤
∑

T∈Tk−1

2(k − 1) (2(k − 1) + 1) (64)

≤ (2k − 1)! (65)

In order to generalize this to the unrestricted case, one should add the option of connecting
the vertices on top of the configuration in Tk−1 to each other.

3.5 Iterative bubble addition and overcounting

In this section we revisit the iterative bubble addition model and calculate the one-bubble
and two-bubble propagators.

3.5.1 Another approach

It could be the case that the iterative model has the same limiting behaviour as bubble
gCDT itself. We note that 5 out of the 6 elements of T2 have a unique gluing order. For T3

holds that 42 of 57 elements have a unique gluing order and thus a uniquely defined bubble
time.
The first step in trying to solve the iterative model is to calculate the one-bubble propagator
B1, which plays a fundamental role in the iterative bubble complex propagator Bit which
satisfies a Dyson equation:

Bit(a, b) = δa,b +
∑
k

B1(a, k)Bit(k, b). (66)

The one-bubble propagator itself is not affected by overcounting, and therefore this is also
the correct one-bubble propagator of bubble gCDT.

3.5.2 The one-bubble propagator

We have already computed the combinatorial factor that corresponds to decorating the
spatial skeleton of a bubble with edges in Claim 3.5. To compute all possible ways to add a
bubble such that the initial ring has a vertices and the final ring has b vertices, we can sum
the number of covered vertices N from 1 to a− 1 and let the number of covered vertices M
compensate to meet the boundary conditions:

M = b− a+N. (67)
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Taking into account the a possible starting positions of the bubble, we obtain the following
expression.

B1(a, b) = a

a−1∑
N=1

g2N+b−ag̃2

(
2N + b− a
N − 1

)
(68)

=
ag̃2g2+b−a

(
1 +

√
1− 4g2

)a−b
2a−b

√
1− 4g2

− ag̃2ga+b

(
a+ b− 2

a− 1

)
3F2

([
1,
a+ b

2
,
a+ b− 1

2

]
, [a, b] , 4g2

)
. (69)

Here 3F2 is a generalized hypergeometric function. Its definition is as follows:

|n|F|d| ([n1, n2, . . .] , [d1, d2, . . .] , z) =

∞∑
k=0

zk
∏|n|
i=1 (ni)k

k!
∏|d|
j=1 (di)k

, (70)

with |n| and |d| the lengths of the first and second slots of arguments and with

(a)k =
Γ(a+ k)

Γ(k)
= a(a+ 1) . . . (a+ k − 1) (71)

the Pochhammer function. This sum was performed using the non-trivial Wilf-Zeilberger
algorithm in Maple [38].
Both terms in B1 seem to have special behaviour as g → 1/2 or 4g2 → 1. In plots it seems
that the function shows more convergent behaviour towards this limit, but this has not yet
been studied in detail.

3.5.3 Counting the overcounting

If one could keep track of the overcounting generated by the iterative bubble addition, then
perhaps we can divide out this factor and end up with the bubble gCDT bubble complex
propagator after all. If we add all configurations generated by gluing two bubbles, but
multiply configurations such as in 3.5a by a factor 1/2, then we will end up with a sum over
all inequivalent configurations. We split up the two-bubble propagator in a non-overlapping
bubbles and an overlapping bubbles term.

B2(a, b) = B2(a, b)n.o. +B2(a, b)o.. (72)

Let us first calculate the case without overlap. We get a general factor of a for choosing the
beginning vertex of the first bubble. The first bubble should cover at most a − 3 vertices,
otherwise the second bubble does not fit next to the first. The second bubble can then
be chosen to start in A(N1, N2) = a − N1 − N2 − 1 positions, where N1 and N2 are the
vertices covered by bubble 1 and 2 respectively, as illustrated in Figure 3.11. The number
of vertices on top of the respective bubbles we call M1 and M2 and we define N = N1 +N2

and M = M1 +M2.

B2(a, b)n.o. =
a

2

a−2∑
N=1

∑
{N1,N2}

∑
{M1,M2}

M(N1,M1)M(N2,M2)A(N1, N2)gM+N−4g̃4. (73)
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Figure 3.11: The number of covered vertices underneath bubble 1 and 2 we call N1 and N2

respectively. The new vertices on top of the bubbles we call M1 and M2.

Here {N1, N2} are such that N1, N2 ≥ 1 and N1 + N2 = N and {M1,M2} are such that
M1,M2 ≥ 1 and M1 +M2 = M = b− a+N . We could also sum over only N1 and M1 and
replace N2 and M2 with N −N1 and M −M1 respectively. Working this out we obtain:

B2(a, b)n.o. =
a

2
g̃4

a−1∑
N=1

(a−N − 1)gb−a+2N−4

N−1∑
N1=1

b−a+N−1∑
M1=1

(
N1 +M1 − 2

M1 − 1

)(
b− a+ 2N −M1 −N1 − 2

N −N1 − 1

)
.(74)

For the overlapping case we use the labelling of the lengths of the line elements as indicated
in Figure 3.12.

Figure 3.12: The labelling of the lengths for two overlapping bubbles. As before, N1 and
M1 are respectively covered and created by the first bubble. The second bubble covers
N2 = N0

2 +N1
2 vertices of which N0

2 are part of the original ring and N1
2 are on top of the

first bubble. On top of the second bubble there are M2 vertices.

The line element that is labelled by N1
2 is in between the two bubbles and therefore is “free”,

meaning that we have an unbounded sum over its length. We introduce again a parameter
A that counts the number of possible locations for the second bubble.

B2(a, b)o. = a

∞∑
N1

2 =0

∑
{N1,N0

2 ,M1,M2}

g(M1+N1−2)+(M2+N2−2)g̃4

A(a,N1,M1, N
0
2 , N

1
2 )M(N1,M1)M(N2,M2), (75)

where the set {N1, N
0
2 ,M1,M2} is bounded by several equations. They satisfy the boundary

conditions:

b = a−N1 −N0
2 + (M1 −N1

2 ) +M2. (76)
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The first bubble fits on the ground and the second bubble fits on top of it:

1 ≤ N1 ≤ a− 1 (77)

M1 ≥ max{N1
2 , 1}. (78)

The floor level of the second bubble fits on the ground and can be empty, but the second
bubble covers at least one vertex:

0 ≤ N0
2 ≤ a−N1 (79)

N0
2 +N1

2 = N2 ≥ 1. (80)

Lastly there is at least one vertex on top of the second bubble:

M2 ≥ 1. (81)

For the number of positions of the second bubble A we have six different cases, illustrated
in Figure 3.13.

N0
2 = 0; N1

2 > 0 A = M1 −N1
2 + 1 (82)

0 < N0
2 < a−N1; N1

2 = 0 A = 2 (83)

N0
2 = a−N1; N1

2 = 0 A = 1 (84)

0 < N0
2 < a−N1; 0 < N1

2 < M1 A = 2 (85)

0 < N0
2 < a−N1; N1

2 = M1 A = N0
2 + 1 (86)

N0
2 = a−N1; 0 < N1

2 < M1 A = N1
2 + 1 (87)

For more than two bubbles the problem becomes far more complicated, as we will need to
start taking into account the distances between the first two bubbles to decide where our
third bubble can be placed. There will also be far more cases for counting the number of
possible locations of the three bubbles.

3.5.4 Future projects

Both the one-bubble propagator and the two-bubble propagator presented here can be used
to study a simplified model of bubble gCDT with only a limited number of bubbles per
spatial layer. It should be noted that these sums are not particularly easy to study. The
fact that the one-bubble propagator seems to have special behaviour at the same value of g
as CDT itself is a promising result.
In such a model the number of sst-triangles is always bounded by a constant times the
number of strips, therefore one cannot properly study the influence of the second coupling
constant g̃ that was not yet present in CDT. However, if the combinatorics of such a reduced
model already yield a superexponential increase in the number of configurations for a given
number of building blocks (see section 1.2.2), then this behaviour will also present itself in
the general bubble gCDT model, which possesses more different configurations.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.13: Pictures corresponding to the different bubble configurations. Figures (a), (b),
(c), (d), (e) and (f) correspond to the cases (82), (83), (84), (85), (86) and (87) respectively.
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4 Matrix Models

Matrix models are a method to generate an ensemble of weighted graphs as the Feynman
graphs of a matrix field theory. The graphs are generated using local conditions on the
valence of the vertices and the number of sides in a loop. One can also add colours to
the edges and restrict the way these colours connect to each other. It is therefore possible
to describe CDT and spiral gCDT in terms of a matrix model. Unfortunately both these
models turn out to be hard to solve.

4.1 Introduction to Matrix Models

We start with an introduction to the basics of matrix models. See also [21] for a quick
introduction and [26, 22, 20] for a more thorough description.

4.1.1 Calculating expectation values

As in the path integral approach, we define an unnormalized probability functional Z0:

Z0(N) =

∫
dM e

−N Tr
(
M2

2

)
. (88)

The integration range and measure are well-defined, namely, to be the N × N Hermitian
matrices H(N) and the Haar measure on them,

dM =
∏
i

dMii

∏
i<j

dRe(Mij)d Im(Mij). (89)

For a function f : H(N) → T (RN ), where T (RN ) = ⊕k≥0

(
RN
)⊗k

is the tensor algebra of
RN , we define the expectation value of f as:

〈f〉 =
1

Z0(N)

∫
dM e

−N Tr
(
M2

2

)
f(M). (90)

We can calculate this expectation value for any f by expanding f in terms of products
and sums of matrix coefficients. We use a trick called a source integral to calculate the
expectation value of the products of matrix coefficients themselves.

Σ(S) =
〈
eTr(SM)

〉
=

1

Z0(N)

∫
dM e

−N Tr
(
M2

2 +SM
)

= e
Tr
(
S2

2N

)
. (91)

In the last step we completed the square in the exponential, see also subsection 4.1.7.
Through derivation we can now obtain the expectation value of any product of matrix
coefficients. For example:
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〈MijMkl〉 =

〈
∂

∂Sji

∂

∂Slk
eTr(SM)

〉 ∣∣∣∣
S=0

=
∂

∂Sji

∂

∂Slk
Σ(S)

∣∣∣∣
S=0

=
∂

∂Sji

Skl
N
e

Tr
(
S2

2N

)∣∣∣∣
S=0

=

(
1

N
δjkδile

Tr
(
S2

2N

)
+
SijSkl
N

e
Tr
(
S2

2N

)) ∣∣∣∣
S=0

=
1

N
δjkδil. (92)

This expectation value of a quadratic term in M we will call the propagator and it will be
fundamental in the description of other expectation values.
Note that we are tacitly interchanging derivations and integrals. This is allowed because
the integrals are convergent. In general we have:

〈MijMkl . . .〉 =
∂

∂Sji

∂

∂Slk
. . .Σ(S)

∣∣∣∣
S=0

. (93)

When performing these derivations on e
Tr
(
S2

2N

)
and setting S = 0, we notice two things.

Firstly, an odd number of derivations is at least linear in S and vanishes, so the expectation
value of an odd product of M ’s equals zero. Secondly, every term in the result corresponds
to a complete pairing of the derivatives, or equivalently of the sets of indices. For every
pair, one derivative acts on the exponential to take down a factor S/N and the other acts
on this factor. This gives two delta functions relating the indices of the two derivations to
each other, just as in the propagator (92). We can therefore relate every expectation value
to sums of products of the quadratic expectation value (92). This is called Wick’s theorem
and the terms in the sum we call Wick contractions. For the expectation value of the tensor
product of K matrices M we have:〈

K∏
k=1

Mikjk

〉
=
∑
p∈PK

∏
{m,n}∈p

〈MimjmMinjn〉 . (94)

Here PK is the set of all partitions p of {1, . . . ,K} into subsets of order two. These subsets
of order two are unordered because, as we can see from the form of (92), 〈MM〉 is invariant
under exchanging the position of the two matrices.
Since the expectation value is linear, we can take any contraction of the tensor on either
side of (94) and bring the sums outside, such that the formula still holds. We will from now
on restrict ourselves to working with scalar quantities, in particular scalar quantities that
can be written as products of traces of products of M . This is equivalent to imposing the
condition that all indices appear once in the first position and once in the second position.
Because M is Hermitian, this guarantees exactly that the scalar is real.

4.1.2 Ribbon graphs

We will set up a correspondence between Wick contractions of a scalar quantity and a certain
type of diagrams called ribbon graphs or fatgraphs. A ribbon graph is a graph where at
every vertex, the adjacent edges are endowed with a cyclic order. This can be represented
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Figure 4.1: An example of a ribbon graph.

by drawing the vertices as a “circle” of dots, one for every connecting edge, and drawing
the edges as two lines, or a “ribbon”, of which both sides connect to adjacent dots of the
vertex. See Figure 4.1 for an example. If we would allow the ribbons to be twisted around
their own axis, then this would add extra freedom to the graph, therefore this is disallowed.
To keep track of this, either side of the ribbon is endowed with an arrow in the opposite
direction representing their orientation. The sides of the ribbons must then connect such
that the orientation is preserved.
Ribbon graphs can be mapped to normal graphs by dropping the extra information. There
is a one-to-one correspondence between ribbon graphs of a certain genus and graphs that can
be embedded in a surface of that genus together with a specified embedding. The skeleton
of any polygonization of a two-dimensional surface inherits such an embedding from the
polygonization and can therefore be mapped to a unique ribbon graph.

4.1.3 Correspondence between Wick contractions and ribbon graphs

The way we relate ribbon graphs to expectation values of matrices is illustrated in Figure 4.2.
The expression within an expectation value is initially related to a to a starting diagram in
the following way. An index corresponds to one dot in a vertex. Every dot is connected to two
half-edges with an incoming and an outgoing arrow, corresponding to the two appearances
of the index in the first and second position. A matrix in a trace corresponds to half a
ribbon between two dots, which represent its indices. A vertex or a circle of dots therefore
represents a trace in the expectation value, on the left-hand side of (94). The starting
diagram of

〈
Tr(M2)2 Tr(M3) Tr(M4)

〉
would for example consist of two vertices with two

dots and two half-ribbons, one vertex with three dots and three half-ribbons and one with
four of either, as shown in Figure 4.3.
The Wick contractions correspond to all ways of pairing up the matrices and therefore
they correspond exactly to the allowed ways of connecting the half-ribbons in the starting
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Figure 4.2: The correspondence between a trace of n matrices and the associated starting
diagram.

Figure 4.3: The starting diagram for
〈
Tr(M2)2 Tr(M3) Tr(M4)

〉
.
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Figure 4.4: The starting diagram for the term Tr(M4) = Mi1i2Mi2i3Mi3i4Mi4i1 .

diagram together to form a ribbon graph. Every ribbon itself then represents one of the
propagators of the form 〈MM〉 on the right-hand side of (94). We can now relate Figure
4.1 to a contraction of

〈
Tr(M) Tr(M2) Tr(M4)2 Tr(M5) Tr(M8)

〉
.

4.1.4 Planar and non-planar diagrams

Let us perform the computation of the Wick contractions of
〈
Tr(M4)

〉
for illustration. We

can represent the term we start with, Tr(M4), as the diagram in Figure 4.4.
For the expectation value of this trace we have the following computation:

〈
Tr(M4)

〉
=

∑
i1,i2,
i3,i4

〈Mi1i2Mi2i3Mi3i4Mi4i1〉

=
∑
i1,i2,
i3,i4

∑
p∈P4

∏
{m,n}∈p

〈
Mimim+1Minin+1

〉

=
∑
i1,i2,
i3,i4

(
〈Mi1i2Mi2i3〉 〈Mi3i4Mi4i1〉 (95)

+ 〈Mi1i2Mi3i4〉 〈Mi2i3Mi4i1〉 (96)

+ 〈Mi1i2Mi4i1〉 〈Mi3i4Mi2i3〉
)

(97)

=
∑
i1,i2,
i3,i4

1

N2

(
δi1i3δi3i1 + δi1i4δi2i3δi2i1δi3i4 + δi2i4δi4i2

)

=
N3

N2
+

N

N2
+
N3

N2
. (98)

The terms in the Wick contraction (95), (96) and (97) are represented by the diagrams 4.5a,
4.5b and 4.5c respectively. The Wick contractions correspond precisely to all allowed ways to
connect the ribbons of the labelled starting diagram 4.4. We see that if in every propagator
the two matrices are multiplied, so share a common index, then the corresponding diagram
is planar. If this is not the case, as for term (96), then the diagram becomes non-planar,
as in Figure 4.5b, which can be viewed as a tesselation of the torus. The non-planar terms
give rise to more delta functions which cancel the summations over the values of the indices.
Therefore the planar diagrams contribute with a factor N , while the non-planar diagram
contributes with, in this case, a factor 1/N .
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(a) Diagram corresponding to
(95).

(b) Diagram correspond-
ing to (96).

(c) Diagram corre-
sponding to (97).

Figure 4.5: Ribbon graphs corresponding to the different Wick contractions of
〈Mi1i2Mi2i3Mi3i4Mi4i1〉. Note that (a) and (c) are the same under cyclic relabelling of
indices.

This relates to a result that holds in general for matrix models. If we view a ribbon graph
as a tesselation of a compact two-dimensional surface, then its contribution is proportional
to Ne2−e1 , where ei is the number of i-cells. See [21] for a detailed calculation of this result.
For the genus g of a two-dimensional surface Σ we have:

2− 2g = χ(Σ) = e0 − e1 + e2, (99)

so for the order of a diagrams holds:

e2 − e1 = 2− 2g − e0. (100)

We see that the order only decreases with genus, so the planar diagrams are the leading
order in N . Therefore taking the N →∞ limit singles out the planar diagrams and this is
what is usually done, because if all geni are taken into account, the number of configurations
will in general grow superexponentially.

4.1.5 Generating specific ensembles

To illustrate how one might describe specific ensembles using matrix models, let us consider

the expectation value of the generating function f3 = e
Nc3 Tr

(
M3

3

)
.

〈f3〉 =

∞∑
k=0

(Nc3)k

3kk!

〈
Tr
(
M3
)k〉

=

∞∑
k=0

(Nc3)k

3kk!

∑
T∈X̃k

Ne2(T )

Ne1(T )
. (101)

Here X̃k is the set of all ribbon graphs with k three-valent vertices, where all the dots are
labelled with an index, as we have seen before in Figures 4.4 and 4.5. We would like to
get rid of this labelling and sum over inequivalent diagrams. The order of the relabelling
symmetry group of a ribbon graph with k three-valent vertices is 3kk!/CT , where CT again
is the order of the symmetry group of the unlabelled diagram. Because the traces have a
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cyclic symmetry, we are allowed to relabel cyclically the dots around every vertex, and this
gives us the factor 3k. The permutation of the different identical vertices gives us k!. Then
we have to divide out the symmetry of the entire diagram because we will obtain the same
labelled configuration multiple times if the diagram has some overall symmetry. We can
now rewrite our expectation value in the following way:

〈f3〉 =

∞∑
k=0

∑
T∈Xk

1

CT

(
Ne0(T )−e1(T )+e2(T )

)
ck3

=
∑
T∈X

1

CT

(
Nχ(T )

)
c
e0(T )
3 , (102)

where Xk is the set of unlabelled inequivalent graphs with k three-valent vertices and X =⋃
k Xk is the collection of all inequivalent ribbon graphs with three-valent vertices. By taking

an N → ∞ limit we can single out the planar diagrams, that are a tesselation of one or
multiple spheres, and at the same time get rid of the N dependence, which is irrelevant for
our ensemble of diagrams.

lim
N→∞

〈f3〉
N2

= lim
N→∞

∑
T∈T

1

CT
N−gce03

=
∑
T∈T

1

CT
ce03 (103)

Now the sum starts to resemble some of the sums that we have seen before. In particular,
there is a one-to-one mapping between the ribbon graphs with three-valent vertices and
triangulations of the same topology, see subsection 4.2.1. Therefore we might as well view
(103) as a sum over triangulations that are tesselations of one or multiple spheres, where
we give every triangle a weight c3.
We can furthermore add two special vertices to the triangulation that we associate to two
boundaries. If we now also subtract the diagrams that are disconnected, then the diagrams
we end up with will have the topology of a cylinder, and the ensemble we sum over is pro-
portional to the grand canonical path sum of Dynamical Triangulations in two dimensions.
In formula this looks as follows. First we define a new “expectation value” for a function g:

〈g〉3 = 〈f3g〉 . (104)

The path sum of DT can then be described as follows:

ZDT ∝
∑
a,b

lim
N→∞

1

N2

〈
Tr(Ma) Tr(M b)

〉
3
− 〈Tr(Ma)〉3

〈
Tr(M b)

〉
3
. (105)

We call S = N Tr
(
M2

2 − c3
M3

3

)
, which is minus the term in the exponential of the proba-

bility functional for 〈.〉3, the action of this matrix model. By adapting S we can study many
different ensembles of weighted graphs.

4.1.6 Multi-matrix models

One can introduce colours in a matrix model by introducing different integration variables,
say A and B, both ranging over Hermitian matrices. The edges correspond to propagators
and therefore to the quadratic terms in the action. If we add terms of the form A2 and B2
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to the action, but not of the form AB, then only propagators of the form 〈AA〉 or 〈BB〉
are non-zero and the edges will be endowed with either colour A or colour B. Adding a
term of the form AAB to the action will then generate three-valent vertices in the resulting
diagrams that connect two A and one B edge. A model with multiple integration variables
we call a multi-matrix model.

4.1.7 Dually weighted matrix models

Apart from restricting only the valence of the vertices in the diagrams generated by a matrix
model, one can also simultaneously restrict the number of edges of the polygons. Models of
this type are called dually weighted. The trick is to give the quadratic terms in the action
a weight in the form of an external N ×N matrix C that is invertible and Hermitian.

ZC(N) =

∫
dM e

−N Tr

(
(C−1M)

2

2

)
(106)

The source integral Σ will now depend on C. We define

Σ =
1

ZC

∫
dM e−

N
2 Tr((C−1M)2)+Tr(SM). (107)

We substitute M ′ = C−1M and complete the square in the exponent.

− N

2
Tr

[
M ′2 − 2

N
SCM ′

]
= −N

2
Tr

[
M ′2 − SCM ′

N
− M ′SC

N

]
(108)

= −N
2

Tr

[(
M ′ − SC

N

)2

−
(
SC

N

)2
]

(109)

= −N
2

Tr
[
(C−1M ′′)2

]
+

Tr
[
(SC)2

]
2N

, (110)

where we have substituted C−1M ′′ = M ′ − SC
N . So the source integral evaluates to:

Σ(S) = e
Tr ((SC)2)

2N . (111)

The propagators will then similarly depend on C.

〈MijMkl〉C =
∂

∂Sji

∂

∂Slk
e

Tr ((SC)2)
2N

∣∣∣∣
S=0

=
∂

∂Sji

(
1

N
CkaSabCbl

)
e

Tr ((SC)2)
2N

∣∣∣∣
S=0

=
1

N
CkjCil (112)

In a ribbon graph a single complete ribbon represents a propagator and, as Figure 4.6
illustrates, every side of such a ribbon corresponds precisely to a factor C/

√
N . A polygon

with k sides, which is a closed loop in the diagram, therefore corresponds to a trace over
k matrices C divided by Nk/2. One can now subject the diagrams to conditions on the
number of sides by maintaining the conditions on C of the form

Tr
(
Ck
)

= N tk, (113)
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Figure 4.6: The corresponding diagram of the propagator 〈MijMkl〉C = 1
NCkjCil. We see

that in the diagram, the indices come out in such a way that both sides of the ribbon
correspond precisely to a factor C/

√
N .

where tk is the weight of a k-sided polygon. The factor N stems from the fact that we
are taking a trace. Compare to the case without an external C factor, where a k-loop
corresponds to a trace of δk/Nk/2 = N/Nk/2 = (N · 1) /Nk/2 and the faces have weight 1
in for example (102).

Let us consider a general generating function f = e
N
∑
i ci Tr

(
Mi

i

)
. If the matrix C satisfies

(113) for some real weights tk, k ∈ N, then in generalization of (102) the expectation value
of f evaluates to:

〈f〉C =
∑
Γ∈G

1

CΓ
Nχ(Γ)

∏
i

c
e0[i](Γ)
i t

e2[i](Γ)
i , (114)

where ej [i] (Γ) stands for the number of j cells of valence i of the ribbon graph Γ, and G is
the collection of all ribbon graphs. By setting various weights ci and ti to zero, we can adapt
both the allowed vertex valences and the number of sides of the polygons of the graphs.
One should note that for any finite N , it is of course not possible to require an infinite
number of independent conditions of the form (113). In many cases, the conditions can only
be required in the N → ∞ limit. This poses a problem for solving such a model, which
would require some knowledge of the behaviour of a family of matrices C(N) satisfying
(113) in the limit. Kazakov et al. discovered a rule for the characters of such a family in
[34]. See also [33] for a review of this method.

4.2 Matrix Model for CDT

We will present a slightly modified version of the matrix model for CDT introduced by
Benedetti and Henson in [15]. It is a dually weighted bicoloured model, such that in the
N → ∞ limit, there is a one-to-one correspondence between the CDT triangulations and
their weights, and the ribbon graphs that contribute to the transition between two spa-
tial boundary loops, and their amplitudes. There is also at least one other matrix model
description of CDT that relies on other principles, see [2].

4.2.1 Dual triangulations

Instead of a direct mapping between the ribbon graphs and the CDT triangulations, we
first map our triangulations to their Poincaré dual. For a two-dimensional polygonization
we can define the dual in the following way:

- A polygon is replaced by a vertex with as many connecting edges as the polygon has
sides;

- A vertex is replaced by a polygon with as many sides as the valence of the vertex;
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Figure 4.7: Illustration of the dual (dotted) of a 2D CDT triangulation.

- An edge is then automatically replaced by an edge that crosses the original one.

Figure 4.7 shows the dual of a two-dimensional CDT triangulation. Here the dual edges
retain the colour of the original edges. We see that for the dual configurations holds that
every vertex has colour tts and every polygon has precisely two s-sides. We see that we can
give the following definition of a dual CDT triangulation.

Definition 4.1. A dual CDT triangulation is a bicoloured polygonization satisfying the
following conditions:

(i) (tts): Every vertex has two adjacent t-edges and one adjacent s-edge, except for the
boundary vertices;

(ii) (Colouring condition): Every polygon has precisely two s-sides;

(iii) (Boundary condition): There are two “boundary vertices” with only s-edges, one is
labelled initial and the other final.

4.2.2 A matrix model for CDT

We can now define a matrix model that generates dual CDT triangulations with the ap-
propriate weights. It is essential for this description that CDT can be generated locally, as
we have seen in section 2.1. We formulate conditions on the matrix model such that the
generated graphs satisfy the conditions in definition 4.1. The two colours s and t correspond
to two integration variables we call S and T . The tts-vertices are generated by a term gTTS
in the action, where g is the weight of a tts-triangle in CDT. The appearance of precisely
two s-edges in every polygon is implemented by working with an external matrix C. We
define the following probability functional:

ZdCDT =

∫
dT dS e−N Tr( 1

2T
2+ 1

2 (C−1S)2−gTTS) (115)

with on the matrix C the condition

Tr (Cm) = Nδ2,m (∀m) as N →∞. (116)
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Figure 4.8: A polygon with two s-edges is proportional to the right-hand side of (116) for
m = 2, which is the only case for which the expression is non-zero.

Formula (116) captures the condition that every polygon containing s-edges has precisely
two of them, as illustrated in Figure 4.8. We are not constraining the loops with only t-
edges, which correspond to vertices with only t-edges or “caps” in the normal CDT model.
However, it is clear from Corollary 2.12 that only two of these can appear in a graph that
is a tesselation of the sphere and satisfies the conditions in Definition 4.1.
Just as we have done for DT in the subsection 4.1.5, we can add boundaries to our ribbon
graphs by adding an initial and final vertex. We then have the following correspondence
between the diagrams and weights generated by this model and the triangulations and
weights of CDT.

ZCDT ∝
∑
a,b

G(a, b)

=
∑
a,b

lim
N→∞

1

N2

(〈
Tr(Sa) Tr(Sb)

〉
− 〈Tr(Sa)〉

〈
Tr(Sb)

〉)
(117)

Here G(a, b) is the propagator for CDT we have introduced in section 3.2, for a, b ∈ N.
A connected graph with two boundary vertices will not have any caps. The disconnected
graphs are subtracted in the second term of (117).
Benedetti and Henson tried various routes to solving this model, but did not succeed.

4.3 Generalization for gCDT

The model presented in the previous section can be generalized to a matrix model for spiral
gCDT.

4.3.1 Dual of spiral gCDT

As was the case with CDT, we can map spiral gCDT to its dual.

Definition 4.2. Dual spiral gCDT triangulation
A dual of a spiral gCDT triangulation is a bicoloured polygonization satisfying the following
conditions:

(i) (tts and sst): Every vertex is coloured either tts or sst, except for the boundary
vertices;

(ii) (Lightcone colouring condition): If we go around a polygon, we encounter a group of
edges of every colour twice;
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Figure 4.9: A polygon that satisfies the light cone colouring condition is proportional to a
trace of a product of the form Ci10 C

j1
1 C

i2
0 C

j2
1 , for positive and non-zero integers i1, j1, i2, j2.

This is precisely the type of trace that gets a non-zero weight if we impose condition (119).

(iii) (Boundary condition): There are two “boundary vertices” with only s-edges, one is
labelled initial and the other final.

4.3.2 A matrix model for spiral gCDT

We can generalize the model by Benedetti and Henson to the dual of spiral gCDT by
symmetrizing the action. We include both a term gTTS for the tts-vertex as well as a term
g̃SST for the sst-vertices, which get a weight g̃. Also do we now have to weight both S and
T with an external matrix. We define the following probability functional:

ZdgCDT =

∫
dT dS e−N Tr( 1

2 (C−1
0 T )2+ 1

2 (C−1
1 S)2−gTTS−g̃SST), (118)

where the external matrices satisfy in the N →∞ limit

Tr

 m∏
k=1

ik,jk∈N≥1

Cik0 C
jk
1

 = Nδ2,m (∀m) (119)

Tr (Cm0 ) = 0 (∀m) (120)

Tr (Cm1 ) = 0 (∀m). (121)

How condition (119) translates the colouring condition is illustrated in Figure 4.9. This time
we are also prohibiting the appearance of caps, timelike or spacelike, by imposing conditions
(120) and (121). As the timelike directed walks can now not end without the addition of
boundaries and the configurations are finite, there will not be any “vacuum graphs” for this
model. By this we mean that without the addition of boundaries or source terms, the set
of graphs in its expansion will be empty.
We then have the following correspondence between spiral gCDT and the weighted graphs
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generated by this model:

ZgCDT ∝
∑
a,b

G(a, b)

=
∑
a,b

lim
N→∞

1

N2

(〈
Tr(Sa) Tr(Sb)

〉
− 〈Tr(Sa)〉

〈
Tr(Sb)

〉)
=

∑
a,b

lim
N→∞

1

N2

〈
Tr(Sa) Tr(Sb)

〉
. (122)

As we have seen in section 2.1 the locally generated CDT triangulations and therefore
their dual triangulations are automatically connected, and therefore the disconnected term
vanishes. There can be no graphs with only one boundary.

4.4 How to solve the matrix models

In general matrix models cannot be solved, but there are a few standard approaches to de-
termining the limiting behaviour of the integrals that deal with for example diagonalization
of the integration variables. A thorough explanation of a number of methods can be found
in [20, 26, 22]. Many of these standard methods do not seem to apply to either of the models
described above. Benedetti and Henson have used several techniques in their paper, but
were in the end not able to solve the model.
One thing that can be done straightforwardly for the CDT model is integrating out the
variable S, using again a completion of the square in the exponent of ZdCDT . This corre-
sponds in the CDT diagrams to gluing all tts-triangles together in pairs along their s-edges.
The T variable can also be integrated out and this corresponds to gluing the triangles into
strips and considering the combinatorics of these strips, which is similar to the strip prop-
agator approach that we studied in Chapter 3. In this case the resulting transformation
determinant will play an important role. Methods for how to deal with these can be found
in [40].
For the spiral gCDT model, the variables S and T can also be integrated out. The integration
of the T variable corresponds to an approach similar to the strip propagator approach for
bubble gCDT, where now beside strips and bubbles, we should also consider the spirals as
separate objects and the bubbles are allowed to overlap each other. The resulting matrix
model represents the combinatorics of gluing these three objects, strips, bubbles and spirals,
to each other in all possible ways satisfying the boundary conditions. Integration of the T
variable represents a very similar approach in the timelike direction, which we will also
shortly discuss in subsection 5.1.2. For both approaches a transformation determinant will
play a role.
For the application of character expansion methods to these models [35] will be of help.
The formula by Kazakov et al. in [34] can be applied to the situation in the CDT case, to
explore the behaviour of a family of matrices satisfying (116). For the condition (119) that
mixes the two external matrices in the gCDT model however, no such formula exists.

4.5 Dual models

Models that can be presented in the form of a dually weighted matrix model, can always
be presented as such in two ways, namely, we can also write down a dual matrix model. In
the case of the matrix model for the dual of CDT, we can also construct a model for CDT
itself as follows. We define the probability functional
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ZCDT =

∫
dT dS e−N Tr( 1

2 (C−1
0 T )2+ 1

2 (C−1
1 S)2−

∑
k,l T

kST lS) (123)

with

Tr
(
C2

0C1

)
= N g (124)

and then we have

G(a, b)CDT = lim
N→∞

(〈
Tr(Sa) Tr(Sb)

〉
− 〈Tr(Sa)〉

〈
Tr(Sb)

〉)
(125)

Analogously we can define for spiral gCDT:

ZgCDT =

∫
dT dS e−N Tr( 1

2 (C−1
0 T )2+ 1

2 (C−1
1 S)2−

∑
k,l,m,n T

kSlTmSn), (126)

where in the sum k, l, m and n should be integers greater or equal to 1. On the external
matrices we should then impose the conditions:

Tr
(
C2

0C1

)
= N g (127)

Tr
(
C2

0C1

)
= N g̃. (128)

We will then again have

G(a, b)gCDT = lim
N→∞

(〈
Tr(Sa) Tr(Sb)

〉
− 〈Tr(Sa)〉

〈
Tr(Sb)

〉)
(129)

Both these models have far simpler conditions on the external matrices C0 and C1, but far
more complex expressions in the exponentials, and therefore the odds of finding a solution
are slim.
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5 Other Methods

Here we discuss a few other ideas for studying the path sum of the two-dimensional gCDT
models presented in this thesis.

5.1 Mappings of CDT and gCDT to other ensembles

In the study of random ensembles of geometric objects it can be useful to find a map from
one ensemble of geometries to another. There are two kinds of these mappings that can
be of use. The first is a one-to-one mapping, such as between CDT or spiral gCDT and
their Poincaré dual, which we have used in Chapter 4 to construct a matrix model for either
ensemble. The other is a one-to-many mapping, where the amount of degeneracy is under
control. Examples of this are the maps from bubble gCDT to the spatial skeleton and to
the topological graphs that we have defined in Chapter 3, where the degeneracy can be
controlled by calculating the number of ways to decorate a skeleton with timelike edges and
varying the line element lengths.

5.1.1 Relations between CDT and other ensembles

There are many maps from CDT to other geometrical ensembles. Most of them rely heavily
on the linear order of the strips in CDT and cannot straightforwardly be generalized to
gCDT. We give a few examples. In [23], Di Francesco et al. define one-to-one maps from
the dual of CDT to trees and random walks. Durhuus et al. define in [25] another injective
way to represent CDT triangulations as trees. They moreover define a many-to-one map to
a reduced model in which all spatial layers are contracted to a point and use this to show
that the spectral dimension of two-dimensional CDT equals two.

5.1.2 Digraphs

The strip propagator approach for gCDT makes use of a projection of bubble gCDT to the
set of spatial skeletons. One can attempt an equivalent approach for the timelike skeleton of
spiral gCDT. The advantage of this approach is that, as we have shown in section2.2.4, the
timelike skeleton can be endowed with the structure of an acyclic digraph. Acyclic digraphs
are also studied in the context of causal sets, see, for example, [18] and [27], although in that
case there are no contraints on the planarity of the graphs. Also these digraphs do not come
with an intrinsic embedding, while in our case the different embeddings of a graph should be
considered as different configurations, or in other words, the amplitude of a digraph should
be multiplied by the number of allowed embeddings. Indeed the great disadvantage of this
approach is that the restrictions on these digraphs become rather complicated.
In the timelike skeleton there can appear the vertical equivalent of a strip, namely a set of
stacked sst-triangles between the initial and final boundary. We will call such a structure
a gap. If no gaps occur in the configuration, then the timelike digraph is connected and
should be embeddable in a cylinder in such a way that the sources and sinks of the digraph
occur on either boundary. If there is one gap, then the timelike skeleton is still connected,
but the topology should be planar in such a way that there is an embedding in the plane for
which the sources and sinks are separated and at the boundary of the embedding. If there is
more than one gap, then more of these planar pieces occur, which should be endowed with
an order.
The timelike digraph does completely determine the number of building blocks of either type,
in the same way that the spatial skeleton of a bubble determines the number of triangles
inside.
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5.1.3 Digraphs for CDT

For CDT the projection to the timelike digraph is a one-to-one mapping, i.e. the timelike
skeleton completely determines the triangulation. This map is also trivially related to the
mapping of CDT to trees introduced by Durhuus et al. in [25], where the digraph is mapped
to a tree by deleting the leftmost edge at every vertex.

5.2 Graph Theory

As the setup of our project can be interpreted as a problem in graph theory, we would
like to use the advanced tools from this mathematical field of study. Unfortunately the
ensemble we study is very specific and its difficulty lies precisely in the specific conditions,
so many general results turn out not to be very helpful. One very strong theorem that could
in principle be useful, if we can adapt the model to satisfy its prerequisites, is the Graph
Minor Theorem [16]. It is a very strong result, whose proof was only finished in 2004. See
for an elaborate introduction to the basics of graph theory for example [17].

5.3 Monte Carlo simulations

In CDT the Markov chain Monte Carlo method is used to study the typical states that arise
from the CDT path sum in two and more dimensions for a given value or range of the number
of building blocks N . It can be applied to study the N → ∞ limit of these typical states,
and with that the continuum behaviour of CDT. It can most likely be straightforwardly
generalized to either of the two two-dimensional gCDT models described in this thesis.

5.3.1 How does it work?

The process works as follows. We have a set of options, in this case the set of different
geometries T , that are weighted by a probability functional, in this case the partition sum.
We construct a set of steps or moves, which are small changes to the configurations such
that we stay inside T , but that are ergodic. By this we mean that any allowed configuration
can be obtained from any other by applying a finite number of steps. For two-dimensional
CDT the step of the creation or destruction of an s-edge by breaking up a vertex or gluing
two together, as illustrated by Figure 5.1, is an ergodic move, that can generate all CDT tri-
angulations from a minimal one [9]. The Monte Carlo moves for three- and four-dimensional
CDT can be found in [11].
One now constructs a chain of configurations by picking one and applying the steps ran-
domly, but with a certain weight that is based on the effect of the step on the weight of
the configuration. This chain is Markovian in the sense that the order of the steps does not
matter, i.e. the system does not have a memory of the previous steps other than how they in
total have affected the configuration. By repeating this procedure we eventually end up in
an equilibruim state of the system, where the qualitative behaviour of the configuration does
not change anymore. By studying these equilibrium states for a large number of building
blocks N , one can derive the limiting behaviour of the typical configuration and estimate
the size of the (quantum) fluctuations around this average geometry.

5.3.2 Monte Carlo simulations for gCDT

By adapting the steps for two-dimensional CDT, it is most likely possible to construct a set
of ergodic steps for either bubble gCDT or spiral gCDT. The three-dimensional analogues of
these two models are already being studied using simulations, see [32]. One could imagine
local steps that affect the vertices in such a way that precisely the light cone colouring
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Figure 5.1: The step of creation and annihilation of an s-edge in a CDT triangulation.

Figure 5.2: The step of creation and annihilation of a t-edge in a gCDT triangulation.

condition is preserved. This might render a way to study spiral gCDT using Monte Carlo
simulations. Another approach would be to take the bubbles as fundamental objects and
allow, next to the CDT steps, only steps that create or destroy a bubble of minimal size,
as shown in Figure 5.2, and steps that enlarge or shrink the bubbles. Such a construction
could perhaps be used to study bubble gCDT using Monte Carlo simulations.
Studying two-dimensional gCDT with the use of simulations will not provide us with an
analytical solution of the path sum, but it will provide evidence on whether the universality
class of either gCDT model is the same as that of two-dimensional CDT and it could provide
additional input to work towards on the analytical front.
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Discussion

This thesis discussed the two-dimensional version of a new generalization of CDT. Two
related models were introduced, bubble gCDT and spiral gCDT, both relying on the intro-
duction of a new triangle with two spacelike sides and one timelike side that was not present
in the original two-dimensional CDT. The vertices in the triangulations associated to these
models were submitted to a light cone colouring condition, which required that at every
vertex we have the timelike edges pointing up and down and spatial edges to either side.
We gave the proof of a few interesting properties of these configurations, in particular, the
presence of an overall time direction.
If the gCDT approach would yield results that resemble the results of CDT itself, then this
would tell us a lot about the role the time-layering plays in CDT. This thesis was therefore
devoted to finding an analytical solution to either of the two proposed models. We discussed
the strip propagator method for CDT and a similar approach for bubble gCDT. Solving the
problem along this route would require an accessible classification of all possible spatial
skeletons of bubble configurations and being able to compute a number of difficult sums.
We constructed a simplified model where at every vertex we had maximally one bubble orig-
inating or ending, but although this seemed to simplify the calculation, the same difficulty
of finding a characterization of topological graphs was met. We nonetheless computed the
one-bubble propagator and started the computation of the two-bubble propagator, both of
which can be used to study a reduced model that incorporates maximally one or two bubbles
per layer.
We then dived into the realm of matrix models, where we presented the matrix model for
CDT by Benedetti and Henson [15] and proposed a generalization along the same lines for
gCDT. We discussed possible methods for solving these models and introduced the two dual
models. In the last chapter we discussed a few other ideas that could eventually lead to
other methods for solving either of the models.
As a next step one could indeed attempt to find a classification of the topological graphs that
are needed to study bubble gCDT in the way we proposed in Chapter 3. In particular, to
study the exact model one would need to categorize the combinatorial information captured
in the order of the bubbles in such a graph. This would also be an interesting object of
study from a mathematical point of view. Another approach would be to try to extract the
leading order behaviour directly, instead of considering the model exactly.
The model of iterative bubble addition could have the same continuum behaviour as the
gCDT models. The iterative propagator can at least be formulated and, in principle, calcu-
lated and this alone makes this model interesting.
The matrix models that were presented do not seem near a solution, but would be very
interesting to study. Finding a generalization of the character expansion method by Kazakov
et al. [34] for a condition that mixes two external matrices would open up a whole new class
of possibly solvable coloured matrix models.
It might be the case that a map from either of the gCDT models to a controllable ensemble
can be found. There is however a certain amount of conservation of difficulty involved, as
the combinatorics of bubbles and strips and the complicated light cone colouring condition
will always play a role. This is therefore an approach that is not very likely to render a
solution. On the other hand, when it comes to maps between geometric ensembles, it seems
that anything is possible.
Advanced graph theory might present a solution, although many results from this field do
not seem applicable.
The most promising approach at this point is to study the model numerically using Monte
Carlo simulations. Although this will not present an analytical result, it would presumably
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be able to answer the question whether this model yields the same continuum behaviour
as CDT in two dimensions, whether it possesses a well-defined limit at all, and in which
regions of the phase space such a continuum limit would present itself.
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