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Abstract

In this thesis we will be looking at braid groups, their representations
and how they play a role in quantum mechanics in two dimensions. We
introduce configuration spaces, and prove a theorem by Artin relating the
Artin braid groups Bn to braids on R2. We consider the Burau representa-
tion and the Lawrence-Krammer-Bigelow representation and give an idea
of their derivations. We discuss the relevance of braid groups for anyons
in two dimensional space, and discuss their realization in the Fractional
Quantum Hall Effect. Finally, we see how we might obtain braid group
representations from category theory.



Contents

0 Introduction 1

1 Braid Groups 2
1.1 Some basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Geometric braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Pure braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Configuration Spaces 7
2.1 Homotopy classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Covering Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Properties of Covering Spaces . . . . . . . . . . . . . . . . . . . 11
2.3 Configuration spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Braid Groups on Manifolds . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 The Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Two Particle Systems . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 The Braid Group on the Plane . . . . . . . . . . . . . . . . . . . . . . 17

3 Other Representations 22
3.1 The Punctured Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 The Burau Representation . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 The Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 The Reduced Burau Representation . . . . . . . . . . . . . . . 28
3.2.3 Faithfulness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The Lawrence-Krammer-Bigelow Representation . . . . . . . . . . . . 31
3.3.1 Some properties . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Anyons 34
4.1 Exchanging Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 In The Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 In R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 On the sphere S2 . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 The Anyon Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Some Differential Geometry . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Constructing Anyons . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Anyons in Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 The Integer Quantum Hall Effect . . . . . . . . . . . . . . . . . 46
4.3.2 The Fractional Quantum Hall Effect . . . . . . . . . . . . . . . 49

5 Braided Monoidal Categories 54
5.1 Category Theory: A Short Introduction . . . . . . . . . . . . . . . . . 54
5.2 Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Braided Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . . 57

ii



CONTENTS iii

5.3.1 The Braid Category . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Outlook 62

A Fadell’s Exact Sequence 63



Chapter 0

Introduction

Braid groups were first explicitly introduced by Emil Artin in the 1920s, to study
the intertwining of strings in three-dimensional space. He showed that braids with a
fixed number of strands, n, formed a group Bn [1]. The braid groups have interesting
algebraic and topological properties, which we will look at in this thesis. Braid
structures also appear in other areas in mathematics and physics. One important
occurrence of braiding in physics is the existence of anyons, a term coined by Frank
Wilczek [2]. Anyons are particles with statistics different from bosons or fermions.
Another example is that of braided monoidal categories, introduced by Joyal and
Street [3], which can even be used to derive braid group representations.

In the first chapter of this thesis, we will provide a basic introduction to braid
groups. We point out some basic properties, and introduce braid diagrams. In the
second chapter, we will introduce configuration spaces, and an important theorem
due to Artin. This theorem shows that the Artin braid groups are in fact homotopy
groups of the configuration spaces of indistinguishable particles moving around on the
plane. We will also consider braid groups on other manifolds, and basic examples of
those. In the third chapter, we will look at some representations of the braid groups,
arising from topology, mainly the Burau representation and the Lawrence-Krammer-
Bigelow representation. In the fourth chapter, we will study anyons, and see how they
relate to braid groups on manifolds. We will also introduce the abstract construction
by Leinaas and Myrheim [4], and a physical construction by Frank Wilczek [2]. After
this, we look at the Fractional Quantum Hall Effect (FQHE), and how anyons play a
role there. In the fifth and final chapter, we take a short look at braid structures in
category theory, and how they might be used to construct braid group representations.

One thing I found particularly interesting to note was how easily braid structures
might be overlooked when certain symmetries are assumed. Joyal and Street mention
this in their article when motivating braided monoidal categories, writing that “it
has been consistently felt that the symmetry condition cBAcAB = 1A⊗B should be
assumed” regarding commutativity of tensor products [3]. Leinaas and Myrheim
mention something in a similar vein when introducing their article, stating that that
“indistinguishability of particles is expressed in the theory by imposing symmetry
constraints on the state functions and observables” [4]. They point out that such
constraints are in agreement with experiments, but not very well justified in the
theory.
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Chapter 1

Braid Groups

To start things off, we will introduce the main objects of interest of this thesis: braid
groups. In this chapter we will introduce the braid groups and some basic properties
and related definitions.

The braid group on n strands is the group Bn, also known as the Artin braid
group, defined for any positive integer n. Their algebraic definition is as follows [1].

Definition 1.1. The Artin braid group Bn is the group generated by n−1 generators
σ1, σ2, . . . , σn−1 with the following relations:

σiσj = σjσi (B1)

for all i, j = 1, 2, . . . , n− 1 with |i− j| ≥ 2, and

σiσi+1σi = σi+1σiσi+1 (B2)

for all i = 1, 2, . . . , n− 2.

One can note that B1 has no generators, and is thus a trivial group, and that B2

has one generator of infinite order, so B2
∼= Z.

Another common, more visually appealing way to define braids is by using braid
diagrams. An example can be seen in Figure 1.1. Braid diagrams can be seen as a
subset of R2 × I with I = [0, 1], a union of n intervals, called the strands. We draw
the projection on R × I to see which strand goes over which. The strand that goes
under another at a crossing is discontinued at that crossing. The endpoints of the
strands are the points

{ (1, 0, 0), (2, 0, 0), . . . , (n, 0, 0) } and { (1, 0, 1), (2, 0, 1), . . . , (n, 0, 1) }

1

. . .

i− 1 i i+ 1 i+ 2

σi

. . .

n

Figure 1.1: An example of a braid diagram with the generator σi.
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i i+ 1 i+ 2

=

i i+ 1 i+ 2

Figure 1.2: The braid relation (B2). This equivalence is also known as the Reide-
meister move Ω3.

In braid diagrams, for convenience sake, we require that at most two strands cross
at any point. This is not a necessary requirement, but it is equivalent and much more
convenient. If we see braid diagrams as subsets of R× I we then require the following
things:

(i) The projection R × I → I maps each strand homeomorphically onto I. This
simply means all strands are disjoint.

(ii) Every point of { 1, 2, . . . , n }×{ 0 }×{ 0, 1 } is the endpoint of a unique strand.
We cannot have multiple strands connecting to one endpoint.

(iii) Every point of R × I belongs to at most two strands. One of them is distin-
guished and is said to be undergoing, the other strand is overgoing. This is the
requirement that only two strands cross at any point.

(iv) Every strand crosses every plane R2 × { x } with x ∈ I precisely once. This
essentially means that strands only go in one direction. We do not draw strands
that go up and then back down again, only to go back up after that. This
requirement is not necessary, but it is convenient and equivalent [5, Page 7].

It can easily be verified that relation (B1) must hold, and for the second braid
relation, one can draw a diagram to make it more clear (see Figure 1.2). Intuitively,
one can see that the right hand side can be obtained from the left hand side by
shifting the strand starting on i down, the strand starting on i + 1 to the right and
the strand starting on i+ 2 up.

1.1 Some basic properties

Braid groups are strongly related to the symmetry groups Sn. In fact, the braid group
Bn can be projected onto the symmetry group Sn. More generally, we can prove the
following [1].

Lemma 1.2. If s1, . . . , sn−1 are elements of a group G, satisfying the braid relations,
then there is a unique group homomorphism f : Bn → G such that si = f(σi) for all
i = 1, 2, . . . , n− 1.

Proof. Let Fn be the free group on the generators { σ1, σ2, . . . , σn }. Then consider
the unique homomorphism f defined by

f : Fn → G : f(σi) = si
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for i = 1, 2, . . . n. Now, Bn is defined by the braid relations on a set of generators.
Let N E Fn be the smallest normal subgroup containing the elements rr′−1 for all
braid relations r = r′ (B1) and (B2). This is the union of all conjugacy classes of the
relations rr′−1. Then Bn is defined as Fn/N .

Note that f(N) = { 1 } ≤ G. After all, the image of any element rr−1 is identity,
so the image of any conjugate of such an element is too. This can be verified by
straightforward computation. Take i, j = 1, 2, . . . , n with |i− j| ≥ 2. Then

f(σiσjσ
−1
i σ−1

j ) = f(σi)f(σj)f(σ−1
i )f(σ−1

j ) = sisjs
−1
i s−1

j = sjsis
−1
i s−1

j = 1

since the first braid relation holds in G. A similar thing can be done for the braid
relation (B2). This means we have

N ≤ ker f E Fn

Then by the isomorphism theorems there is a surjective homomorphism

Bn ∼= Fn/N → Fn/ ker f ∼= f (Fn) ,

defined by sending σiN to σi ker f . In this way, f induces a homomorphism from Bn
to G, sending σiN to si.

We can apply this lemma to G = Sn, where si = (i, i + 1), the transposition
exchanging i and i+ 1, to find a group homomorphism

ν : Bn → Sn (1.1)

that projects Bn onto Sn. It can be easily verified that the si fulfill the braid rela-
tions, and thus the lemma applies. Since the si generate Sn, this homomorphism is
surjective.

An intuitive idea for this fact is that we can obtain permutations in Sn by simply
following the strands in the corresponding braid diagrams for Bn. For example follow
the strands of the generator σi seen in Figure 1.1. The strands connect i to i+ 1, and
i+ 1 to i, much like si would exchange i and i+ 1.

A direct consequence of this is the following lemma.

Lemma 1.3. The group Bn with n ≥ 3 is non-abelian.

Proof. Let n ≥ 3 be given. Suppose Bn is abelian, and consider the projection ν from
(1.1). Then

ν(σiσi+1) = sisi+1,

but also
ν(σiσi+1) = ν(σi+1σi) = si+1si,

by our assumption. However, sisi+1 6= si+1si in Sn. This is a contradiction, and Bn
must be non-abelian.

Another important property is that the braid groups can be naturally included in
braid groups of more strands. In other words, the group homomorphism

ι : Bn → Bn+1 : σi 7→ σi (1.2)

is injective. One can think of this as taking any braid diagram of Bn, and adding an
extra n+ 1-th strand to it on the right. The proof of this given in [1] is given in the
context of geometric braids, the study of braid diagrams as subsets of R2 × I with I
an interval.
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Ω27−→ Ω27−→

Figure 1.3: The Reidemeister move Ω2.

1.2 Geometric braids

The idea behind geometric braids is that we don’t view braids as purely algebraic,
but as a subset b of R2 × I, with I = [0, 1] an interval.

Definition 1.4. A geometric braid on n ≥ 1 strands is a set b ⊂ R2 × I formed by
n disjoint topological intervals (strands), such that the projection R2 × I → I maps
each strand homeomorphically onto I and

b ∩ (R2 × { 0 }) = { (1, 0, 0), (2, 0, 0), . . . , (n, 0, 0) }
b ∩ (R2 × { 1 }) = { (1, 0, 1), (2, 0, 1), . . . , (n, 0, 1) }

So basically, the ends of a geometric braid connect the a permutation of the points
they started. The other requirement is essentially saying that different strands cannot
intersect. The product of 2 braids is defined as laying one behind the other. If we have
two geometric braids b1, b2 ⊂ R2 × I, then b1b2 is the set of points (x, y, t) ∈ R2 × I
where (x, y, 2t) ∈ b1 if t ≤ 1

2 and (x, y, 2t− 1) ∈ b2 if t ≥ 1
2 .

We depict the braid diagrams as 2 dimensional pictures, while they should actually
be 3 dimensional. The issue is in the crossings. In braid diagrams, we leave out a
small part of the strand that goes behind another strand in the diagram. One can
rigorously prove that braid diagrams represent equivalent braids if they are equivalent
up to finite sequences of isotopy (continuous transformation of one braid diagram
into another) and Reidemeister moves Ω2 and Ω3. Ω3 is depicted in Figure 1.2, Ω2 is
depicted in Figure 1.3.

The idea for this proof is to first show that the braids are always at least a small
distance ε away from each other. Then instead of the actual braids, we consider polyg-
onal braids. Polygonal braids are connected line segments and nodes that correspond
to the original braid. We can cut up the braid into enough segments that they all
lie less than a distance ε away from the original braid. Proving things about these
chains of line pieces is simpler. Instead of continuous isotopy, one only considers the
“polygonal equivalent” of this: ∆-moves. With a ∆-move, a line segment is replaced
by 2 line segments connecting a new node. For a complete proof, I refer to theorem
1.6 in [1].

An interesting result from this theorem is that it in fact does not matter whether
for σi we choose if strand i goes over i+ 1, or vice versa, the mathematics works out
the same (in other words: one can exchange σi for σ−1

i and obtain the same results).

1.3 Pure braids

An important subgroup of the braid group is the group of pure braids. The pure braid
group on n braids Pn is defined as

Pn = ker(ν : Bn → Sn). (1.3)
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1

· · ·

i− 1 i i+ 1

· · ·

j − 1 j j + 1

· · ·

n

Figure 1.4: The pure n string braid Ai,j with 1 ≤ i < j ≤ n.

In other words: a pure braid is a braid that corresponds to the identity permutation,
so a strand in a pure braid starting at (i, 0, 0) ends at (i, 0, 1). We can define certain
important braids in the pure braid groups, called the pure n-string braids Ai,j , seen
in Figure 1.4.

In terms of generators, they are defined as

Ai,j = σj−1σj−2 . . . σi+1σ
2
i σ
−1
i+1 . . . σ

−1
j−2σ

−1
j−1, (1.4)

for 1 ≤ i < j ≤ n. One can check that using

αi,j := σj−1σj−2 . . . σi,

these Ai,j are conjugate to one another in Bn as Aj,k = αj,kAi,jα
−1
jk

(either by filling
in the definitions or by drawing a picture). It turns out that the following holds.

Theorem 1.5. Pn is generated by the n(n−1)
2 elements {Ai,j }1≤i<j≤n.

The proof for this theorem is quite long, we can give an idea for it.

Proof Idea. Much like the embedding ι : Bn → Bn+1, we can define a similar sort of
map called a forgetting homomorphism

fn : Pn → Pn−1,

which “forgets” the n-th strand, or in other words: removes it from the braid diagram.
Observe

Un := ker(fn).

It is obvious that Ai,n ∈ Un. After all, removing the n-th strand from Ai,n leaves a
trivial braid. In fact, one can show that the Un are free on the generators {Ai,n }.
From the definition of Un, it follows that any braid β in Pn can be written as

β = ι(β′)βn,

with βn ∈ Un and β′ = fn(β). Inductively, this means that

β = β1β2 . . . βn,

and since the βj are in Uj , which is generated by Ai,j for 1 ≤ i < j, it follows that
the theorem holds. I refer to [1] for a full proof.



Chapter 2

Configuration Spaces

In the previous chapter we have only seen geometric braids on R2. Geometric braids
can be generalized somewhat though. We can look at braid groups on other manifolds.
A physical interpretation of this would be points (or particles) moving around on a
manifold through time, and tracing their path as a strand. The particles can take up
combinations of positions in this manifold, otherwise known as a configuration. We
call the space of all possible configurations the configuration space. One can define
it in multiple ways depending on the constraints of the system [6, Configuration
Space (physics)]. We will define it in a more physically relevant way.

Definition 2.1. A configuration space of a physical system is the space of all possible
configurations of the system.

In this chapter, we will more formally introduce configuration spaces, and study the
braid group and the pure braid group on certain configuration spaces. At the end of
this chapter, we will show a proof of an important theorem by Artin.

2.1 Homotopy classes

We will need some topology. I will introduce this along [7]. When considering paths
in spaces, one might come across linked loops. For example as seen in Figure 2.1.
These linked loops will form the structure we are looking for.

First of all, we need some definitions. Consider the paths B and B′, and let them
be parameterized by functions f0, f1 : I → X with I = [0, 1]. See Figure 2.2 (for now,
only pay attention to B and B′). These two paths can be continuously transformed
into each other. We call two paths like these homotopic.

A B

Figure 2.1: Two linked loops in R3.

7

https://ncatlab.org/nlab/show/configuration+space+%28physics%29
https://ncatlab.org/nlab/show/configuration+space+%28physics%29
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A

B

B′

x0  
A B2 = BB′

x0

Figure 2.2: Concatenating loops B and B′ with base point x0 in R3 \A.

f0

f1

Figure 2.3: Example of what a homotopy of paths looks like. This is an example of
a linear homotopy ft = tf0 + (1− t)f1.

Definition 2.2. A homotopy of paths in a space X is a family

ft : I → X, 0 ≤ t ≤ 1, (2.1)

of continuous functions, such that the following holds.

(i) The endpoints ft(0) = x0 and ft(1) = x1 are independent of t.

(ii) The associated map
F (s, t) = ft(s)

is continuous.

If two paths f and g are in the same homotopy class, we write f ' g

It can be proven that homotopy on paths is an equivalence relation. Denote the
equivalence class of a path f under homotopy as [f ], also known as the homotopy
class of f . So the paths B and B′ will be in the same homotopy class. The paths B
and B′ are more special though: they are loops. Their starting point x0 is also their
ending point. We call this point x0 the base point.

Homotopies can be determined exactly, but this can become quite cumbersome,
and is often left out for the sake of readability.

The structure in equivalence classes of loops comes from concatenating them. We
can “add” two loops B,B′ through the base point x0 together by simply concatenating
their paths. Let B,B′ be parameterized by fB, fB′ : I → X respectively for some
space X. The product of these two paths is

fBB′ =

{
fB(2t) t ≤ 1

2

fB′(2t− 1) t ≥ 1
2

(2.2)

Since we know that fB(1) = fB′(0) = x0, this product is continuous. When going
along the path B2 = BB′, we first traverse B and then B′, see Figure 2.2.

Definition 2.3. In a space X with x0 ∈ X, let π1(X,x0) denote the set of homotopy
classes of loops in X with base point x0.

The set on its own doesn’t do much for us, but as mentioned before, there is
structure on the loops:
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Proposition 2.4. The set π1(X,x0) is a group with respect to the product described
in equation (2.2): the concatenation of paths.

Proof Idea. As a representant of the identity homotopy class, consider the constant
path

fe : I → X : t 7→ x0.

Any path that can be contracted to the constant path fe is in [fe]. It is clear that
concatenating the constant path to any path does not change the old path up to
homotopy. Let any loop fB be given. The inverse of [fB] will be the homotopy class
[f−1
B ], represented by

f−1
B : I → X : t 7→ fB(1− t).

In other words, flipping the direction of the loop fB. Proving that the concatenation
of two loops gives a new loop is fairly straight forward. For a complete proof, see
Proposition 1.3 in [7].

Notation. In the future, when we are considering the fundamental group of a space
X with respect to an arbitrary point x0 ∈ X, I will write π1(X) instead of π1(X,x0)
for brevity.

Example 2.5. All spaces Rn (or convex subsets of them) have a trivial fundamental
group π1(Rn, x0) for any x0 ∈ Rn.

This is because any path f can be contracted to the base point in these spaces,
simply by considering the transformation

F (s, t) = (1− t)f(s) + tx0.

Example 2.6. If we consider the space A (the setwise complement of A in R3) in
the example given in Figure 2.2, the fundamental group π1(A) ∼= Z.

Intuitively, one can see that the fundamental group π1(A) is generated by B, an
element of infinite order.

2.2 Covering Spaces

The concept of covering spaces can be useful to find the fundamental group of the
spaces they cover. The definition of a covering space is:

Definition 2.7. A covering space of a space X is a space X̃ together with a continuous
function p : X̃ → X, such that for each x ∈ X, there exists an open neighborhood U
of x for which p−1(U) is a disjoint union of open sets in X̃. Each of the open sets in
this union is homeomorphically mapped onto U by p [7].

We call such a U evenly covered. We call X̃ the total space, and X the base space.
The map p is called the covering map and the disjoint open sets in p−1(U) are called
sheets of X̃ over U .

Note that by this definition, the pullback of p over any x is a discrete fiber.

Proposition 2.8. Let X be a space, and p : X̃ → X a covering map. The pullback
Ex := p−1(x) for any x ∈ X is a discrete subspace of X.
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Ex

x0
U

p

p−1(U)

Figure 2.4: Example of a covering space, with pullback of a point x0 and paths with
x0 as starting point. Image idea from [8, Covering Space].

Figure 2.5: Helix as covering space of the circle S1 [7].

Proof. We will show that for every x̃ ∈ Ex, there is an open neighborhood Ũ ⊂ X̃
for which Ũ ∩ Ex = { x̃ }.

Note that x̃ is in some sheet of p−1(U). Call this sheet Ux̃. We show that Ux̃ is
the neighborhood we are looking for. Suppose x̃′ ∈ Ex ∩ Ux̃. Since x̃′ ∈ Ex, it is also
pulled back from x, so x̃′ is also in a sheet Ux̃′ . Since the sheets of p−1(U) are disjoint,
we must have Ux̃′ = Ux̃. Then because all sheets are mapped homeomorphically to
U by p, we must have x̃′ = x̃.

In fact, one can use this as another, equivalent definition:

Definition 2.7 (Alternative). A covering space of a space X is a space X̃ together
with a continuous function p : X̃ → X such that for each x ∈ X, there exists an open
neighborhood U of x which is evenly covered. This means that the pullback of p over
U is isomorphic to a product bundle with discrete fiber Ex = p−1(x). In other words
[6, Covering Space]:

p−1(U) ∼= U × Ex.

We can think of this in a more visual way for clarity, see Figure 2.4. The sheets
are depicted as if they are “hovering above” the base space.

Example 2.9. The real line R is a covering space of the circle S1.

https://en.wikipedia.org/wiki/Covering_space
https://ncatlab.org/nlab/show/covering+space
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This can be visualized by seeing R as the helix

h : R→ R3 : s 7→ (cos 2πs, sin 2πs, s), (2.3)

see Figure 2.5. The helix projected down onto S1 is the covering map [7].

2.2.1 Properties of Covering Spaces

Covering spaces have some important properties that we want to use later on, espe-
cially regarding homotopy.

Proposition 2.10 (Homotopy Lifting Property). Let X,Y be topological spaces.
Given a covering space p : X̃ → X, a homotopy ft : Y → X and a map f̃0 : Y → X̃
lifting f0, then there exists a unique homotopy f̃t : Y → X̃ of f̃0 that lifts ft, so
p ◦ f̃t = ft.

We are interested in the case where Y is an interval. In this case, it means that
if we have a homotopy of paths in the base space, and a lift in the total space of a
path in that homotopy, there is a unique homotopy of paths in the universal space
corresponding to the homotopy in the base space. One can think of this visually like
in Figure 2.4. If we take a homotopy of paths in the space U , and one corresponding
path in any of the sheets, we can find a homotopy of paths in that sheet corresponding
to the homotopy in U . For the proof I refer to Proposition 1.30 in [7].

Proposition 2.11 (Path Lifting Property). Let X,Y be topological spaces, and let
I = [0, 1] be the unit interval. Given a covering space p : X̃ → X, a path f : I → X
and x̃0 a lift of the base point x0 of f . Then there exists a unique path f̃ : I → X̃
lifting f , starting at x̃0.

This can be seen as a specific case of the Homotopy Lifting Property, where we
take Y to be a point. One can also prove this directly. Proving this for covering
spaces of the form X×D with D a discrete set is fairly straightforward. We can look
at the projections

πX(f̃) : I → X πD(f̃) : I → D.

Since f̃ is a lift of f , πX(f̃) = f . Note that since I is connected and D discrete,
πD(f̃) must be connected, and thus constant. For more complex covering spaces, the
proof is more involved, and I point to [6, Covering Space], or to Proposition 1.30 in
[7].

To finish off these definitions, I will give an example of a use case.

Example 2.12. The homotopy group π1(S1) of the circle is the infinite cyclic group
generated by the homotopy class of ω(s) = (cos 2πs, sin 2πs).

Proof. Consider R as the helix, from Example 2.9 and Figure 2.5, as covering space
S̃1 of S1. The covering map p is the composition of the function h and the projection
down on R2. Let f : I → S1 be a loop at the base point x0 = (1, 0), representing an
element in π1(S1, x0). By the Path Lifting Property there is a unique lifted path f̃
in R starting at 0. This path f̃ ends at an integer n, since p−1(x0) = Z ⊂ R.

We can define specific paths on the circle, winding around it n times:

ωn : I → S1 : s 7→ (cos 2πns, sin 2πns).

Note that
[ωn] = [ω]n.

https://ncatlab.org/nlab/show/covering+space
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Lifting this path to R gives:
ω̃n(s) = ns.

So f̃ and ω̃n are in the same homotopy class.
For uniqueness of n, suppose that f ' ωn and f ' ωm. Then ωn ' ωm. By the

Homotopy Lifting Property, this homotopy lifts to a homotopy in S̃1. So ω̃n ' ω̃m.
However, the endpoints for all paths in a homotopy class must be equal. The endpoint
of ω̃n is n, and that of ω̃m is m, so n = m. [7]

Another important concept related to covering spaces is the group of covering
transformations or deck transformations.

Definition 2.13. For a space X̃ covering X, the group deck(X̃) of deck transforma-
tions is the group of automorphisms f on X̃ such that p is invariant under composition
with f , or in other words [6, Deck Transformation]

deck(X̃) :=
{
f
∣∣∣ f ∈ Aut(X̃), p ◦ f = p

}
2.3 Configuration spaces

I will stick to the notation used by [9], when talking about configuration spaces. Let
M be a manifold. Call the amount of points we are observing N . Naively, one might
say that the configuration space would be MN . However, we do not want particles
to be occupying the same position in space (hard-core model). So we remove the
diagonal points. Define

∆ :=
{

(z1, z2, . . . , zN ) ⊂MN
∣∣ zi = zj for any i 6= j, 1 ≤ i, j ≤ N

}
(2.4)

We call the configuration space for N distinguishable particles

FN (M) := MN \∆. (2.5)

What it means for particles to be distinguishable is essentially the following: the
configuration (z1, z2) is not the same as the configuration (z2, z1) for z1 6= z2 ∈ M .
For indistinguishable particles, these 2 configurations are the same, and we need to
divide out the action of the symmetric group SN for N particles to remove these.
Define

QN (M) := (MN \∆)/SN (2.6)

to be the configuration space of N indistinguishable particles, or the orbit space of
M [9, Section 2.1]. See Figure 2.6 for a visual example. The pure braid group on the
manifold M is the fundamental group of the space FN (M), π1(FN (M)). The (full)
braid group on the manifold M is the fundamental group π1(QN (M)).

Lemma 2.14. The natural map

p : FN (M)→ QN (M) (2.7)

is a covering map. In fact, it is a regular covering space projection, meaning that

π1(FN (M)) E π1(QN (M)) (2.8)

Proof. This is an application of Proposition 1.40 in [7], and mentioned explicitly as
Proposition 1.1 in [5].

The configuration spaces of some specific spaces can be found [4].

https://ncatlab.org/nlab/show/deck+transformation
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2.4 Braid Groups on Manifolds

As mentioned, the configuration spaces for some specific spaces can be found exactly.
We will look at a few, along [4], where a nice technique is used to find these.

2.4.1 The Strategy

Let us consider N particles, moving around on a manifold M = Rn. Call the co-
ordinates of these particles xi with i = 1, 2, . . . , N . We can consider these particles
separately, but we can simplify the problem slightly by looking at the center of mass
coordinate, and the relative positions of the particles. The center of mass (c.m.)
coordinate

xcm = N−1
N∑
i=1

xi (2.9)

Note that the center of mass does not change under permutation of the particles and
xcm ∈ Rn. This means that the N particle configuration space is a product

QN (Rn) = Rn × r(n,N), (2.10)

of the c.m. coordinate space, and a relative space r(n,N), representing the (N − 1)n
degrees of freedom of the particles relative to each other [4]. This is mostly a physical
argument, but we can give a more formal argument to show that this splitting holds.

The formal argument would be to look at the action of Rn as group under addition
on QN (Rn). We can divide out this action to obtain the space QN (Rn)/Rn. As a
representant of points in this quotient space, we can in fact choose the configurations
where the center of mass is at the origin.

Lemma 2.15. The space QN (Rn) for N,n ∈ Z>0 splits as

QN (Rn) = Rn × r(n,N). (2.11)

where r(n,N) is a space dependent on n and N .

Proof. We claim that
QN (Rn) ∼= Rn × (QN (Rn)/Rn) .

We can find a map
f : QN (Rn)→ Rn × (QN (Rn)/Rn)

by setting
f(q) = (CM(q), [q])

where [q] is the equivalence class of q under the action of Rn, and we call the map
taking a configuration to its center of mass

CM : QN (Rn)→ Rn,

as defined in (2.9). Note that we can also define CM in the exact same way on Rn or
FN (Rn).

One can prove injectivity and surjectivity for f fairly simply to show it is bijective.
I will leave this as an exercise to the reader.

We will show that the map CM is open and continuous. Continuity is more clear
when looking at CM as if its domain was (Rn)N . This map is obviously continuous.
Then the restriction to FN (Rn) is also continuous, and since it is invariant under
symmetry of SN , it is continuous on QN (Rn).



2.4. BRAID GROUPS ON MANIFOLDS 14

We can verify openness of CM by considering an open ball B(q; ε) ⊂ FN (Rn)
(note, not QN ) around a configuration q, with radius ε. From the way the topology
on FN (Rn) is induced, we can find open balls Bi ⊂ FN (Rn) of radius εi around the
points xi in the configuration q = (x1, . . . , xN ) such that

B1 ×B2 × . . .×BN ⊂ B(q; ε).

We can then shift the configuration by any x ∈ Rn with ||x|| < δ := mini=1,...,N εi.
With this, we see that there is a ball of radius δ around x0 in the image of CM of
B(q; ε). Since open sets in QN (Rn) correspond to open sets in FN (Rn), this verifies
that CM is open on QN (Rn).

The map sending q to [q] is continuous by definition. To see that it is open, take
an open set U ⊂ QN and consider its image

{ [q] | q ∈ U } ⊂ QN (Rn)/Rn.

The preimage of this set under the quotient map is{
q′
∣∣ q′ ∈ [q], q ∈ U

}
= { x+ q | x ∈ Rn, q ∈ U } =

⋃
x∈Rn

x+ U

which is a union of open sets, and thus an open set. Therefore, the map taking q to
[q] is open.

Because of this, f is open, continuous and bijective, so it is a homeomorphism,
and thus

QN (Rn) ∼= Rn × (QN (Rn)/Rn) ,

as desired.

Note that the physical argument for splitting the configuration space does not
work for general subspaces of Rn, but only for convex subspaces. If the subspace is
not convex, the c.m. coordinate might not lie in the original subspace, for example
consider the circle S1 in 2 dimensions: two particles on opposite sides would have
their center of mass in the middle of the circle, which is not part of S1.

2.4.2 Two Particle Systems

The simplest (non-trivial) case we can consider is that of two particle systems. In
this case, the relative space r(n, 2) comes from identifying

xrel = x1 − x2 and x2 − x1 = −xrel (2.12)

in Rn \ { 0 }, as the result of the action of S2. As an illustration: for distinguishable
particles, the relative space would be Rn \ 0. Since the particles may not take up
the same position, 0 must be excluded. Then in this system, exchanging the 2 par-
ticles (or: flipping the sign of the relative position) must be identified as the same
configuration.

This leads to the relative space being

r(n, 2) = (0,∞)× Pn−1. (2.13)

Where (0,∞) is the length of xrel, and Pn−1, the real projective space of dimension
n− 1, the direction.
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x1

x2
∆

x1

x2
∆

Figure 2.6: An illustration of the configuration space F2(R) of 2 distinguishable
particles in R on the left, and Q2(R) for indistinguishable particles is the non-shaded
region on the right.

Definition 2.16. The real projective space of dimension n, denoted by Pn, is given
by

Pn = (Rn+1 \ { 0 })/G (2.14)

where G is the equivalence relation

xGy ⇐⇒ x = λy

for any λ ∈ R [6, Projective Space].

Note. The real projective space of dimensions n can also be found by identifying
antipodal points in the n-dimensional sphere Sn.

One can think of the space Pn as the space of all lines through the origin in
Rn+1, or as all “directions” in Rn+1. The projective space P0 is a point, and P1 is
homemophic to a circle [4].

Along The Line

The simplest case would be when particles move along a line. Of course, this problem
is much less relevant, since with a hard core model, paricles cannot exchange positions
at all along a 1D space. However, it can be useful to see what the configuration space
is for two particles on a line, just to get a bit of a feeling for it.

Since P0 is a point, we have r(1, 2) ∼= (0,∞). Then the configuration space will
be the open half plane

Q2(R) = R× (0,∞), (2.15)

see Figure 2.6. It can be noted that the fundamental group π1(Q2(R)) is trivial, since
every path can be contracted to a point.

In The Plane

A more advanced case is when we look at 2 particles in the plane. In this case,
particles can exchange positions. The relative space r(2, 2) is the plane R2 \ { 0 }
with opposing points identified. One can view this as the plane cut along a half line
in the origin, and then wrapping it around into a cone. The resulting cone can then
be flattened into R2 \ { 0 } again.

There are two types of loops in this space r(2, 2): those that loop around the
singularity and those that don’t. There are two major differences about these paths
in r(2, 2). The most obvious difference is that loops around the singularity cannot be
contracted to a point, whereas the other type of loops can.

https://ncatlab.org/nlab/show/real+projective+space
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x

y

O

r(2, 2)

x0

C0

C1

x

y

O

R2 \ { 0 }

x0

C0
C1

−x0

Figure 2.7: The relative space r(2, 2) and the covering space R2 \ { 0 }. Two paths
C0 and C1 are drawn, along with their lifts in R2 \ { 0 }.

C0

−x0

C1

x0

Figure 2.8: The projective plane P2 with two loops C0 and C1.

The second difference is that loops around the singularity are in fact not loops in
the covering space R2 \{ 0 } of r(2, 2) (note that this is not the only possible covering
space, just a covering space). The lifts of loops around the singularity are in fact
paths starting at x0 and ending at −x0. This follows from the Path Lifting Property.

The fundamental group of this space is Z, this can be derived much like we did
for the circle in Example 2.12. We can also derive it using the following lemma:

Lemma 2.17. For two spaces X and Y , the fundamental group π1(X × Y ) is iso-
morphic to π1(X)× π1(Y ) if X and Y are path connected.

This lemma corresponds with Proposition 1.12 from [7]. With this we can easily
see that

π1(Q2(R2)) = π1(R2 × P1 × (0,∞)) = π1(P1) = π1(S1) = Z, (2.16)

since all of these spaces are path connected, both R2 and (0,∞) have a trivial funda-
mental group, and P1 is the circle, as mentioned before. Not coincidentally, B2

∼= Z.

In R3

Perhaps the most physically relevant case is that of particles in R3. Using the same
strategy, we know that

r(3, 2) = (0,∞)× P2.
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R2

R2

z̃0
1 z̃0

2 z̃0
3 z̃0

4

z̃0
1 z̃0

2 z̃0
3 z̃0

4

I

Figure 2.9: A loop in Q4 with base point z0, lifted to a path in F4 with starting point
z̃0, depicted as separate paths in R2 × I.

Now, we are then most interested in the space P2. This space is the sphere S2 with
antipodal points associated, as noted before. Another way of representing it is as the
hemisphere with opposing equatorial points associated, see Figure 2.8. Note that the
path C1 is in fact a loop, since in P2, the point −x0 is the same point as x0.

It might seem as if C1 is contractible to x0, but it is not. To see this, consider
the sphere S2 as covering space of P2, with the quotient map induced by G from
Definition 2.16 as covering map. The lift C̃1 ⊂ S2 of C1 then starts at x0 and ends at
−x0. If C1 were contractible to a point, C̃1 must be as well, because of the Homotopy
Lifting Property. However, in a homotopy class, the endpoints of all paths are the
same, so C̃1 cannot be contracted to a point! Moving along C1 twice gives the lift
C̃2

1 , which is contractible to a point in S2, and induces a homotopy to contract C̃2
1 to

a point. The fundamental group for this space is then the group of two elements, Z2.
Using the same reasoning as for equation (2.16), we find that

π1(Q2(R3)) = Z2 (2.17)

In fact, for R3, one can derive that [9, Section 2.4.4]

π1(QN (R3)) = SN , (2.18)

and indeed S2
∼= Z2.

2.5 The Braid Group on the Plane

In the previous section, we saw that the braid group on two strands arises as fun-
damental group of the configuration space of two indistinguishable particles in R2.
However, we can prove that in fact, BN arises as the fundamental group of the con-
figuration space of N indistinguishable particles in R2. The proof by Fadell and Van
Buskirk will be presented, as given by Birman in [5, Section 1.4].

Notation. Since we will be talking about FN (R2) and QN (R2) a lot, We will abbre-
viate them to FN and QN , just for this section.

First of all, let us get an idea of what elements in QN look like. Recall the covering
projection p from Lemma 2.14. Choose a base point

z̃0 = (z̃0
1 , . . . , z̃

0
N ) ∈ FN ,
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which corresponds to a unique point

z0 = p(z̃0) ∈ QN .

We can represent an element in π1(QN ) with a loop

l : I → QN

with l(0) = l(1) = z0. This path lifts to a unique path

l̃ : I → FN

with l̃(0) = z̃0 and p(l̃(1)) = z0. This lifted path defines a tuple of paths in R2, since

l̃(t) = (l̃1(t), l̃2(t), . . . , l̃N (t))

with l̃i(t) ∈ R2. These arcs never intersect at any t ∈ I, by the definition of FN (M).
This gives us exactly the geometric braids we have seen in chapter 1! See Figure 2.9
for a representation in this way. Thinking of the diagrams this way, one might notice
that the pure braids then correspond to π1(FN ).

An important lemma used in the proof by Fadell and Van Buskirk is the five
lemma. We only really need a specific case of this, the short five lemma, in the
context of groups, given below.

Definition 2.18 (Short Exact Sequence). A sequence of objects A,B,C with homo-
morphisms p and q, as given in the diagram below

{ 1 } A B C { 1 }p q

is called a short exact sequence if p(A) = ker q.

Lemma 2.19 (Short Five Lemma). Let A,B,C,A′, B′, C ′ be objects in a commuting
diagram

{ 1 } A B C { 1 }

{ 1 } A′ B′ C ′ { 1 }

p

g

q

f h

p′ q′

where p, q, p′, q′, g, f, h are homomorphisms and { 1 } is the trivial group. If the rows
are short exact sequences (i.e., p(A) = ker q and p′(A′) = ker q′), and g and h are
isomorphisms, then f is also an isomorphism.

A proof of this lemma can be found in many books on algebra, or on nLab for example.
We still need some additional work for the main theorem of this section. Let

Hm = { h1, . . . , hm } be a set of m distinct points in R2. Define Fm,N to be the space

Fm,N = FN (R2 \Hm), (2.19)

the configuration space of N distinguishable particles on the m-punctured plane. Note
that FN = F0,N . The main result we need about the spaces Fm,N is a theorem for
which I will present the proof in Appendix A:

Theorem 2.20. There exist homomorphisms ι∗ and π∗ such that the following se-
quence of groups is exact:

{ 1 } π1(FN−1,1) π1(FN ) π1(FN−1) { 1 }ι∗ π∗
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1 . . . i− 1 i i+ 1 . . . N

x0

Figure 2.10: The i-th generator of the fundamental group of the N -punctured plane
FN,1

Note. Since FN−1,1 is the configuration space of 1 particle on the N − 1-punctured
plane, and is in fact simply the space R2−HN−1, the fundamental group π1(FN−1,1) is
the free group on N −1 generators, FN−1. Every generator is a loop around precisely
one puncture, see Figure 2.10.

Now we are ready for the main theorem of this section.

Theorem 2.21 (Artin, 1925). The group π1(QN ) admits a presentation with gener-
ators σ1, . . . , σn−1 and defining relations (B1) and (B2).

Proof. The plan for this proof is to first reduce our problem to the space FN , and
only looking at pure braids. We can then inductively prove the result.

As before, we denote the abstract representation of the braid group on N strands
by BN , as in Definition 1.1. For elements in π1(QN ), we write σ1, . . . , σN−1. We have
seen visual representations of these in terms of braid diagrams, as discussed in the
above paragraph. We can define

i : BN → π1(QN ) : σi 7→ σi

for i = 1, 2, . . . , N−1. One can verify pictorially that the σi satisfy the braid relations
(see Figure 1.2 for example). For a rigorous proof, see [1, Section 1.2]. We can then
apply Lemma 1.2 to see that i is indeed a homomorphism.

Recall the map p : FN → QN from Lemma 2.14. We can make our visual repre-
sentation of π1(QN ) a bit more precise by taking

z̃0 = ((1, 0), (2, 0), . . . , (n, 0)) and z0 = p(z̃0)

and taking the path of the generator σi in FN (R2) to be

l̃(t) =
(

(1, 0), . . . , (i− 1, 0), l̃i(t), l̃i+1(t), (i+ 2, 0), . . . , (n, 0)
)

with
l̃i(t) = (i+ t,−

√
t− t2) and l̃i+1(t) = (i+ 1− t,

√
t− t2).

This is nothing more than a more precise definition of the generators as seen in braid
diagrams.

We then construct a homomorphism

ν : π1(QN )→ SN , (2.20)
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as follows: let a ∈ π1(QN ) be a loop in QN with base point z0, and let ã be the
uniquely lifted path of this loop, with starting point z̃0. Define

ν(a) =

(
ã1(0), . . . , ãN (0)
ã1(1), . . . , ãN (1)

)
∈ SN . (2.21)

Essentially, we send the path a to the permutation exchanging the endpoints of the
lifted path ã, in the same sort of way we did in equation 1.1.

We want to verify that ν is indeed a homomorphism. Visually, one can see this
as pasting two braid diagrams after another, and following the new strands to find
the new permutation. We can give a more strict argument though. Let a, a′ be two
loops in π1(QN ). We wish to show that ν(aa′) = ν(a)ν(a′).

For this, first lift a to a path ã in FN , starting at z̃0. Then ã permutes the
coordinates of z̃0 by ν(a). Call this permutation τ . The ending point of ã is τ z̃0,
which is the point z̃0 with its coordinates permuted by τ .

Lift a′ to a path ã′τ in FN , starting at τ z̃0. Note that the concatenation ãã′τ is
the unique lift of aa′, starting at z̃0. Since the starting point of ã′τ is z̃0 permuted
by τ , we can also write ã′τ as τ ã′, where ã′ is the path lifted from a′ starting at z̃0

itself. As a braid diagram, the path τ ã′ would look the same, as merely the indices
of the strands are permuted. The resulting permutation of τ ã′ would then be τν(a′),
as expected.

We can determine the kernel of ν as well: if for every i = 1, 2, . . . , N − 1, we have
ãi(1) = ãi(0), we find a loop in π1(FN ), and vice versa, for every loop ã in π1(FN ),
we have ãi(1) = ãi(0). The kernel of ν is the pure braid group π1(FN ).

We can take the homomorphism from Equation (1.1) as corresponding homomor-
phism

ν : BN → SN : σi 7→ (i, i+ 1)

for i = 1, 2, . . . , N − 1. As in Chapter 1, we take PN = ker ν. Using this homomor-
phism, we can reduce our problem to a simpler case.

Lemma 2.22. The homomorphism i : BN → π1(QN ) is an isomorphism if i
∣∣
PN

is

an isomorphism onto π1(FN ).

Proof. Recall from Lemma 2.14 that

π1(FN ) E π1(QN ),

which in this case also follows from π1(FN ) = ker(ν). We can then naturally include
π1(FN ) in π1(QN ). This gives rise to the commutative diagram

{ 1 } PN BN SN { 1 }

{ 1 } π1(FN ) π1(QN ) SN { 1 }

id

i|PN

ν

i id

id ν

One can easily verify that the rows are exact sequences. Since the identity mapping
is an isomorphism, π1(FN ) = ker ν, and PN = ker(ν) by definition. The Short Five
Lemma tells us the lemma holds.

We are then left to prove the premise of this lemma. The idea is to do this by
induction on N . Take PN to be the group generated by the generators

Ai,j 1 ≤ i < j ≤ N
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as in Theorem 1.5. Also recall the group Un from the proof of this theorem, defined
as

UN = ker fN ,

where fN : PN → PN−1 is the forgetting homomorphism. Corresponding to this
homomorphism, we have the homomorphism

π∗ : π1(FN )→ π1(FN−1) (2.22)

from Theorem 2.20. With these groups we can construct a commutative diagram as
follows:

{ 1 } UN PN PN−1 { 1 }

{ 1 } π1(FN−1,1) π1(FN ) π1(FN−1) { 1 }

i|UN

id fN

i|PN i|PN−1

ι∗ π∗

Here, ι∗ is the corresponding homomorphism in Theorem 2.20. In the proof idea
for Theorem 1.5, we mentioned that UN is free on the generators Ai,N ∈ PN . A proof
of this can be found in [1, Theorem 1.16]. From the definition of the Ai,j , and the
way we defined elements in π1(FN ), the image i(Aj,N ) may be represented by a loop
based at z0

N , encircling z0
j once, cutting it off from the rest of the points z0

i with i 6= j
(see also Figure 1.4).

Taking FN−1,1 to be F1(R2\
{
z0

1 , . . . , z
0
N−1

}
) and z0

N as base point for π1(FN−1,1)
makes it so

{ i(Aj,N ) | 1 ≤ j ≤ N − 1 }

is a basis for π1(FN−1,1). With this, we have found that i|UN is an isomorphism from
UN to π1(FN−1,1), since both are the free group on N − 1 generators.

Note that P1 is the trivial group, and so is F1. Thus, i|P1 is an isomorphism, and
using the five lemma, we can then conclude that by induction, i|PN is an isomorphism
for all N .



Chapter 3

Other Representations

Besides the algebraic representation we initially introduced, and the braid group
as fundamental group of the space QN (R2) we saw in Section 2.5, there are other
representations of the braid group Bn. In this chapter we are going to explore a
few of these. Firstly the braid group represented by self-homeomorphisms on the
punctured disk, then the Burau representation and finally the Lawrence-Krammer-
Bigelow representation.

3.1 The Punctured Disk

Another way to represent the braid group is by considering the action of Dehn half-
twists on the fundamental group of the punctured disk. Fix a set Hn of n distinct
points h1, . . . , hn in the interior of the unit disk D, and take d0 to be a point on the
boundary of D. Like mentioned before about the n-punctured plane, the fundamental
group of the n-punctured disk

Dn = D \Hn

is the free group on n generators Fn. See Figure 3.1 for a representation of the i-th
generator, which we call xi.

Perhaps the most interesting part of this representation is seeing how generators
σi ∈ Bn can be represented as actions on this group. We can do this by representing
them as Dehn half-twists [10].

p1 . . .
pi−1 pi pi+1 . . .

pn

d0

Figure 3.1: The i-th generator xi of the fundamental group of the n-punctured disk
Dn

22
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pi pi+1

α

f

τi−−−→ pi pi+1

α

f

Figure 3.2: The Dehn half-twist τi. If one thinks of the path f as being closed on the
bottom, not encircling any of the other punctures, like in Figure 3.1, this diagram in
fact shows relation (3.2).

Definition 3.1. Consider a loop α enclosing the punctures pi and pi+1, and identify
its interior with the twice-punctured disk D2 = D \

{
−1

4 ,
1
4

}
. In D2, define the

annulus

A =

{
z ∈ D2

∣∣∣∣ 1

2
≤ |z| ≤ 1

}
.

We define the Dehn half-twist τi is for (s, t) ∈
(
S1 × I

)
\
{
−1

4 ,
1
4

}
. We associate a

point teiθ ∈ D with (s, t) for s = eiθ. Then τi is defined as

τi(s, t) =

{
(e−πits, t) if (s, t) ∈ A
(−s, t) otherwise

, (3.1)

also seen in Figure 3.2. Note that if we extend the domain to D, the holes would be
mapped to each other.

By drawing diagrams, we can verify that

τixi = xixi+1x
−1
i (3.2)

τixi+1 = xi (3.3)

τixj = xj j 6= i, i+ 1, (3.4)

where τixj means applying (τi)∗ to the loop xj ∈ π1(Dn), where (τi)∗ is the induced
homomorphism π1(Dn) → π1(Dn). Relation (3.2) can be seen in Figure 3.2. How
one comes from xixi+1x

−1
i to the path in Figure 3.2 can be seen in Figure 3.3. If one

takes the ends of the path f outside of α to go the other way, and f to be closed
on the right side of α, not encircling any other punctures, this verifies relation (3.3).
Relation (3.4) is trivial.

With these relations, it can easily be verified that

τiτi+1τi = τi+1τiτi+1 and τiτj = τjτi (3.5)

for i, j = 1, 2, . . . , n−1 and |i−j| ≥ 2, as actions on π1(Dn, d0). In other words, the τi
satisfy the braid relations (B1) and (B2). We can then, using Lemma 1.2, construct
a simple homomorphism from Bn → Aut(π1(Dn, d0)), the group of automorphisms
on π1(Dn, d0), by mapping σi to τi.

One can construct the inverse of this homomorphism on its image by “walking
along” the loops in π1(Dn, d0) through time, and plotting them as geometric braids,
restricted to D instead of R2, as Jackson shows in [10].
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pi pi+1

d0

−−→ pi pi+1

d0

−−→ pi pi+1

d0

−−→

Figure 3.3: The element xixi+1x
−1
i ∈ π1(Dn, d0), the right hand side of Equation

(3.2). Only two (neighboring) punctures are shown for simplicity. By isolating a
circle around pi and pi+1 in the rightmost image, one essentially retrieves the right
hand side of Figure 3.2.

These homomorphisms give rise to the following theorem.

Theorem 3.2. The homomorphism σi 7→ τi gives a faithful representation of Bn as
a group of automorphisms of the free group Fn.

Here, faithful simply means that the homomorphism is injective, or equivalently,
that the homomorphism has a trivial kernel. In fact, one can prove the following:

Theorem 3.3. Bn is isomorphic to the subgroup of automorphisms of π1(Dn, d0) =
Fn induced by homeomorphisms Dn → Dn which fix ∂Dn pointwise [10, Theorem 3].

The set of isotopy classes of homeomorphisms Dn → Dn fixing ∂D = ∂Dn point-
wise is actually a group under composition, and is called the mapping class group of
the pair (D,Hn) [1, Section 1.6], but for simplicity we will refer to it as the mapping
class group of Dn since we will not be talking about other mapping class groups.
Isotopy is like homotopy but for homeomorphisms, in that two maps are isotopic if
they can be continuously deformed into one another. More exactly, we define it as

Definition 3.4. Two self-homeomorphisms f0, f1 of a space X are isotopic if they
can be included in a family { ft }t∈I of self-homeomorphisms of X such that the map
X × I → X taking (x, t) to ft(x) is continuous. Such a family is called an isotopy.

3.2 The Burau Representation

The Burau representation is a representation introduced by Werner Burau in 1936.
It is a (linear) representation of the braid group Bn by n× n matrices over the ring

Λ = Z[t, t−1].

This representation will be introduced along [1, Sections 3.1-3.3] and [10, Chapter 3].
We define the matrices corresponding to the Burau representation as follows: for

n ≥ 2, define the following matrices in GLn(Λ), the group of invertible n×n matrices
over Λ:

Ui =


Ii−1 0 0 0

0 1− t t 0
0 1 0 0
0 0 0 In−i−1

 (3.6)

for i = 1, 2, . . . , n − 1. Here, Ik is the k × k identity matrix. When i = i there is no
unit matrix in the top left corner, and when i = n− 1, there is no unit matrix in the
bottom right corner.
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Because of the way this matrix is structured, we can generally limit ourselves to
blocks of these matrices. The most interesting block is the block

U =

(
1− t t

1 0

)
.

One can verify by straightforward computation that

U−1 =

(
0 1
t−1 1− t−1

)
∈ GL2(Λ).

And in this way, we can see that the Ui are invertible, with inverse

U−1
i =


Ii−1 0 0 0

0 0 1 0
0 t−1 1− t−1 0
0 0 0 In−i−1

 .

A prettier way of deriving this is by using the Cayley-Hamilton theorem, which states
that any 2 × 2 matrix M over the ring Λ satisfies M2 − tr(M)M + det(M)I2 = 0,
which for U means that U2 − (1− t)U − tI2 = 0. Since the unit matrices also satisfy
this equation, we must have

U2
i − (1− t)Ui − tIn = 0

which one can rewrite to find that [1]

U−1
i = t−1(Ui − (1− t)In).

This gives us precisely the inverse we gave above.
Because of the structure of Ui, it is obvious that UiUj = UjUi for all i, j with

|i− j| ≥ 2. To verify the second braid relation (B2), we verify1− t t 0
1 0 0
0 0 1

1 0 0
0 1− t t
0 1 0

1− t t 0
1 0 0
0 0 1

 =

1 0 0
0 1− t t
0 1 0

1− t t 0
1 0 0
0 0 1

1 0 0
0 1− t t
0 1 0

 . (3.7)

With this, Lemma 1.2 tells us that

ψn : Bn → GLn(Λ) : σi 7→ Ui (3.8)

defines a group homomorphism for n ≥ 2. We define ψ1 to be the trivial homomor-
phism B1 → GLn(Λ).

3.2.1 The Matrices

These matrices are very nice to work with, but it may be more interesting to see
how they were come up with. Since the formal derivation for this requires some
more topological knowledge, and is out of scope for this thesis, we will look at it
mostly as a geometric idea, so this is by no means meant as a strict proof. The idea
comes from [10, Chapter 3], where Jackson presents diagrams for the reduced Burau
representation. We will use the approach he suggests to find the representation for
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pi−1

A−i−1A+
i−1

pi

A−iA+
i

pi+1

A−i+1A+
i+1

X∗

(a) The space X∗, obtained from the
punctured disk Dn+1 by enlarging the
punctures, and cutting arcs down from
them, creating two copies of those arcs A+

i

and A−
i .

(b) Glueing the spaces X∗
j , image from

[10, Figure 3.1].

Figure 3.4: Geometric construction of the space X̃, a regular covering space of Dn+1.

the unreduced Burau representation that we discussed in the previous section. It uses
the punctured disk, and the Dehn half-twists we saw in Section 3.1.

First of all, define the map

φ : π1(Dn+1)→ Z (3.9)

mapping a loop to its total winding number. In other words, for a loop

α =

m∏
k=1

xεkik

the total winding number is

φ(α) =
m∑
k=1

εk.

We take D̃n+1 to be the regular covering space corresponding to the kernel of φ. A
regular covering space is a covering space X̃ of a space X (with covering map p)
such that for every x ∈ X and two points x̃1, x̃2 ∈ p−1(x), there exists a covering
transformation f ∈ Aut(X̃) that maps x̃1 to x̃2. With corresponding to ker(φ), it
is meant that π1(X̃) ∼= ker(φ). We will not go into the details too much, but for
example [7, Proposition 1.36] allows us to define D̃n+1 in this way.

We can find a geometric representation of D̃n+1 that will help us visualize. The
first step for this is to enlarge the punctures to small disks. In the end, this will not
change anything about the homotopy of our space. Then we cut down from these
holes to the boundary of our disks, to create arcs A+

i and A−i (on either side of the
cut) for each puncture pi. Call this space X∗, see Figure 3.4a.

Define the obvious homeomorphisms hi : A+
i → A−i , taking each point in A+

i to
the corresponding point in A−i . We can take countably many copies of the space X∗,
which we label X∗j for j ∈ Z. Define the homeomorphisms gj : X∗j → X∗ mapping
a point x ∈ X∗j to its corresponding point in X∗. With these homeomorphism we

can define a “glueing” map to define the space X̃ by identifying the A+
i ⊂ X∗j with

A−i ⊂ X∗j+1 via g−1
j+1higj , essentially glueing A+

i ⊂ X∗j to A−i ⊂ X∗j+1. See Figure 3.4b.
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On this space, we can define an action of Z = 〈t〉, generated by

t : X∗j → X∗j+1 : x 7→ g−1
j+1gjx.

The action t essentially shifts a point x ∈ X̃ one level up.
We can convince ourselves that the fundamental group π1(X̃) of this space is

indeed ker(φ) as follows: We follow a loop in Dn+1, lifted to X̃. Any time we encircle
a puncture pi of Dn+1 clockwise (like the generator xi), we cross A+

i ⊂ X∗j for
whichever j we were in, and we go one level up. If we encircle it counterclockwise
(like x−1

i ), we cross A−i ⊂ X∗j , and we go down one level. In order for our lifted loop
to end a the same point it started (so for it to actually be a loop), the total winding
number has to be zero.

Using t, together with Dehn half twists, we can express the braid group as an
action on the first homology group H1(X̃) of X̃. The first homology group of a space
is related to the first homotopy group. In fact, it can be seen as the group of cycles,
essentially loops without a base point, or the abelianization of the fundamental group
[7, Chapter 2]. It turns out that the group H1(X̃) is a Z[t, t−1]-module with a basis
consisting of lifts of the n loops

ui := xix
−1
n+1

for i = 1, . . . , n. Here xi is the loop around the ith puncture, as before. A module of
a group over a ring is defined as follows.

Definition 3.5. Let V be a vector space over a ring R and let G be a group. Then
V is a module of G over R if a multiplication gv is defined for g ∈ G and v ∈ V ,
satisfying the following conditions for all u, v ∈ V , λ ∈ R and g, h ∈ G [11, Definition
4.2]:

(i) gv ∈ V ;
(ii) g(hv) = (gh)v;

(iii) 1v = v;
(iv) g(λv) = λ(gv);
(v) g(u+ v) = gu+ gv.

Modules are a very useful tool in finding (linear) representations of groups. If a
group can be represented with matrices in a ring via ρ : G→ GL(n,R), this action of
g on vectors v can be replaced by a matrix multiplication with the respective matrix
ρ(g) [11, Theorem 4.4]. The referenced theorem in fact states that every module
corresponds to a representation, and every representation corresponds to a module.
The matrices we find for the Burau representation are the matrices corresponding to
the group action of Bn on the module H1(X̃) we mentioned.

The action of Dehn twists on the lifts of loops xix
−1
n+1 is shown in Figure 3.5. On

the left hand side is the path, projected down onto the space X∗, on the right side is
a diagram showing the level the path is in over time, along with the puncture that
changes the level.

With these diagrams, the following relations can be derived:

τiuj =


ui + tui+1 − tui if j = i

ui if j = i+ 1

uj otherwise

(3.10)

where tui+1 indicates that the loop ui+1 happens “one level up”, under the action of t.
To be further convinced, one can draw more diagrams to see the intermediate steps,
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d0 d0

d0

i i + 1 n + 1

. . . . . .

. . .

d0

. . .

i i+ 1 i n+ 1

i n+ 1

n + 1i + 1i

Figure 3.5: Diagrams showing the action of Dehn half-twists on the homology group
of the space X̃. The left hand side shows the space X̃ projected down onto X∗, the
right hand side shows the level of the path over time, along with the punctures it
changes level at. The top figures show the action of τi on ui, the bottom figures show
the action of τi on ui+1.

see Figure 3.6, keeping in mind that we are talking about homology, not homotopy
and that the base point is there only for clarity. These relations give rise to the
matrices Ui, relative to the basis { u1, . . . , un }, recalling (3.6):

Ui =


Ii−1 0 0 0

0 1− t t 0
0 1 0 0
0 0 0 In−i−1


with multiplications with row vectors from the left. Transposing this matrix gives
the same results, but multiplication would be from the right.

3.2.2 The Reduced Burau Representation

The representation we gave above turns out to be reducible.

Definition 3.6. A linear representation ρ : G 7→ GL(n,R) of a group G with a ring
R is reducible if and only if it is equivalent to a representation ρ′ (i.e. there is a
matrix T such that ρ(g) = T−1ρ′(g)T for all g ∈ G) where all matrices are of the
form [11, Equation (5.4)] (

Xg 0
Yg Zg

)
(3.11)

where Xg, Yg and Zg are matrices, and Xg is k × k for some k ∈ Z.

Now, in representation theory it is nice to know about the irreducible represen-
tations of a group, since general representations are direct products of irreducible
representations (as can be seen in the definition of reducibility). As mentioned be-
fore, Jackson gives a derivation of the matrices for the reduced Burau representation
with the same arguments as the previous section [10], by looking at Dn instead of
Dn+1, and using lifts of the loops xix

−1
i+1 as a basis for H1(D̃n).
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ui

tui+1

−tui

level 0 level 1 level 2

tui+1 − tui

ui + tui+1 − tui

Figure 3.6: Diagram with intermediate steps to see that the right hand side of Fig-
ure 3.5 is indeed ui + tui+1 − tui. The vertical lines indicate the cuts corresponding
to the punctures i, i+ 1 and n respectively. The other cuts have been left out. The
holes have not been drawn explicitly, but are still at the bottom of the cuts. The red
crosses indicate where the loop tui+1 − tui is “attached” (addition of loops) to ui.
The exact location of the cross does not matter. In fact, the loop tui+1 − tui can be
“homotoped” down to level 0 or ui up to level 2 to attach there.
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Another way to derive the matrices for the reduced Burau representation is to
consider a different basis { u′i | i = 1, . . . , n } for the first homology group of X̃ from
the previous section, with u′n = un and u′i = ui − ui+1 otherwise, and deriving new
relations for τiu

′
j . This way, one finds the matrices from Equation (3.12) [10].

Another, more abstract way of deriving them is by constructing the matrices
corresponding to this reduced representation directly, as done in [1, Theorem 3.9]:

Lemma 3.7. Let n ≥ 3 and V1, V2, . . . , Vn−1 be the (n − 1) × (n − 1) matrices over
Λ given by

V1 =

−t 0 0
1 1 0
0 0 In−3

 Vn−1 =

In−3 0 0
0 1 t
0 0 −t


and

Vi =


Ii−2 0 0 0 0

0 1 t 0 0
0 0 −t 0 0
0 0 1 1 0
0 0 0 0 In−i−2


for i = 2, . . . , n− 2. Then

C−1UiC =

(
Vi 0
∗i 1

)
(3.12)

where C is the n× n matrix

C =


1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1


and ∗i is a row of length n− 1 equal to 0 if i < n− 1 and to (0, . . . , 0, 1) if i = n− 1.

Proof. Call the matrix from Equation (3.12) V ′i . We need to show that UiC = CV ′i .
Note that the kth column of UiC is simply the sum of the first k columns of Ui. A
direct computation shows that UiC is C with the (i, i)th entry set to 1 − t and the
(i+1, i)th entry set to 1. Similarly, CV ′i is obtained from C by the same modifications,
noting that the kth row is the sum of the last n− k rows of V ′i .

Of course, the Braid relations can be verified for the matrices Vi directly, but we
can also do it using the lemma we just proved. If the braid relations hold on the
Ui, they must surely hold on the conjugates C−1UiC. The shape of this matrix from
formula (3.12) implies that the matrices Vi then also satisfy the braid relations.

3.2.3 Faithfulness

An important property of a representation is its faithfulness. We take a quick look
at the faithfulness of the unreduced Burau representation by considering the kernel
of ψn, from (3.8). Obviously ψ1 is faithful. The same can be verified quite easily
for ψ2 by considering ψ2(σ1), which has an eigenvector (−t, 1) with eigenvalue −t.
Therefore, it cannot be of finite order. For n = 3 faithfulness can be shown via
the reduced Burau representation [1, Section 3.3.2], but for n = 4 it is still an open
problem [8, Burau Representation].

For n ≥ 5, it has been shown that the Burau representation is not faithful. Note
that kerψn ⊂ kerψn+1 under the inclusion Bn ⊂ Bn+1. So if kerψn 6= { 1 } then

https://en.wikipedia.org/wiki/Burau_representation
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kerψm 6= { 1 } for all m ≥ n. Stephen Bigelow has shown that indeed kerψ5 6= { 1 },
and even found an example of a non-trivial braid (of length 120 in the generators) in
the kernel of ψ5 [12].

3.3 The Lawrence-Krammer-Bigelow Representation

Another representation of the braid group Bn is one introduced by R. Lawrence and
studied by D. Krammer and S. Bigelow. It arises from the configuration space of two
particles on the punctured disk. Matrices have been derived for this representation,
but it is significantly more complex than the Burau representation. In this section,
I want to present the matrices and give a short idea of what the derivation of this
presentation is like. I will present the matrices as given by [13] and the idea of the
derivation of the presentation presented in [1].

The matrices for the representation of Bn are m×m matrices over the ring

R = Z[q±1, t±1] (3.13)

for two invertible elements q and t and m = n(n− 1)/2. With respect to a basis

{ x1,2, x1,3, x2,3, x1,4, x2,4, . . . , xn−1,n }

for a module V of R the matrices for the representation are given by the following
relations [13]:

σkxi,j =



xi,j k /∈ { i− 1, i, j − 1, j }
qxk,j + (q2 − q)xk,i + (1− q)xi,j k = i− 1

xi+1,j k = i 6= j − 1

qxi,k + (1− q)xi,j − (q2 − q)txk,j k = j − 1 6= i

xi,j+1 k = j

−tq2xi,j k = i = j − 1

(3.14)

Krammer himself gives other relations in [14] which result in even more complex
matrices.

One can show that the matrices defined by these relations in fact satisfy the braid
relations, and thus define a representation, but this is a very tedious task. I generated
the matrix for σ3 ∈ B4 below, just to give some illustration that these matrices are
not trivial to work with.

σ3 ∈ B4 corresponds to



1 0 0 0 0 0
0 0 0 q 0 0
0 0 0 0 q 0
0 1 0 1− q 0 −tq2

0 0 1 0 1− q 0
0 0 0 q2 − q q2 − q 0

 . (3.15)

I will now sketch how one gets to this representation along [1, Section 3.5]. We
start by considering F2(Dn) and Q2(Dn), the configuration spaces of 2 distinguishable
and indistinguishable particles on the n-punctured disk Dn respectively. Denote a
point in Q2(Dn) by {x, y}, corresponding to associated points (x, y), (y, x) ∈ F2(Dn).
A path ξ in Q2(Dn) can be written as {ξ1, ξ2} with ξ1, ξ2 paths in Dn. The path ξ is
a loop if

{ξ1(0), ξ2(0)} = {ξ1(1), ξ2(1)}

so that either
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(i) ξ1(0) = ξ1(1) 6= ξ2(0) = ξ2(1) or (ii) ξ1(0) = ξ2(1) 6= ξ1(1) = ξ2(0).

In case (i), the loops ξ1 and ξ2 are also loops in Dn. In case (ii) they are not, but
the concatenation ξ1ξ2 of these loops is. We define two invariants u and w on loops
in Q2(Dn). Consider a loop ξ = {ξ1, ξ2} in Q2(Dn). We define w(ξ) to be:

w(ξ) =

{
w(ξ1) + w(ξ2) if ξ is of case (i)

w(ξ1ξ2) if ξ is of case (ii)
(3.16)

where w(ξi) is the total winding number of the loop ξi around the punctures in Dn,
like the map φ from Equation (3.9). We define u using the map

I → S1 : s 7→ ξ1(s)− ξ2(s)

|ξ1(s)− ξ2(s)|

which sends s = 0 and s = 1 to either opposite points (in case (ii)) or equal points
(in case (i)). The map

I → S1 : s 7→
(
ξ1(s)− ξ2(s)

|ξ1(s)− ξ2(s)|

)2

(3.17)

is then a loop on S1. Recall that the fundamental group of S1 is the infinite cyclic
group generated by the single loop around S1, as seen in Example 2.12. We can
associate the loop (3.17) with k times this generator for some k ∈ Z, and set u(ξ) = k.
Note that u is odd if and only if the loop is of case (ii). The invariant u can be seen as
the winding number of the two loops ξ1 and ξ2 “around each other”. Also note that
u and w are preserved under homotopy, and additive under multiplication of loops.

We consider two important examples. The first of which is a loop ξ = {ξ1, ξ2}
where ξ1 is the constant loop, and ξ2 is a loop winding around a single puncture once,
but not around ξ1. Then u(ξ) = 0 and w(ξ) = w(ξ1) + w(ξ2) = 1.

For another example, choose a counterclockwise, non-constant loop in Dn, not
encircling any punctures. Split this loop into two parts ξ1 and ξ2. Then for the loop
ξ = {ξ1, ξ2}, we have u(ξ) = 1 and w(ξ) = w(ξ1ξ2) = 0.

With these invariants, we can construct a group homomorphism, taking c =
{d1, d2} to be a base point with d1, d2 distinct points in the boundary of the unit
disk ∂D. This homomorphism is defined as

ϕ : π1(Q2(Dn), c)→ Z× Z : ξ 7→ qw(ξ)tu(ξ).

Here, we represent Z×Z as 〈q〉 × 〈t〉. The map ϕ is a homomorphism because of the
invariance under homotopy and additiveness under multiplication of loops of u and
w. This homomorphism is also surjective because the examples we discussed in fact
map to the generators of Z× Z.

Using this, we can construct a covering space Q̃ of Q2(Dn), corresponding to the
kernel of ϕ. This makes it so that

deck(Q̃) ' ϕ(π1(Q2(Dn))) = Z× Z, (3.18)

see [7, Proposition 1.39]. The induced action of q and t on the homology of this space
(more specifically, on the “relative homology group” H2(Q̃,Z)), turns this group into
a module over the commutative ring

R = Z[q±1, t±1],
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the “group ring” of Z×Z over Z. The braid group representation will follow from the
action of the braid group Bn on this homology group. We associate Bn with the map-
ping class group of Dn, as we saw in Section 3.1. We can take a self-homeomorphism f
of Dn from this group, which then induces a homeomorphism f̂ : Q2(Dn)→ Q2(Dn)
via

f̂({x, y}) = {f(x), f(y)}
where x, y are distinct points in Dn. Clearly, since f fixes the boundary ∂D of the unit
disk, we have f̂(c) = c. This means f̂ induces an automorphism f̂# of π1(Q2(Dn), c).
An important property of this homomorphism is that it preserves the invariant ϕ:

Lemma 3.8. The induced homomorphism f̂# preserves the invariant ϕ. In other

words, we have ϕ ◦ f̂# = ϕ.

Proof. For the equality, it is needed that w ◦ f̂# = w and u ◦ f̂# = u. The first
equality follows from the fact that f preserves the total winding number for small
loops encricling only one of the punctures of Dn, and arbitrary loops are products
of these loops. The argument for small loops is that one only has to consider the
encircled puncture. After all, the image of the enclosed area has to be homeomorphic
to the enclosed area, which is homeomorphic to D1. To verify that orientation is
also preserved, note that the small loop can be homotoped to the boundary of the
disk. The image under the homeomorphism f results in the same loop, in the same
orientation, and thus the same winding number. The induced maps f̂ and f̂# must
then also preserve this quantity.

For the second equality, consider the inclusion Q2(Dn) → Q2(D) induced by the
inclusion Dn → D. We can define the invariant u on Q2(D) in the exact same way we
did for Dn, and find an invariant of loops in D. The Alexander-Tietze theorem states
that any self-homeomorphism on D is isotopic to identity, so the self-homeomorphism
of Q2(D) induced by f must be homotopic to identity as well. Then u ◦ f̂# = u on

D, and so it is on Dn as well. Thus, we conclude that φ ◦ f̂# = φ.

Since f̂# preserves ϕ, the map f̂ that induced it lifts uniquely to a map f̃ : Q̃ → Q̃.
This follows from the lifting criterion ([7, Proposition 1.33] for example). It also
implies that f̃ commutes with the deck transformations of Q̃.

All of this makes it so Bn can be mapped to a transformations on the earlier men-
tioned homology group of Q2(Dn), induced by f̃ . For the derivation of the matrices,
the adept mathematician can refer to [13].

3.3.1 Some properties

The Lawrence-Krammer-Bigelow representation has some important properties that
are worth mentioning. The first property is that this representation is faithful for all
n ≥ 1. This can be shown by looking at the matrices, done by Krammer in [14], or it
can be done topologically, as in [1, Sections 3.6-3.7].

The second property is that this representation makes the braid groups linear.
This is Theorem 3.16 in [1].

Definition 3.9. A group G is called linear if there is an injective group homomor-
phism G→ GLn(R) for some integer n ≥ 1.

This follows from the matrix representation over the ring Z[q±1, t±1] by embedding
it in the real numbers by assigning two algebraically independent real numbers to q
and t. Algebraically independent here means there is no non-trivial polynomial with
coefficients in Z that solves for q and t. Replacing q and t by these numbers in the
matrices given by the representation gives us the homomorphism we are looking for.



Chapter 4

Anyons

In this chapter, we will explore an application of braid groups in physics. In Chap-
ter 2, we discussed configurations of distinguishable and indistinguishable particles on
manifolds. In quantum physics, the distinguishablility of particles in a system plays
an important role in the properties of the system. It might feel natural to impose
certain symmetries on a system under the exchange of two particles.

An example of this might be the following (see [15, Chapter 13]). Suppose we
have a system of two indistinguishable particles in 3D space in a state |a, b〉. The
physical meaning of the states a and b does not matter much, but they may for
example be eigenstates of some operator like momentum or spin. Note that the order
of the states a, b itself has no significance, after all the particles are indistinguishable,
so how would we know which is in state a, and which is in state b? The state |b, a〉
must be physically identical to the state |a, b〉 though, so we require that these states
only differ by a phase:

|a, b〉 = eiθab |b, a〉
|b, a〉 = eiθba |a, b〉

(4.1)

where θab and θba may depend on a and b. This implies that

eiθabeiθba = 1. (4.2)

With this, we can define the states

|a, b〉′ = e−iθab/2 |a, b〉
|b, a〉′ = e−iθba/2 |b, a〉

such that

|b, a〉′ = e−iθba/2 |b, a〉 = eiθba/2 |a, b〉 = ei(θab+θba)/2 |a, b〉′ = ± |a, b〉′ .

This derivation works in three spatial dimensions (or more), but it does not work in
2D space! This is mostly because exchanging particles in two spatial dimensions is
not necessarily as simple as equation (4.2) makes it out to be. In this chapter, we
will discuss why that is. A consequence of this is that the statistics of particles in 2D
is not necessarily that of fermions or bosons, like it is in three or more dimensions.
We will consider different configuration spaces, and see what statistics these particles
do follow. Then we will study an abstract construction of these particles by Leinaas
and Myrheim [4], alongside physical constructions by Frank Wilczek [2]. In the last
section, we will look at where anyons play a role in the Fractional Quantum Hall
Effect.

34
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4.1 Exchanging Particles

As mentioned before, when looking at systems of indistinguishable particles, an ex-
change of particles results in a system that is physically identical, such that for
example the wave function only differs by a phase. The wave function might also
differ by a matrix or some other operator, but in this chapter we will only be looking
at “abelian anyons”, so we assume it is a phase. What this phase is, depends on the
braid group on N strands on a manifold M . More specifically, it depends on unitary,
one-dimensional representations of it. The wave function of the system has to obey
the structure of this group. One can also observe multi-dimensional representations,
in the case of “non-abelian anyons” [9, Chapter 3].

In Chapter 2 we have already seen some examples of configuration spaces of
specific manifolds. In this section, we are going to elaborate a bit on these examples.
We can find unitary, one-dimensional representations of their braid groups, which in
these examples are connected to the statistics of the system. We do this along [9,
Chapter 3].

First, to introduce a small bit of notation, we denote the abelianization of a group
G by

[G]ab := G/[G,G], (4.3)

where [G,G] denotes the commutator subgroup of G.
Since one-dimensional representations of groups are abelian, we must abelianize

the braid group of the system we are considering. As an illustration, we can abelianize
the Artin braid group in a few steps.

Lemma 4.1. The braid groups Bn for n ≥ 1 are generated by the two elements σ1

and α := σ1σ2 . . . σn−1 [1, Exercise 1.1.4].

Proof. We can prove this by induction. First, we prove the relation

σ−1
i σi+1σi = σ−1

i σi+1σiσi+1σ
−1
i+1 = σ−1

i σiσi+1σiσ
−1
i+1 = σi+1σiσ

−1
i+1 (*)

for i = 1, . . . , n− 2. Suppose σi can be written as a word in σ1 and α. Then

ασiα
−1 = σ1σ2 . . . σn−1σiσ

−1
n−1 . . . σ

−1
2 σ−1

1

(using (B1)) = σ1σ2 . . . σiσi+1σiσ
−1
i+1σ

−1
i . . . σ−1

2 σ−1
1

(using (*)) = σ1σ2 . . . σiσ
−1
i σi+1σiσ

−1
i . . . σ−1

2 σ−1
1

= σ1σ2 . . . σi−1σi+1σ
−1
i−1 . . . σ

−1
2 σ−1

1

(using (B1)) = σi+1.

And so, by induction, this proves the lemma.

More importantly, this proof also proves that all generators σi are conjugate. This
implies that all generators map to the same element in [Bn]ab = Bn/[Bn, Bn]. After
all, for two generators σi, σj , where σi = βσjβ

−1 for some β ∈ Bn we have

σi[Bn, Bn] = σiβσ
−1
j β−1σj [Bn, Bn] = σiσ

−1
i σj [Bn, Bn] = σj [Bn, Bn],

since βσ−1
j β−1σj is a commutator. So [Bn]ab is cyclic and generated by a single

generator (the image of any of the generators). We can call this generator σab. The
abelianized braid group is also infinite, since we can map any generator to 1 ∈ Z and
find a surjective homomorphism. For example, the word σk1 maps to k. Thus, [Bn]ab
is an infinite cyclic group with generator σab.

The scalar quantum statistics will be numbered by the homomorphism group

hom ([π1(QN (M))]ab ,U(1)) , (4.4)

where U(1) is the one dimensional unitary group [9].
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4.1.1 In The Plane

We have seen that the fundamental group of the configuration space for N indistin-
guishable particles in the plane is BN , and that of distinguishable particles is the
pure braid group PN . We just deduced that [BN ]ab ∼= Z. We have

hom(Z,U(1)) = U(1),

since any homomorphism of Z is defined by where it maps 1, which can be any value in
U(1). Similarly, every element in U(1) defines a homomorphism in this way. We could
also have defined the image of the generators directly as eiθ for some θ ∈ (−π, π].
We can take any value for θ in this range, since there are no further restrictions
imposed on σi, and thus on θ. Note that θ = 0 corresponds to boson statistics, and
θ = π to fermion statistics. Any value inbetween corresponds to fractional statistics,
or anyons! One thing to mention though, is that the term fractional statistics is not
entirely accurate, since depending on the setup, it is not necessarily restricted to only
fractional values.

4.1.2 In R3

Another example we saw in Chapter 2 was the configuration space of particles in R3.
We found that (recalling (2.18))

π1(QN (R3)) ∼= SN .

We know that SN satisfies the same relations as BN for the generators si, as well as
the relation

s2
i = 1

for i = 1, . . . , n − 1. This means we can do the same sort of derivation as we did
for the plane in Lemma 4.1 to conclude that the abelianization of the braid group
on QN (R3) is generated by one element sab. The extra relation above imposes the
relation

(sab)2 = 1,

and we find that
[π1(QN (R3))]ab ∼= Z2.

This implies that, unsurprisingly, we only have two choices for the phase caused by
the exchange of particles: θ = 0, for boson statistics, and θ = π, for fermion statistics.

4.1.3 On the sphere S2

We have not seen the configuration space for the sphere in Chapter 2, so we will look
at it briefly. It is physically less relevant, but the results are interesting.

We can represent paths on the sphere in the same way we did for geometric braids,
see Figure 4.1. In this diagram, the braid σ1σ2σ

2
3σ2σ1 is shown. Note that we can

slip the strand labeled 1 around the sphere to turn this into the trivial braid. This
can be generalized into an additional relation on the generators of the braid group
on S2:

σ1σ2 . . . σN−2σ
2
N−1σN−2 . . . σ2σ1 = 1. (4.5)

Using the same reasoning as before, this imposes an additional relation on the
generator σab of the abelianized braid group, namely

(σab)2N−2 = 1,
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1 4
32

Figure 4.1: An example of a braid on a sphere. It can be noted that the strand labeled
1 may be slipped around the sphere to turn this into the trivial braid [9, Figure 2.8].

implying that
π1(QN (S2)) ∼= Z2N−2.

This restricts our choice of the value for θ to the values

θ =
kπ

N − 1
(4.6)

with k = 0, 1, . . . , 2N − 3. Fermion statistics arise in the case where k = N − 1, and
boson statistics for k = 0.

4.2 The Anyon Phase

We have now seen that anyons can exist in certain setups, with a certain parameter
θ. This parameter is dependent on the dynamics of the system. Its value will turn
out to be characteristic for the system that is observed. In this section, we will to
take a closer look at this parameter, along a very rigorous derivation by Leinaas and
Myrheim in [4]. Alongside this, we study a physical construction, which is essentially
an application of this general theory, given by Frank Wilczek [2] in the article where
he first coins the term anyons.

4.2.1 Some Differential Geometry

To understand the generic construction a bit better, we will first need a bit of differ-
ential geometry. This is where the theory of gauges and gauge transformations finds
its roots. I will introduce this along [16, Chapter 7]. Most importantly, we want to
take a look at parallel transport. Before we look at that, we must introduce some
other concepts. First of which is the notion of a fiber bundle. This concept is closely
related to covering spaces, which had discrete fibers. The main difference is that now
fibers are general spaces (and can even be vector spaces).
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Uα

F

Figure 4.2: The Möbius band as an example of a fiber bundle.

Definition 4.2. A fiber bundle (X̃, p, F,G,X) is a collection of the following objects:
(i) A topological space X̃, called the total space.

(ii) A topological space X called the base space, and a projection p : X̃ → X of X̃
onto X.

(iii) A topological space F called the fiber.
(iv) A group G of homeomorphisms of the fiber F , called the structure group.
(v) A set of open neighborhoods Uα covering X which reflect the “triviality” of X̃.

More specifically, for each Uα, there is a homeomorphism

φα : p−1(Uα)→ Uα × F

where φα satisfies

p ◦ φ−1(x, f) = x with x ∈ Uα, f ∈ F.

Definition 4.3. A principal bundle is a fiber bundle with its structure group as its
fiber. In this case the transition functions φ act on the fiber by left translations.

Essentially what fiber bundles allow us to do, is to observe local properties of a
space as if they were products, even though globally, the space might not be a product.
A nice example of a fiber bundle is the Möbius strip. Globally, the Möbius strip is not
a product. It looks like the cylinder with a twist. The cylinder is a product S1× I of
the circle and an interval (for example the unit interval I = [0, 1]). It turns out that
locally, we can view the Möbius strip as a cylinder. The Möbius strip is the total
space of a fiber bundle with the circle S1 as base space, a line segment as fiber, but
what is the structure group? The structure group arises from the transitions between
the open sets Uα covering the base space. These open sets may overlap, so we can
check what happens in this overlapping region. Consider two open neighborhoods
Uα, Uβ in the covering of X, with homeomorphisms φα, φβ respectively. Then

φα ◦ φ−1
β : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F

is a continuous, invertible map. If we fix x ∈ Uα ∩Uβ, and vary f , then φα ◦ φ−1
β is a

map from F to F . We can label this map gαβ, and call it a transition map. The set
of these maps F → F form the structure group G. In the case of the Möbius strip,
maps gαβ must map the interval I to itself homeomorphically, which can only be done
by either the identity, or by “flipping the interval”, and we find that the structure
group for the Möbius strip is the group Z2. The Möbius strip can also be defined as a
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principal bundle, if the fiber is replaced with Z2, essentially leaving us with the edge
of the strip.

Another example of a bundle, one that gets us closer to the notion of parallel
transport, is the tangent bundle, and is defined as

T (M) :=
⋃
x∈M

Tx(M), (4.7)

which has base space M and the tangent space Tx(M) as fiber (essentially equivalent
to Rn with n = dimM) at point x ∈M . Now it turns out that the structure group of
this space is GLn(R), and that the transition functions gαβ are the Jacobian matrices
for the change of variables from the local coordinates at xα to xβ. This can be
derived by looking at the same tangent vector in two overlapping sets Uα, Uβ with
their respective local coordinate system in Txi(M), i = α, β, done in [16, Section 7.3].

We need some other important concepts before we describe what parallel transport
is, namely that of a vertical subspace and a horizontal subspace. We start off with a
principal bundle P with structure group (and simultaniously fiber) G over a manifold
M . The vertical subspace Vx(P ) ⊆ Tx(P ) is the subspace of the tangent space of
P at a point x ∈ P , such that every vector is tangent to the fiber. This can easily
be visualized in the example of the Möbius band. Along with the vertical subspace,
there is a horizontal subspace Hx(P ) ⊆ Tx(P ) such that

Tx(P ) = Vx(P )⊕Hx(P ).

Here ⊕ denotes the direct sum. Note that this does not define Hx(P ) uniquely. If our
bundle sits within a vector space, the horizontal space may for example be defined as
the space orthogonal to Vx(P ). Generally, this definition is made unique by defining
Hx(P ) along a connection. A formal definition of a connection can be found in [17,
Chapter 16]. In chapter 9, Frankel [17] also defines an affine connection, or covariant
differentiation, which is essentially a connection for vector bundles. Vector bundles are
fiber bundles where the fiber is also a vector space. Since the concept of a covariant
derivative is easier to explain than that of a general connection, and since it is really
the only relevant case for us now, we will look at covariant derivatives instead. The
formal definition is in [17, Section 9.1]. In order to not get side tracked too much, I
will not provide the definition here, but the idea is that it is essentially a derivative
that “transforms along with the manifold”, and depends on the local neighborhood.
It is a derivative that corrects for the change in local coordinates when moving around
on a manifold.

This derivative can be looked at a bit more closely, we will need it for Leinaas and
Myrheim’s construction anyway. We consider the principal bundle P locally, with
local coordinates (x, g) with x ∈M , g ∈ G. The basis for the vertical subspace Vx(P )
are the vectors

∂

∂gi
, with i = 1, 2, . . . ,dimG.

Here we use a convention where we view basis vectors as directional derivatives. For
example for a curve γ, its partial derivative to the coordinate gi shows the coordinate
of its tangent vector in the direction ∂

∂gi
.

The basis for Hx(P ) can be given by

Dµ =
∂

∂xµ
+ Γµijgj

∂

∂gi
(4.8)

for µ = 1, . . . ,dimM [16, Section 7.10]. We use the Einstein summation principle
here. The Γµij are called the Christoffel symbols, and they depend on the manifold,
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Figure 4.3: A classic example of a vector being parallel transported on a sphere.

and the position in the bundle P . The operator Dµ is known as a covariant derivative.
The Christoffel symbols are dependent on the connection, also known as the gauge
potential. A more precise definition of these can be found in [16, Section 7.10, 7.15].

Now we can define parallel transport. Take a curve γ : I 7→ M and a point
x0 ∈ P . This curve γ can be horizontally lifted uniquely to a curve γ̃ : I 7→ P with
γ̃(0) = x0, such that the tangent vector of γ̃ is always horizontal, or in other words:
d
dt γ̃(t) ∈ Hγ̃(t)(P ) for all t ∈ I. Lifted here means that p ◦ γ̃ = γ, similar to lifting
for covering spaces. With this, we can define the parallel transport of a fiber from a
point x to a point x′ in P . We do this by taking any u ∈ p−1(x) and constructing
the unique horizontal lift γ̃ of γ starting at u. We map u to γ̃(1) := u′ ∈ p−1(x′), the
ending point of γ̃.

This is a very abstract definition of parallel transport, but we can provide a simpler
example. A classic example is a vector being transported on a sphere from the north
pole, down to the equator, then moved 90 degrees around the equator and back up
to the north pole. When keeping this vector parallel, it is rotated 90 degrees upon
returning to the north pole, see Figure 4.3. A more relevant example is that of our
two-anyon system in the plane, from Section 4.1.1. Recall Figure 2.7, and consider
Figure 4.4. In Chapter 2 the relative space r(2, 2) was shown as the punctured plane,
but this was not accurate. It is more accurately represented as a cone with a vertex
angle of 30 degrees (this preserves the lengths of paths). With this, there is now
curvature in the space, and a vector parallel transported around the vertex of the
cone flips direction once.

Now to look a bit closer at the horizontal lift, note that the tangents of γ̃(t) =
(x(t), g(t)) are given by

d

dt
= ẋµ

∂

∂xµ
+ ġj

∂

∂gj
, (4.9)

where we again associate vectors with differential operators and use Einstein’s sum-
mation convention. Since we require that this lift is horizontal, we must have

d

dt
= ẋµ

∂

∂xµ
+ ġj

∂

∂gj
= βµ

(
∂

∂xµ
+ Γµijgi

∂

∂gj

)
,

from which follows that βµ = ẋµ. This equation also gives us the following first order
linear differential equation:

ġ(t)− b(x)g(t) = 0 (4.10)

for a certain function b(x). This equation is known as the parallel transport equation.
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Figure 4.4: The relative space r(2, 2) (represented more accurately as a cone) and the
covering space R2 \ { 0 }. Two paths C0 and C1 are drawn, along with their lifts in
R2 \ { 0 }, and a vector v transported around the curves. The curve C0 preserves v,
while C1 “flips” v when revolving around the vertex of the cone [4].

To finish off this intermezzo, we introduce the notion of a section, or cross-section.

Definition 4.4. A section of a bundle X̃ is a continuous map

s : X → X̃

satisfying
p ◦ s = idX

Effectively, the section “undoes” what the projection map does. In the case of a
vector bundle, this means that every point in the base space gets assigned a vector
in the fiber along with it, effectively giving us a vector field.

4.2.2 Constructing Anyons

Now that we have our mathematical background in order, we will consider the con-
structions by Leinaas and Myrheim [4] and that of Wilczek [2] alongside each other.
In his article, Wilczek actually constructs multiple systems, one of which is a single-
anyon system, and another is a two-anyon system. The former is physically less
relevant, since it does not make much sense to talk about the statistics of a single
particle, but it is simpler, and interesting nonetheless. Firstly, we will study the “ab-
stract” construction by Leinaas and Myrheim alongside this single-anyon “physical”
construction by Wilczek, in order to make the similarities more clear. Then we will
look at the two-anyon system.

In the physical setup the starting point will be a particle with charge q orbiting
an infinitely long solenoid on the z-axis with flux Φ, see Figure 4.5. Note that the loops
in this setup are in fact equivalent to those in the once-punctured plane R2 \ { 0 }.
After all, they can all be continuously transformed to lie in this plane, and they
cannot be “homotoped” around the solenoid (the “puncture”). In this setup, there
is an azimuthal vector potential

~A =
Φ

2πr
ϕ̂

from the solenoid.
In the abstract setup we start with a given configuration space, and for each

point x in this space we introduce a one-dimensional Hilbert space hx. This space



4.2. THE ANYON PHASE 42

Ψ

q

Figure 4.5: The physical setup used to describe the construction of a single anyon. It
is depicted how the fundamental group of this space corresponds to that of R2 \{ 0 }.

hx is then the fiber of the bundle that describes the global state. Locally, we assume
that the state of the system is described by the section Ψ(x) ∈ hx. If we pick χx as
a basis for hx, then

Ψ(x) = ψ(x)χx

for some complex valued function ψ(x). In this way, we have constructed the fiber
bundle that will give rise to specific gauge transformations. The function ψ depends
on the choice of the basis vectors χx, and transforms with gauge transformations of
the second kind when this basis changes:

ψ(x)→ ψ′(x) = eiφ(x)ψ(x) (4.11)

for some function φ(x).
In the physical setup we perform a familiar gauge transformation, the same

one that can be used to derive the Aharonov-Bohm effect [9]. We set

~A′ = ~A− ~∇Λ, Λ =
Φϕ

2π
.

This causes the vector potential to be zero everywhere except the origin. This trans-
formation corresponds to a transformation of the basis vectors χx, and the wave
functions transform along with this as

ψ(ϕ)→ ψ′(ϕ) = eiqΛ(ϕ)ψ(ϕ) = eiq
Φϕ
2π ψ(ϕ).

By symmetry, ψ only depends on the azimuthal angle. Note that this turns ψ′(ϕ)
into a multi-valued function, since Λ is not 2π-periodic:

ψ(ϕ+ 2π) = eiqΦψ(ϕ). (4.12)

In the abstract setup we can also find this multi-valued nature of the wave
functions. To see this, we observe the parallel displacement of the fibers hx, and
thereby of the state vectors. Denote the parallel displacement as a linear operator

P (x′, x) : hx → hx′ ,

which transports each vector in the fiber hx along a continuous curve from x to x′ in
the configuration space into a vector in the fiber hx′ (along a horizontal lift of that
curve!). Note that this transport may depend on the curve between x and x′. We may
assume, though, that infinitesimal displacement from x to x+ dx is uniquely defined,
and unitary. An argument for uniqueness is that we are displacing by an infinitesimal
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length, so as long as we stay within a small section, any choice of curve would give
the same results. Unitariness follows essentially from the idea of parallel transport,
as it will always conserve the inner product. A simple way of convincing yourself of
this is by considering what happens to the inner product when transporting vectors
around a sphere, see Figure 4.3.

Recalling the parallel transport equation (4.10), or a form of this that Leinaas
and Myrheim refer to as the rule of infinitesimal displacement, we get

P (x+ dx, x)χx = (1 + idxkbk(x))χx+dx, (4.13)

using Einstein’s summation convention. This corresponds to a gauge invariant differ-
entiation operator

Dk =
∂

∂xk
− ibk(x). (4.14)

Here, the functions bk correspond to the dynamics of the system, and is referred to
as the “gauge potential”. The quantity

fkl = i[Dk, Dl] =
∂bl
∂xk
− ∂bk
∂xl

(4.15)

measures the noncommutativity of the components of the gauge-invariant differentia-
tion, and essentially describes how curved our space is (in a flat space, with no gauge
potential, this would be 0, and the covariant derivative becomes simply the partial
derivative).

In the physical setup the gauge potential we mentioned corresponds directly
with the vector potential A, and the covariant derivative is given by

Dk =
∂

∂xk
− iqAk.

We can in fact see more clearly what the covariant derivative entails in the physical
setup. After a gauge transformation of Ak → A′k and ψ → ψ′, one can compute that

D′kψ
′ = eiqΛDkψ,

essentially saying that the covariant derivative of a transformed system is the trans-
form of the covariant derivative, or in other words: it is preserved when moving along
the bundle. The functions bk are given by qAk, and the commutators fkl correspond
to

fkl = q

(
∂Al
∂xk
− ∂Ak
∂xl

)
= qFkl,

where the Fkl are the elements of the electromagnetic field tensor.
In the abstract setup we do not want the functions bk, corresponding to the

vector potential, to describe a force field. So we assume that fkl = 0 for all x except
the singularity. This makes it so that a vector Ψ ∈ hx does not change when parallel
transported around a closed curve not encircling the singularity. This follows from
the Stoke’s theorem. When transported m times around the singularity though, the
wave function Ψ will be transformed into Pmx Ψ, where Px is a linear, unitary operator
(unitary because we can assume that P (x′, x) is unitary). Since the Hilbert spaces
hx, where Ψ(x) lies, is one-dimensional, Px will just be a phase factor

Px = eiξ.

Since
Px′ = P (x′, x)PxP (x′, x)−1 = eiξ,
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the parameter ξ must not depend on the position x, and is therefore characteristic
for the system itself. To obtain the beforementioned multi-valued nature of the wave
function, we may choose χx in such a way that bk = 0. This is precisely what we
did with the gauge Λ in the physical setup. We can choose a basis vector χx at some
point x and define the basis vectors at all other points as parallel transport of this
basis vector, making it so that all basis vectors

χx, e
±iξχx, e

±2iξχx, . . .

exist at the point x, giving us the multi-valued nature of the wave function we found
in the physical setup. With the operator Px we can conclude that our wave functions
must meet certain (unusual) boundary conditions, namely

ψ(ϕ+ 2π) = eiξψ(ϕ). (4.16)

In the physical setup we find that our allowed wave functions have

ψ(ϕ) ∝ eilzϕ with lz = integer +
qΦ

2π
,

where the lz show the spectrum of orbital angular momenta, in order to comply with
our boundary condition (4.12).

The difference with the “normal” angular momentum values of integer lz stems
from the fact that in a 2D setup, there is only lz, even though z in this case does not
mean much physically. In the 3D setup, there are three components to the angular
momentum, with commutation relations imposed on the operators. These are the
same relations that are on the corresponding rotation group SO(3) of rotations in 3D
space, a non-abelian, three dimensional group, see for example [15, Section 8.2.3]. In
the 2D case, there are no restrictions, as the corresponding rotation group is SO(2),
a one dimensional, abelian group.

Two anyons

Wilczek [2] also provides a physical construction for two anyons, in a similar setup.
We consider two identical particles. In our setup, we consider the electrostatic forces
small, and treat them as perturbation. We can define the wave function of our system
Ψ as a function of center-of-mass coordinates R, θ and relative coordinates r, ϕ. This
gives us a similar boundary condition as (4.16):

Ψ(R, θ, r, ϕ+ 2π) = e4πi∆Ψ(R, θ, r, ϕ) (4.17)

with ∆ = qΦ
2π the angular momentum. Note that the difference with (4.16) is only

a factor 2 in the change of phase. This is related to the fact that a loop of the two
particles can be seen as the double exchange of the two [9, Section 3.2.6]. Since the
particles are identical, a change of ϕ by π results in our original system, and we find
that

Ψ(R, θ, r, ϕ+ π) = ±e2πi∆Ψ(R, θ, r, ϕ). (4.18)

Depending on whether our original particles were bosonic (+) or fermionic (−). In
the case of bosonic particles, this results in boson statistics for ∆ = 0 and fermion
statistics for ∆ = 1

2 , and anyon statistics for any value inbetween.
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Harmonic Oscillator

We have seen the anyonic nature of the system in the phase of the wavefunction, and
in the angular momenta of the system, but we can also find it in the allowed energies
of the system. For this, we use a slightly different approach in the abstract setup.
We again consider a two-particle system in 2D. In the relative space, the free particle
Hamiltonian in polar coordinates reads

H = −~2

m

(
∂2

∂r2
+

1

r

∂

∂r
+

4

r2

∂2

∂ϕ2

)
.

We ignore the center of mass coordinate of the system. In the other approach, define
the single-valued wavefunction

ψ′(r, ϕ) = e−i
ξ

2π
ϕψ(r, ϕ). (4.19)

We transform the Hamiltonian as

H ′ = e−i
ξ

2π
ϕHei

ξ
2π
ϕ = −~2

m

(
∂2

∂r2
+

1

r

∂

∂r
+

4

r2

(
∂

∂ϕ
+ i

ξ

2π

)2
)

(4.20)

and note that ψ′ is indeed a solution. We use a similar setup as before, but add
a harmonic oscillator potential V (r) = 1

4mω
2r2. The eigenfunctions of our new

Hamiltonian H ′ + V are
ψ′(r, ϕ) = eilϕR(r) (4.21)

for integer l. The radial function is determined by(
∂2

∂r2
+

1

r

∂

∂r
+

4

r2

(
l +

ξ

2π

)2

− 1

4

m2ω2

~2
r2 +

mE

~2

)
R(r) = 0. (4.22)

which is the ordinary radial equation, except with l + ξ
2π instead of l. The result of

this is that the allowed energies become

E = 2~ω
(
n+

∣∣∣∣l +
ξ

2π

∣∣∣∣+
1

2

)
,

with n = 0, 1, 2, . . .. This gives us the bosonic case for ξ = 0 and the fermionic case
for ξ = π, as expected.

4.3 Anyons in Experiments

We have now seen the theoretical description of anyons, but they have been observed
in practice as well. One major phenomenon where anyons show up is the Fractional
Quantum Hall Effect (FQHE). I will describe this along [18], where David Tong gives
a very clear derivation of the effect. We will first introduce the classical Hall effect,
then discuss the Integer Quantum Hall effect, and finally the Fractional Quantum
Hall Effect.

The classical Hall effect is the production of a voltage across a conducting plate,
perpendicular to a current through the plate and an applied magnetic field perpen-
dicular to the plate, see Figure 4.6. Classically, we could think of the magnetic field
causing electrons to deflect off to one side, accumulating charge and creating an elec-
tric field causing an equilibrium. This induced electric field corresponds to the Hall
voltage.
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B

JEx

Ey

Figure 4.6: A setup where the Hall effect can be observed. Initially, a current with
current density J flows through the plate, with a downwards magnetic field of strength
B perpendicular to the plate and an electric field Ex across it. This causes an induced
electric field Ey across the plate, and an associated voltage and resistivity.

ρ

B

ρxx

ρxy

Figure 4.7: A sketch of what the Hall resistivity looks like in a classical picture.

A quantity that we will be looking at a bit more is the Hall resistivity. The
resistivity is a tensor ρ defined as

ρ =

(
ρxx ρxy
−ρxy ρxx

)
= σ−1 (4.23)

for isotropic systems. Here, σ is the conductivity tensor, relating the current density
~J and the electric field ~E as ~J = σ ~E. The ρxy term is the Hall resistivity. Classically,
one can derive that

ρxx =
m

ne2τ
ρxy =

B

ne
, (4.24)

see Section 4.3. Here, B is the strength of the applied magnetic field, n is the density
of charge carriers, m the mass of a charge carrier, −e the charge of a particle and τ
the scattering time, which can be thought of as the average time between collisions
of charge carriers with for example impurities. A full derivation can be found in [18,
Chapter 1.2].

4.3.1 The Integer Quantum Hall Effect

On very clean samples (plates), with strong magnetic fields and low temperatures, the
Hall resistivity showed its quantized nature. This is known as the Integer Quantum
Hall Effect (IQHE). The classical view of charge accumulating on one side no longer
holds. Instead, the charge carriers move in circles in the plate (except at the edges,
where they “bounce off” and move along the edge: the so called edge modes, see
Figure 4.9).
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Figure 4.8: The IQHE. The vertical axis denotes the resistivity. The “steps” are the
Hall resistivity ρxy, while the other line is the longitudinal resistivity ρxx. Classically,
one would expect ρxy to be a line, and ρxx to be constant. Image extracted from [18].

Figure 4.9: A sketch of what edge modes look like.

The resistivity components show quantized behavior, as can be seen in Figure 4.8.
In the middle of the plateaus, the Hall resistivity takes the values

ρxy =
2π~
e2

1

ν
ν ∈ Z (4.25)

A simple approach for explaining this value is observing ν fully filled Landau levels,
and considering every single particle state, denoted |ψn,k〉, as a translation relative
to the origin (in the middle of the plate), since all of the states should be the same
motion.

For particles in a magnetic field, the Hamiltonian is given by

H =
1

2m
(~p+ e ~A)2. (4.26)

It is known that the energies are quantized as

Eν = ~ωc
(
ν − 1

2

)
(4.27)

where ν is a positive integer, and ωc is the cyclotron frequency

ωc =
eB

m
. (4.28)

These energy levels, known as Landau levels, are hugely degenerate. In fact, every
level can house N particles, with

N =
AB

Φ0
, Φ0 =

2π~
e

(4.29)
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and A being the area of the plate. The quantity Φ0 is known as the flux quantum. It
can be thought of as the amount of flux contained in an area of 2πl2B, where lB is the
magnetic length

lB =

√
~
eB

, (4.30)

the length scale at which quantum effects are important in a magnetic field. The de-
generacy is lifted somewhat when adding an electric field Ex̂, turning the Hamiltonian
into

H =
1

2m
(~p+ e ~A)2 − eEx. (4.31)

This also results in an extra term added to Eν , linear in k.
For the Hamiltonian (4.31) we can choose a convenient gauge for the vector po-

tential ~A. In this case, the vector potential is chosen as the Landau gauge

~A = −xBŷ.

The sign comes from the fact that the magnetic field points downwards. The wave-
functions corresponding to this system (in this chosen gauge) are

ψn,k = e−ikyHn(x−mE/eB2 + kl2B)e−(x−mE/eB2+kl2B)2/2lB2
, (4.32)

where Hn are the Hermite polynomials, as in the harmonic oscillator. They are
sharply localized around

x = mE/eB2 − kl2B. (4.33)

The mE/eB2 in this expression is merely a small uniform correction. The canonical
momentum (note, not the mechanical momentum) of a particle in this system is given
by

m~̇x = ~p+ e ~A.

For the current in the y-direction, this gives us

Iy = −eẏ = − e

m

ν∑
n=1

∑
k

〈ψn,k| − i~
∂

∂y
− exB|ψn,k〉

=
e

m

ν∑
n=1

∑
k

〈ψn,k|~k + exB|ψn,k〉 .

The ~k term comes from the shape of the wavefunctions ψn,k, recalling (4.32). The
second term calculates the expected value 〈x〉. From the localization of the wave
functions, we find

Iy = eν
∑
k

E

B
= e

E

B
N = AJy,

since the sum over k gives us simply the number of electrons in one Landau level.
This in turn gives

E = ρxyJy = ρxy ·
eνE

Φ0
,

as expected.
This does not capture the edge modes mentioned earlier though, as well as disre-

garding all cases where the “degeneracy lifted” Landau levels are partially filled. A
way of resolving this first point is by modelling the sample as having a potential with
steep edges on the sides instead, see Figure 4.10.

Accounting for the edge modes in this way will not change anything about the
results so far, as long as the Fermi level is inbetween two Landau levels. Now what
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V (x)

x

EF

EF

EF

EF

Figure 4.10: A sketch of the potential used to model the edge modes. In the middle,
Landau levels along with the Fermi-level EF are shown. The small circles represent
occupied states. The slant in the Landau levels and the difference in the Fermi-level
on the left and right side is because of the applied electric field in the x direction, and
the potential associated with it. On the right side, a random potential representing
the disorder is added, and the Landau levels are shown [18, Chapter 2].

E E

Figure 4.11: The density of states in the Landau levels with (left) and without (right)
degeneracy [18, Figures 16 and 17].

happens when a Landau level (with its degeneracy lifted) is partially filled? It turns
out that even though the plate is clean, the IQHE still occurs because the plates
are not perfect, but just clean enough. Essentially, the disorder in the plate adds a
random potential to that shown in Figure 4.10. As long as this random potential is
much smaller than ~ωc, the gap between two Landau levels, this will not affect the
quantized nature of the resistivity.

What happens is that this random potential adds some local maxima and minima
to the sample. Particles are trapped around the minima and maxima, and will not
contribute to the current. The states are localized. Lowering the magnetic field
makes it so less states can occupy each Landau level. The Fermi level will rise, but
the particles will start populating the localized states until a new Landau level is
filled.

4.3.2 The Fractional Quantum Hall Effect

The phenomenon where anyons really play a role is in the Fractional Quantum Hall
Effect (FQHE). It turns out that the resistivity does not only have plateaus at integer
filling fractions ν, but also at fractional ones [19]. On even cleaner samples, and
extremely low temperatures and high magnetic fields, plateaus were first found at
ν = 1

3 and ν = 2
3 at the lowest Landau level, and later for other filling fractions and

in different Landau levels.
Laughlin was the first to present a theory about the FQHE, describing the states

with filling fractions

ν =
1

m
(4.34)
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Figure 4.12: The Fractional Quantum Hall Effect. Image from [18].

for odd integers m [18]. He theorized a wave function, based on insight and guesswork:

ψ(zi) =
∏
i<j

(zi − zj)me−
∑n
i=1 |zi|2/4l2B . (4.35)

Here, the zi represent the electron positions as complex numbers zi = xi + iyi. This
wavefunction was not perfect, but it showed more than 99% overlap with the true
ground state. Hamiltonians can be found where this wavefunction is indeed an exact
solution.

The most interesting part of this wavefunction is the “Jastrov factor”∏
i<j

(zi − zj)m.

It shows that m must be odd when observing electrons (which are fermions), to make
the entire wavefunction odd under exchange of particles. States with even m can be
seen as describing bosons. The meaning of m is quite complex, but can be interpreted
for example as one plus the amount of flux quanta that is attached to each electron,
turning them into “composite fermions”[9, Chapter 1], [20]. Note that there are
m(N − 1) factors of z1. By considering highest order monomial, we see that

z
m(N−1)
1 e

− |z1|
2

4l2
B (4.36)

is localized at a radius R =
√
m(N − 1)lB. This gives us an area for the “droplet”

(since these wave functions describe more of a circular system) of particles A ≈
2πmNl2B, where we replace N − 1 with N . The number of states in a full Landau
level is AB

Ψ0
= A

2πl2B
≈ mN . This argument shows that the filling fraction is indeed

ν =
1

m
.

Now it can be shown that this state does in fact result in the desired resistivity. For
the argument, see [18, Section 3.2.1].

We now consider excitations of the states discussed above. There are two types
of charged excitations: quasi-holes and quasi-particles. To keep this thesis short and
simple, we will only be considering quasi-holes. The wave function describing M
quasi-holes at positions ηi ∈ C, i = 1, . . . ,M is

ψM−holes(z; η) =

M∏
j=1

N∏
i=1

(zi − ηj)
∏
k<l

(zk − zl)me
−

∑n
i=1

|zi|
2

4l2
B . (4.37)
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Note how this describes the vanishing of the electron density at the holes ηi. An
excitation like this for m = 1 can be seen as exciting a single particle, and creating a
hole in the Fermi-sea that is the ground state. This hole will behave like a particle,
but has no dynamics, and in our case has fractional charge e∗ = e

m . A heuristic
argument for this is that placing m quasi-holes on top of each other (so ηi = η and
M = m in (4.37)) essentially gives us the Laughlin state with zN+1 = η. Except here
η is a parameter, so m quasi-holes play the role of the absence of one electron.

A more formal argument for the fractional charge, and for the fractional statistics
that we were looking for follows from a Berry phase when moving the quasi-holes
around closed loops or exchanging them.

The Berry Phase

The Berry phase arises for a system with a Hamiltonian dependent not only on
variables, but also on parameters λ, which we can write as

H(xi;λj).

These λj are fixed by some external influence. We can change these parameters very
slowly (adiabatically), and the Hamiltonian (and with that the eigenstates) changes
too. The adiabatic theorem states that if we start with a system in a non-degenerate
state, and make these adiabatic changes, the system will remain in this eigenstate.
If we change these parameters in a way such that we return to the initial setup, the
state will not change, except for a phase

|ψ〉 → eiγ |ψ〉 .

This phase is composed of two components, one comes from the time evolution, which
is always there, and the other is the Berry phase.

This concept is very closely related to parallel transport. An example in classical
mechanics is the Foucault pendulum, where the rotation of the earth causes the pen-
dulum to gradualy change direction. In fact, carrying a Foucault pendulum around
the earth in a way similar to Figure 4.3 would give it the exact same phase change
as the vector carried around in the figure [21, Section 11.5].

The Berry phase can be calculated as

eiγ = exp

(
−i
∮
C
Ajdλj

)
(4.38)

where Aj is the Berry connection, defined as

Aj = −i 〈n| ∂
∂λj
|n〉 . (4.39)

The state |n〉 is a reference state with a certain initial phase. The Berry connection is
similar to other connections we discussed earlier. We can apply gauge transformations
to the Berry connection for example. The freedom of choice of gauge in this case arises
from the arbitrariness of the initial phase of the reference states |n〉 of the system.

Fractional Charge and Fractional Statistics

For our system of quasi-holes, we consider the normalized states

|ψ〉 =
1√
Z
|η1, . . . , ηM 〉 , (4.40)
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η1
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Figure 4.13: Loops to compute fractional charge (left) and fractional statistics (right)
of quasi-holes [18, Figures 31 and 32].

where |η1, . . . , ηM 〉 has wavefunction (4.37), and Z is a normalization factor dependent
on the ηj . In our case, the parameters ηj are not real, and we consider the “holo-
morphic” and “anti-holomorphic” parameters η and η respectively. The holomorphic
Berry connection is

Aη(η, η) = −i 〈ψ| ∂
∂η
|ψ〉 =

1

2Z

∂Z

∂η
− i

Z
〈η| ∂

∂η
|η〉 = − i

2

∂ log(Z)

∂η
, (4.41)

because ∂Z
∂η = ∂

∂η 〈η|η〉 = 〈η| ∂∂η |η〉. The anti-holomorphic Berry connection is

Aη = +
i

2

∂ log(Z)

∂η
. (4.42)

The exact expression for Z is not known, but an approximation can be found in [18,
below Equation (3.24)]. Some analysis, also done in the referenced article, allows one
to derive that

Aηj = − i

2m

∑
j 6=i

(
1

ηi − ηj

)
+

iηj
4ml2B

and Aηj = +
i

2m

∑
j 6=i

(
1

ηi − ηj

)
− iηj

4ml2B
,

(4.43)
if the holes do not get too close to each other.

To derive the fractional charge, we move a quasi-hole η1 around a loop that does
not enclose any other quasi-holes, see Figure 4.13. In that case, the first term of the
Berry connection does not contribute to the phase (a well known result of complex
analysis). The Berry phase is then given by

eiγ = exp

(
−i
∮
C
Aηdη +Aηdη

)
= exp

(
−i
∮
C

iηj
4ml2B

dη − iηj
4ml2B

dη

)
. (4.44)

Stokes theorem gives us that∮
C

iηj
4ml2B

dη = − 1

4ml2B
·A =

eΦ0

2m~
· A

2πlB
= − eΦ

2m~
,

where Φ0 is the flux quantum, defined as Equation (4.29), the flux through an area
2πl2B, and Φ is the total flux through the area enclosed by C. The same thing can be
done for the anti-holomorphic term, giving us the Berry phase

γ =
eΦ

m~
, (4.45)

which is exactly the Aharonov-Bohm phase for a particle with charge

e∗ =
e

m
.
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More importantly though, we wish to look at the fractional statistics. For this,
we choose a loop which does enclose another quasi-hole, see Figure 4.13. In this case,
both terms contribute. The second term again gives the Aharonov-Bohm phase. The
first term gives

1

2m

∮
C

dη1

η1 − η2
=
πi

m
,

for both Aη and Aη, following from Cauchy’s integral theorem. The sign is a com-
bination of that in (4.38) and (4.44). Adding the term from the anti-holomorphic
Berry connection gives us

eiγ = e
2πi
m . (4.46)

Note that this is for a rotation of one quasi-hole around another, and an exchange
would give half this phase. This makes it so that for a fully filled Landau level
(m = 1), the quasi-holes are fermions.



Chapter 5

Braided Monoidal Categories

Braid structures occur in other mathematical contexts as well. One of these is cat-
egory theory, where there are braided structures called braided monoidal categories.
Category theory studies a very generic abstraction of other mathematical structures
in the form of categories. I will introduce some basic category theory along [22]. After
this, we will be looking at monoidal categories, and finally braided monoidal cate-
gories. Finally, we will explore some interesting uses of braided monoidal categories.

5.1 Category Theory: A Short Introduction

Definition 5.1. A category consists of:

� A directed graph with a set O of objects (the vertices) and a set A of arrows or
morphisms (the edges);

� two functions dom : A → O and cod : A → O, such that two arrows g, f are
composable if dom g = cod f ;

� and two additional functions

id : O → A : c 7→ idc, (5.1)

◦ : A×O A→ A : (g, f) 7→ g ◦ f, (5.2)

called the identity and composition.

Here, A×O A denotes the set of composable arrows.

A×O A = { (g, f) | g, f ∈ A,dom g = cod f }

For the functions id and ◦ the following must hold:

dom(id a) = a = cod(id a) (5.3)

dom(g ◦ f) = dom f (5.4)

cod(g ◦ f) = cod g (5.5)

for objects a ∈ O and composable arrows (g, f) ∈ A×O A.

To distinguish between arrows in a category and objects in a category, we write

c ∈ C and f in C

for objects and arrows respectively. We also write

hom(b, c) = { f | f in C,dom f = b, cod f = c } (5.6)

54
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for the hom-set of morphisms between objects b and c. Categories are often depicted
as shown below

B

A C

gf

h

Some categories are given special names, like
� Set, the category with “small” sets as objects and functions between them as

arrows;
� Grp, the category with “small” groups as objects and group homomorphisms

as arrows;
� Top, the category of “small” toplogical spaces, with continuous functions as

arrows;
� Vect(k), the category of “small” vector spaces over a field k, with linear maps

as arrows;
and others. Small here means sets within a specific “universe”, dependent on the
context. Essentially all “small” sets are “all sets one cares to consider” [8, Small

set].
Categories themselves may also admit morphisms between them, which we call

Functors.

Definition 5.2. A functor T : C → B between two categories C and B consists of
two functions: the object function and the arrow function (both written T ). These
functions assign to each object c ∈ C and each arrow f in C an object Tc ∈ B and
an arrow Tf in B respectively, in such a way that

T (idc) = idTc and T (g ◦ f) = Tg ◦ Tf. (5.7)

A simple example is the power set functor P : Set → Set, which takes sets to
their powersets, and functions f : X → Y to Pf : PX → PY sending each subset
S ⊂ X to its image fS ⊂ Y . It is easily verified that P satisfies the conditions (5.7).

We can construct the product category B×C for categories B and C as follows: an
object of B×C is a pair of objects (b, c) with b ∈ B, c ∈ C. An arrow (b, c)→ (b′, c′)
is a pair of arrows f : b → b′ and g : c → c′. Composition is defined in the natural
way as elementwise composition. We can define projection functors P : B × C → B
and Q : B ×C → C by simply taking the respective element of the object and arrow
tuples. The product category between a category C and the category 2, consisting of
two objects 0, 1 and one arrow from 0 to 1, can be depicted nicely:

B′

C × {1} A′ C ′

B

C × {0} A C

The last basic notion we need is that of natural transformations.

https://en.wikipedia.org/wiki/Small_set_(category_theory)
https://en.wikipedia.org/wiki/Small_set_(category_theory)
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Definition 5.3. Given two functors S, T : C → B for categories C and B, a natural
transformation τ : S → T is a function which assigns to each object of C an arrow
τc = τc : Sc→ Tc of B, in such a way that the following diagram is commutative.

c Sc Tc

c′ Sc′ Tc′

f

τc

Sf Tf

τc′

One also says that τc : Sc→ Tc is natural in c.

5.2 Monoidal Categories

A logical next step to understanding braided monoidal categories is understanding
monoidal categories. The definition is closely related to that of a monoid. A monoid
is a set equipped with an associative binary operation and an identity element. One
can think of this as a set with a multiplication or a product, essentially a group
without the requirement of inverses. Similarly, we can define a monoidal category.

Definition 5.4. A monoidal category (sometimes referred to as tensor category) is
a category C equipped with [6, Monoidal Category]

� A functor ⊗ : C × C → C from the product category of C to itself, called the
tensor product.

� An object e ∈ C.
� A natural isomorphism

α = αa,b,c : a⊗ (b⊗ c) ' (a⊗ b)⊗ c,

for a, b, c ∈ C, called the associator.
� A natural isomorphism

λ = λx : e⊗ x→ x

called the left unitor, and
� A natural isomorphism

ρ = ρx : x⊗ e→ x

called the right unitor.
such that the following two kinds of diagrams commute: the triangle identity

(x⊗ e)⊗ y x⊗ (e⊗ y)

x⊗ y

ax,e,y

ρx⊗idy idx⊗λy

and the pentagon identity

(w ⊗ x)⊗ (y ⊗ z)

((w ⊗ x)⊗ y)⊗ z w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z w ⊗ ((x⊗ y)⊗ z)

αw,x,y⊗zαw⊗x,y,z

αw,x,y⊗idz

αw,x⊗y,z

idw ⊗αx,y,z

https://ncatlab.org/nlab/show/monoidal+category
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A monoidal category is called strict when the associator and both the left and
right unitor are identity morphisms.

Example 5.5. An example of a monoidal category is the category of sets Set, with
the cartesian product as tensor product, and any 1-element set as its unit.

5.3 Braided Monoidal Categories

A braided monoidal category is a monoidal category with an added braiding : an
isomorphism essentially describing how the tensor product commutes.

Definition 5.6. A braided monoidal category is a monoidal category C, along with a
family of isomorphisms called a braiding γ = γa,b : a⊗ b ' b⊗ a, natural in a, b ∈ C
such that the following two diagrams commute:

a⊗ e e⊗ a

a

γ

ρ λ

and the Hexagon Axiom (the symbol ⊗ is omitted)

(H1) a(bc) (bc)a (H2) (ab)c c(ab)

(ab)c b(ca) a(bc) (ca)b

(ba)c b(ac) a(cb) (ac)b

γ

α

γ

α−1

γ⊗id

α α−1

id⊗γ

α

id⊗γ

α−1

γ⊗id

In the special case where γa,b ◦ γb,a = id, the braided monoidal category is called
a symmetric monoidal category.

Example 5.7. An example of a braided monoidal category is the category Vect(k),
with the classic tensor product, and “the flip”, associating V ⊗W with W ⊗ V , as
braiding [23, Chapter 13]. This is in fact a symmetric monoidal category.

5.3.1 The Braid Category

One, perhaps basic, example is that of the braid category B. Braided monoidal
categories, as well as the braid category itself were studied by Joyal and Street [3],
but I will be following [23, Chapter 13] and [22, Chapter 11]. The braid category
B may be defined as a category with the braid groups as objects, though often we
simply choose the natural numbers. The arrows are the braids n→ n, n ∈ B. There
are no arrows between two braid groups n 6= m.

This category is a (strict) monoidal category when we define ⊗ as the “addition”
of braids, or simply “laying” one braid next to another, see Figure 5.1. The empty
braid is the unit. We can then define the braiding γn,m pictorially as seen on the left
hand side in Figure 5.2, where γ0,n = γn,0 = idn. It can also be defined algebraically
in terms of braid group generators σi as [23]

γn,m = (σmσm−1 . . . σ1)(σm+1σm . . . σ2) . . . (σm+n−1σm+n−2 . . . σn) (5.8)
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⊗ =

Figure 5.1: An illustration of the tensor product on the braid category B.

ξ η

=

ξη

Figure 5.2: The left hand side shows the braiding γn,m on the braid category B shown
pictorially. The boxes ξ, η represent braids in n = 7 and m = 5 respectively. The
right hand side shows the same braid, showing that γm,n is indeed natural.

m n p

mn p

=

m n p

mn p

Figure 5.3: The first relation of the hexagon axiom (H1) shown pictorially for the
braid category. The “lower path” in the hexagonal diagram corresponds to the left
hand side of this figure, while the “upper path” corresponds to the right hand side.
[3]
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=

Figure 5.4: A visual representation of the Yang-Baxter equation (5.10).

Showing the naturality and the fulfillment of the hexagon axiom can again be
done most easily pictorially. Naturality can be seen in Figure 5.2, which shows that
the order of applying the braiding γm,n and the braids ξ ⊗ η does indeed not matter.
The first relation of the hexagon axiom (H1) can be pictorially verified, as seen in
Figure 5.3. The other relation can be verified in a similar way. It can also be shown
algebraically, but this would be a very long and not very exciting proof.

One important thing to note though, is that [23]

σi is represented by id
⊗(i−1)
1 ⊗γ1,1 ⊗ id

⊗(n−i−1)
1 (5.9)

for any i = 1, 2, . . . , n. Here id
⊗(n)
1 denotes id1⊗ id1⊗ . . .⊗ id1, n times id1 tensored

with itself. In the case of the braid category, this seems like a fairly trivial result, but
it suggests that if we find other braided monoidal categories (for example ones with
C-vector spaces as objects), we might find representations of the braid groups in the
same way.

For example, consider Lemma X.6.8 from [23, Chapter X].

Lemma 5.8. Let V be a vector space, and c a linear automorphism of V ⊗ V , and
n > 1 an integer. Then the linear automorphism ci of V ⊗n, for 1 ≤ i < n defined as

ci =


c⊗ idV ⊗(n−2) if i = 1,

idV ⊗(i−1) ⊗c⊗ idV ⊗(n−i−1) if 1 < i < n− 1,

idV ⊗(n−2) ⊗c if i = n− 1

satisfies
cici+1ci = ci+1cici+1

if and only if c is a solution of the Yang-Baxter equation (5.10).

Note that the first braid relation (B1) is trivially satisfied by the ci, simply from
its construction.

The Yang-Baxter equation is an equation that was first come up with while study-
ing scattering of particles and in studying models in statistical physics. The equation
reads

(c⊗ idV )(idV ⊗c)(c⊗ idV ) = (idV ⊗c)(c⊗ idV )(idV ⊗c). (5.10)

It describes the scattering of particles, and says that when scattering three particles,
it can be reduced to a two body problem. That it does not matter in what order the
particles interact. This is often represented graphically as seen in Figure 5.4. One can
construct a dodecagonal diagram that always commutes in braided monoidal cate-
gories, equivalent to precisely the Yang-Baxter equation when the monoidal category
is strict [23, Theorem XIII.1.3]. If the monoidal category is not strict, one has to
account for the associator. This, by the construction used in Lemma 5.8, shows that
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the braiding on a strict braided monoidal category provides braid group representa-
tions on vector spaces in the way implied by Equation (5.9). We can come up with
some basic examples starting from braided monoidal categories.

Example 5.9. The category Vect(k) is a braided monoidal category with the classic
tensor product and “the flip” as braiding.

This example is symmetric, so the result will not be very exciting, but it is a good
example nonetheless. The matrices that represent “the flip” τV,W : V ⊗W →W ⊗ V
are (

0 IW
IV 0

)
.

Similar to Equation (5.9), we find that

σi ∈ Bn is represented by


Ii−1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 In−i−1


using the braiding on a one-dimensional vector space, similar to how we used 1 in
Equation (5.9). We could have used and n-dimensional vector space, but this would
simply replace all Ik by Ink and 1 by In. Note that squaring this matrix yields In, so
this is in fact a representation of the symmetric group Sn as well.

Example 5.10. For a commutative ring R, let V0 be the category GModR of graded
R-modules with tensor product given by

(A⊗B)n =
∑
p+q=n

Ap ⊗R Bq.

Braidings on this monoidal structure on GModR are given by

c(x⊗ y) = kpq(y ⊗ x) where x ∈ Ap, y ∈ Bq

for some k ∈ R.

This is an example presented by Joyal and Street [3]. A graded module is a module
M over a ring R such that

M =

∞⊕
n=0

Mn

An example of a graded module is a “graded vector space” over a field (where the
field has trivial braiding Ri = 0 for i ≥ 1), defined in the same way [8, Graded ring]].
Another example is

M := R[x]/x2

over a ring R. Here, we have M0 = R, M1 = R[x]1 and Mn = 0 for n > 1. We can
see the tensor product as

M ⊗M ∼= R[x, y]/(x2, y2)

and the braiding maps

c : a+ bx+ cy + dxy 7→ a+ kby + kcx+ k2dxy.

https://en.wikipedia.org/wiki/Graded_ring
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We can derive matrices representing the braid group from this braiding. We consider
B3, with generators σ1 and σ2 corresponding to c⊗ id and id×c (acting on M ⊗M ⊗
M ∼= R[x, y, z]/(x2, y2, z2)). These maps can be represented as

1 0 0 0 0 0 0 0
0 0 k 0 0 0 0 0
0 k 0 0 0 0 0 0
0 0 0 k2 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 k 0
0 0 0 0 0 k 0 0
0 0 0 0 0 0 0 k2


and



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 k 0 0 0
0 0 0 0 0 k 0 0
0 0 k 0 0 0 0 0
0 0 0 k 0 0 0 0
0 0 0 0 0 0 k2 0
0 0 0 0 0 0 0 k2


. (5.11)

respectively, on the basis { 1, x, y, xy, z, xz, yz, xyz }. For braid groups on more
strands, the matrices become larger, but can be derived in the same way. Note
that if we consider the ring R as a graded module over itself (with trivial braiding
Ml = R, Mi = 0 for i 6= l), we get an even simpler, yet not necessarily symmetric
braiding, where

σi ∈ Bn is represented by


Ii−1 0 0 0

0 0 k2l 0
0 k2l 0 0
0 0 0 In−i−1

 . (5.12)

Note that these braidings become symmetric when k2 = 1.
Another way to find braid group representations is by starting from a braided

bialgebra. I will not provide the precise definition here, but it can be found in [10,
Chapter 5]. Essentially, from a braided bialgebra A, one can construct the braided
monoidal category A−Mod of left A-modules. The braiding on this category can be
found from a “universal R-matrix” in A ⊗ A. Then, one can construct braid group
representations in the way described before. Jackson [10] provides examples of this
in his thesis, showing how the Burau representation and the Lawrence-Krammer-
Bigelow representation can be derived from the braided bialgebra Uq(sl2), called the
“quantum algebra”.



Chapter 6

Outlook

There is more to braid groups and their applications than we were able to look at
in this thesis. We have seen different representations like the Burau representation,
the Lawrence-Krammer-Bigelow representation and the braid group as fundamental
group of the configuration space of particles moving around on the plane. Regard-
ing representations, one could study these representations in more detail, or study
braided bialgebras and how one obtains braid group representations from those, for
example see [10]. Braided bialgebras have another connection with physics, namely
with quantum groups, used to study certain quantum systems [23, Chapter 8]. An-
other, related field of study might be that of knots and links, see for example [1]. One
can obtain knots from braids and vice versa (Alexander’s Theorem). One can also
construct isotopy invariants of knots and links using the theory of braided structures
[23].

We studied anyons, particles following statistics different from bosons and fermions,
and how they arise from the theory of braid groups. There is also a lot more to ex-
plore regarding physics and anyons. For example the theorized “non-abelian” anyons,
where one must consider higher dimensional braid group representations, instead of
the one-dimensional ones we looked at in Chapter 4. One could also look at compos-
ite fermions, and the mathematical theory behind those, see for example [9, Chapter
4]. Or one could look into practical applications of (non-abelian) anyons, for exam-
ple in topological quantum computing, researched by Microsoft. Another interesting
tangential topic regarding anyons is the realization of anyons by other means, even
regardless of the spatial dimension, for example using Haldane’s generalized exclusion
principle [24].
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Appendix A

Fadell’s Exact Sequence

In this appendix, we wish to prove Theorem 2.20. We use the same notation as in
Section 2.5. Let us recall what the theorem of interest stated:

Theorem 2.20. There exist homomorphisms ι∗ and π∗ such that the following se-
quence of groups is exact:

{ 1 } π1(FN−1,1) π1(FN ) π1(FN−1) { 1 }ι∗ π∗

To prove this, we want to look at a locally trivial fibration of the space FN , induced
by a map from FN to FN−1.

Definition A.1. A locally trivial fibration is a continuous surjective map π : X̃ → X
with a fibre F if for every x ∈ X there exists a neighborhood U ⊂ X of x and a
homeomorphism θ : U × F → π−1(U) such that π ◦ θ is the projection on the first
factor U . [25]

For example, in the visual example from Figure 2.4, the map p is a locally trivial
fibration.

To prove the theorem of interest, we prove the following result, which is a specific
case of a theorem by Fadell and Neuwirth [26]. To avoid any confusion, I will write
F0,N for FN , which is in fact equivalent.

Theorem A.2. Let π : F0,N → F0,N−1 be defined by

π(z1, z2, . . . , zN ) = (z1, z2, . . . , zN−1) (A.1)

Then π is a locally trivial fibration over the base space F0,N−1 with fibre FN−1,1.

We can actually get a bit of an idea for this by looking at π−1(z) for z ∈ F0,N−1.
The pullback of z is the set of points

π−1(z1, z2, . . . , zN−1) ={
(z1, z2, . . . , zN−1, zN )

∣∣ zN ∈ R2, zN 6= zi for i = 1, 2, . . . , N − 1
}
.

We can see this as if we are simply trying to place a point zN in R2 with N − 1
punctures z1, . . . , zN−1. The idea is to then find a homeomorphism that takes the zi
with i = 1, . . . , N − 1 to the punctures. The proof is an adaptation of the proof in
[26].
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Proof. Fix a point x0 = (x0,1, . . . , x0,N−1) ∈ F0,N−1, and set

HN−1 =
{
z0, z1, . . . , zN−1

∣∣ zi ∈ R2, zi 6= zj if i 6= j
}

for distinct points zi. Recall that

FN−1,1 = R2 \HN−1.

Take an open neighborhood of the form UN−1, with U ⊂ R2 open, around x0 in
F0,N−1. Define a homeomorphism

θ(x, y) : UN−1 × U → U

such that, if we write θ(x1,x2,...,xN−1)(y) = θ(x, y), we have

(i) θx : U → U is a homeomorphism having ∂U fixed.

(ii) θ(x1,x2,...,xN−1)(xi) = x0,i for all i = 1, . . . , N − 1.

We can define θ in this way because R2 is “nice enough”. The first point allows us
to define an obvious extension

θ : UN−1 × R2 → R2

by setting θx(y) = y for all y /∈ U . We also define a homeomorphism

α : R2 → R2

such that
α(zi) = x0,i

for all i = 1, . . . , N − 1. Again, we can do this because R2 is “nice enough”. We can
then find the product structure

π−1(UN−1)
φ

←−−−−−−−−→
φ−1

UN−1 × FN−1,1

that we are looking for by setting

φ(x1, x2, . . . , xN−1, yN ) = (x1, x2, . . . , xN−1, θ
−1
(x1,x2,...,xN−1) ◦ α(yN ))

φ−1(x1, x2, . . . , xN−1, yN ) = (x1, x2, . . . , xN−1, α
−1 ◦ θ(x1,x2,...,xN−1)(yN ))

Since φ is a composition of homeomorphisms, it is a homeomorphism itself. We
quickly verify that it is actually well defined on its domain and range. Take a point
(x1, x2, . . . , xN−1, yN ) ∈ U . Then we only need to look at

θ−1
(x1,x2,...,xN−1) ◦ α(yN ).

Now, since yN can not be any of the gaps zi, α(yN ) is not any of the x0,i, and thus
θ−1 ◦ α(yN ) is not any of the xi. Therefore,

φ(x1, x2, . . . , xN−1, yN ) ∈ π−1(U) ⊂ F0,N .

Then for φ−1, we look at
α−1 ◦ θ(x1,x2,...,xN−1)(yN )

Now yN may not be equal to any of the xi, by definition of F0,N , so θ(x1,x2,...,xN−1)(yN )
is not equal to any of the x0,i. Then by our construction, α−1 ◦ θ(x1,x2,...,xN−1)(yN ) is
not any of the gaps zi. And so, our map is well-defined.
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This result is enough for us, but I want to mention the more general result by
Fadell and Neuwirth [26]:

Theorem A.3. The map π : Fm,N → Fm,R with N ≥ R, m ≥ 0, given by

π(z1, . . . , zN ) = (z1, . . . , zR)

is a locally trivial fibration with fibre Fm+R,N−R.

They suggest the proof for this can be adapted from the proof given for the specific
case R = 1, which we adapted to find the proof for our specific case: Theorem A.2.
With our result, we can use the following lemma, which is a part of Theorem 4.41
in [7], we can formulate a proof for Theorem 2.20. For a proof of this, I refer to the
respective theorem in Hatcher.

Lemma A.4. Let X̃,X be topological spaces, and let x0 ∈ X. If p : X̃ → X has
the homotopy lifting property with resepect to disks Dk for all k ≥ 0, and if X is
path-connected, the sequence

. . . π2(X̃, x̃0) π2(X,x0)

π1(F, x̃0) π1(X̃, x̃0) π1(X,x0) π0(F, x0) . . .
i∗ p∗

is exact for some homomorphism i∗ and the map p∗ : π1(X̃, x̃0) → π1(X,x0)
induced by p.

Proof. of Theorem 2.20 Take the map π : F0,N → F0,N−1 from Theorem A.2. Using
[7, Proposition 4.48] (and since our space is “nice enough”), we can see that we may
use Lemma A.4.

I will not go into detail about the n-th order homotopy groups, but essentially
instead of considering loops (circles S1) like we do in π1, one considers higher dimen-
sional spheres Sn for the group πn. The group π0 is related to homotopy of points,
and is the group of path components of the given space [6, Homotopy Group]. Since
the space FN−1,1 is clearly path connected, π0(FN−1,1) is trivial for any base point.

This solves our issues on the right side of the sequence we are looking for, so we
are left to look at the left side. If we think about what it means for the sequence to
be exact, we can cut off the left side of the diagram, and replace it by

{ 1 } −→ π1(F, x̃0)

if we can show that the homomorphism π2(X̃, x̃0) → π2(X,x0) is surjective, where
X̃ is F0,N and X is F0,N−1. After all, if the homomorphism between these groups is
surjective, the kernel of the “next map”

π2(X,x0)→ π1(F, x̃0)

has to be the entire group π2(X,x0), and thus the image can only be { 1 } ⊂ π1(F, x̃0),
effectively allowing us to simply replace this map by a trivial map from { 1 } to
π1(F, x̃0).

We show that the map π : FN → FN−1 from Lemma A.4 induces this surjective
map, by constructing a base point preserving map g : FN−1 → FN for which π ◦ g
is homotopic to the identity on FN−1. Base point preserving simply means the base
point for the fundamental group of the domain FN−1 is mapped to the base point of
the range FN .

https://ncatlab.org/nlab/show/homotopy+group
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z1

z2

z3

zN−1

z0
0 z

0
1 z

0
2 z0

N−1

. . . −→

z1

z2

z3

zN−1

z0
0 z

0
1 z

0
2 z0

N−1

. . . −→

z1

z2

z3

zN−1

z0
0 z

0
1 z

0
2 z0

N−1
zN

. . .

Figure A.1: The base point preserving map g : FN−1 → FN . For a configuration z,
the open square that is R2 is contracted on the right side (denoted by arrows), and
the new point in the configuration is placed at z0

N .

Since R2 is homeomorphic to the open square (0, 1)2, we look at FN
(
(0, 1)2

)
and

FN−1

(
(0, 1)2

)
instead. First take z0 = (z0

1 , . . . , z
0
N ) to be the base configuration in

FN ((0, 1)2). We call this base configuration for clarity, since z0 is a tuple of points,
but we mean the same. Here, all z0

i are evenly spread out on the x-axis. More
precisely,

z0
i = (i/(N + 1), 0)

for i = 1, . . . , N . Take π(z0) to be the base configuration in FN−1

(
(0, 1)2

)
. Obviously,

π preserves the base point.
The map g is constructed as follows. For any configuration z ∈ FN−1

(
(0, 1)2

)
,

contract the open square on the right side slightly, and place a new point zN at z0
N ,

where because of the contraction, there are now no points of the configuration. See
Figure A.1 for a visual representation of this map. It is clear that this map is well
defined, after all, the added point zN cannot be any of the points g(zi).

The composition π ◦ g is homotopic to the identity, since the only thing this map
does is a homeomorphic contraction on R2. It also preserves the base point π(z0) ∈
FN−1. Therefore, the map π is surjective and induces a surjective homomorphism

π2(FN , z
0)→ π2(FN−1, π(z0)),

and by our reasoning above, this proves that we may reduce the long exact sequence
to

{ 1 } π1(FN−1,1) π1(FN ) π1(FN−1) { 1 }ι∗ π∗

as desired.
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