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Abstract

To accurately identify the most vulnerable areas to floods, physical (e.g., building material)
and social (e.g., education, health, income of households) housing stock information is required.
However, in developing countries, this information is often unreliable, unavailable or inaccessible,
and manual data collection is time-consuming. This can lead to difficulties for humanitarians
or policymakers in implementing appropriate disaster risk reduction and response interventions.
Therefore, there is a need for the development of alternative approaches to data collection
and analysis. An alternative approach to on-site vulnerability assessment is to extract physical
vulnerability characteristics, such as land use type or rooftop material, from satellite or Unmanned
Aerial Vehicle (UAV) imagery. However, it is often not possible to extract other social or physical
vulnerability information on the household level from solely from remote sensing data. This
research develops an approach for integrating multiple data sources into a Geographic Information
System to improve the completeness of data on different vulnerability indicators. This approach
is applied to the housing stock of the Karonga district in Malawi. An Object-Based Image
Analysis of UAV imagery is combined with a machine learning analysis of Mapillary data to
enable remote identification of both rooftop ànd wall material. Depth-damage curves were
created to describe the flood impact on the housing stock for different categories of physical
vulnerability (such as building material) and levels of inundation. Moreover, local survey data is
used for the creation of a social vulnerability index. Combined, the datasets represent the spatial
distribution of housing stock vulnerability for multiple flood scenarios. This approach is useful
in situations in which proactive risk analyses must be carried out or local-scale interventions,
such as building strengthening- or flood awareness projects, have to be implemented. Finally,
recommendations are given for scaling the methodology to areas where only lower resolution
data is available.
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1 Introduction

1.1 Context

According to the United Nations Office for Disaster Risk Reduction (UNISDR, 2017) floods are
the natural hazards with the highest frequency and the widest geographical distribution. In 2019
hazardous flood events resulted in approximately 40% of the worldwide deaths caused by natural
disasters (World Resource Institute, 2020). With the effects of climate change and altering
land use patterns, the number and intensity of floods have increased – and are anticipated to
increase in the future (Nasiri et al., 2016). Flood risk reduction is therefore highly prioritised
by organisations and governmental institutions. Aiming to improve disaster risk management
by creating a better understanding of all dimensions of disaster risk – including vulnerability to
floods -, the Sendai Framework for Risk Reduction was adopted in 2015. One of its priorities for
action is to promote the use of reliable data and geographic information systems (GIS) to improve
methodologies for risk and vulnerability assessment. The concept of vulnerability underlines the
importance of physical and socio-economic factors that play a role in the impact of risks and that
determine the resilience of communities (Birkmann, 2006). Hazard information can be combined
with vulnerability information in order to predict who and what exactly will be exposed to a
flood and what damages will occur (de Moel et al., 2015). Commonly, hazard and vulnerability
maps are used to represent local flood situations, as they enable to give strong impressions of
the spatial distribution of those factors (Merz et al., 2007).

Humanitarian organisations use flood risk and vulnerability assessment to predict the impact
of future hazards and to formulate response strategies for risk reduction. The International
Red Cross and Red Crescent Movement initiated Forecast-based Finance (FbF) with the aim of
developing early warning systems to enable humanitarians to take action prior to the disaster
(IFRC, 2020). With this shift towards pre-disaster strategies, humanitarian practices become
more efficient and effective (De Perez et al., 2016).

1.2 Problem description

One of the areas in which the Red Cross aims to implement these strategies is the Karonga
district in Northern-Malawi. This district is prone to sudden-onset floods, such as river and flash
floods. Moreover, a large part of the Malawian population lives in poor quality informal housing,
often providing insufficient protection during a flood event (UN-HABITAT, 2010). Disastrous
flood events happen on a yearly basis, causing large economic damage in the housing sector and
consequently in the displacement of thousands of people (Malawi Government, 2019).

An accurate object-based vulnerability map of the housing stock of Karonga could help in
identifying the most critical areas prior to floods. However, one of the largest barriers with regard
to flood-related early warning in developing countries - including Malawi, is the scarcity of reliable
data on the household level (De Perez et al., 2016). In assessing the physical vulnerability to
floods – the impact of a flood event on physical structures, information on building material, size
and condition of buildings is essential. Cadastral information is often unavailable or inaccessible
due to policy restrictions or high costs (Blanco-Vogt et al., 2013). In addition, as information
varies from building to building, manual data collection would be a time-consuming process
(Papathoma-Köhle, 2016). Common assessments are therefore mostly based on aggregated land
use data that do not allow for differentiating between buildings within the same land use class.
Research by Englhardt et al. (2019) and Wouters et al. (2020) aimed to solve the previously
mentioned problems by identifying rooftop characteristics automatically. This was attempted by
using remote sensing imagery and Object-Based Image Analysis (OBIA) techniques. Damage
curves derived from literature were coupled to the rooftop material classes in determining the
vulnerability of the buildings.

However, this approach is challenged by two different factors. Firstly, damage curves bring with
them specific uncertainties in developing countries. Empirical damage data is scarce due to
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limited data collection after a hazardous event, resulting in low availability of accurate damage
data (Khalfan, 2013). Secondly, by basing physical vulnerability on assumptions related to
rooftop material, only a limited part of the concept is covered. Other indicators such as wall
material, the amount of windows/openings and the number of floors, play an important role
as well (Tarbotton et al., 2015). In addition, indicators determining social vulnerability, such
as income, education and health, are important to take into consideration (Birkmann, 2006;
de Moel et al., 2015).

To indicate what areas are expected to be most vulnerable to floods, this research aims to
construct an approach for accurate object-based vulnerability mapping of the housing stock in
Karonga. This research builds upon the extensive data collection initiatives of the Malawi Red
Cross in cooperation with 510. High resolution drone imagery, street-view imagery and household
survey data have been collected after a flood event in March 2020. This dataset allows for the
identification of both physical and social vulnerability indicators by using a remote approach.
In this research, the data sources are combined to improve knowledge on flood vulnerability.
Moreover

1.3 Structure

The remainder of this report is structured as follows. In Chapter 2 an overview of relevant
concepts and theories within flood risk and vulnerability assessment is presented. Moreover,
attention goes out to Object-Based Image Analysis, a commonly used method to remotely assess
physical flood vulnerability. Based on these concepts, theories and methods, the scope and
objectives of this research are narrowed down and formulated in Chapter 3. Chapter 4 entails
an overview of the case study area, the input data and the methods that have been used to
derive vulnerability information and to construct vulnerability maps. In Chapter 5 the results
are presented. This chapter is structured according to the sub-questions of this research. Each
sub-section discusses the findings in relation to a sub-question. In Chapter 6 results are discussed
and the validity and limitations of the research approach are analysed. Lastly, in Chapter 7
the sub- and main questions are answered. Moreover, recommendations are made for future
research.
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2 Theoretical Background

This chapter provides a theoretical background of the previously described context and problem
statement. It starts by introducing flood risk and vulnerability concepts such as commonly used
assessment methods, damage curves and the importance of scale. Then, it describes a commonly
used method for the identification of vulnerability attributes based on a remote approach. Finally,
some important implications and conclusions for this research are given.

2.1 Flood risk and vulnerability assessment

Within the science of natural disasters, risk refers to the probability that natural events of a
given magnitude and a given loss will occur (Merz et al., 2007). Whereas in the past natural
disasters were mostly seen as physical occurrences, today a more holistic approach is used to
describe, assess and predict disasters. Birkmann (2006) defines disasters as “the result of complex
interactions between a potentially damaging physical event (e.g. flood, earthquakes, tsunami) and
the vulnerability of a society, its infrastructure, economy and environment, which are determined
by human behaviour”. The nature of a risk is thus not only determined by the physical hazardous
event, but also by the exposure and vulnerability of the elements at risk (IPCC, 2012; Merz et al.,
2014; UNDRR, 2019). By integrating the vulnerability concept, the risk definition is broadened
by recognising risk as a human subject instead of a completely environmental or technocratic
subject – groups are not only at risk because they are exposed to a flood or earthquake, but also
because of their socio-economic status, access to resources and livelihood context.

In flood risk assessment information models from various disciplines are combined with the goal
to estimate the probability and severity of floods (de Moel et al., 2015). Risk assessment can take
many forms, ranging from qualitative household surveys to remote sensing analysis. However,
the main components for evaluation in risk assessment are hazard, exposure and vulnerability
(Merz et al., 2007). The extent of flood damage depends not only on the flood characteristics but
also on the vulnerability of the inundated area, meaning that a higher vulnerability of people
and buildings leads to higher flood damage. The interplay between the concepts is therefore
used to predict flood risk.

An important component of risk assessment is damage assessment. Damage estimations can assist
policymakers in choosing practices for risk mitigation and in allocating resources for disaster
response (Wouters et al., 2020). Flood damage assessment is commonly used in combination
with GIS methods for risk mapping to illustrate the spatial distribution of damage within an
area.

Merz et al. (2007) describe the workflow for flood damage assessment in relation to GIS and
mapping, visualised in figure 1. Here, flood hazard is characterised by its probability of occurrence
and intensity. Factors such as inundation depth, flow velocity, duration and rate of water rise
determine the severity of the hazard. The values of the factors may differ over a certain area and
flood hazard maps are used to show the spatial distribution of the hazard. The vulnerability of
an area is determined by the exposure and susceptibility of all elements - e.g. people, buildings,
infrastructure, ecosystems - located in the area. Exposure refers to the number of elements that
are be affected by the flood. In case of figure 1, the red buildings, its inhabitants and their
property are exposed by the flood, depending on the water depth. The loss that will occur
depends on the susceptibility of the exposed elements, which can be determined by damage
curves. Together, exposure and susceptibility information are used to represent the building
vulnerability of an area. When both a hazard and vulnerability map are combined, the actual
spatial distribution of flood risk can be visualised.
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Figure 1: The interplay between hazard and vulner-
ability for estimating flood risk (Merz et al., 2007)

Within flood vulnerability analysis a distinction between social and physical vulnerability can be
made. Whereas social vulnerability relates to the susceptibility of and impact on social groups,
does physical vulnerability represent the same features for structural elements (Birkmann, 2006;
Guillard-Gonçalves & Zêzere, 2018). The indicators that are used to assess social vulnerability
are generally hazard-independent, for example, education, income, age, gender, health/disability
(Schneiderbauer & Ehrlich, 2006). Health largely determines an individual’s ability of coping
with a natural hazard and education plays an important role in acquiring flood-related knowledge.
Indicators for measuring physical vulnerability are often hazard-dependent as they represent the
physical damage on exposed elements as a result from a certain flood event. Indicators that
determine building stability such as quality, building material, age and size are often taken into
consideration (Schneiderbauer & Ehrlich, 2006). However social and physical vulnerability are
not inseparable. Physical vulnerability can be seen as an expression of social vulnerability as,
for example, people with disabilities or a lack of education generally have less opportunity of
buying a good quality house in a low-risk area. Birkmann (2006) and Guillard-Gonçalves and
Zêzere (2018) therefore state that it is important to use a balanced approach between social and
physical indicators in vulnerability assessment in order to represent the vulnerability concept as
a whole.

2.1.1 Damage curves

As previously mentioned, a commonly used approach to identify the susceptibility of exposed
buildings is by assessing the potential damage on the housing stock based on depth-damage
curves. Depth-damage curves quantify flood vulnerability by relating water depth at the affected
object to a damage grade (de Moel et al., 2015; Merz et al., 2014). It is important to use separate
functions for different building material types, as, for example, a mud house will collapse at a
lower water depth compared to a brick house (Wright, 2015). Damage curves can be developed
based on an empirical or synthetic approach (Merz et al., 2010). Empirical damage curves are
developed with damage data collected after flood events. Damage data is often collected in
databases with the aim to harmonise the data and to make it easily accessible (Kellermann et al.,
2020). Examples of databases are the German HOWAS, in which object-specific flood damage
data of Germany is collected.

The synthetic approach is based on aspects as land cover, object type, survey information or
what-if-questions. The expected damage is then estimated for certain flood situations (Merz
et al., 2010; Wouters et al., 2020). An example of a what-if question could be: what damage
would you expect if the water depth was 1.5 meters above the floor of a wooden building?

In developed countries empirical damage curves based on extensive damage databases are com-
monly used by insurance companies for the estimation of damage costs (Kellermann et al., 2020).
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However, determining the curves remains a challenge due the fact that they are mostly based
on a limited amount of measurements or studies. The quality of damage curves can therefore
be poor or difficulties arise when curves are transferred to other contexts (Merz et al., 2010).
Those challenges play even a larger role in developing countries, where data collection after a
hazardous event is scarce. This results in low availability of accurate damage curves for building
materials of houses in developing countries and can thus result in unreliable risk calculations
(Khalfan, 2013).

In cases where empirical databases are unavailable or inapplicable, the synthetic approach can
be used. Rudari et al. (2016) used the synthetic approach in the context of Malawi. They
classified the building typologies in the case study area according to the classes: 1) traditional,
2) semi-permanent and 3) permanent. Curves were derived from the CAPRA library, based on
the building materials present in the research area. The curves were then aggregated according
to the materials belonging to the classes. A similar method was used by Wouters et al. (2020).

2.1.2 Scale and up-scaling

Wu and Li (2006) define scale as the spatial or temporal dimension of a phenomenon and scaling
as the transfer of information between scales. Those concepts play an important role in risk and
vulnerability assessment. The interdisciplinary relation between patterns and processes of risk
operate on different spatial and temporal scales. Moreover, a match between the scale of the
risk, the policy level and the scale of the available data is essential in accurately assessing the
risk and in determining suitable measures (Kienberger et al., 2013).

Merz et al. (2010) divide flood damage assessment into the micro-, meso-and macro-scale. de Moel
et al. (2015) add the supra-national-scale to this array. On the micro- or local-scale, assessments
are based on single elements at risk. Detailed information about buildings, infrastructure
or terrain elevation of a certain community can be incorporated. Such detailed assessments
can support the development of local flood measures or urban planning strategies. Meso- or
regional-scale assessments are based on spatial aggregations such as residential areas, river basins,
administrative units or zip code areas. In the context of floods, meso-scale assessments are very
valuable as they allow for the identification of flood risk and vulnerability in a certain catchment.
Macro-scale assessments are based on larger spatially aggregated units, such as municipalities,
regions or countries. For instance, many European countries have developed flood models for
main cities or vulnerable areas. Damage is often calculated by relating land use classes to
damage curves. Another method is to combine meso- or micro-scale assessments and aggregate
them to the national level. However, this raises problems as the different methods used in local
scale assessment makes the output difficult to compare. At the supra-national-scale, risk or
vulnerability is estimated for areas such as Europe. Those assessments are generally less detailed
and represent a more generalised picture of the situation.

The scale of assessment depends on the level of policy intervention that is wished for (Lang
et al., 2014). Although assessment on the micro-scale might reveal the highest level of detail,
if policy measures will be implemented on the regional-scale, aggregated information will be
used instead of individual-based information. On the other hand, if local measures for floods
are taken, policy makers have to take into account that the down-scaling of a national flood
vulnerability map does not result in an accurate representation of the local situation (Kienberger
et al., 2013). This relates to figure 2 in which the relation between scale, complexity and
aggregation is depicted. Kienberger et al. (2013) state that, in general, it can be observed that
the spatial and time variability of vulnerability increases when looking at the individual and is
more generalised towards the more aggregated assessments. Depending on the level of complexity
of the information that is required, the level of aggregation can be determined upon.

Moreover, the decision on spatial scale is interlinked with the availability and resolution of
data. High resolution data is essential in assessing vulnerability on the building level, whereas
aggregated land use data suffices for national-level assessments.
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Figure 2: The relation between complexity, aggrega-
tion and spatio-temporal scale (Kienberger et al., 2013)

Lang et al. (2014) use the ’geon’ approach to represent spatial patterns at different scales. They
define a geon as ”a region that is delineated based on uniform response to a phenomenon under
space-related concern”. By classifying an area into geons, multiple indicators are used to identify
spatial patterns throughout an area. Clusters are formed if homogeneous characteristics can be
observed. The division of geons goes beyond formal borders and can help to comprehend the
spatial distribution of phenomena. Lang et al. (2014) exemplify this by referring to segmentation
in Object Based Image Analysis (see section 3.2). Areas that share similar texture, colour, shape
or spectral signature, are formed into a cluster. However, other indicators can be used as well.
Kienberger (2012) used the geon approach for modelling flood vulnerability in Mozambique.
Within the spatial extent of a flood, a group of geons represented the spatial distribution of
vulnerability, with the aim to support decision-makers in getting an overview of vulnerability
hot spots.

Based on the required indicators and the required level of policy support, geons can be aggregated
or scaled-up into larger spatially homogeneous areas. Kienberger (2012) used this approach to
scale-up from the community level to the district level.

2.2 Remote sensing and Object-Based Image Analysis

One of the largest challenges for measuring exposure and physical flood vulnerability in developing
countries is the characterisation of the built environment, due to the absence of accurate cadastral
data (Blanco-Vogt et al., 2013). However, with the increase of Very High Resolution (VHR)
satellite and drone data, remote sensing-based techniques (e.g. image classification, object
detection) are increasingly becoming a time-saving alternative to cadastral field surveys. The
classification process of VHR imagery is usually done through Object Based Image Analysis
(OBIA) methods. OBIA methods involve grouping pixels into objects based on their spectral
properties (Blaschke, 2010).

OBIA broadly exists out of two parts: 1) image segmentation and 2) feature extraction and
classification. Image segmentation is the process of clustering pixels of an image into homogeneous
and meaningful areas. (Blaschke, 2010). Segments are vector shaped and share criteria such
as texture, colour, shape and size. Many algorithms that automatise the segmentation process
have been developed throughout the years in remote sensing applications.
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Spatial resolution and scale play an important role during the segmentation process. Segments
can only be formed on meaningful objects if the pixel size of the image is small enough. For
images with a coarse scale only large features, e.g. forest or agricultural areas, can be identified,
whereas images with a finer scale allow for the identification of individual plants and trees
(Blaschke, 2010). The parameter and threshold values of the algorithm should therefore be
tuned according to the resolution of the image and the preferred outcome. There are no general
rules for the relationship between spatial resolution and parameter values, and value selection is
dependent on trial-and-error (Grippa et al., 2016).

The classification step is based on machine learning algorithms that use training and validation
samples as input. Those samples contain land use classifications and spectral features (e.g.
maximum, minimum, mean and standard deviation of the spectral bands). The algorithm is
trained to classify the segmented image based on the features derived from the training samples
(Wouters et al., 2020). Maximum likelihood Classifier (MLC), decision tree (DT), K nearest
neighbour (KNN) and Support Vector Machine (SVM) are frequently used machine learning
algorithms for classification. However, SVM is often seen as the best performing one for land
use classification (Grippa et al., 2016; Qian et al., 2015).

OBIA has been widely explored for the classification of land use and building and damage
detection. However, only a few studies aimed to apply OBIA for the classification of buildings
in the context of vulnerability assessment. Ebert et al. (2009) applied OBIA for the estimation
of variables that determine social vulnerability in the context of risk management. They, for
example, used optical, LiDAR and elevation data to delineate buildings and to determine building
vulnerability based on surface slope. Blanco-Vogt et al. (2013) propose a method for the clustering
of buildings with similar typologies based on parameters that can be estimated with remote
sensing. They distinguish between six parameters: 1) height, 2) size, 3) form, 4) roof structure,
5 and 6) topological relation to neighbours and open space. De Angeli et al. (2016) used the
previously mentioned parameters for developing a flood damage model in urban areas. The
parameters were used to represent a higher level of variability compared to aggregated land use
classes, leading to higher detail in vulnerability levels. Research by Englhardt et al. (2019) was
conducted with a similar aim and made use of detailed building construction characteristics to
distinct between physical vulnerability in rural and urban areas.

However, OBIA techniques are limited to the identification of buildings from a nadir perspective
and do not allow for the integration of street-level details such as wall material (Cao et al., 2018).
In order to decrease the amount of uncertainty that comes with satellite and drone data, Wouters
et al. (2020) therefore suggests that additional data sources, such as street view data should be
incorporated in vulnerability assessment as well. Cao et al. (2018) and Hoffmann et al. (2019)
have showed the potential of fusing information derived from street-view data with nadir-view
data, based on deep learning Convolutional Neural Networks (CNN). In both researches was
concluded that street-level data can provide details that largely improve land use classifications
solely based on VHR data.

2.3 Implications for this research

Based on the previous described theories, the following conclusions and implications for this
research can be drawn. First of all, the vulnerability concept plays an important role in deter-
mining flood risk. An investigation of this concept in the context of Malawi can result in new
flood-related insights from a human-centred perspective. To identify the physical vulnerability of
buildings, the susceptibility of building materials can be related to depth-damage curves. Depth-
damage curves are usually developed for different material types, but are of limited quality and
availability in developing countries. In the case of Malawi, a synthetic damage curve approach,
related to the methodology of (Rudari et al., 2016), would be a good alternative.
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OBIA techniques on satellite or drone data are promising in determining vulnerability indicators
from an oblique perspective, such as rooftop structure, height and size. This offers a good
alternative to field surveying in areas where cadastral data is unavailable or inaccurate, which
is the case in Malawi. However, OBIA is challenged by the fact that it only allows for the
identification of a part of the indicators. Additional data sources are required to identify street-
level indicators such as wall material and openings. Deep-learning models based on CNN allow for
the automatic recognition of indicators from street-view imagery. The combination of indicators
derived from both data sources would thus result in a higher level of detail in identifying
physical vulnerability. In addition, as stated by Birkmann (2006) and Guillard-Gonçalves and
Zêzere (2018) physical vulnerability indicators should be further enriched by social vulnerability
indicators to get an overview of the concept as a whole.

Kienberger et al. (2013) and Lang et al. (2014) mention that the match between the scale of
assessment, data and policy intervention is indispensable in risk management. As a result of
extensive data collection of the Red Cross in settlements in the Karonga district, assessment at
the individual level is possible. However, in other areas a limited collection of data can result in
lower complexity and higher aggregation of the assessment outcomes. It is therefore important
to see what can be learned from local scale assessment and how the local methods can be applied
on other scales. Moreover, a bridge between areas of higher and lower data availability should
be build to get an overview of the possibilities for vulnerability assessment at multiple scales.
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3 Objective and research questions

This chapter presents the objective of this research and the corresponding research questions.
Moreover, the scope and the hypothesis are discussed.

3.1 Research objective

The objective of this research is to gain understanding of the physical flood vulnerability of
buildings in the Karonga district by using a remote approach to the identification of building
material. Furthermore, the correlation with social vulnerability is assessed. An approach is
developed for the integration of data sources of multiple types (UAV, Mapillary and survey
data) to increase the number of vulnerability attributes and to improve the completeness of
vulnerability assessment on a local scale. Material-based damage curves are improved as well as
adapted to the context of Karonga by including local damage data. Moreover, to analyse the
applicability of this assessment method to other scales and contexts, a framework is developed
for up-scaling in relation to data availability and intervention scale.

The improved knowledge on flood vulnerability can be used to assess vulnerability in more detail,
allowing for improved decision-making tools used in the development of Disaster Risk Reduction
strategies. Moreover, an enhanced understanding of the local vulnerability situation can play a
crucial role in identifying the most critical areas for humanitarian response interventions.

3.2 Research questions

Based on these objectives, the following research question is formulated:

In what way can UAV, Mapillary and household survey data be combined in order to assess
housing stock vulnerability to floods in Karonga, Malawi?

The following sub-questions will be answered in order to formulate an answer to the research
question:

• SQ 1 What physical and social vulnerability attributes can be derived from the acquired
datasets?

• SQ 2 How can local damage data be used to improve flood damage curves for Karonga?

• SQ 3 To what extent do additional data sources add to the completeness of housing stock
vulnerability attributes?

• SQ 4 To what extent are the methodology and results of this micro scale study applicable
to other scales

Figure 3 shows the different research steps with corresponding methodology that lead to answers
to the sub-questions and consequently to an answer to the main question. The first question is
based on identifying building material from UAV, street-level and survey data. The methodology
is based on Wouters et al. (2020) and on a model created by 510. Secondly, the results of
this analysis were used to improve existing flood damage curves, derived from the CAPRA
library. then, it is analysed how the datasets can be combined and what the added value of the
combinations are for vulnerability assessment. Patterns in building material and vulnerability
were identified with the aim to predict flood vulnerability in other, more data scarce areas as
well. Moreover, recommendations are given for scaling to other areas. Ultimately, the answers
to all sub-questions together form the answer to the main question.
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Figure 3: Conceptual framework of research steps, questions and methodology

3.3 Scope

This research focuses on identifying how UAV, street view and household survey data can be
adequately combined to improve housing stock vulnerability assessment in the Karonga district.
The methodology used to identify rooftop material with UAV is based on research by Wouters
et al. (2020) and the model used to recognise wall material from street-view imagery is developed
by 510. It must be noted that it is not intended to adapt or fine-tune the previous mentioned
methodology and model. It is aimed to combine both to get a higher level of detail in physical
vulnerability assessment. Moreover, this research explores the possibilities with regard to up-
scaling to other areas. The goal is not to create vulnerability maps for the entire country of
Malawi, but to create an overview of different levels of aggregation in data, complexity and
corresponding policy and intervention levels that can be reached with the presented approach.

3.4 Hypothesis

The hypothesis of this research is that drone and Mapillary data are promising information
sources to remotely identify building characteristics in data poor areas. Data on building
characteristics can be used to assess the physical vulnerability to floods by linking building
material to damage curves. It is expected that the accuracy of vulnerability assessment will
improve when UAV data is combined with street view data. This hypothesis will be tested in a
small area in the Karonga district in Malawi. In addition, it is expected that an adapted version
of the methods used for this small scale assessment can be applied on a larger scale. For example,
the relationships between wall and rooftop material in the research area can be related to other
areas with a similar housing stock for to identify vulnerable areas. Instead of UAV data, the
application of satellite and census data might be good alternatives on a larger scale.
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4 Methodology

This section describes the methodologies that have been used in this thesis. Multiple data
sources are combined for the identification of building characteristics and therefore different
methodological approaches have been used. Moreover, the different outputs were combined
and linked to damage curves in order to assess the vulnerability of the buildings. This step
requires an additional methodology which has been explored in this thesis. This section starts
by introducing the case study area of the research, followed by a description of the input data,
the methods and the software that were used.

4.1 Case study area

Malawi is a landlocked country in the South-Eastern part of the African continent. The country
is bordered by Lake Malawi and by the countries Mozambique, Tanzania and Zambia. Figure 7
shows the location of Malawi. In 2018 a Population and Housing Census report was published
by the Malawian National Statistical Office. In this report was stated that the country has a
population of 17,5 million people with an average annual population growth rate of 2.9%. The
largest part of the population lives in rural villages. Due to its sub-tropical climate and location,
Malawi is prone to natural disasters such as heavy rain, floods and earthquakes.

Figure 4: Location of Malawi and the Karonga district

Heavy rainfall in January 2015 caused extensive floods which affected more than 1 million people,
left 230.000 displaced and killed more than 100 (Malawi Government, 2015). In March 2019,
Malawi experienced another severe flood, with again devastating consequences. The quality
of the building construction has a crucial influence on the impact of natural hazards on the
society. Yet, after the 2019 floods the largest economic damage was perceived in the housing
sector, leaving Malawi’s society extremely vulnerable (Malawi Government, 2019). A study by
UN-HABITAT (2010) shows that 20% of Malawi’s housing stock in urban areas is considered
as formal and in rural areas this only counts for 5%. Moreover, it is estimated that only 1% of
the population can afford housing by the formal private construction sector. The majority of
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the Malawians live in informal settlements in either formally planned Traditional Housing Areas
(THAs) or in informal neighbourhoods – both in which basic services are limited or missing.
Protection against natural disasters is extremely low in these areas as a result of: ‘1) poor
quality of construction materials, 2) poor construction practice due to a lack of skilled labour,
and 3) lack of building design and construction provision for natural disasters’ (Kloukinas et al.,
2020). After the flood in 2019, the government therefore decided to improve its disaster risk
management strategy by ”building back better”. The strategy includes promoting resilience by
adopting hazard-resistant construction standards, improving the physical planning system and
strengthen flood-forecasting and prevention systems (Malawi Government, 2019).

This research will focus on settlements in the Karonga district, located in the northern part
of Malawi (see figure 7). The district is characterised by large differences in relief between the
mountainous area in the western part and the lake shore in the eastern part, leaving the lower
areas vulnerable for floods (Bucherie, 2019). During the floods in 2014, the Karonga district
was one of the most affected areas in Malawi (Malawi Government, 2015). Previous research
by Bucherie (2019) pointed out that the district is not only prone to riverine floods, but also
to flash floods – events caused by rapid runoff generation in combination with the sudden rise
of water levels in the river banks. Therefore, multiple humanitarian organisations, triggered
by the Humanitarian Aid department of the European Commission (ECHO), took action by
implementing projects for developing early warning systems to increase resilience.

The housing stock of Karonga can be divided into three categories according to structural
permanence (UN-HABITAT, 2010):

1. Permanent: roofs constructed with iron sheets, tiles, concrete and walls of burnt bricks,
concrete or stones

2. Semi-permanent: a mix of permanent and traditional materials. Generally misses perma-
nent construction materials for wall or roof

3. Traditional: thatched roofs and mud walls or walls made of mud and wattle

Table 1 shows the division of housing units and population over the previously mentioned building
classes. Figures 5-7 illustrate the different building types. The pictures were taken during the
ECHO 3 household survey in Karonga.

Permanent Semi-permanent Traditional

Housing units 67,1% 18,5% 19,7%
Population 66,1% 18,4% 15,5%

Table 1: Ratio of housing units and population per
building category in Karonga (UN-HABITAT, 2010)

Figure 5: Traditional
house (MRCS, 2020)

Figure 6: Semi-permanent
house (MRCS, 2020)
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Figure 7: Permanent house (MRCS, 2020)



Methodology 14

4.2 Input data

This research used five different data sources of the Karonga district as summarised in table 2.
The majority of the data was collected by the Malawian Red Cross data team in collaboration
with 510. The data was collected as part of the ECHO 3 project in Malawi, with the goal of
strengthening resilience in urban an rural areas. The different datasets and their implementation
purpose are discussed below.

UAV imagery

UAV imagery of the Karonga district was collected in May 2020 by the Malawian Red Cross in
cooperation with 510. The data has a spatial resolution of around 0.11 meters and is therefore
suitable for the identification of detailed characteristics in the landscape. This dataset was used
to identify rooftop characteristics in the Karonga area. Based on the point cloud data that comes
with the UAV imagery, a Digital Terrain Model (DTM) and Digital Surface Model (DSM) were
constructed. The DTM represents the elevation of the bare ground of the research area and the
DSM represents the elevation of the area including objects. Together, the DTM and DSM were
used to estimate the building height.

Mapillary imagery

Mapillary is an open source platform that facilitates the collection of street view images based
on crowd sourcing. Unlike Google Street view, Mapillary allows all contributors to upload
street-level images that they can capture themselves by cameras or smartphones. Recently, the
Malawian Red Cross captured an area of the Karonga district on Mapillary which partly overlaps
with the household survey and UAV data. This dataset was used for identifying wall materials.

Household survey ECHO 3

A household survey was done in March 2020 to assess the aftermath of a flood disaster in
February 2020. 916 households in Traditional Authorities Mwakaboko participated in the survey.
The aim of the survey was to understand the magnitude of the flood by verifying the number of
affected households in the affected areas. Information about building material, flood height and
damage can be find in the corresponding table. Furthermore, the coordinates of the households
were taken during the survey, allowing to add the information on a map.

The information of the survey was used for multiple ends. First, the survey provides insight
in the water height and building damage. This information was used to adapt and improve
CAPRA vulnerability curves to the context of Karonga. Second, the information was used as a
validation source for the automated classification of rooftop material.

Household survey UBR

The Unified Beneficiary Registry is a Malawian initiative with the aim to integrate data from
different social protection programmes. Through the registry, data from a household survey in
the Traditional Authorities of Kilipula and Mwakaboko could be acquired. The dataset contains
information about socio-economic factors, such as age, gender, household size and wealth. This
information was used to generate the Social Vulnerability Index.

OpenStreetMap building layer

Open Street Map (OSM) is an open source mapping platform, that enables everyone to openly
access and add data to the map. Commonly, mapathons are organised by OSM to communally
map the objects of a certain area. In December 2020 the building layer of Karonga was updated
during an online mapathon. During this event, the building footprint in the research area was
manually delineated by using Maxar satellite data (captured in 2018) as reference data. The
layer was used as a base layer to align all vulnerability attributes.
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Dataset Data type Implementation Source

UAV
Optical (+/- 0.11 m
resolution)

Identifying rooftop material MRCS/510 (2020)

UAV DTM & DSM Identifying building height MRCS/510 (2020)
Mapillary Street-level imagery Identifying wall material Mapillary (2020)
Household survey
ECHO 3

Tabular
(with coordinates)

Damage data/ validation MRCS/510 (2020)

Household survey
UBR

Tabular
(with coordinates)

Social vulnerability indicators UBR (2018)

OpenStreetMap
Building layer

Vector shape file Building alignment layer OSM (2020)

Table 2: Overview of the required datasets
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4.3 Methods and software

Figure 8 gives a broad overview of the workflow that was used in this research and table 3 lists
the software tools that were used. First, the required vulnerability indicators or attributes were
chosen. Then, the data was processed to acquire the vulnerability attributes. CAPRA damage
curves were adapted according damage information derived from survey data. The vulnerability
attributes were all fused into the OSM building layer to enable to accurately overlay them and
to create a multi-attribute vulnerability map for Karonga. The damage curves were linked to
the data layers containing building material types to get insight in the damage ratio per building
for multiple flood scenarios. Based on the findings, recommendations were done for up-scaling
of the methodology.

Figure 8: Model summary and usability per dataset

Software Function Implementation
ArcGIS Pro Licence-based GIS software Data visualisation
QGIS Open-source GIS software Remote sensing, merging data, visualisation
Orfeo Toolbox Open-source remote sensing tool Algorithms for OBIA
CAPRA Risk assessment platform Acquire damage curves
SPSS Statistical software Calculating correlations

Table 3: Software overview

The methodology for this research can be divided into four main steps that will be elaborated
in the following sections:

1. Deriving vulnerability attributes from the datasets

2. Adjusting CAPRA vulnerability curves to the Karonga context and link to building material

3. Fusing data layers of vulnerability attributes in OSM building layer

4. Identifying patterns and clusters for up-scaling/doing recommendations for up-scaling
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4.3.1 Deriving vulnerability attributes from the datasets

The first methodological step was to derive vulnerability information from the datasets. The
previously mentioned data sources all allow for the identification of specific vulnerability at-
tributes that are each implemented for a certain purpose. Table 4 summarises the vulnerability
attributes that were derived from the UAV, Mapillary and survey data, together with the imple-
mentation purpose. The following sub-sections describe the methodological aspects of attribute
identification from UAV, Mapillary and survey data.

Dataset Vulnerability attribute Implementation

UAV
Rooftop material

Physical vulnerability
Building height
Building size

Mapillary Wall material

Household survey
(ECHO 3)

Building type
Validation

Wall/rooftop material
Flood height

Improving damage curves
Flood damage

Household survey
(UBR)

Age

Social vulnerability
Level of education
Household size
Wealth
Fit for work

Table 4: The vulnerability attributes that can be de-
rived from the datasets and their implementation purpose

UAV

Deriving vulnerability information from UAV imagery was done by following the method of
Wouters et al. (2020). Wouters et al. (2020) conducted an Object-Based Image Analysis with
algorithms that were retrieved from the Orfeo Toolbox, an open source remote sensing tool and
plug-in in QGIS. The workflow for OBIA is visualised in figure 9. The main goal of this research
step was to differentiate between iron and thatched roofs, the two material types that are present
in the research area.

Figure 9: Conceptual model of automatic rooftop classification steps



Methodology 18

First, training and validation samples were collected by manually delineating polygons of different
land use types that were the most present in the research area. The samples were manually
labelled according to the five land use types in table 5 and the spectral statistics were calculated.
Table 5 shows the different labels that were given to the training samples, together with the mean
values of the spectral bands. In addition, 200 validation samples (40 per class) were manually
delineated and labelled according to the same classification scheme as the training samples.

Value Label Samples Mean B0 Mean B1 Mean B2

1 Bare 25 208-251 183-240 156-229
2 Iron 28 114-255 208-255 185-255
3 Shadow 16 75-140 86-132 85-137
4 Thatch 44 175-248 155-240 145-234
5 Vegetation 15 130-196 159-217 126-167

Table 5: Training samples used to train the classification model

Then the mean-shift segmentation algorithm was used to automatically divide the UAV image
into vector shaped objects based on their spectral properties. As previously mentioned, the
parameter settings of the segmentation algorithm largely determine the outcome of the segments.
To determine the correct parameter values, the algorithm was executed multiple times on a
small area, by adjusting the parameter values after each run. Eventually, the best results were
obtained with a spatial radius of 20 meter, a range radius of 15 (expressed in radiometry unit)
and a minimum segment size of 80 (expressed in pixel unit). A relatively high value for the
minimum segment size was chosen, to limit the number of polygons which allowed for faster
computation times. Lastly, the spectral statistics were calculated for each segment to use as
input for the image classification.

The classification model was trained by using the training and validation samples as input in
the Support Vector Machine (SVM) algorithm. Consequently, the model was executed on the
segmented research area to automatically classify the segments into land use classes. To make
sure that segments labelled as iron or thatch really represent buildings, a height threshold was
added. The height of the buildings was calculated by subtracting the mean height of the DSM of
each building by the mean height of the DTM. The resulting value represents the building height.
For buildings with a thatched roof a minimum height threshold of 0,5 meter and a maximum
height threshold of 4,0 meter was added. For buildings with an iron roof a minimum height
threshold of 0,7 meter and a maximum height threshold of 7,0 meter was added. This decision
was made based on the fact that buildings of thatched roofs are generally lower compared to
buildings with iron roofs. Moreover, the size of each polygon was calculated and a size threshold
was added to erase polygons that did not represent buildings.

Accuracy assessment OBIA

To assess the quality of the automated land use classification, several statistics were calculated.
The classified rooftops were compared to ground truth samples derived from the ECHO 3 survey
to assess the accuracy of the classification. A confusion matrix was created in which the True
Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) classifications
were listed. A commonly used statistic is the overall accuracy. This statistic divides the number
of correctly predicted cases by the total amount of cases:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

However, this statistic does not take into account unevenly distributed classes and can therefore
give a distorted view on the quality of the model. To measure the quality of each separate
classifier, F1-score was calculated. F1-score is determined by Precision and Recall. Where
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Precision represents the ratio of the correctly classified positive cases to the total number of
positive cases in that class. Recall represents the ratio of correctly predicted cases to all cases
in that class (Wouters et al., 2020):

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

The F1-score represents the weighted average of Precision and Recall and thus incorporates both
the False Positives and False Negatives. Moreover, this statistic is suitable when the number of
cases are unevenly distributed over the classes, which is the case in this study.

F1− Score = 2 ∗
Precision ∗Recall

Precision+Recall
(4)

Lastly, the Cohen Kappa statistic measures the inter-observer agreement of classifiers. This
statistic measures how well the the machine learning classifier matches the ground truth data,
controlling for the accuracy of a random classifier (pa).

κ =
A− pa

1−A
(5)

Mapillary

The vulnerability attribute that could be derived from Mapillary imagery was the wall material.
The Mapillary platform enabled to automatically detect objects with computer vision technology.
Objects such as buildings, pedestrians or even cars can be automatically identified from the
street-level images. The method used by Mapillary is also based on image segmentation: each
pixel in the image corresponds to a certain object class (Mapillary, 2019). Recently, the 510 team
has developed a model for automated building material classification for Mapillary street view
images, based on deep-learning. This model is used for the automatic classification of building
material. The model enables to classify a building as either made of concrete, bricks or mud.
The accuracy of the model is around 85%. The output of the model was a point map containing
the recognised wall material label. The points represent the location from where the picture was
taken, but do not identify to what building it belongs.

To allocate material points to the corresponding building, a new automated approach and a
manual tool were developed by Mapillary after several expert discussions. This methodology
was tested for the first time in this study. Summarised, this automated approach uses the unique
photo ID of each point and sends it to the Mapillary API to request extra information about
the image. In this case the the camera angle (in degrees) and the field of view (in radiance) were
used. Those values were used to calculate the orientation of the picture on the map (either the
left or right field of view from the point) and to calculate the exact point of direction, or angle,
of the camera. Then, for each point, a line of 50 meters was drawn into the correct direction
based on the field of view and camera angle. This line dataset could be added as a spatial layer.
The intersection tool was used to merge the wall material attribute of each line with the OSM
building that was the first to be crossed by the line.

The manual tool enables to click on the building in the OSM map that matches the building in
the picture. By clicking on the building in the map, the wall material information is added in
the corresponding attribute table. For each image separately, this process is repeated. In figure
10 a screenshot of the tool is presented. The tool is available here: https://mapillary.github.
io/mapillary solutions/building-labels/. In this research, a hundred buildings were manually
enhanced with material information. These were used as ’ground truth’ samples to measure the
accuracy of the automated approach.
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Figure 10: Mapillary tool for manual allocating buildings in OSM

UBR survey

The UBR survey contains indicators on social vulnerability, such as level of education, wealth,
age, health and household size. Those indicators were used to create a composite vulnerability
index for the 824 households that participated in the survey. The methodology was based on
research by Adu et al. (2018) and the Handbook on Constructing Composite Indicators by the
OECD (2008).

Because each indicator was measured on a different scale, the values were standardised as an
index by using the min-max standardisation approach (OECD, 2008). The following equation
was used to standardise the indicator values per household:

IndexShi =
Sh− smin

smax − smin

(6)

Sh is the observed indicator sub-value for a single household. smin and smax are the minimum
and maximum values in the range of the indicator.

In table 6 the minimum and maximum values of each indicator are listed. Those values were
used as input for the standardisation equation. The column on the right lists the average index
values for each indicator after the values were standardised.

Indicator Minimum value Maximum value Average index value

Wealth 1 (poor) 3 (poorest) 0,344
Household size 1 13 0,792
Highest education 1 (none) 4 (training college) 0,327
Fit for work 0 (yes) 1 (no) 0,197
Age 1 (20-30 years) 7 (80-90 years) 0,420

Table 6: The minimum and maximum values of the indicators and the average index value

After the values were standardised, the following equation was used to create the SVI for each
household.

SV Ih =

∑
N

i=1
indexshi

N
(7)

Where SV Ih, the SVI index value of household h, equals the weighted average of the indicator
values. The xy coordinates of the locations of each household were taken during the survey. The
coordinates were plotted on the map to merge them with the corresponding OSM building.
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4.3.2 Improving CAPRA vulnerability curves

As mentioned before, a common approach used to identify the vulnerability to flooding is by
assessing the potential damage on the housing stock based on depth-damage curves. Depth-
damage curves quantify flood vulnerability by relating water depth at the affected object to a
damage grade (de Moel et al., 2015; Merz et al., 2014). It is important to use separate functions
for different building material types, as, for example, a mud house will collapse at a lower water
depth compared to a brick house. Due to the absent of reliable damage databases in Malawi, a
synthetic damage curve approach will be applied in this research.

In the context of Malawi, Rudari et al. (2016) and Wouters et al. (2020) used damage curves
derived from CAPRA (Comprehensive Approach to Probabilistic Risk Assessment), an open
source software with the aim to improve the understanding of disaster risk for decision making
and planning purposes. The software contains a physical vulnerability model which can be used
for the development of physical vulnerability functions for specific hazards and asset classes
(Reinoso et al., 2018). As depicted in figure 11, the curves exist for the building materials
mud, concrete, wood and masonry. Rudari et al. (2016) aggregated the existing building stock
materials in Malawi into the classes traditional, semi-permanent and permanent. Then, they
linked the building materials to the most corresponding material in the CAPRA library.

This research uses a similar approach. Based on building typologies found in the Karonga
district, the corresponding CAPRA material was linked. This process is depicted in table 7.
The curves of the building materials were aggregated according to the three housing classes.
Permanent buildings were classified as buildings with either concrete or brick walls and iron
rooftops. Traditional buildings were classified as walls made of mud, reed or wood and roofs made
of thatch. Semi-permanent buildings either have traditional walls and iron roofs or permanent
walls and thatched roofs.

Figure 11: CAPRA curves for mud, masonry, wood and concrete
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CAPRA material Building stock
materials

Housing typologies

Concrete Masonry Earth Wood Traditional
Semi-

permanent
Permanent

x Concrete x x
x Mud/wattle x x
x Reed/straw x x

x Wood x x
x Bricks x x

Table 7: The correspondence between housing typologies, building
stock material and CAPRA material, adjusted from Rudari et al. (2016)

The curves were be manually adjusted according to damage data derived from the ECHO 3
survey. Based on several assumptions, an overview of the average damage per building type was
created. The assumptions are described below:

In the survey, the water height of the flood was classified as ankle, knee, waist and shoulder
length. It is assumed that:

• Ankle length means a water height of 30 centimetre

• Knee length means a water height of 50 centimetre

• Waist length means a water height of 1 meter

• Shoulder length means a water height of 1,5 meter

Flood damage was described according to the parts of the house that were affected during the
flood. The damage classes in the survey were floor, walls, windows and roof. It is assumed that:

• A damaged floor means 20% damage

• Damaged floor and walls means 50% damage

• Damaged floor, walls and windows means 60% damage

• Damaged floor, walls, windows and roof means 80% damage

4.3.3 Fusing data layers

A spatial layer of the building extents in the research area was derived from OpenStreetMap.
This layer is used as a base layer. The data layers containing vulnerability attributes were all
merged with the overlapping OSM buildings to create a multi-attribute vulnerability layer. In
cases where the layers with vulnerability attributes were not readily aligned with the OSM layer,
several GIS techniques were be applied as listed in table 8. For example, the coordinates that
were taken during the household survey were not directly linked to the building coordinates in
OSM. In many cases this led to survey points located outside the house, making it difficult to
rematch with the corresponding building. In this case, a spatial join has been applied in which a
search radius of 10 meters around the building was added. The information of the nearest data
point was then automatically added to the building. Moreover, to align the OSM data with the
UAV imagery the ’move’ tool was used.
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Tool Description Implementation example

Move
Moves or rotates a feature or
selection of features

Moving all features of a layer in a
similar direction/angle simultaneously

Spatial join
Joins attributes from one feature
to another based on a spatial
relationship

Joining features within the distance of
the search radius to match the closest
point to a building

Align features

Identifies inconsistencies of the
input features against the target
features and aligns with the target
feature

Aligning the polygon outline of one
layer with another layer

Table 8: ArcGIS Pro tools for automatically aligning features

In total, 1400 buildings were delineated in the OSM base layer. However, the UAV, Mapillary and
UBR datasets did not completely overlap with each other and with the OSM layer. Out of the
1400 OSM buildings, 831 buildings could be linked to the rooftop material attribute. Moreover,
only a limited part of the Mapillary analysis was conducted in the research area, causing limited
overlap with the rooftop layer. To increase the number of buildings with detected wall material,
wall material data points derived from the ECHO 3 survey were added to the unidentified
buildings. This resulted in the identification of both rooftop and wall material for 607 buildings.
Lastly, 94 buildings could be linked to both the physical and social vulnerability attributes. All
overlapping buildings are located in Traditional Authority Mwakaboko, which is part of the
Karonga district. In figure 12 the amount of overlap between the datasets is depicted.

Figure 12: The overlap between the vulnerability attributes

4.3.4 Identifying patterns and clusters for up-scaling

This vulnerability assessment is based on small areas in the Karonga district in Malawi. This
area has been thoroughly analysed by the Malawian Red Cross and therefore a wide range
of data sources is available. However, it is preferable that the methods used in this research
are applicable to a wider context as well. Therefore, this research attempted to explore the
possibilities for up-scaling to areas where, most likely, less data sources are available. This was
done in two ways:

1. By identifying the correlation between vulnerability attributes in the research area in a
bivariate analysis

2. By creating a framework for the applicability of this assessment method at multiple scales
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Bivariate analysis

To discover the relationships between the vulnerability attributes, a bivariate analysis was
conducted. This type of statistical analysis aims to uncover whether or not two variables are
related (Bryman, 2012). If the variables are related, the variation in one variable coincides with
the variation in another variable (Bryman, 2012). The correlation statistic Pearson’s r was
used to discover the strength of the relationships. The correlation value lies between -1 and 1,
where a value close to -1 indicates a negative relationship, a value close to 1 indicates a positive
relationship. The closer the coefficient is to 0, the weaker the relationship. A coefficient can only
be generalised if the level of significance is lower than 0,05 or 0,01.

It is important to note that the correlation coefficient only indicates the relationship between
variables and not the causality. Meaning that it can not be inferred that one variable causes
the other. However, strong correlations between the vulnerability attributes in this research can
be used to do assumptions, although with high uncertainty, for areas in Malawi with a similar
character. For example, if it seems that a certain type of rooftop material is in many cases
related to the same wall material, it can be assumed that this relation exists in other Malawian
rural villages as well. In that case, when UAV imagery is unavailable, satellite imagery can be
used to identify rooftop material in those areas. Similarly, the survey data can be used to identify
relationships between social and physical vulnerability. Based on these relationships, clusters
can be created and predictions for other areas can be made. The aim was to use a geon-related
approach for up-scaling to other areas by linking indicators that are known (e.g. rooftop material)
to assumptions based on observed patterns in Karonga. However, as will be presented in section
5.3.4, only limited to no correlation could be identified between the attributes. This was the
result of small overlap between the attributes, leading to a low sample size and a very unequal
distribution over the classes. Therefore, sub-question 4 will be answered based on an analysis of
the usability of the proposed methodology.

Framework for assessing usability at different scales

The first framework assesses the usability from a Disaster Risk Reduction perspective. Based on
a literature review, several potential DRR interventions for the context of Malawi were classified
according to their scale of impact. The scale concept was divided into the micro, meso and
macro scale, based on Merz et al. (2010). For each DRR intervention, the required data and
assessment methodology is listed. In order to outline the usability at different scales, the data
types and assessment methodologies in the framework are comparable to the methods used in
this research. The data types can either be based on UAV/satellite imagery or on survey data.
The assessment methodologies are based on remote sensing, machine learning or surveying.

Moreover, the second framework discusses the applicability from a data availability perspective.
For each scale, the required datasets are listed, together with the data level that can be used for
aggregation. Moreover, examples for damage curves at different scales are presented.
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5 Results

This section is built up according to the sub-questions of this research. First, it is described
what vulnerability attributes were identified with the acquired datasets. Second, it is discussed
how local damage data was used in adapting existing damage curves to the context of Karonga.
The third sub-section describes how vulnerability assessment can be improved when combining
datasets. The last section sheds light on the possibilities for up-scaling.

5.1 Characterizing housing stock attributes from UAV, Mapillary and house-

hold survey data

The findings in this section contribute to answering the first sub-question: What physical and
social vulnerability attributes can be derived from the acquired datasets? Per dataset, the derived
vulnerability attributes are presented and the outcomes are validated. The methodology has
been applied on an area of around 6 square kilometer within the larger research area.

5.1.1 UAV data

The analysis with UAV imagery resulted in the identification of the rooftop material attribute.
An OBIA was performed to classify the UAV imagery of the research area into multiple land
use classes. The land use classes vegetation, shadow, bare soil and road were used to distinguish
land from the rooftops. The rooftops were classified into either iron or thatch. No other rooftop
materials could be identified in the research area. Iron has very unique spectral characteristics,
making it easier for the machine learning model to distinguish from other land use classes.
However, bare soil and thatch show similar characteristics, leading to confusion for the model
when classifying both land use types. This is illustrated in figure 13. The upper-right image
shows the classification of iron and thatch before filtering techniques were applied. Here, the
iron rooftops are clearly recognisable as they are delineated realistically by the model. However,
thatch is often incorrectly represented due to confusion with bare soil areas. This resulted in
large areas misclassified as thatch, making it difficult to recognise thatched rooftops.

Several filtering techniques were used to erase ambiguously classified objects that did not rep-
resent buildings. First, a height threshold was added to filter out all objects with a height not
corresponding building height. Second, a size threshold was added to erase objects that were
either too small or too large to represent buildings. The bottom-left image in figure 13 illustrates
the result. Here, it is visible that the thatched rooftops still have ambiguous shapes and in some
cases do not represent a building. Therefore, an OpenStreetMap building layer of the research
area was used as a base layer. The OBIA objects were joined with the overlapping OSM objects,
resulting in clearly delineated buildings and the corresponding rooftop material. This is depicted
on the bottom-right in figure 13.

Table 9 shows how the amount and size of the objects decreased after the thresholds were
applied. It is clearly visible that the addition of thresholds had a significant effect on limiting
the number of ambiguous objects. In table 10 the final amount of OSM objects for thatch and
iron is depicted.

No threshold Height threshold Height + size threshold
Rooftop
material

Objects Area (m2) Objects Area (m2) Objects Area (m2)

Thatch 4182 376236 3488 76018 815 48417
Iron 2294 119672 1351 37568 546 32565
Total 6476 485908 4840 113586 1361 80982

Table 9: The number of objects and area size for buildings with thatched and
iron rooftops, as classified in the OBIA. Calculated with different thresholds



Results 26

Rooftop material Percentage Number Area m2
Thatch 22,6 236 10435
Iron 66,0 594 36814

Undefined 7,8 70 2530

Table 10: The number number, size and share of OSM buildings classified as thatch or iron

Figure 13: Upper-left: the original UAV image; upper-right: the iron and
thatch OBIA classification without thresholds; bottom-left: classification with

height and size threshold; bottom-right: classification merged with OSM buildings

Validation

The results of the Object-Based Image Analysis were validated by comparing the classified
segments with manually delineated samples. The model has an overall accuracy of 77,4% and a
Kappa coefficient of 0,72, meaning that a substantial agreement between the classification and
validation samples exists. The confusion matrix and corresponding statistics per land use class
are summarised in appendix A. As previously mentioned, confusion between the classes ’bare
soil’ and ’thatch’ resulted in ’thatch’ being over-classified and ’bare soil’ being under-classified.
This is also visible when comparing the statistics of bare and thatch.

To measure the accuracy of the final classification where rooftop materials were merged with OSM
buildings, the overall accuracy and Kappa coefficient were calculated. Ground truth samples
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derived from the ECHO 3 survey were used to validate the predicted classified materials with
real-life measurements. In total, 213 ground truth samples were used. With this, the overall
accuracy of the model is 0,81, meaning that 81% of the predicted buildings reflect the real-life
situation. However, when looking at the F-1 score of each individual class, iron performs better
compared to thatch. The Kappa value is 0,51 meaning that a moderate agreement between the
OBIA and ground truth data exists.

Material Precision Recall F-1 score Accuracy Kappa
Thatch 0,67 0,49 0,57

0,81 0,51
Iron 0,85 0,92 0,88

Table 11: Validation statistics for the OBIA classification

Moreover, The results of the model were compared with the results of the ECHO 3 survey
(Appendix B). A similar distribution of buildings over the iron and thatch classes can be perceived
when comparing the model output and survey results. Whereas the model classified 66% of the
rooftops as iron, were 65% of the houses in the survey classified as iron. The model classified
22,6% of the rooftops as thatch and 7,8% as undefined. 32% of the buildings in the survey were
classified as thatch.

5.1.2 Mapillary data

The Mapillary data was used to identify the wall material attribute. The output of the deep
learning analysis was a point map of the picture location with the corresponding identified wall
material. Although this gave an overview of the approximate locations of the building materials,
it was not possible to directly link the material to the corresponding building. The picture angle
of each point was calculated to gain understanding on the direction of the identified building.
The angles were represented by lines and the corresponding building on the OSM map is the
one that intersects the line first. This is depicted in figure 14.

Figure 14: The process of matching the Mapillary photo point to
the corresponding building, by making use of the camera direction

In total, the wall material of 294 buildings could be identified with the machine learning Mapillary
analysis. The wall materials that could be identified in the research area were bricks, concrete
and thatch. In table 12 the number of detected buildings per material class is given.
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Rooftop material Percentage Number
Bricks 77 222

Concrete 15 43
Thatch 10 29

Table 12: The number of detected wall materials on OpenStreetMap buildings

Validation

The Mapillary model was tested on a random set of 889 images to assess the quality of the
classification performance. The same accuracy statistics as for the OBIA assessment were
computed for the classes ’bricks’ and ’concrete’. There was insufficient information to compute
the statistics for ’thatch’. The overall accuracy of the classification is 84%. When comparing
the F-1 scores of the separate classes, it can be observed that ’bricks’ performs relatively better
than ’concrete’.

Material Precision Recall F-1 score Accuracy Kappa
Bricks 0,99 0,66 0,80

0,84 0,68
Concrete 0,77 0,99 0,68

Table 13: Validation statistics for the OBIA classification

To assess quality the automated join approach between data point and OSM building, a Mapillary
tool was used that enables to manually link the building on a Mapillary image to the correct
OSM builing on the map (see figure 10). In total, 118 buildings were manually linked with the
tool to serve as validation samples. When comparing the automated output with the validation
samples, 86% of the buildings were allocated correctly.

5.1.3 UBR survey

The UBR survey data was used to create a relative Social Vulnerability Index (SVI) based on
the households in the research area. The indicators wealth, household size, education, health
(fit for work), and age were used. The indicator values were all normalised into a range between
0 (low social vulnerability) and 1 (high social vulnerability). Moreover, the correlation between
all the indicators was calculated, to observe the influence of each indicator. In table 14 it can be
observed that the indicator ’fit for work’ has the largest influence. Therefore a lower weight was
given to this indicator during the calculation of the vulnerability index. Figure 15 illustrates
the distribution of the resulting values over 5 classes. The average SVI score is 0,43, with the
majority of households distributed over the classes that range from 0,21 to 0,6. This means
that based on the indicators mentioned previously, those households live in situations of relative
moderate social vulnerability. 215 households in the survey could be linked to buildings in the
OSM layer of the research area. Due to privacy regulations, it is not allowed to show sensitive
personal information that can be traced back to individuals. For this reason it was decided to
not disclose this information on the household level.

Wealth H. size Edu FW Age
Wealth 1 -0,219 -0,036 0,016 -0,041
H. size 1 -0,069 -0,130 -0,021
Edu 1 0,176 0,235
FW 1 0,755
Age 1

Table 14: The correlation (Pearson’s r) between the index indica-
tors. Light green: p < 0, 05 Dark green: p < 0, 01 N = 824
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Figure 15: The distribution of households over SVI classes
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5.2 Damage curves for Karonga

This section discusses the findings of the second research question: How can local damage data
be used to improve flood damage curves for Karonga? Local damage data, derived from the
ECHO 3 survey, was used to adapt the damage curves derived from CAPRA to the situation of
Karonga. For each wall and rooftop material in the survey, the average damage was calculated
for different flood levels.

Figure 16 shows that the CAPRA curve of mud has a damage ratio of 0,6 at almost one meter
inundation depth. However, in the local damage data was found that at one meter inundation
depth, damage was perceived on the floor, walls and roof. It is assumed that, when a building is
damaged at the floor, walls, windows and roofs, a damage ratio of 0,8 can be expected. Therefore,
a new curve was estimated that represents the average between the CAPRA and local damage
data (see figure 16). This was also done for the masonry curve (see figure 17). Based on table
7 derived from Rudari et al. (2016) in the methodology section, the materials belonging to the
traditional, semi-permanent and permanent building type have been aggregated to create the
curves for each building type. In figure 18 the result is illustrated. In the next section, the
curves are linked to the buildings in the research area to get an overview of the vulnerability at
different flood levels.

Figure 16: The CAPRA dam-
age curve for mud and the curve
adapted with local damage data

Figure 17: The CAPRA damage
curve for masonry and the curve
adapted with local damage data
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Figure 18: The damage curves for traditional, semi-permanent
and permanent buildings, based on aggregated local damage curves
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5.3 Vulnerability completeness

This section addresses the following sub-question: SQ-4: To what extent do additional data
sources add to the completeness of housing stock vulnerability attributes? To explain the added
value of combining datasets, several map visualisations are presented for several attribute com-
binations. Moreover, to identify relationships between the attributes, the correlation coefficients
were calculated.

5.3.1 Combining physical vulnerability attributes

When combining rooftop and wall material data, the buildings can be classified according to
the three building classes ’traditional’, ’semi-permanent’ and ’permanent’. All the buildings
with thatched roofs and mud/thatched walls are classified as traditional. Buildings with iron
roofs and brick/concrete walls are classified as permanent. All buildings with a combination of
traditional and permanent materials are classified as semi-permanent. In figure 19, the spatial
distribution of the buildings with the corresponding building type is mapped. This enables to
identify physical vulnerability patterns throughout the research area.

In table 15, the proportion of buildings per type is summarised. The largest part of the buildings
is classified as permanent, generally located in the western part of the area. Most of the
permanent buildings tend to cluster along the M5 road, one of the largest roads in Malawi.
The semi-permanent and traditional buildings are clustered along smaller roads in the eastern
part of Mwakaboko. Moreover, the eastern buildings are located in a relatively lower-lying area
compared to the buildings in the West. This makes them extra vulnerable during flood situations.
The height difference between the western and eastern side is around 15 meters.

Figure 19: The spatial distribution of automatically
classified building types in TA Mwakaboko, Karonga

The distribution of buildings over the three classes shows limited correspondence with find-
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ings in the household survey (ECHO 3). In this research the majority of the buildings is classified
as permanent (49,8%). In the survey, only 10% of the buildings was classified as permanent.
Subsequently, the proportion of buildings classified as traditional or semi-permanent was signifi-
cantly higher in the survey. However, the results show higher resemblance with the situation in
the entire area of Karonga (table 1).

Building type Percentage Number
Traditional 9,2% 56

Semi-permanent 41% 249
Permanent 49,8% 302

Table 15: Distribution of automatically classified building types

5.3.2 Combining physical vulnerability attributes with damage curves

The building types correspond to the damage curves that were presented in the previous chapter.
By linking the expected damage to the corresponding building types, synthetic ’what-if’ analyses
can be performed for different flood scenarios. In figure 20, the building vulnerability based on
flood damage is mapped for three flood scenarios with: 1) an inundation depth of 0,5 meter, 2)
an inundation depth of 1 meter, and 3) an inundation depth of 1,5 meter.

Whereas an inundation depth of 0,5 meter leads to 20% damage for traditional buildings, only 1%
damage is expected for permanent buildings and 10% for semi-permanent buildings. Moreover,
it is expected that at 1,5 meter inundation depth, traditional buildings are almost fully damaged.
At the same inundation depth, it is expected that semi-permanent buildings are damaged for
60% and permanent buildings for 35%.

Figure 20: Building damage scenarios for different flood
situations in Karonga, based on local damage curves
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5.3.3 Combining physical and social vulnerability attributes

By linking social vulnerability to the physical attributes, an extra vulnerability dimension was
be added. As previously mentioned in section 4.3.3, only limited overlap between the UBR
survey and the physical vulnerability attributes exists. To increase the number of overlap, the
wall material dataset was left out and the social index layer was joined with the rooftop material
layer. In total, overlap between the two datasets for 175 buildings could be found. Based on
these datasets, the average relative socio-physical vulnerability of the households is 0,34. This
means that, compared to the social vulnerability index (figure 15) presented in section 5.1.4,
the average vulnerability decreases when adding the attribute ’rooftop material’ in the index.
In figure 21, the spatial difference between the social vulnerability (right) and socio-physical
vulnerability (left) can be observed. On the left map, the vulnerability decreased for a large part
of the households. This means that, although the household is socially vulnerable, the building
structure is relatively strong. However, for some households the vulnerability increased when the
physical attribute was added. Meaning that those households are not only socially vulnerable,
but also have limited protection due to poor housing.

Figure 21: The difference between the social vulnerability and socio-physical vulnerability map

5.3.4 Correlation between attributes

By combining vulnerability attributes, the relationship between them can be analysed. First, the
relationship between wall and rooftop strength has been observed. In the graph in figure 22 it
can be observed that the majority of buildings with iron rooftops have walls made of bricks. Of
the 308 buildings with iron rooftops, 85% has brick walls. However, for buildings with thatched
rooftops, no clear relation with a specific wall material can be found. Pearson’s r was calculated
to identify the correlation between the attributes (see table 14). The correlation coefficient (r)
between wall and rooftop strength is 0,191 with a significance (p) of 0,000, meaning that only
a very limited positive and significant correlation between the attributes exists. Thus, a strong
rooftop does not necessarily relates to a strong wall. However, the sample size (N) is relatively
low due to limited overlap between the datasets and therefore it was not possible to calculate
the correlation for the entire research area. This can influence the strength in correlation.

To see the effect of the sample size on the correlation level, the same calculation was done for
wall and rooftop strength attributes derived from the ECHO 3 survey, with a sample size of 916
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buildings. Here, a significant r of 0,697 was found, meaning that a medium to high positive
correlation between the attributes exists.

Moreover, the relationship between physical and social vulnerability is observed. No correlation
exists between building vulnerability (based on permanent, semi-permanent and traditional) and
social vulnerability. Similarly, no correlation exists between rooftop vulnerability and social
vulnerability. A medium positive, and significant, correlation between wall vulnerability and
social vulnerability can be observed. In this case, this means that the higher the wall vulnerability,
the higher the social vulnerability. This can also be observed in table 17, where the average SVI
score increases when wall vulnerability increases. However, it is difficult to base conclusions on
this data, as the amount of buildings in each class is not evenly distributed.

Relationships attributes r p N
Rooftop vulnerability & wall
vulnerability (ECHO 3 data)

0,697 0,000 916

Rooftop & wall vulnerability
(classified data)

0,191 0,000 406

Building vulnerability &
social vulnerability

0,064 0,538 94

Rooftop vulnerability &
social vulnerability

-0,118 0,119 175

Wall vulnerability &
social vulnerability

0,386 0,000 97

Table 16: The correlation (r) be-
tween physical and social vulnerability
attributes, together with the level of
significance (p) and sample size (N)

Figure 22: The distribution of buildings
over rooftop and wall material classes

Physical vulnerability
classes

Average SVI
score

Building count

Building
type

Traditional 0,75 3
Semi-permanent 0,56 23
Permanent 0,57 74

Wall
material

Thatch/mud 0,87 8
Concrete 0,61 6
Bricks 0,54 86

Rooftop
material

Thatch 0,53 49
Iron 0,58 128

Table 17: The average SVI score and building count
for each class of the physical vulnerability attributes
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5.4 Scaling

The data availability and resolution in an area highly determine the possible scale of assessment
that can be done. Subsequently, the scale of policy intervention largely depends on the level of the
conducted risk assessment. As previously depicted in chapter 2, the complexity of data increases
when the aggregation level decreases (Kienberger et al., 2013). The micro scale vulnerability
assessment that is performed in this research has a low aggregation level, making the output data
relatively detailed. However, this research was performed in an unique situation where a wide
range of datasets was available. In other areas, it is very likely that the variability in datasets is
not as high as in Karonga. For example, street view data is not available in every part of the
world, and especially the most vulnerable areas are missing. In addition, high resolution UAV
data only covers limited areas, necessitating the use of lower resolution satellite imagery.

The results that are presented in this section contribute to answering the last sub-question: SQ
4: To what extent are the methodology and results of this micro scale study applicable to other
scales? In this section, the applicability of the methodology is discussed for the micro, meso
and macro scale. The applicability is summarised in two different ways. First, in figure 24, the
applicability is explained from a data availability perspective. In this figure the required datasets
are presented for the three different scales, together with the possible level of aggregation that
can be used. In the column on the right, flood damage curves are illustrated at the different
scales.

Second, in table 18 the applicability is explained from a Disater Risk Reduction perspective.
The table gives an overview of examples of DRR measures that can be taken at the micro, meso
and macro level. For each measure, the data type and processing methodology required for the
corresponding vulnerability assessment is given. Moreover, the table describes the level of data
aggregation and complexity for the expected vulnerability data output. In the sections below,
the implications for the application of this methodology are described for the different scales.

5.4.1 Micro scale

The vulnerability attributes that were derived during this research were based on UAV, Mapillary
and survey data. An OSM layer of the building extents was used as a base layer. Local damage
data was used to adapt the material-based damage curves derived from CAPRA. This resulted
in the acquisition of a wide range of attributes to assess the vulnerability at the micro level,
involving the buildings in the area.

In figure 8, an overview of the methodology is given. This methodology can be adapted to the
data availability in the area to be assessed and data processing steps can be left out if the data
availability in the area is lower. If, for example, only UAV data is available, it is still possible
to derive vulnerability attributes that enable to give a substantial overview of the physical
vulnerability. Although rooftop information is not the most important vulnerability attribute
when assessing flood risk, it can be of great importance in the context of other natural hazards,
such as earthquakes and heavy rains. In such contexts, the Mapillary analysis can be considered
to be eliminated from the workflow.

Moreover, besides the indicators and processing steps, figure 8 lists the usability of each output
dataset. The methodology can be adapted according to the required usage of the output data.
In table 18 several examples of micro-scale DRR interventions are given, such as building
strengthening prior a flood or resource distribution after a flood. An important response to
realise these measures is to locate the most vulnerable households in an area. This requires object-
level data on the physical state of the building or on the social vulnerability of the household.
As mentioned before, the level of aggregation in micro-scale assessments is low, resulting in a
complex, or highly detailed, data output. This type of assessment is useful for humanitarian
agencies to efficiently indicate where the highest impact of a flood can be expected and where
the help is mostly needed.
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5.4.2 Meso scale

The meso scale represents spatial aggregations such as villages or river basins (Merz et al., 2010).
Whereas micro-scale assessments aim to observe the spatial variability of vulnerability within, for
example, a village, do meso-scale assessments observe the variability between different villages.
This can be used to target and prioritise the most vulnerable areas when distributing resources or
when stipulating locations for awareness campaigns. The meso scale interventions as presented
in the table aim to structurally decrease flood vulnerability in the longer term. The interventions
can either be implemented by governmental agencies, or during long-term humanitarian projects.

Two different approaches can be used for meso-scale assessment. First, when available, micro-
scale vulnerability data can be aggregated to the meso level. This means that the average
vulnerability of households is calculated for a certain area. Second, as UAV imagery is generally
not available for an entire area, satellite data can be used as input data for OBIA. For the
identification of social vulnerability at the meso scale, focus groups can be held as an alternative
to household surveys. Focus groups enable to get an overview of the overall vulnerabilities and
needs within a village (VCA, 2020). The damage curves in meso-scale assessment can either be
based on aggregated material based curves (e.g. by clustering materials into building classes),
or on broader land use classes such as urban, rural.

When aggregating data to the meso-scale, several levels can be considered. Officially, Malawi
can be divided into districts, Traditional Authorities or Group Village Headman areas (GVH’s),
ranging from large to small respectively. However, assessments at the meso-scale are generally
conducted in areas smaller areas, making official administrative boundaries unsuitable as ag-
gregation level. In Malawi, official lower scale sub-divisions (e.g. village level) of the country
do not exist. Therefore, the use of informal boundaries can be a good alternative in this case.
For example, the GRID3 Malawi Settlement layer divides the country into areas based on their
building density, i.e. built up areas, small settlement areas and hamlet areas, ranging from areas
with high to low building density (CIESIN, 2020). Moreover, equal sized hexagons or circles can
be used to form clusters if regions based on formal boundaries are too large. This is depicted
in figure 23. Each hexagon represents the average vulnerability situation in that region. This
approach enables to go beyond true boundaries during the scaling process and allows for the
identification of vulnerability ’cold-’ and ’hot-’ spots of in the larger region.

Figure 23: Example of aggregating local scale data: clusters representing
the average physical vulnerability of the buildings located within the cluster
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5.4.3 Macro scale

The macro scale covers the district, regional or national level (Merz et al., 2010). At the
national level, large scale restructuring programmes can help in promoting flood-resilient building
structures to decrease vulnerability. An example is the ”build back better” strategy that was
implemented by the Malawian government after severe floods in 2019. The strategy includes
promoting resilience by adopting hazard-resistant construction standards and by improving
the physical planning system (Malawi Government, 2019). For the prioritisation of the most
vulnerable areas within the country, a high data aggregation level (e.g. district or TA level)
can be used. To assess the vulnerability at this scale, satellite data can be used to distinguish
between land use types. Moreover, elevation data can help in identifying areas located at river
runoffs.

Macro scale assessments can be based on aggregated micro/meso-scale data or on satellite-based
remote sensing. A common practice for the development of national flood maps is to merge
existing micro and meso scale datasets into one map. However, difficulties can arise when making
comparisons between areas where different assessment techniques have been used (de Moel et
al., 2015; Loos et al., 2020). It is therefore important to carefully take into consideration the
methodology and accuracy of each assessment. In figure 24, an example of a land use-based
damage curve is given. This type of curve gives insight in the vulnerability of specific land
use classes. For example, bare soil is more vulnerable to a flood compared to vegetated soil.
It can therefore be expected that buildings placed on bare soil are more susceptible to flood
damage compared to buildings surrounded by vegetated soil. Land use-based damage curves
can therefore help in giving insight in the vulnerability of the country based on coarser land use
classes.
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Figure 24: Summary of the required datasets, aggregation levels and
flood damage curves for different scales of vulnerability assessment
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6 Discussion

The objective of this research was to improve the understanding of the physical and social flood
vulnerability of households in the Karonga district by combining multiple data sources. A remote
approach was used to identify physical vulnerability indicators. UAV data was combined with
street-level Mapillary data to get an overview of both the rooftop and wall materials of the
buildings. For the identification of the social vulnerability, a Social Vulnerability Index was
created based on indicators derived from survey data. This research developed an approach
for the integration of all data sources into one Geographic Information System, based on an
OpenStreetMap building layer. Local damage data was used to improve material-based damage
curves and multiple ”what-if” analyses were performed to get insight in the potential building
damage at different flood stages. By combining the data sources, the level of detail in vulnerability
assessment is greatly enhanced.

In this chapter, the methodology and results will be discussed. Firstly, some of the improvements
in vulnerability assessment are discussed. Secondly, the usability for local scale interventions is
outlined and examples of DRR interventions are given. Lastly, the validity and limitations of
this research are discussed.

6.1 Implementation of the methodology

The chosen methodology enables to remotely characterise physical vulnerability attributes from
UAV and Mapillary data. Moreover, it integrates social vulnerability attributes to increase the
detail in vulnerability assessment. The remote characteristic of the methodology is suitable in
areas where cadastral datasets are unavailable or nonexistent. This method is especially useful in
times when physical visitation to a country is impossible due to, for example, conflict, pandemic,
etc. Moreover, it is a promising time-saving alternative compared to carrying out household
surveys. The methodology can be adapted to the data availability or the required intervention
in other target areas. Several improvements for vulnerability assessments are discussed below.

Increased variability and accuracy

The methodology allows for the characterisation of housing stock vulnerability at the micro
or object level. Contrary to vulnerability assessments based on aggregated land use data,
object-based data shows the variability of vulnerability within a larger area. The classification
methodology by Wouters et al. (2020) was broadened by incorporating the observed wall material
and by adding the social vulnerability concept. Wouters et al. (2020) based their building
classification on a combination of remotely sensed rooftop characteristics with vulnerability
assumptions derived from a sample size of 50 buildings. Based on this combination, two different
vulnerability types were developed. In this research, the vulnerability classification is enlarged
by incorporating extra classes based on wall material and social vulnerability. Instead of using
assumptions, this research uses the actual observed wall material. This significantly increases the
accuracy of the physical vulnerability layer and allows for higher accuracy in damage predictions.

Linking UAV and street-level data

This research links UAV and street-level data to optimise the automated recognition of physical
vulnerability indicators. For the purpose of this research, a tool was developed by Mapillary
to automatically link information in a Mapillary image to the corresponding building in OSM.
By making use of the camera angle, it is possible to allocate recognised objects in street view
imagery to their original location on the map. By applying this methodology, object features
can be identified from different perspectives. In this research, this resulted in the automatic
identification of both the wall and rooftop material of a building. This resolves prior problems
that generally come assessments purely based on nadir-view imagery, as mentioned by Wouters
et al. (2020) and Cao et al. (2018).
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Integration in early warning systems

As mentioned before, humanitarian actors are increasingly shifting their focus away from post-
disaster recovery to preparedness and early support before a disaster occurs (De Perez et al.,
2016). The concept of Forecast-based early action (FbA) is one of the mechanisms that is used
to translate hazard warning information into concrete action (Wilkinson et al., 2018). FbA is
used to trigger humanitarian intervention for the most vulnerable households in the hazard area
(De Perez, 2018). To assess the impact of a hazard on the society, an integration of hazard
forecasts and vulnerability data is essential.

The integration of vulnerability data with a high level of detail can be imperative in assessing
the hazard impact. FbA mechanisms generally make use of pre-established thresholds or ’danger
levels’. If a threshold is met, funds are released or action can be initiated (Wilkinson et al.,
2018). Based on damage curves that were created in this research, local vulnerability or damage
thresholds per building type can be enabled. If, for example, a damage threshold of 50% is
incorporated in an early warning system, a warning can be given when a flood is expected to
exceed the threshold level. For traditional buildings, the threshold level of 50% is reached at 1
meter inundation depth. For semi-permanent buildings, the threshold is reached at 1,2 meter
inundation depth. In combination with the physical vulnerability layer, this situation is mapped
in figure 25. The black buildings represent the buildings that would exceed the damage threshold
at an inundation depth of 1,2 meter. Comparable maps can be used for the prioritisation of the
most vulnerable households in getting support prior to or after a flood.

Figure 25: An example of a visualisation of flood vulnerability based on a 50% damage threshold

6.2 Usability for local scale interventions

Flood related interventions can be aimed at different components of risk. Structural measures
are used for improving disaster prevention, whereas non-structural measures involve awareness-
building and improving planning and response capacity (Wisner et al., 2018). In March 2020, a
Vulnerability Capacity Assessment (VCA) was performed in Karonga. The assessment revealed
that the largest flood vulnerabilities of the society are the loss of houses and the lack of response
skills and tools (VCA, 2020). To combat such vulnerabilities, several Disaster Risk Reduction
strategies can be taken. The social and physical vulnerability map created in this study, give
a detailed overview of the spatial distribution of the vulnerabilities in the area. The map can
therefore serve as a base for initiating local DRR strategies in the area.

The different building typologies in the area ask for different strengthening approaches. De
Ruiter et al. (2020), for example, mention potential measures per building type that can be
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applied during building strengthening projects in a flood-prone area in Afghanistan. They argue
that buildings made of wood or mud have a tendency to either flow due to lightweightness
or collapse during intensive contact with water. For such buildings, a mixture with adobe or
concrete would help in increasing the resistance of the walls. Moreover, stilts can be used to
increase the height of the buildings to decrease the susceptibility when a flood hits the area.
Moreover, Shelter cluster (2015) published a document with detailed building safety measures
for Malawi that can be implemented to decrease the impact of floods. A detailed description
for strengthening the building construction of informal buildings, in the context of Malawi, was
published by Bureau TNM (2016).

The physical vulnerability map can be used to target the households that are the most physically
vulnerable. Moreover, cost estimations can be made when the amount of target buildings and
the corresponding measures are calculated.

The lack of response skills and tools in the communities cause increased vulnerability when a
flood hits the area (VCA, 2020). By integrating flood awareness in school programmes or by
organising awareness campaigns for adults, the communities are strengthened in their capacity
to respond to hazards. In addition, increased awareness helps encourage communities to identify
vulnerabilities in their settlements and in establishing local contingency plans.

Here, the social vulnerability map serves as a tool for identifying the most vulnerable communities
in the area. Consequently the schools in vulnerable areas can be targeted as locations for
awareness campaigns. Moreover, the most physically vulnerable areas can be identified for
carrying out training concerning resilient building practices.

6.3 Validity and limitations

This research is performed in TA Mwakaboko in the Karonga district. Due to limited overlap
between the datasets, it was not possible to assess the vulnerability of the entire housing stock.
607 out of 1400 buildings could be automatically classified. Only 90 of those buildings could be
linked to the social vulnerability attributes. Due to this minor overlap, it is difficult to detect a
possible relationship between the variables/attributes that can be generalised to other areas in
Malawi. Therefore, assumptions based on this research should be taken with caution

Although a strong relation has been found between iron rooftops and brick walls, the relation
between thatched roofs and wall materials seems less strong. Moreover, no clear relation between
physical vulnerability and social vulnerability can be observed. However, when incorporating
other spatial variables, such as distance to main road or elevation, it can be observed that
physically strong buildings are generally located at more favourable places compared to weaker
buildings.

Difficulties arose during the classification process of thatched roofs. The problems related to
this process are twofold. First, similarities in spectral characteristics between bare soil and
thatch led to confusion during the machine learning classification. This resulted in large areas
of bare soil being classified as thatch. Similar difficulties were perceived by Wouters et al.
(2020). It is therefore unavoidable to incorporate an extra processing step by filtering on polygon
height and size. Second, the building extents of OSM were used to filter the buildings from the
OBIA and to eliminate ambiguously classified objects. Although the OSM layer was updated
recently during a mapathon, not all buildings were delineated. Especially thatched buildings
were underrepresented in the layer. This can be explained by the coarser resolution of the
satellite data, making it more difficult to identify thatched rooftop with the unaided eye. The
buildings that were not delineated in OSM were excluded from the research, resulting in a lower
number of, especially thatched, buildings compared to reality. It is therefore crucial to stipulate
that, based on the rooftop material, the physical vulnerability in the research area is higher than
presented in this research.
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As mentioned before, damage curves cause a lot of uncertainty due to their simplistic represen-
tation of a complex process. Reliable damage data on traditional building materials is scarcely
available, which makes it difficult to apply curves to other contexts (Kellermann et al., 2020). In
this research, local flood damage data, derived from the ECHO 3 survey, was used to adapt the
curves to the context of Karonga. However, the building damage in the survey was expressed ac-
cording to subjective damage classes, based on the damaged elements (e.g. floor, wall, windows).
An inventory of the corresponding damage grades was missing and therefore several assumptions
had to be made to translate the data to a curve. Moreover, it is important to note that the
damage maps, resulting from the ’what-if’ analyses, do not represent the actual building damage
that was observed after a flood. The maps give an example of the vulnerability situation at
different flood scenarios and can serve as a tool to base DRR measures on. Merz et al. (2007)
discuss the problem of fictitious accuracy, which can occur when interpreting object-level vulner-
ability maps. The great detail that can be reached in such maps, distracts from the uncertainty
that comes with synthetic damage assessments. Consequently, it is important to raise the users’
awareness of the limitations and the purpose of maps (Merz et al., 2007).

Merz et al. (2007) mention that flood maps have to be updated continuously to take into account
developments that have affected the flood or vulnerability situation. Moreover, they argue that
the rate of change in flood hazard can be expected to be small, but the rate of change for
vulnerability can be way more dynamic as a result of e.g. variability in flood risk awareness
or changes in assets of the community. It is therefore important to note that the vulnerability
maps, as presented in this research, represent the physical vulnerability situation of March 2020
and the social vulnerability situation of April 2018. A new flood can have a large impact on the
area, increasing the uncertainty of the current maps. It is therefore important to repeat this
assessment over time.



Conclusion and recommendations 45

7 Conclusion and recommendations

7.1 Answering sub-questions

The sub-questions as proposed in chapter 3 have been answered throughout this research. The
answers to these question are summarised in this section.

SQ 1: What social and physical vulnerability attributes can be derived from the acquired datasets?

In this research, a range of vulnerability attributes were derived from a combination of datasets,
as collected by Malawi Red Cross. For the identification of the rooftop material attribute,
an Object-Based Image Analysis was performed on UAV imagery, resulting in a classification
between thatch and iron rooftops with an overall accuracy of 81%. The methodology is suitable
in areas where spectral characteristics of rooftops significantly differ from the characteristics of
the subsurface. Challenges arose when distinguishing thatched rooftops from bare soil due to
similarities in colour. Subsequently, this lowered the quality of the classification for this class.

The automated Mapillary classification resulted in the recognition of wall materials. A model
for the automated classification of wall materials, developed by 510, was applied for this process.
To allocate the resulting data points to the correct building, camera angle data was computed to
identify the direction of the Mapillary images. With this approach, 86% of the data points were
allocated to the correct building. It can therefore be concluded that this method is promising
for mapping objects that were recognised from street view imagery.

By weighting the social indicators (wealth, household size, education, health and age) derived
from survey data, a Social Vulnerability Index was developed. On a scale from 0 (low vulner-
ability) to 1 (high vulnerability), a relative average social vulnerability score of 0,43 could be
observed in the area.

SQ 2: How can local damage data of Karonga improve existing flood damage curves?

In this research, local damage data was acquired by aggregating the average building damage
per flood depth. Several assumptions were made to transform the data to damage grades.
Existing damage curves, derived from the CAPRA library, were tuned to the local findings. The
approach of Rudari et al. (2016) was used to aggregate the curves into the three building classes
(traditional, semi-permanent and permanent), to link them to the classified building map. It
can be concluded that material-based synthetic damage curves are a good starting point when
assessing physical vulnerability, but that it is of great importance to enrich them with local
damage data. In this research the local damage data showed severe damage results compared to
the CAPRA curves. For example, where the CAPRA curve for mud presented a damage ratio
of 0,6 at an inundation level of 1 meter, did the local curve show a damage ratio of almost 0,8.

SQ 3: To what extent do additional data sources add to the completeness of housing stock
vulnerability attributes?

Combined, the UAV and Mapillary analyses allowed for detailed insights in the structural
permanence of the buildings. Moreover, this enabled this research to observe the spatial pattern
of physical vulnerability in the research area. By combining physical vulnerability data with
damage curves, the average damage ratio for each building was estimated for multiple flood
scenarios.

For the buildings where overlap was found between the social and physical vulnerability data, a
relative Socio-Physical Vulnerability Index was developed. The average of this index was 0,34,
meaning that the relative vulnerability slightly decreased when physical attributes were added
to the index. Moreover, this allowed for the identification of relationships between the socio-
and physical vulnerability of the households. However, due to limited overlap, the sample size
of the buildings was relatively small. The distribution of buildings over the vulnerability classes
was very uneven, resulting in insignificant correlations.
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The multi-attribute dataset gave a detailed overview of the housing stock vulnerability in the
research area. However, the small overlap between the buildings decreased the ability to generalise
findings based on the building sample. A larger overlap is essential in increasing the completeness
of the data.

SQ 4: To what extent are the methodology and results of this micro scale study applicable to
other scales?

The applicability of this method on other scales is highly dependent on the data availability in
the target area. The data resolution can impact the assessment output and largely determines
the detail that can be reached. This also influences the accuracy of the response for the DRR
intervention.

This methodology can be adapted to other micro-scale contexts by eliminating indicators and
corresponding processing steps based on data availability in the area. UAV imagery can be
replaced by satellite imagery to increase the data coverage on the larger scale. Moreover, land
use-based damage curves can be used if object-based data is unavailable. It is important to
clearly establish the goal of the assessment to determine the suitable level of data aggregation.
This can help in overcoming a mismatch between the data complexity and the intended response.

The current correlation results do not allow for up-scaling to other areas. More research is
required to establish grounded assumptions with less uncertainty.

7.2 Answering main research question

In what way can UAV, Mapillary and household survey data be combined in order to assess
housing stock vulnerability to floods in Karonga, Malawi?

This research aimed to build a bridge between individual datasets. Moreover, it attempted
to cover the vulnerability concept as thorough as possible by linking both physical and social
vulnerability attributes into one Geographic Information System. A remote approach was used to
identify physical vulnerability attributes. Based on Mapillary API information, wall information
could be linked to remotely sensed rooftop information of the same building. Compared to
previous research, this method allows for higher accuracy in the classification of physical building
characteristics. Moreover, when combined with social vulnerability attributes, an even higher
level of detail can be achieved. The integration with depth-damage curves resulted in the
recognition of flood impact on the housing stock. The uncertainty that is associated with
damage curves can be decreased by attuning these curves with local damage data.

These advancements in object-based vulnerability assessment can be applied to improve targeting
of the most vulnerable households in disaster response situations. This facilitates both govern-
mental and humanitarian organisations in effectively achieving risk reduction in flood-prone
communities.

The aim of this research was to discover statistical relationships between variables to be used for
vulnerability predictions in other areas. However, it is essential when establishing a statistical
justification that there is a significant overlap between different data sets. This was not the case
in this research and therefore the observed relationships were unsuitable for up-scaling. Despite
this, the methodology forms a basis for up-scaling to other contexts or scales. Based on data
availability and the required DRR intervention, the methodology can be adapted to become
applicable to the right context.
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7.3 Recommendations for future research

7.3.1 Scientific community

To improve the recognition of thatched rooftops, future research should focus on other land
use classification methodologies. This can either be done by comparing the performance of
several supervised learning algorithms, or by comparing the results with classifications based on
Convolutional Neural Networks and deep learning.

To increase the number of physical vulnerability attributes, future research can be focused on
the recognition of other building features in Mapillary. The current 510 model allows for the
identification of wall material. However, attributes such as openings in the building or the state
of the buildings could be useful indicators as well.

Lastly, the relationships between vulnerability variables should be further investigated to be able
to make statistically sound assumptions for other areas in Malawi.

7.3.2 Humanitarian agencies

The approach used in this thesis showed that combinations of datasets can increase the detail in
vulnerability information. The datasets used in this research, were already collected before the
commence of this research. Therefore, no influence on the data collection process could have been
exerted. This resulted in limited overlap between the datasets and a lower amount of buildings
that could be incorporated in the research. This approach can be used by humanitarian agencies
for the assessment of vulnerability to natural hazards. To increase the number of buildings in
the dataset that can be enhanced with multiple vulnerability attributes, it is of great importance
that the data sources overlap. Therefore, prior to the data collection process, agreement on the
target area is essential. Moreover, open source platforms such as OpenAerialMap, Mapillary and
OSM can be used to investigate the existing overlap between datasets. This overlap can be used
to get insight in the data coverage of target areas. Additionally, new data collection activities
can be executed if supplementary data is required.

To increase the accuracy of the output data, it can be considered to use other building footprint
data instead of the OSM dataset. The building footprint of OSM is based on satellite data,
which in many cases is relatively older. Moreover, the most vulnerable buildings (e.g. with
thatched rooftops) are difficult to identify due to the coarser spatial resolution of satellite data.
Therefore, in order to obtain better results, future research should focus on the development of
accurate building footprint maps, e.g. by using UAV data as a base.

7.3.3 Governmental agencies

One of the most important challenges for up-scaling to other areas is the availability of spatial
data. To overcome this problem, it is crucial that spatial datasets, collected by either individuals,
humanitarians or governmental agencies, can be openly accessed by everyone from a single portal.
Although recent efforts have been made to establish a National Spatial Data Infrastructure
(NSDI), Malawi faces several constraints in the actual development. In a study by Mwange et al.
(2018), the status of Malawi’s SDI was investigated. The major challenges that Malawi faces
include inadequate funding, lack of human resource capacity and legal constraints.

It is important for governmental agencies to recognise the benefits of reusable open data. Re-
search should therefore focus on cost-benefit analyses with regard to open data. Moreover, the
institutional and legal constraints in the development of the NSDI should be further investigated.
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Wilkinson, E., Weingärtner, L., Choularton, R., Bailey, M., Todd, M., Kniveton, D., & Cabot
Venton, C. (2018). Forecasting hazards, averting disasters Implementing forecast-based
early action at scale (tech. rep.). www.odi.org/twitter

World Resource Institute. (2020). RELEASE: New Data Shows Millions of People, Trillions in
Property at Risk from Flooding — But Infrastructure Investments Now Can Significantly
Lower Flood Risk — World Resources Institute. https://www.wri.org/news/2020/04/
release-new-data-shows-millions-people-trillions-property-risk-flooding-infrastructure

Wouters, L., Moel, H. d., Ruiter, M. d., Couasnon, A., Homberg, M. v. d., Teklesadik, A.,
& Margutti, J. (2020). Improving flood damage assessments in data-scarce areas by
retrieving building characteristics through automated UAV image processing.

Wright, D. B. (2015). Methods in Flood Hazard and Risk Assessment. https://openknowledge.
worldbank.org/bitstream/handle/10986/22982/Methods0in0flo00and0risk0assessment.
pdf?sequence=1

Wu, J., & Li, H. (2006). Concepts of scale and scaling. In: Wu j., jones, k.b., li. h, loucks, o. l.,
scaling and uncertainty analysis in ecology: Methods and applications (pp. 1–351).



Appendix 51

8 Appendix

Appendix A: OBIA Validation

P R F-1

Bare 0,6 0,23 0,33
Iron 0,81 0,62 0,7
Shadow 0,93 0,81 0,87
Thatch 0,625 0,84 0,72
Vegetation 0,96 0,99 0,98
Road 0,86 0,82 0,84

Table 19: Class performance of the OBIA model

Actual

Predicted

Bare soil Iron Shadow Thatch Vegetation Road
Bare soil 9 0 0 30 0 0

Iron 1 79 0 41 4 3
Shadow 0 0 26 4 2 0
Thatch 4 15 2 125 2 0

Vegetation 1 0 0 0 183 0
Road 0 4 0 0 0 19

Table 20: Confusion matrix OBIA model
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Appendix B: Summary ECHO 3 survey results

In the ECHO 3 survey, 32,7% of the buildings have thatched rooftops and 64,9% iron rooftops.
The majority of the buildings with thatched rooftops have type 1 wall materials (mud, bamboo,
poles). The majority of the buildings with iron rooftops have walls made of burnt bricks.

Figure 26: The distribution of wall material in Karonga, based on ECHO 3 data

The households survey shows that of the 915 households that participated, 10% of the houses
belong to the permanent building class, 67,9% is semi-permanent and 22,1% is temporary.

Building type Percentage Number

Traditional 22,1% 202
Semi-permanent 67,9% 621
Permanent 10% 92

Table 21: Distribution of building types in Karonga, based on ECHO 3 data
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