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Summary 
So far, a variety of methods is used by predictive policing for forecasting crime 

purposes. Depending on the type of forecasting, some methods work on forecasting the 

number of crime incidents while others on forecasting whether an area is possible to 

have crime incidents or not. At the same time, crime is not considered stable in space 

and most of the popular methods that are used do not take into consideration the 

parameter of time. This is an important issue not only for police departments, but also 

for a variety of fields (criminologists, geographers, society and academic society). 

Hence, the exploration of current Space-time autoregressive models, which are based 

only on past space and time crime data, becomes more and more necessary.  

With the present thesis the importance of a Space-time autoregressive moving 

average model for forecasting crimes is examined compared to simple methods that 

have been used till now, based only on past crime data. The study focuses on New York 

City and three crime types are examined. The selection of current and baseline methods 

(a conventional Kernel Density Estimation and a naïve approach), their parameters and 

the proposed method (spatiotemporal autoregressive moving average – STARMA) is 

done after an extended research literature. Likewise, a research about the evaluation of 

forecasting performance metrics is done. The selected methods are compared under the 

same methodological framework, where a threshold value classifies their outputs into 

two classes; hotspots and non-hotspots.  

The proposed method’s parameters are experimented to examine how the 

consideration of space and time affect its performance. In the end, the experiment that 

excels is compared with the baseline and the conventional method through spatial 

forecasting accuracy metrics. According to the results, all the three methods present 

important outputs and each method outperforms for the different examined crime types 

(all, property and violent). More particularly, the naïve Baseline method outperform for 

type crime ‘all’, the conventional KDE excels for crime type ‘property’ while the 

proposed STARMA method shows higher performance for the crime type ‘violent’. 

The study concludes therefore that the current Space-time autoregressive models 

are quite sensitive to the parameters of space and time and further research needs to be 

conducted to examine under which spatial and temporal resolution these models could 

exceed the baseline methods. 
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1 Introduction 

1.1 Background 

Predictive policing is defined as a set of analytical and quantitative methods that the 

police can apply in order to identify areas where a crime is more likely to happen or to 

prevent it according to statistical predictions (Perry et al., 2018).  

During the last decades, predictive policing based on crime forecasts is an 

important research topic (Perry et al., 2018). Although the definition of crime is possible, 

prediction of crime events is harder, let alone highly accurate prediction (Grover, 

Adderley & Bramer, 2007). The fact that crime events do not happen as random but are 

also not consistent in space and time has led many scientists to reconsider the reliability 

of existing predictive methods or motivate them to explore new ones (Yu et al., 2011). 

Nowadays, there is a variety of methods as far as predictive policing is concerned. Some 

of them are based on approaches to forecast the place and time with high crime 

occurrence rates, like the object of this research thesis, while, other methods are used to 

predict offenders, victims or perpetrators’ identities (Perry et al., 2018). 

A crime forecast that provides information about space and time can be 

characterized as a valuable source for many applications (Shamsuddin, Ali & Alwee, 

2017). First of all, police departments would benefit from accurate short-term crime 

forecasts and, as a result, their policy would be more effective. For instance, classic 

control tactics like patrols or crime alerts could take place in particular neighborhoods 

(Gorr & Harries, 2003). Secondly, geographers and criminologists are able to investigate 

and explain the geography of crime events and the reasons that trigger them (Li et al., 

2014). Furthermore, the society can benefit from accurate crime forecasts; for example, a 

cooperation between the local authorities and the police in a constructive dialog 

regarding resources, workloads etc., could decrease crime rate and provide safety to the 

citizens (Gorr & Harries, 2003).  

Till now, many crime forecast methods have been developed. These “conventional” 

methods can be divided in three main categories depending on how they work and 

their purpose. The first category concerns methods based on past crime data and try to 

forecast the location of a potential crime over a specific time frame (e.g. Hotspot 

Analysis, statistical regressions, Near-repeat Modelling methods, etc.) (Perry et al., 

2018). The second category refers to methods that use geography factors associated with 
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risk for specific types of crime (e.g. Risk Terrain Analysis) (Kennedy, Caplan & Piza, 

2011). The last category involves (space) temporal methods, which focus either on 

potential time or the victims of a crime event, by using victim profiles, like age, race or 

sex, and connecting them with the place and time of a crime) (Perry et al., 2018). 

The previously mentioned (conventional) methods are popular due to some 

advantages. For instance, Hotspot Analysis methods offer a coherent overview of the 

study area through producing maps; doing so, specialists can easily read them and 

make quick decisions (Bachner, 2013). Statistical Regression methods have been used 

for many years addressing many types of crime and give accurate predictions for short-

term forecasts. These methods are based on additional attributes, such as the number of 

houses, number of unoccupied ones, the number of people that have been convicted for 

property crimes etc. Forecasts based on near-repeat methods examine crime events that 

have recently repeatedly occurred (Perry et al., 2018). Risk Terrain Analysis methods, 

on the other hand, provide results based on a combination of map layers, taking into 

account multiple factors (e.g. environmental, social, physical and behavioral parameters 

etc.) (Drawve, Moak, & Berthelot, 2016a). Finally, spatiotemporal analysis methods use 

various environmental and temporal features for potential crime events (Perry et al., 

2018). All of the aforementioned types of crime forecast methods can be applied using 

different predictive techniques depending on the purpose of the study of crime events.  

Contrary to the advantages, there are some drawbacks which increase the doubts 

about the suitability of these conventional methods. More particularly, regarding 

Hotspot Analysis methods, they treat spatial and temporal aspects of crime not as one 

unique entity but separately. Hence, the relative Hotspot techniques ignore the 

simultaneous interaction of space and time in crime prevalence (Grubesic & MacK, 

2008). Traditional Hotspot Analysis relied on the hypothesis that crime remains static. 

However, in reality, crime is dynamic and this is proved through temporal patterns. 

This drawback is also valid for Risk Terrain Analysis that considers factors to be static, 

such as the urban district, which constantly develops (Drawve et al., 2016a). Beyond 

that, Risk Terrain Analysis creates models pinpointing crime prone areas. Nonetheless, 

it does not mean that all such areas are dangerous. Therefore, this aspect decreases the 

level of accuracy of this method, when compared to the Hotspot approach (Drawve et 

al., 2016a). As far as the Near-repeat methods are concerned, they are based on 

assumptions that future crimes will occur much close to previous crime events in terms 
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of time and place. As a consequence, this assumption calls into question their reliability 

in predictive policing. Finally, regarding the Statistical Regression methods, their 

prediction also depends on the available data set (e.g. how old the examined data is) 

while they respond to questions by providing a number (e.g. how many burglaries are 

expected next week) and not a spot (e.g. neighborhood) (Perry et al., 2018).  

As a consequence during the latest years, there is an increasing interest by police 

departments and scholars in developing techniques using spatial and temporal analysis 

tools (Shamsuddin et al., 2017) combined with many attempts to develop predictive 

models of crime events. Although some of these efforts are still in the early stages, there 

is enough knowledge for exploration them and comparison with the current 

conventional methods (Groff & La Vigne, 2002).  

These efforts also include the Space-Time Autoregressive (ST-AR) models, which 

can be used for different types of crime and spatial scales according to Shoesmith 

(2013). Broadly speaking, a space-time model is a time-series model that explicitly takes 

into account linear dependence between the variables that is lagged both in time and in 

space (Giacomini & Granger, 2004). Regarding the term “auto-regression”, it indicates 

the linear regression of variables with themselves using past values (Cesario, Catlett & 

Talia, 2016). 

1.2  Problem Statement 

Although the relation amongst crime events, human activity and environment is well-

known and has been justified by theoretical background, quantifying it still remains a 

challenging topic. It is quite difficult to answer why a crime event occurred in a specific 

place in specific time, let alone develop a method that could predict potential crime 

events with high accuracy (Shamsuddin et al., 2017; Grubesic & Mack, 2008).  

There are several reasons that prove the necessity of highly accurate methods for 

forecasting crime events today. On the one hand, increasing urbanization increases the 

amount of crime events and makes effective crime prevention more difficult to achieve 

(Catlett et al., 2019). On the other hand, the above mentioned drawbacks of the simple 

current methods (e.g. subjective decisions, assumptions, low spatial accuracy, high 

dependence on the data sets etc.) outline the need for new methods that consider only 

space and time (crime) data and this, in an attempt to not being affected by any 

additional parameters (Drawve et al., 2016a; Perry et al., 2018). 
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 This thesis is motivated by these arguments and inspired by Shoesmith (2013) who 

investigated and compared space – time autoregressive (ST-AR) model with other 

autoregressive methods (e.g. the Vector auto-regressions and aggregate univariate 

models) in order to show which method provides higher forecasting accuracy for 

various types of crime events and in different spatial scales.  

In this thesis topic, spatiotemporal autoregressive models is compared with 

conventional methods for forecasting crime events. Additionally, verifying the 

performance of any proposed method requires a comparable baseline (Lin, Yen & Yu, 

2018). Implemented methods are usually compared with a dummy method or a 

simplicity (technically) approach in order to prove whether they outperform other 

forecasting methods. Different data sets and different techniques lead to different 

alternative methods (Lin et al., 2018). For example, the study of Lin et al. (2018) uses the 

time series analysis as the baseline method compared to the Deep Neural Networks 

proposal (DNN). Moreover, the use of a Moving Average (MA) method can improve 

the results of the above mentioned alternative advanced method. Another study refers 

to a Machine Learning (ML) algorithm (e.g. Gaussian Naive Bayes, K-Nearest 

Neighbors and Logistic Regression) as a comparable method (Zhuang, Almeida, 

Morabito, & Ding, 2017). In contemporary methodologies, data analysis and machine 

learning models, and more particularly the supervised ones, which can also be used as 

advanced baseline methods, are quite beneficial for prediction through automated 

procedures, using only historical (space and time) data. A striking example of this is the 

Neural Networks, which is quite effective for complex classification topics. However, 

machine learning methods are often complex and require advanced statistical expertise 

(Louppe, 2014; Rummens, Hardyns & Pauwels, 2017). Even though Rumments, 

Hardyns & Pauwels (2017) claim that predictive analyses and big data are recent in the 

field of criminology, there are studies that are based on machine learning for prediction 

of crimes (e.g. based on demographics and mobile data) (Bogomolov et al., 2014; 

Belesiotis et al., 2018). 

For this thesis, the term “baseline” refers to either naïve or advanced forecasting 

methods. Conventional forecasting methods, although are in general baseline methods, 

in this thesis are mentioned separately.  
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1.3 Research Scope 

The main goal of this thesis is to investigate the potential of a Spatiotemporal 

Autoregressive (ST-AR) model to forecast crime events and to compare it with baseline 

and comparable conventional methods. This goal can be divided into two sub-objectives 

(SO). The first one (SO.1) concerns the implementation of a ST-AR model method, its 

effectiveness and the impact of input spatiotemporal data on the predictions. The 

second objective (SO.2) regards the comparison between this model and other methods 

(baseline and conventional) referring to their accuracy, while the last, RQ (2.2), focuses 

on the predictive results comparing different crime types. The following sub-section 

states the SOs and the Research Questions (RQs) related to them. 

1.3.1 Scientific Objectives and Research Questions 

 SO.1: Forecast crime events using a spatiotemporal autoregressive model. 

RQ 1.1. How effective is an ST-AR method in predicting crimes in space and time? 

RQ 1.2 Are the predictive results sensitive to the parameterization of space and time? 

RQ 1.3. How do predictive results vary among different types of crime?  

 SO.2: Comparison of a ST-AR method with baseline and conventional 
methods. 

RQ 2.1. What methods perform better in terms of the robustness and accuracy of crime 
forecasts? 

RQ 2.2. Is the ranking of performance of the examined methods consistent among different types 
of crime?  

1.3.2  Research Boundaries 

There are some limitations and assumptions regarding the study area, the spatial and 

temporal resolution and the crime types. First of all, the choice of study area is restricted 

by the availability of data sets. Current options are publicly available repositories for 

metropolitan cities, such as London1 or New York2.  These areas have high crime rates 

and the spatial extent of a city. In many studies these features are taken into 

consideration when selecting a study area and thus these study area choices seem to be 

                                                            
1 Open data about crime and policing in England, Wales and Northern Ireland: https://data.police.uk/   
2 Open data about crime, published by New York City (NYC) agencies and other partners: 
https://opendata.cityofnewyork.us/ 

https://data.police.uk/
https://opendata.cityofnewyork.us/
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appropriate. The description of the chosen study area is further developed in chapter 3. 

Secondly, the choice of the spatial scale (e.g. municipality, block, post-code, etc.), and 

temporal resolution (short-term or long-term forecasting) depend on the properties of 

the data sets. Lastly, due to time constraints, crime types are grouped and examined 

into three main categories; namely ‘all’ crime, ‘property’ crime (e.g. burglary, larceny, 

motor vehicle theft), and ‘violent’ crime (e.g. murder, rape, robbery, assault) following 

the division of Shoesmith (2013). 

1.4  Conceptual Framework 

This section provides a conceptual schema (fig. 1) which represents the relationships 

between the conceptual entities and their features, on which this thesis topic focuses. 

Broadly speaking, there are several problems that need an effective predictive 

policing, for example the increase of crime events that tend to follow the growing trend 

of urbanization. These problems concern a variety of stakeholders (criminologists, 

academic society, etc.) who are working on crime data, which, according to Shoesmith 

(2013) can be divided into different categories (property, violent, etc.). The conventional 
methods (e.g. Hotspot Analysis, Risk Terrain Analysis, etc.) that are used for 

forecasting or prediction in the field of criminology are associated with some of the 

problems (i.e. their drawbacks in forecasting). Each conventional method is related to 

different forecasting information (e.g. amount of crimes, crime victims, etc.), 

depending on the reason they are used. This leads to explore and to propose new “non-

conventional” methods to forecast crimes, such as the Space-Temporal Autoregressive 

models, which are based only on past (historical) crime data. Apart from these 

methods, baseline methods, simple (naïve) or advanced (e.g. the machine learning 

methods as they described in section 1.2) are used to compare models’ effectiveness. In 

the concept of forecasting methods, three categories are mentioned; conventional 

methods, baseline and ST-AR models. The ST-AR models can be implemented through 

various methods (e.g. ST-ARIMA, ST-ARMA etc.). This entity is the one that will be 

explored in detail in order to be compared with the current forecast methods.  

All in all, this reasoning is illustrated in the following figure, where each of the 

above mentioned concept entities is represented in different box with its details. These 

concepts are associated to others with lines. The blue line in the figure shows a general 

connection between concepts and some of their features, the green one shows the 

concepts that this thesis examines. 
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Figure 1: Conceptual Framework – Problems and factors that lead in exploring new crime forecasting 
methods  
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2 Theoretical framework 
Having set the inspiration, the motivation and the research objectives of this thesis, this 

chapter makes an extensive analysis of the theoretical framework. Apart from the 

theoretical background involving predictive policing, the methods that are used for 

crime event forecasting are described in the next chapters. In the first section, some of 

the most popular conventional crime forecast methods (Hotspot analysis, near-repeat 

methods, risk terrain analysis etc.) are mentioned. Among them, the forecast methods 

that focus on where potential crime can occur are the Hotspot analysis, the Regression 

methods, the Near-repeat and the Risk Terrain Analysis, while the methods that are 

only based on past (crime) data are the Hotspot Analysis and the Near-repeat methods 

(Perry et al., 2018). Additionally, there are methods based on past data, such as 

spatiotemporal autoregressive (ST-AR) methods, which cover a great range of forecast 

cases that have also been used also for crime events.  

2.1  Crime and Predictive Policing 

Criminality is one of the most significant issues in contemporary societies and the 

accurate prediction of crimes is important but still challenging (Bharati & Sarvanaguru, 

2018). Crimes affect the development of a society in different ways: the quality of life, 

the economic development, population movement, etc. A good illustration of this is that 

when people need to relocate or visit an area, crime level is something they take into 

account and is based on actual crime events in these locations or even on rumors 

(Almanie, Mirza & Lor, 2015; Gonzales, Schofield & Hart, 2005). Due to the effects on 

the society, many researchers have characterized crime as a social phenomenon and its 

prevention has been object of study for many years; numerous crime prediction 

methods are continuously developing. An effective crime prevention policy is 

imperative due to the rise of urbanization that is linked with increased crime rates. In 

other words, more citizens means more crime events and it becomes more difficult to 

predict a potential crime (Catlett et al., 2019). 

Crimes are not geographically consistent; they may occur in different places, from 

small villages to big cities (Bharati & Sarvanaguru, 2018). Moreover, it has been 

observed that criminality tends to concentrate on specific areas (specific streets or 

neighborhoods) for different reasons related to the offenders, the victims and certain 
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circumstances (Chainey, Tompson & Uhlig, 2008). Thus, different types of crime present 

different spatial relationships and crime allocation (Gonzales et al., 2005).  

Additionally, time is a factor that affects criminality; some crimes occur at a specific 

time of day and, as such, some places are dangerous in only specific hours, for example 

a night club in a city center. Therefore, on top of spatial relationships, temporal 

relationships should also be considered. However, this makes the process of predicting 

crimes more complicated (Gonzales et al., 2005). 

Crime patterns vary in space and time and are thus unevenly distributed across 

different scales. However, since the 1970s, crime mapping appeared as a reliable 

interpretation through GIS (Geographic Information System) (Khalid et al., 2018). 

Today, there is a need for technology that could deal better with crime events and their 

prevention (Bharati & Sarvanaguru, 2018). Hence, predictive policing is developed 

towards this end.  

Predictive policing is an emerging law enforcement approach by using data and 

making statistical analysis to contribute to crime prevention. This can be done by 

pinpointing potential crime areas to police forces (Kutnowski, 2017), who are nowadays 

much more advanced and skilled on programming, information technology and using 

datasets for further processing compared to the past (Lin et al., 2018). As far as the 

traditional predictive policing is concerned, this knowledge can provide the police with 

information through predictive mapping. Doing so, the police can allocate high levels of 

patrol in specific places or neighborhoods and maybe in a specific time zone. This 

feature could be very effective for preventing crime since with predictive mapping they 

can focus on narrowly defined areas (Groff & La Vigne, 2002). 

There are various approaches to forecast crime events over a study area and a 

specific time horizon. However, not all these approaches can be considered together in a 

certain predictive method. Some methods use a variety of factors and parameters (e.g. 

behavior of offenders or victims) that lead to a crime event while others are strictly 

based on historical crime data (e.g. location, time and type of crime) (Groff & La Vigne, 

2002). Likewise, some models, like spatiotemporal, rely on past events to predict future 

ones.    

Broadly speaking, predictive modeling is how a model is built in order to make 

predictions (Bharati & Sarvanaguru, 2018). Predictive modeling is divided into two 

categories: Regression models and pattern classification. The former analyzes the 
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relationships between variables and trends aiming to make predictions; the latter aims 

to assign particular class labels to specific data value according to the prediction results. 

For example, two labels about weather prediction by a classification model are sunny or 

rainy day (Bharati & Sarvanaguru, 2018). 

2.2  Related Work 

Several studies on forecast crime events have been conducted throughout the years. 

Some of them focus on forecast hotspots by following a binary classification while 

others follow a regression method to estimate the number of crimes. Most of these 

studies need a large spatial scale and as such they use either natural geographic 

boundaries (e.g. census blocks) or technical boundaries, like grids (mostly squares), to 

divide the study area in many smaller regions / zones. Some studies use only one type 

of crime whereas others use two or more, depending on their objectives or the data 

available. USA and London are areas widely used in many relative studies. There are 

relevant studies that use historic data dating back years to make a forecast about crime 

events, while those forecasts were either for the following days, weeks, months or years. 

Regarding the baseline methods that these studies used in order to compare some 

methods, some of them used advanced ones (e.g. Zhuang et al. (2017)) or those 

mentioned in 1.2 section. However, some other use simple naïve models. For example, 

Shoesmith (2013) compared the STAR method with two baseline naïve model methods; 

one which is related to the most recent rate of case study events and another one related 

to the most recent changes in rates for case study events. The following table (table 1) 

illustrates some of the related work that has been done regarding forecast crime and it 

involves a variety of features.  



19 
Thesis Report: Exploring a Space-Time Autoregressive Moving Average (STARMA) model in spatial crime 

forecasting (Rentzelos A., 2019 - 2020) 
 

 
Table 1: Overview of forecasting crime studies 

 Source 
Study 
Area 

Spatial 
Scale 

Sample 
Period 

Crime 
Types 

Forecast 
Type of 
forecast 
method 

Spatial 
Unit 

Temporal 
Unit of 

forecasting 

1 

(Bowen 
et al., 
2018) 

DeKalb 
(USA) 

County 
2011-
2014 

1 type 
(violent) 

Hotspots 
Classification 

(binary) 
Census 
blocks 

Month 

2 

(Chainey 
et al., 
2008) 

Camden 
and 

Islington 
(London) 

Part of 
capital 

city 

2002-
2003 

Residentia
l burglary, 

Street 
crime, 

Theft from 
and of 
vehicle 

Hotspots Classification 

Ellipses 
and 

Grids 
(250 m, 
500m) 

Many 
periods (next 
1, 2 & 3 days, 

next 1 & 2 
weeks, next 

1, 2, 3, 6 & 12 
months) 

3 

(Dash, 
Safro & 

Srinivasa
murthy, 

2019) 

Chicago 
(USA) 

City 
2011-
2015 

34  types 
Number 
of crimes 

Regression 
Communi

ties 
Month, 

Year 

4 

(Drawve, 
Moak & 

Berthelot, 
2016) 

Little 
Rock 

(USA) 
City 

2008-
2009 

1 Type 
(gun 

crime) 
Hotspots 

Classification 
(binary) 

Square 
grid cells 

(91 m) 
6 Months 

5 

(Gorr & 
Harries, 

2003) 

Pittsburg 
(USA) 

City 
1991-
1998 

5 Types 
Number 
of crimes 

Regression 
Police 

precincts 
Month 

6 
(Mohler, 

2014) 
Chicago 
(USA) 

City 
2007-
2012 

2 Types Hotspots 
Classification 

(binary) 

Square 
grid cells 
(75 m, 150 

m) 

Day 

7 
(Shoesmit
h, 2013) 

USA Country 
1960-
2009 

2 types 
(violent, 

property) 

Crime 
rates 

Regression 
USA 

regions 
Year 

8 

(Zhuang 
et al., 
2017) 

Portland 
(USA) 

City 
2012-
2016 

All crime Hotspots 
Classification 

(binary) 

Square 
grid cells 
(600 ft) 

2 weeks 
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2.3  Hotspot Analysis 

In this section, several techniques of hotspot analysis that are conventional forecast 

approaches are described (i.e. spatial ellipses, heuristic techniques, kernel density 

estimation). All of these techniques aim to identify areas of high crime concentration 

(hotspot) and differentiate them from areas of low or non-significant crime 

concentration. Thus, hotspot analysis performs pattern classification and yields a 

classification outcome (i.e. high-volume crime versus low volume crime).  

The concentration of crime events in identifiable places was first mentioned time in 

1982 by Brantingham & Brantingham (2005). This finding is supported by many 

researchers till today (Chainey et al., 2008). The identification of crime hot spots 

redefined the importance of spatial features of crime (Anselin et al., 2000). Hotspots are 

defined as the geographic locations (points, addresses, zip codes, census blocks etc.) 

within an identifiable boundary (e.g. square grid cells) with a high crime rate compared 

to the whole region under examination. Therefore, hotspots were the first examples 

regarding the importance of the area during crime investigation. The first attempts to 

quantify criminality as a spatial phenomenon started by Sherman, Gartin & Buerger 

(1989) and it was also supported by Brantingham & Brantingham (1993). Meanwhile, 

Roncek & Maier (1991), in their study, focusing on city blocks in Cleveland, found that 

there is a relationship between crime and specific locations. Considering that hotspots 

are regular, predictable and they do not happen by chance increases the interest to 

examine whether hotspots are systematic or not. Therefore, their identification should 

be a careful process with accurate results (Anselin et al., 2000).  

Hotspot analysis is based on the premise that retrospective crime patterns are 

significant indicators for potential crimes (Anselin et al., 2000; Chainey et al., 2008; 

Khalid et al., 2018; Gonzales et al., 2005). A hotspot approach uses crime data that refer 

to a period before a fixed date (one has already passed) to create hotspot maps. Gorr & 

Lee (2015) underline the importance of retrospective data with a new definition, 

describing crime hotspots as small places in which crime events are frequent and highly 

predictable, at least over a one-year period. Once these maps are designed, their 

accuracy is tested. To support that their accuracy is sufficient, comparison with other 

methods and among different crime types should be made. Crime hotspots can be 

recognized through visualization (e.g. color-coded maps), statistical identification (e.g. 
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local autocorrelation) and theoretical prediction (i.e. by applying what is already 

known) (Khalid et al., 2018). 

Regarding the limitations of the hotspot analysis method, it should be mentioned 

that it is locally descriptive. In other words, not all hotspot techniques can apply to all 

areas and this is because each of the existing techniques is implemented in a different 

way (i.e. using different parameters) and for different geographic areas. Furthermore, 

since the crime hotspot method is only based on historical crime data, the quantity of 

the used datasets plays a significant role. This means that the more missing values from 

the data, the less accurate or reliable the result will be. A way that researchers adopt in 

order to minimize the effect of these limitations of hotspot analysis is projecting the 

potential crime points-locations into closed spatial features where they believe there is 

high crime concentration (Gerber, 2014). 

Hotspot mapping is the most popular traditional approach that the police and 

crime reduction units use to forecast crime (Chainey et al., 2008). Hotspot mapping is 

used to identify and analyze areas with high concentration of criminality. Many 

techniques can be used in order to achieve this goal. However, many of the techniques 

have been questioned regarding their reliability. For this reason, they have been subject 

to several reviews in different ways, for example, either by comparing them or by 

performing different kind of exercises in order to evaluate their processes. These 

reviews showed that different hotspot mapping techniques lead to different results 

(Chainey et al., 2008). The most popular (conventional) techniques for identifying crime 

hotspots crime are spatial ellipses, grid thematic mapping and Kernel Density 

Estimation (KDE). The common advantage of these techniques is that they can easily be 

used and can interpret the results that show potential crime location (Chainey et al., 

2008).  

Some of the most popular hotspot techniques are described below. Here, hotspot 

techniques have been described in detail in specific categories having combined written 

material from several authors. The first is about the spatial or covering ellipses, the 

second one is about heuristic techniques, like pin and grid thematic maps, and the third 

is about the Kernel Density Estimation. 

2.3.1 (Standard Deviational) Spatial / Covering Ellipses 

This technique creates standard deviational ellipses around the locations (i.e. points of 

crime events) that have been identified as hotspots (Chainey et al., 2008). It is 
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characterized as an easy technique because it uses mathematical functions to create the 

ellipses around the clusters of occurrences (Perry et al., 2018). 

Spatial ellipses can be created through nearest neighbor hierarchical (Nnh) and the 

k-means clustering routine. The former uses a nearest neighbor tool to identify groups 

of minimum number of crimes that are close to each other and it groups the defined 

points based on a specific criterion, usually through a threshold distance value. The 

latter performs similarly, by making k number of ellipses and by partitioning the crime 

points into groupings. Once the best positioning of k centers has been found, centers are 

replaced by closer points (Gonzales et al., 2005; Perry et al., 2018). Both of these two 

techniques are able to explore and study spatial data by implementing the spatial 

ellipses technique but they cannot provide enough aid to hotspot forecasts (Gonzales et 

al., 2005).  

On the one hand, this technique defines hotspot areas without being affected by 

artificial boundaries because it uses the location of crimes (Perry et al., 2018). However, 

using ellipses in fact includes a larger area around particular hotspots and hence this is 

a major drawback of this technique. The provided ellipses are not in line with natural 

boundaries and can often mislead (Chainey et al., 2008; Gonzales et al., 2005). Producing 

ellipses that cover smaller areas (in order to follow the natural boundaries) would lead 

to more efficient results, avoiding the misleading mentioned above. However, some 

practices showed that initial ellipses’ shapes have proved to be helpful in directing 

policing patrols correctly (Perry et al., 2018). Apart from that, this technique requires to 

predefine the number of ellipses and its results are sensitive to seasonal phenomena 

since all the observations are initially equally weighted (Perry et al., 2018). The 

following figure (fig. 2) illustrates an implementation of the standard deviational spatial 

ellipses mapping technique (Chainey et al., 2008). 

 
Source: Chainey et al., 2008; p. 4 (edited by author) 

Figure 2: Standard deviational spatial ellipses for crime events 
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2.3.2 Manual Identification of Hotspots on Pin Maps 

This approach is a heuristic technique supported by mathematical functions. This kind 

of techniques work on the assumption that police departments know the study area in 

advance. Hence, they can easily discern crime indicators (Gonzales et al., 2005). The 

Manual Identification of Hotspots on Pin Maps is based on personal knowledge and 

experience involving the examined study area and crime events. Maps are made by 

subjective judgment and personal criteria about the potential locations of future crime 

events. These locations are rendered as a single point. This approach does not improve 

visualization. Although it is not supported by scientists it has been widely used by 

analysts and police departments because it provides effective results (Gonzales et al., 

2005). The following figure (fig. 3) illustrates an implementation of pin mapping 

technique for crime events. 

 

Source: Chainey et al., 2008; p. 4 (edited by author) 

Figure 3: Manual Identification of Hot Spots on Pin Maps for crime events 

2.3.3 Quadrat / Grid Thematic Mapping  

Another heuristic technique is the Quadrat (grid) thematic mapping. This approach is 

used to identify vulnerable residences by implementing this heuristic technique on a 

GIS database application (Bowers, Johnson & Pease, 2004). It is also used to map the 

volume of victims’ emergency calls and violent offences in North Carolina. In the study 

of Chainey et al. (2008) each grid corresponded to a square mile. One of the principles of 

this approach is the aggregation of crime in cells or grids, usually quadrats, for easy 

identification and comparison of hotspot areas (Chainey et al., 2008). The produced 

maps highlight the hotspot areas by using different colors and the choosing color ramps 

depending on the number of crime events. The equally divided area helps the reader to 

compare the volume of crimes over the study area (Gonzales et al., 2005; Chainey et al., 
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2008). The approach continues by calculating the simple density of the crime points. 

Beyond the lack of additional parameters this approach presents one more drawback, 

the subjective decision of crucial locations which is based on visualization (Gonzales et 

al., 2005). Another drawback is the possibility to lose spatial details because crimes have 

to conform in each grid cell. Finally, the size of those grids can also influence the 

provided information in the final hotspot maps (Chainey et al., 2008).The following 

figure (fig. 4) illustrates an implementation of grid thematic mapping technique for 

crime events. 

 

Source: Chainey et al., 2008; p. 4 (edited by author) 

Figure 4: Grid Thematic Mapping for crime events  

2.3.4 Jurisdiction-Bounded Areas / Thematic Mapping of Geographic Boundary Areas 

A third heuristic technique is a widely used approach which portrays the examined 

study area by settling some boundaries zones (e.g. postal codes) as polygons that 

appear with different colors according to the level of criminality in each one. On the one 

hand, this deviation of a study area to many regions helps the police force to work in 

each separate region since they are familiar with high crime rate areas. More 

particularly, it has been mentioned that these maps can be made quickly and without 

high level of technical knowledge. In addition to that, users can easily identify which 

that concentrate more crime events and are allowed to zoom in for further information. 

Furthermore, a percentage of criminality can be estimated by using other parameters, 

such as the population. On the other hand, the main disadvantage of this approach is 

the separation of the study area into many zones and it has been proved that a 

differently examined spatial scale can affect or change the predicted results (Gonzales et 
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al., 2005; Chainey et al., 2008). The following figure (fig. 5) illustrates an implementation 

of thematic mapping of geographic boundary areas technique for crime events. 

 
Source: Chainey et al., 2008; p. 4 (edited by author) 

Figure 5: Thematic Mapping of Geographic Boundary Areas for crime events 

2.3.5 Kernel Density Estimation (KDE) 

Kernel estimation is a natural extension of the quadrat (grid thematic map) heuristic 

technique. KDE technique is used to examine global trends, like criminality phenomena, 

based on spatial point data (e.g. locations of crime incidents) (Anselin et al., 2000). KDE 

is a popular technique because of its appealing way to visualize spatial concentration of 

data (e.g. crime incidents) (Chainey, 2013). It spreads out the expected contribution of 

future case study phenomenon risk over the study area by using a mathematical 

function kernel (Perry et al., 2018). KDE is an interpolation technique that is applied to a 

continuous surface (Perry et al., 2018). Chainey et al. (2008) proved that KDE was more 

effective compared to covering ellipses and other hotspot mapping techniques. In 

addition, Gerber (2014) claims that KDE is the most suitable spatial analysis technique 

to identify hotspots in a two-dimensional surface. 

The main advantage of this technique is that analysts can easily interpret its results. 

Another advantage of KDE technique is that it can examine a region ignoring the shape 

of boundaries of hotspots while other techniques are usually affected by barriers 

(natural, like rivers, or technical, like roads). Furthermore, this technique provides more 

realistic hotspot contours instead of particular shapes (e.g. ellipses or circles), like the 

previously mentioned do. KDE also faces the problem of covering ellipses about the 

initial assumption of number of ellipses for hot spots. Finally, kernel estimation could 

reveal significant crime patterns over time by comparing to patterns of time periods 
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(e.g. the same month through the following years) (Anselin et al., 2000). However, a 

drawback of this technique is related to the choice of thematic range on producing 

hotspot maps, which is related to the design of the output. Therefore, the way of 

identification hotspots is directly influenced by the producing maps, without 

necessarily meaning that there is no statistical robustness. Till now, police agencies have 

not disputed the validity or the statistical robustness of this technique because  it 

provides reliable and easily read results (Chainey et al., 2008). The following figure (fig. 

6) illustrates an implementation of KDE technique for crime events. 

 

Source: Chainey et al., 2008; p. 5 (edited by author) 

Figure 6: KDE for crime events 

In general, the KDE technique can be divided into two main types; single and dual. The 

former estimates hot spots by using a single variable (e.g. crime incidents) while the 

latter uses two variables (e.g. crime incidents and population density). Both types 

produce heat, contour or a surface view map. Threshold value defines from which 

value and up areas are defined as hot spots (Perry et al., 2018). 

The KDE technique is quite robust and it is more and more used today by police 

practitioners in the field of predictive policing. The requirement inputs for KDE are the 

cell size and a bandwidth value. Until now, few surveys have been conducted in order 

to test the ideal values involving these two parameters. Therefore, the effect that 

different choices of these values have on the results are only vaguely known. The 

different choices for values of bandwidth or for the specific kernel type (equation) may 

have small changes regarding results (Perry et al., 2018). The value of bandwidth is 

significant because it defines the intensity of smoothing in the hot spot maps. These 

maps look like spatially based histograms, which reflect the point pattern intensity. For 
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this reason, the ideal value for bandwidth should be neither high nor small but 

represent the actual distance among the studied points (Anselin et al., 2000). 

Additionally, it has been observed that lower values create more compact hot spots 

(Perry et al., 2018).  

The following figure (fig. 7) illustrates how a KDE is applied based on case typical 

events (si) (e.g. crimes) in space (R): moving three-dimensional functions (ki), based on 

specific searching radius (τi) (bandwidth) scan grids of points. In this process, distances 

are measured from the center of each grid cell to points that are around that (Anselin et 

al., 2000). 

 

Source: Anselin et al., 2000; p. 228 

Figure 7: Representation of KDE 

There are several kernel functions (e.g., normal, uniform, quartic, triangular, etc.) that 

can be used to study the concentration and the density of crime events (Perry et al., 

2018.; Thakali, Kwon & Fu, 2015). It has been observed that different functions provide 

very similar density values (Chainey, 2013; Thakali et al., 2015). Most kernel functions 

support that the risk of a future crime event decreases as the distance from crime events 

increases (Perry et al., 2018). Normal kernel functions use the standard deviation of 

normal distribution as bandwidth whereas uniform, quartic and triangular functions 

use the radius of the search to be interpolated. However, the final choice of bandwidth 

remains a subjective issue (Thakali, Kwon & Fu, 2015).  

Cao, Zhang, & Sun (2013) defined KDE technique as a non-parametric way to 

estimate the distribution of data, using the probability density function f(x) of random x 

values without initial assumptions. The surface is estimated by the following equation: 

1 1
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n n
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In the above equation Xi refers to any of the data samples, K() is the Kernel function, h 

is a smoothing parameter that determines the width of kernel function, Kh(X) = (1/h) 

K(X/h) and n is the sample size. 

Likewise, Chainey (2013) defines the function of KDE through the following 

equation: 

2
1

1( , ) ( )      (2)
n

i

i

df x y k
nh h=

= ∑
 

In equation (2) f(x, y) is the density value at a (x, y) location, n is the number of 

observations, h is the bandwidth, di is the geographical distance between incident i and 

location (x, y), and k() is the kernel density function. In other words, in equation (2) 

di=X-Xi, comparing to the previous one (1). Each (x, y) location is represented spatially 

as a grid cell (the coordinates referring to the centroid of that cell), with the calculated 

density value “f” attributed to each cell. The smaller the cell size the more the 

calculations of “f”. The shorter side of the study’s areas minimum bounding rectangle 

should be divided by the arbitrary value of 150 (Khalid et al., 2018). This provides 

useful starting measure irrespective of any value of cell size. On the other hand, 

regarding bandwidth (h), Khalid et al. (2018) suggest a specific range for that from 

calculating “h=0.68*n-0.2”.  

2.3.6 Local Indicators of Spatial Association (LISA) 

One of the most popular indexes to examine local spatial autocorrelation is the LISA 

(Local Indicators of Spatial Association). LISA statistics today are useful for two 

reasons. Firstly, they are used as methods for local patterns of hotspots, like the Getis-

Ord Gi*. Apart from that, they can identify clusters and outliers through specific tools, 

like Moran scatterplot (Anselin, 1995). For each observation value, LISA provides a 

significant spatial clustering of similar values around that observation.  

One way to implement the LISA method is through the GGeettiiss--OOrrdd  GGii**  statistics. 

Many of the G statistics evaluate the degree of spatial association of a variable within 

each single point’s neighborhood. Gi* is a statistical index that focuses on local patterns 

(e.g. zip-code areas) of variables’ dependence (Getis & Ord, 1992). The Gi* method was 

introduced by Getis and Ord in order to identify a tendency for spatial clustering and to 

divide high and low spatial associations   (Songchitruksa & Zeng, 2010). 

The standardized Gi* local statistical method is calculated through the following 

equation (3), in which Xi is the attribute value for a feature j, Wij is the spatial weight 
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between i and j while n symbolizes the total number of features (Jana & Sar, 2016; 

Songchitruksa & Zeng, 2010).  
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The Gi* statistic gives a z-score for each feature, so it does not require further tests for 

statistical significance. According to the outputs a positive value for z indicates a hot 

spot (clustering) for high values whereas a negative result a cold spot (spatial clustering 

for low values) and as larger or smaller is the z-score value the more intense is the hot 

or cold spot, respectively (Anselin, 1995; (Getis & Ord, 1992; Ord & Getis, 1995).  

The second way to implement the LISA method is through the LLooccaall  MMoorraann’’ss  II. 

This index is used to test spatial autocorrelation and it has been developed by Moran in 

1948 (Anselin, 2007). When spatial autocorrelation is examined for certain geographic 

area (e.g. city blocks) and input data is only point data (e.g. crime incidents), local 

Moran’s I is an appropriate method to test for clustering (Gonzales et al., 2005). The 

local Moran’s I shows the association of examined features in a region i with their 

neighbors at j regions regarding their values. More particularly, if I is positive it means 

that a feature has neighbor features with similarly high (H) or low (L) values and it is 

part of a cluster. If I is negative it means that the examined feature’s neighbors have 

dissimilar values and the examined feature is part of outlier (Scardaccione et al., 2010). 

Regarding the values of I, it ranges from -1 to 1; the closer is to one of these values, the 

stronger is the association between a feature and its neighborhood.  

A local Moran statistic for an observation is defined through the following equation 

(4). In this equation, Zi and Zj are the normalization form of observations Χi and Χj by 

mean (4a, 4b), their summation underlines that only the neighboring values j (4c), Wij is 

a weight indexing location of i relative to j, X is the mean of Xi and Xj attributes and n is 

the total number of features i and j (Anselin, 1995). 
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In order to local Moran’s I be interpreted it should be combined by a z-score and a p-

value, which show the statistical significant of index values. The lower is the p-value 

the more is the statistical significance of output cluster or outlier. A value of 95% or 

upper confidence level for significance is usually used which gives a 0.05 p-value 

(Scardaccione et al., 2010). Regarding the z-score, the following equation (5) illustrates 

its implementation, while the equations (5a) and (5b) provide the functions of the 

expected Moran’s I at location i and its overall variance, respectively (Scardaccione et 

al., 2010). The expected Moran’s I (E[I]) is the ideal value by random distribution.  
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Apart from z-score and p-value, the Moran’s I provides four CO-Types (Clusters and 

Outliers) depending on the values of I. The first CO-Type refers to significant cluster of 

high values (HH), which means that a feature and its neighbor features give high 

values. This first category defines a hot spot area. The second category (cold spot) 

involves significant cluster with low values (LL). In other words, in this category an 

examined feature as well its neighbors provide low values. The next two categories 

address to outliers. More specifically, the third category refers to low values which are 

surrounded by primary high values (LH), which means low level of similarity. The 

fourth category refers to high values with low level of similarity with its neighbor 

values (HL). Another one category (fifth) corresponds to non-significant 

autocorrelations and it happens when I is very close to zero (Scardaccione et al., 2010). 

Local Moran’s I is closely related to the Moran’s scatterplot, which indicates the 

presence of local spatial clusters or outliers (Anselin et al., 2000). The graph below (fig. 

8) presents the meaning of the Moran’s scatterplot, which indicates a better 

understanding of the spatial distribution of examined features (Anselin, 1995). 

According to Barreca et al., (2017) the horizontal axis (x) refers to standardized value of 

variable while the vertical axis (Wx) shows the normalized spatial lag of the same 
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variable. This graph is highly depended on the study area and according to 

Scardaccione et al. (2010) the bigger is the scale the better is the performance.  

 

Source: Barreca et al., 2017 

Figure 8: Anselin’s Moran scatter plot interpretation guide 

2.4  Spatiotemporal (ST) Autoregressive (AR) Methods 
“A space-time model is a special time series model which is used for the calculation of linear 

dependencies between the variables in both time and space” (Kurt & Tunay, 2015; p. 3). 

Generally, case study variable (yit) is obtained from k number of study areas or zones (i 

=1, 2,…, k) for multiple periods T (t=1, 2,…, T) (Kurt & Tunay, 2015; Giacomini & 

Granger, 2004). The autoregressive term includes the term of correlation in space and 

time (Griffith, 2010). 

A variable Xt is measured over time t in three neighboring areas i-1, i and i+1, 

where i-1 and i+1 are the neighbor locations around an crucial location i. Considering 

that there is dependency between neighborhood areas, the variable Xit will be estimated 

by the other three values of the same variable in space and time (fig. 9) (Giacomini & 

Granger, 2004). 

 

Source: Giacomini & Granger, 2004 

Figure 9: The idea of spatiotemporal model 
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An important term that will be referred to below is the lag and it addresses spatial 

and temporal lag. Spatial lags are related to the potential location of a future crime 

event and are similar to distribution lags. Spatial lags describe the spatial dependency 

per distance class while temporal lags, the temporal one (Martin & Oeppen, 1975). The 

following figure (fig. 10) gives an example of spatial lags for a study area (i) and its 

neighborhood (Cliff & Ord, 1975). The conditional average of variables (yit) is modelled 

by each area (i) and a linear function of the past values of the same variables in 

neighboring areas (Kurt & Tunay, 2015). 

 

Source: Cliff & Ord, 1975 

Figure 10: Spatial lags for neighborhood of i 

Space-time autoregressive models have been introduced by Cliff & Ord (1975) and 

generalized by Pfeifer and Deutsch (Giacomini & Granger, 2004). Space-time models 

rely on the assumption that there are relationships among variables over different areas 

in the consideration that close variables have higher geographical and, probably, time 

dependency (Kurt & Tunay, 2015). Recently, interest for space-time modelling is 

experiencing a resurgence due to the high availability of data sets, the development of 

programming and technical skills and the necessity for better forecast methods (Griffith, 

2010). The most challenging issue concerning space-time modelling is to accurately 

define the relations between the regions under examination (Kurt & Tunay, 2015). This 

is a serious problem because the spatial variables can vary through time.  

Spatiotemporal models have been widely studied in crime analysis over the latest 

years (Lin et al., 2018). Below, a couple of spatiotemporal modelling methods are 

referred to, focusing on their theoretical characteristics, their functions and some 

relative studies they have been used in. 

2.4.1 ST-AR (Spatiotemporal Autoregressive) Models 

ST-AR models have clear specifications to describe variables and how they change in 

space and time (Griffith, 2010). The ST-AR model that is defined in Shoesmith (2013) 

consists of two parameters, p (autoregressive lags of the region’s own log-differenced 
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crime rate) and q (spatial lags). These parameters can be shown through the following 

equation (6), in which ci is a constant term for each of i regions, Di is a matrix of 

covariance of observations, φi (j=1, 2, …, p) coefficients of autoregressive lags (p). The 

ψl expresses a single coefficient across all n regional equations for each lag i of 

wik*Δyk,t-l, where wik is a weight matrix (Shoesmith, 2013). 

, , , 1
1 1 1 1 1

[ ]       (6)
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A simpler form of STAR models that is defined through the following equation (7) has 

been proposed by Kurt & Tunay (2015) in which l represents time lag and s symbolizes 

the spatial lag. Temporal and spatial order correspond to p and k, respectively.  

( )
t

1 0
+ε       (7)
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s
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y W yϕ −
= =
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A drawback of STAR models is that they rely either on a single – unique space-time 

autocorrelation parameter or on two parameters of autocorrelation (one spatial and one 

temporal). In both cases it remains difficult to capture the high levels of heterogeneity 

involved in space-time data (Griffith, 2010).  

2.4.2 ST-MA (Spatiotemporal Moving Average) Model 

While in STAR models space-time autocorrelations tail off both in space and time and 

partial autocorrelations end after particular temporal and spatial lags, STMA models 

represent autocorrelations that end after particular lags which decay over time and 

space (Kamarianakis & Prastacos, 2005). 

The following equation (8) (Kurt & Tunay, 2015) illustrates a simple form of STMA 

models, where now the temporal and spatial order moving average process are 

symbolized by q and m respectively. A random error (ε) is an uncorrelated in space and 

time term that not only cannot be avoided but is also as significant as the other 

parameters (Griffith, 2010) and θls is the moving average parameter at temporal lag k 

and spatial lag I (Phillip E. Pfeifer & Deutsch, 1981). 
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2.4.3 ST-ARMA (Spatiotemporal Autoregressive Moving Average) Model 

STARMA models have been proposed by Pfeifer and Deutsch in the early 1980s. 

Although they have been used since, they had not been investigated in depth due to 

lack of available datasets. When STARMA models were actually examined in depth, 

many researchers found that although these models can be estimated by linear and non-

linear estimators, they depend on weight parameter values. Although the second type 

provides more sufficient results, there is not a lot of theoretical background as for its 

implementation (Kurt & Tunay, 2015).  

Compared to the statistical methods and the dynamic space-time models that have 

been developed, Space-Time Autoregressive Moving Average (STARMA) assumed to 

perform better (Kurt & Tunay, 2015). What makes the STARMA model more tractable is 

the use of a grid; this helps the formulation to be well suited to forward simulation in 

time, leading to a decrease of calculations (Glasbey & Allcroft, 2008). The following 

equation (9) illustrates the calculation function of the STARMA model (Pfeifer & 

Deutsch, 1981). 

1 0 1 0
      (9)

k kmp q

t kl l t k kl l t k t
k l k l

z W z W
λ
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= = = =

= − +∑∑ ∑∑  

In equation (9) p is the autoregressive order, q is the moving- average order, λk is the 

spatial order of the kth autoregressive term, mk is the spatial order of the moving 

average term, φkl and θkl are parameters; φkl is the autoregressive parameter at 

temporal lag k and spatial lag I and θkl is the moving average parameter at temporal lag 

k and spatial lag I (Pfeifer & Deutsch, 1981). The first term of the above equation (9) 

(including the error ε) defines the STAR (p, λ) model. The second term (including an 

error ε) is the STMA (q, m) model. Finally, W symbol illustrates the weight parameter 

values, probably related to the distance between the examined district values in space 

and time. Thus STARMA (p, q, λ, m) is the composition of these two models, as it can 

be seen in equation 9 (Kurt & Tunay, 2015).  

The STARMA model has two special subclasses: Auto-regression (AR) (pλ1, λ2, …, 

λp) and Moving average (MA) (qm1, m2, …, mq). In other words, when p=0 final model 

refers to STMA and when q=0 to STAR (Pfeifer & Deutsch, 1981). Equations of Kurt & 

Tunay, (2015) provide a simple form of STARMA (p, q, k, m) model, as it can be seen 

below (equation 10), which can be easily read regarding its composition by equations of 

STAR and STMA, eq. 7 and eq. 8, respectively.  
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Generally, STARMA models identify the spatiotemporal dependence between different 

regions and considers the autocorrelation among variables (Zhang et al., 2019). 

According to that, STARMA models thoroughly examine the autocorrelation between 

the geographic spatiotemporal data sets and it is suitable for processing spatial-

temporal series. In addition to that, STARMA models provide very convenient methods 

for data analysis (Kurt & Tunay, 2015). 

On the other hand, because STARMA models are highly affected by the spatial time 

series data, when there is a lack of many measurement locations, the model appears too 

parsimonious (Kamarianakis & Prastacos, 2005). 

2.4.4 ST-ARIMA (Spatiotemporal Autoregressive Integrated Moving Average) Model 

Having explained the STARMA method, is simplest to explain what makes the 

difference between this (STARMA) and STARIMA is the term of Integration. This term 

shows indicates the non-stationary situation of variables. A STARIMA model is defined 

with the parameters p, d and q. More particularly, p shows the dependent variables, q 

shows the number of lags of errors while d shows the number of times a non-stationary 

variable can be stationary. Related to the previous model method, if STARIMA is 

defined through (p, d, q) parameters, and d=0, then the model becomes STARMA, 

whereas if d=1 a linear trend guides the model to be stationary. The following equation 

(11) shows the implementation of STARIMA (p, d, and q), where λk is the spatial order 

of the kth autoregressive term, the mk is the spatial order of the kth moving average 

term, the φkl is the autoregressive parameter at temporal lag k and spatial lag l, the θkl is 

the moving average parameter at temporal lag k and spatial lag l, Wl is a weight matrix 

for spatial order l, ε(t) is the random normally distributed error at time t and the other 

common symbols / terms with STARMA have explained above (Duan et al., 2016; 

Pfeifer & Deutsch, 1980). 
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STARIMA models have been characterized as a useful tool by researchers for dealing 

with datasets that include large spatial and temporal dimension (Kamarianakis & 

Prastacos, 2005). STARIMA (p, d, and q) models with q≠0 are non-linear models. 
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Therefore, appropriate Taylor’s expansions are need to linearize the model 

(Kamarianakis & Prastacos, 2005). 

2.5  Evaluation of Forecasting Performance for Regression 

2.5.1 R2 (R-squared) 

The R-squared (R2) metric was originally developed for linear regression statistical 

models (e.g. STATA) and its values ranges from 0 to 1 (Cameron & Windmeijer, 1996). 

The higher is its value the stronger is the relationship between the examine values. The 

general (unweighted) equation of R-squared tries to show the relationship between two 

variables, such as incidents and the remaining observations and it is provided through 

the following equation (12), in which y is the dependent variable with i=1, 2, …, N, the μ 

is the predictive values of the applied model and ẏ the mean of variables (Cameron & 

Windmeijer, 1996). In other words, the numerator refers to variance explained by the 

used model while the denominator the total variance.  
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2.5.2 Error Metrics  

In this subsection there are two popular metrics which are based on measuring the 

models’ performance errors. These are the Root Mean Square Error (RMSE) and the 

Mean Absolute Error (MAE) and the corresponding definitions and equations are 

provided below in the following two sub-sections.  

Before that, it should be clear the importance of errors in a model’s performance. As 

it is defined in Willmott & Matsuura (2005) an error (ei) is the difference between the 

predicted values (pi) and the observed values (oi), for i= 1, 2, …n (the case incidents) as 

it is shown by the following equation (13).   
      (13)i i ie p o= −  

However, these metrics usually use weights to distribute the potential errors in each 

value and the following equation (14) illustrates the average model-estimation error. In 

this equation, the wi is the weight as proportion to the total error and it is scaling 

assigned to each |ei|γ. When it is considered as “equal” to all errors (e.g. through the 
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MAE metric) it is usually equal to 1 and regarding the γ it is an index that should be 

equal or over 1. 
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A popular error metric is the MMeeaann  AAbbssoolluuttee  EErrrroorr  ((MMAAEE)). This metric has been created 

to compare forecasting performance of all models (e.g. STARMA, ARMA, etc.). 

Likewise, the calculation of this metric is depicted through the following equation (15) 

(Chai & Draxler, 2014). It should be mentioned that the use of absolute value is usually 

a drawback for metrics because it prevents the calculation of other features, such as the 

gradient or the sensitivity of the MAE metric (Chai & Draxler, 2014). 

 
According to Willmott & Matsuura (2005), the MAE metric gives an equal weight to all 

errors, it is unambiguous and it presents the measure of average error more naturally 

than the RMSE. However, the MAE is inappropriate when the error distribution is 

expected to be Gaussian, that is to not get extreme error values (Chai & Draxler, 2014).  

Another popular error metric is the RRoooott  MMeeaann  SSqquuaarree  EErrrroorr  ((RRMMSSEE)). The 

calculation of this index can be summarized in three main steps. The first one concerns 

the total square error, calculated by summing the individual squared errors. Then, the 

total square error is divided by the number of samples and finally its square root is 

calculated. Defining errors as ei (i=1, 2, …, n), where ei is the difference between the 

variables yi and the relative observations, the RMSE can be calculated by the following 

equation (16) for n samples (Chai & Draxler, 2014). 

 
According to Willmott & Matsuura (2005) RMSE metric does not describe the average 

model performance error so well probably because this metric is a result of the three 

above mentioned steps and it does not use the errors weight analogous to each value.  
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2.6 Evaluation of Forecasting Performance for Classification  

2.6.1 Traditional Accuracy Metrics 

The performance of classification models is usually evaluated with metrics such as these 

depicted below. In order to characterize the performance of a model a confusion matrix 

could be used (fig. 11). “The standard setup for event-driven classification is to have a so-

called “positive” class that represents the target events while the “negative” class represents all 

non-events” (Torgo & Ribeiro, 2009; p.6). Row classes refer to the predicted results while 

the column ones to the actual results (Hossin & Sulaiman, 2015). The True Positive (TP) 

means that the predicted “positive” agrees with the actual “positive”. The True 

Negative (TN) means that the predicted “negative” agrees with the actual “negative”. 

Likewise, the False Positive (FP) and the False Negative (FN) show “non-agreement” 

between the predicted and actuals “positive” and “negative”, respectively.   

 

Figure 11: Classification performance basic metrics 

A default metric to evaluate the aaccccuurraaccyy (trueness and precision) binary values or 

multi-class datasets of a classification method is to calculate the percentage of correctly 

classifies events (ẏ) out of all events (y). The following equation (17) illustrates this 

action. The output ranges from 0 to 1 and the higher is the result the higher is the 

accuracy (ISO, 1994). 
1
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Another classification metric is the  FF11,  which consists of PPrreecciissiioonn  aanndd  RReeccaallll  mmeettrriiccss..  
These metrics identify the performance of the applied models on case incidents (e.g. 

crime events) and ignore the events not included in using classes. Regarding precision, 

it is defined as the percentage of events of the model which are real events. On the other 

hand, recall metric, provides the proportion of events occurring in the same domain 

with the events of models (Torgo & Ribeiro, 2009; Hossin & Sulaiman, 2015).  
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These two metrics are interconnected and sometimes both are required. Due to that, 

there are test that give their composition outputs, such as the F1, as it can be seen in the 

following equation (18) (Torgo & Ribeiro, 2009). This metric represents the harmonic 

mean between recall and precision values (Hossin & Sulaiman, 2015). 
Pr Re1 2       
Pr Re

ecision callF
ecision call

×
= ×

+
    (18) 

2.6.2 Crime Forecasting Accuracy Metrics 

Two are the most popular crime forecast accuracy metrics, the Hit rate and the 

Prediction Accuracy Index (PAI).  

According to Chainey et al. (2008) the hhiitt  rraattee is the percentage of crimes events 

that occur within the areas where crimes are predicted to occur (hotspots) divided by 

the total number of crime events of the whole study area. This index may be useful and 

reliable for a single study area but not for further comparisons. 

A more objective index is the PPAAII which is accompanied by the area percentage. 

This metric (eq. 19) has been proved as appropriate for this purpose by many 

researchers (Perry et al., 2018; Chainey et al., 2008).  

( ) 100 Hit Rate       
Area Percentage( ) 100

n
NPAI a
A

×
= =

×
   (19) 

In the above equation n is number of crimes in areas where crimes are predicted to 

occur (e.g. hotspots), N is the number of crimes in the study area, α is the area of areas 

where crimes are predicted to occur (e.g. area of hotspots) and A is the area of the study 

area (Chainey, 2013). According to equation (19) if the percentages are equal PAI will be 

1. By finding 25% of future crimes (Hit Rate) in 50% of the study area (Area Percentage), 

PAI will be 0.5. If these percentages correspond to 80 and 40, respectively, PAI will be 2, 

and so on. As such, the higher the PAI values the greater the predictive accuracy 

(Chainey et al., 2008). 

2.7  Selection of Forecasting Methods and Metrics for Performance Evaluation  

This section describes the selected forecasting methods and the selected performance 

metrics based on their suitability to our research data and scope.   

Regarding the hotspot analysis, KDE is selected, which, although is just a simple 

interpolation method, it is already used by police departments to “forecast” crime areas 
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(i.e. hotspots) because of its benefits. It is widely used in the field of criminology 

because it can be interpreted easily and provides better forecasting results than the grid 

thematic mapping or the spatial covering ellipses techniques. Apart from KDE, a 

baseline approach is employed too. The approach simply assumes that the most recent 

situation of crime incidents could be used as forecasting, without any further editing 

process. This naïve baseline method will be used in order to have a more neutral 

comparison.  

Regarding the Space-time autoregressive methods, STARMA is chosen as more 

appropriate to create a forecast for potential locations and time periods concerning 

crime occurrences. In addition to that, STARMA outperforms other Spatiotemporal 

Autoregressive methods (e.g. STMA, STAR, etc.) in identification space-time 

dependence between different areas and takes into account the correlation between the 

using variables (Zhuang et al. 2017). 

As far as the performance metrics are concerned, the PAI metric is used as 

considered to be more appropriate for the scope of this study because it is a crime 

analysis metric and it is the most used by criminologists. However the Hit rates is also 

examined (Kounadi, Ristea, Araujo & Leitner, 2020).  

The final comparison will occur based on classification outputs (hotspots and non-

hotspots). For all the three methods, a threshold value will transform their predicted 

outputs into the two above mentioned classes. This threshold value is determined after 

making five quantile classes of outputs and defining the highest one as hotspot, 

whereas the first four classes are grouped as one “non-hotspot” class. This way is based 

on methodology that have been used by Chainey et al. (2008) for similar comparison 

purposes. 
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3 Methodology 
This chapter refers to the methodology that is used for this thesis topic and the steps 

followed in order to answer the research objectives. More particularly, the following 

sections and subsections refer to software that is used, which is the mean to carry out 

the analysis, the study area, the data and, finally, the workflow (fig. 12), which gives a 

schematic illustration of the methodology. 

3.1  Methodological Overview 

The first step of the methodology consists of collecting the necessary data (i.e. crime 

incidents, study area, study zones). The second step is the pre-processing phases, where 

input datasets are transformed into an appropriate form for the subsequent analysis. 

This step is explained better through the table 3 in 3.4.4 subsection. The third step is the 

implementation of current (baseline, conventional) and proposed methods. The last step 

evaluates the results of the methods applied based on the selected performance metrics 

and once outputs from applied methods have been classified to hotspots or non-

hotspots.   

Figure 12: Workflow for evaluation of proposed (ST-AR) method for forecast crime 
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3.2  Software & Reproducibility 

The implementation of the conventional method (i.e. KDE) is done with ArcGIS 

software while the proposed one (i.e. STARMA3) is applied in R-studio interface 

environment. The implementation of the methods in each respective software concerns 

also the attempt to make automate process through specific tools (e.g. model builder) or 

by programming extending code in repeatable loops.   

3.2.1 R-studio 

Although R-studio is an interface to work in R language, it is referred here as one of the 

software that was used. In initial processes, it was used to transform default (original) 

datasets to an appropriate structure. Additionally, this software is used for the 

proposed method because of the current available packages and libraries. Finally, the 

evaluation of implemented methods takes place in R-studio environment too, in an 

automate way. By programming all the processes in this environment ensures the 

validity of the processes and, at the same time, offer a suitable environment where 

potential changes could easily occur.  

3.2.2 ArcGIS 

Geographic Information Systems (GIS) have been widely used as significant tools 

through their toolbox and the producing maps, in crime investigation under prevention 

programs (Pawale et al., 2017). A big advantage is that this software provides the ability 

to create a new tool or modeling a process based on a combination of existing tools from 

arc toolbox library. When a model builder is ready to run, it can be exported as script 

and then a useful description can be written in order to guide a potential user more 

easily by publish it (e.g. in ArcGIS online web site). This software concerns not only the 

implementation of the KDE method but also the presentation of results for all the three 

methods in order to have a comparable overview of some specific cases.  

3.2.3 GitHub repository 

In order to make the workflow of the thesis reproducible, which concerns the pre-

processing steps, the implementation of the proposed method, and the evaluation / 

3 Modelling Space Time AutoRegressive Moving Average (STARMA) Processes: 
https://cran.r-project.org/web/packages/starma/starma.pdf 



43 
Thesis Report: Exploring a Space-Time Autoregressive Moving Average (STARMA) model in spatial crime 

forecasting (Rentzelos A., 2019 - 2020) 

comparison of all the three methods, a github repository4 has been created. With the 

repository involving a guide “readme” file, potential users can be informed about the 

purpose of the included R-code files. In this way, the processes of the workflow can be 

repeated and further used in similar researches or policing applications. 

3.2.4 Software Limitations 

This subsection refers to the limitations that came to deal with. More particularly, 

working on R-studio for the implementation of the proposed method resulted in serious 

time computational problems when data of high spatial resolution were used (i.e. 11 

Gigabyte). The main cause of the problem appears to be the high dimensionality of 

weight matrices and consecutively the array for the STARMA model. The higher the 

weight matrix the bigger the problem and therefore, the option of using many (spatial) 

neighbor polygons is not feasible. Another option was to run the existing code online, 

either with increasing the memory of R-studio or with other options, such as “google-

collaboratory” or “jupyterhub”. Unfortunately, none of these solutions worked and the 

implementation of all the three methods finally is based on smaller spatial resolution, 

the second preference, as it is explained in the next sections. 

3.3  Study area 

New York City (NYC) (fig. 13) is chosen as the case study area of this thesis topic as 

being a metropolitan area with very high crime rates. Also, the selection of this study 

area is based on the quantity and the quality (both in space and time) of the data 

available. More particularly, formal web sources, like the services of New York Police 

Departments (NYPD), offer a recent and adequate amount of crime incidents in NYC 

combined with the administrative boundaries validated in the same decade. 

4 Github repository for this thesis: 
https://github.com/alkiviadisrentzelos/MScThesis_-Exploring-Space-Time-Autoregressive-models-to-
forecast-crime.git 
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Figure 13: Study area - NYC 

3.4  Data 

The required data is the crime incidents accompanied by their spatial and temporal 

reporting. In addition to that, study zones are required to divide the study area in 

smaller areas (i.e. the spatial units of prediction) and these zones can be administrative 

boundaries or grid cells. The following subsections illustrate the sources and the 

features of these main categories of required data.  

3.4.1 Datasets for Crime Incidents 

Several datasets about crime incidents in NYC with their spatial and temporal features 

are provided by the NYPD5. During the last decade there are the following available 

datasets: the first one covers the whole of 2019 (the most recent dataset), the second one 

dates from September 2014 until the end of 2017, while for the year 2018 there is a 

different format of datasets. Among them, the one that is preferred is the datasets with 

the more covered period (more than three years). From this datasets, the selected study 

period will be the year 2016, in order to have available complete observation data before 

and after in case that an extension of the study period is required.    

The selected dataset includes 18 attributes (they can be seen in the external 

appendix file), some of them being expressed as codes while others providing further 

details. More particularly, codes divide the crime incidents according to specific 

categories, like the law or jurisdiction type. Apart from that, there are attributes which 

                                                            
5 Open data about crime events in New York City by Police Departments (NYPD Arrests Data Historic): 
https://data.cityofnewyork.us/Public-Safety/NYPD-Arrests-Data-Historic-/8h9b-rp9u 

https://data.cityofnewyork.us/Public-Safety/NYPD-Arrests-Data-Historic-/8h9b-rp9u
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describe the crimes in broad and others in more specific categories. There are also 

attributes presenting the location and the dates of arrest involving crime incidents and 

others provide secondary information (e.g. the sex or the age of perpetrators).   

Amongst all these attributes, those which are selected are associated with the 

location of crime incidents, the dates when they occurred and their description. 

Regarding the description there are a lot of categories. Here, the general description 

attribute is preferred. Therefore, the division of crimes into two types (property and 

violent) is based on their general description, whereas the third type (all) includes all 

the crimes as incidents and also those not belonging to any of the first two types. In 

order to do this division, formal crime typologies were used, like the formal crime 

typology of NCJRS6 (National Criminal Justice Reference Service), as well as studies 

that provide a division of crimes to ‘property’ and ‘violent’ types (Shoesmith, 2013). 

This process is further explained in pre-processing data subsection (3.4.4) (the detailed 

division of categories can be seen in external appendix file).  

Concerning the location of a crime there are two pairs of attributes in different 

coordinate systems (projected and geographic). The selected one will concern the 

projected Coordinate Reference System (CRS), which corresponds to feet as units of 

measurement and this helps calculate the distances among crime points. Finally, 

attributes which provide further information, such as the age or the sex of perpetrators, 

the law type etc., are not used. 

For the chosen study period (year 2016), the total number of crime incidents is 

312,345 (‘all’ crimes). Amongst them, 73,194 are ‘property’ and 74,780 are ‘violent’ 

crimes.  

An issue that needs exploration is the real location of the original data, before they 

are spatially joined in zones they belong to. As it can be seen in the following figure (fig. 

14), crime points are located in the middle of streets. This means that crime incidents 

which occurred in neighboring buildings with a significant distance are appeared in the 

same location (i.e. the closest street). So, even though they marginally belong to a site, 

their spatial accuracy may be "decreased" analogously to the how big the study zones 

are. 

                                                            
6National Criminal Justice Reference Service: https://www.ncjrs.gov/App/Topics/Topic.aspx?TopicID=56 

https://www.ncjrs.gov/App/Topics/Topic.aspx?TopicID=56
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Figure 14: Original locations of crime points 

 

3.4.2 Datasets for Spatial Resolution 

Apart from the dataset for crime incidents, a dataset which can define the division of 

the whole study area into smaller zones is required. This requirement is also referred to 

as the spatial resolution. This can be done by using either a technical grid (square) cells 

or administrative boundaries. For this thesis, the former choice is not preferred as a 

uniform grid cell because it would intersect the existing urban environment 

“disconnecting” the location of crimes from their physical part of the study area. For 

example, by using grid cells, it is possible to have some crime incidents occurring in 

unnatural environments, like property theft on the sea or on rivers.   

The most popular datasets available for the selecting boundaries7 of NYC can be 

seen in the next figure (fig. 15). The whole NYC which can be represented by one 

polygon, is divided into 5 boroughs, 77 polygons of NYPP (New York Police Precincts), 

248 polygons of postcode (zip-code) areas and finally into 38,799 polygons which are 

the blocks. 

 

Figure 15: Boundaries available with the number polygons which they consist of 

                                                            
7 Open data about Administrative and non-boundaries of New York City by the Government: 
https://data.cityofnewyork.us 

https://data.cityofnewyork.us/City-Government/2010-Census-Blocks/v2h8-6mxf
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According to the related study work, described in subsection 2.2 (table 1), the following 

table (table 2) presents what other studies chose as regions (zones) related to their study 

area size. As it has been mentioned in table 1, the division of the study area to smaller 

regions was based either to the administrative boundaries or to technical grids 

(rectangle or square).  
Table 2: Overview of forecasting crime studies regarding the division of their study area 

 Source 
Area of the whole 

study area 
Type of study 

area 

Selected 
administrative 

boundaries 
Technical grids 

Average of area 
of a technical 

grid cell 

1 (Bowen et al., 2018) 
701.9 km2            
(~7x109 ft2) 

County Census Blocks - - 

2 
(S. Chainey et al., 

2008) 
36.67 km2   

(~400,000,000 ft2) 
2 Boroughs - 

Rectangle grid 
cells 

125,000 m2          
(~1.5 ft2) 

3 
(Dash, Safro & 

Srinivasamurthy, 
2019) 

606.1 km2               
(~6.5 x 108 ft2) 

City Communities - - 

4 
(Drawve, Moak & 

Berthelot, 2016) 
316 km2                            

(~3.5 x 108ft2) 
City - 

Square grid 
cells 

8,281m2         
(~90,000 ft2) 

5 
(Gorr & Harries, 

2003) 
151.1 km2               

(~1.6 x 108 ft2) 
City Police precincts - - 

6 (Mohler, 2014) 
606.1 km2                

(~6.5 x 108 ft2) 
City - 

Square grid 
cells 

~15,000 m2        
(~160 x 106 ft2) 

7 (Shoesmith, 2013) 
9,834,000 km2          

(~105 x 1012 ft2) 
Country USA regions - - 

8 
(Zhuang et al., 

2017) 
375.5 km2                            

(~4 x 109 ft2) 
City - 

Square grid 
cells 

~360,000 ft2 

Since the above description is not enough to make a decision for what size of study 

zones should our study area be divided, the following schema (fig. 16) illustrates the 

information of the table above in a more clear way.   
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Figure 16: Graphical overview of forecasting crime studies regarding the division of their study area 

In the above figure, the eight case studies of table ‘2’ are put on the main horizontal 

axis. Starting from the zero (center of this axis), studies which used administrative 

boundaries to examine the study area are located to the right whereas those which used 

technical grid cells to the left. The cases have been put in an ascending order for both 

the sides. According to that, the case of NYC is put in the same axis, in both sides, 

regarding its area (blue one).  

The division of the NYC study area into smaller zones is based on how above 

mentioned studies divided their study areas. Reading upon these studies, it is observed 

that the smaller the study area the smaller the study zones (spatial resolution) that 

should be divided. According to that, the case of the NYC should correspond to a large 

spatial resolution, such as the boroughs or the police precincts. However, this is not 

necessary because the size of the smaller zones is not the same with the other case 

studies of the figure above. Furthermore, the selected sample of other studies overview 

is too limited and thus it would not be completely justified to be based on that for the 

purpose of this thesis.   

In order to select the most appropriate spatial resolution from the available 

administrative boundaries of NYC, an overview of their area could be more useful. This 

means that since these boundaries do not have exactly the same area, the similarity of 

their area for each type should be examined. For this reason, the datasets available for 

administrative boundaries were imported to ArcGIS software. From this process it 
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seems that the higher the similarity amongst the spatial polygons the more appropriate 

they will be.  

Based on that, the five Boroughs should be selected as smaller study zones. 

However, a choice like this would be too broad regarding the scale of the study area. 

Census Blocks boundaries should be the second option (as they present the second 

highest similarity amongst their polygons). Zip-code areas seem to be the following 

option and lastly are the NYPP (these graphs can be seen in external appendix file). So, 

excluding the five Boroughs for above mentioned reason, the most preferable polygons 

that could be used as spatial resolution are the Census Blocks and then the Zip-code 

zones. 

The dataset for Census Blocks8 of NYC is provided through NYC open data and it is 

the most recent, valid since 2010. It contains 38,799 blocks (polygons) for the whole 

NYC (fig. 17) with ten attributes: “OBJECTID”, “Shape”, “bctcb2010”, “boro_code”, 

“boro_name”, “cb2010”, “ct2010”, “shape_leng”, “Shape_Length” and “Shape_Area”. 

The attribute required from this dataset is their unique code (“bctcb2010”) and an 

attribute which confirm to which of the five boroughs blocks belong (i.e. Manhattan, 

The Bronx, Brooklyn, Queens and Staten Island). In regard to this attribute, the borough 

of Manhattan consists of 3,860 blocks, the borough of Bronx of 5,465 blocks, the one of 

Brooklyn has 9,681 blocks, the borough of Queens includes 14,757 and finally, the Staten 

Island borough consists of 5,036 blocks. 

 

Figure 17: Census Blocks for the study area (NYC) 
                                                            
8 Open data about census blocks in New York City by Government: https://data.cityofnewyork.us/City-
Government/2010-Census-Blocks/v2h8-6mxf 

https://data.cityofnewyork.us/City-Government/2010-Census-Blocks/v2h8-6mxf
https://data.cityofnewyork.us/City-Government/2010-Census-Blocks/v2h8-6mxf
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The dataset for Zip-code zones9 of NYC is provided through NYC open data 

Government. It contains ten attributes: “Shape”, “ZIPCODE”, “BLDGZIP”, 

“PO_NAME”, “population”, “AREA”, “STATE”, “COUNTY”, “ST_FIPS” and 

“CTY_FIPS”. The attribute required from this dataset is their unique code (“ZIPCODE”) 

and the “AREA”. The original datasets contain information for the 248 polygons, from 

which 15 are double subscriptions. So, in case that zip-code administrative boundaries 

will be used as spatial reference point, the number of unique polygons should be 248. 

The following figure (fig. 18) illustrates the 248 zip-code zones while the zoom mentions 

that some of them have quite small size, probably due to overcrowded areas.  

 

Figure 18: Zip-code zones for the study area (NYC) 

3.4.3 Datasets for Time Reference Point 

One of the main attributes is the “ARREST_DATE” and it is the only attribute which 

shows when a crime incident occurred. The default time reference corresponds to days. 

Previous research studies selected to work on days, weeks, 2-weeks, months or years 

for their time resolution. In this study, all the three methods are examined based on 

                                                            
9Open data about zip-code administrative boundaries in New York City by Government: 
https://data.cityofnewyork.us/Business/Zip-Code-Boundaries/i8iw-xf4u/data?no_mobile=true 
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weeks for temporal resolution, in order to decrease the volume of the data. Thus, the 

workload is more manageable and without degrading the time resolution a lot.  

The next step is to select the time period for which retrospective data is used for the 

prediction; in other words how many weeks before the forecast is based on. This, can be 

roughly answered by examining the temporal autocorrelation of all the weeks (code is 

included in github repository and also in external appendix file). As it can be seen in the 

next figure (fig. 19), with one weekly lag (the time lag is the one before the predictive 

period), the temporal autocorrelation is statistically significant and higher than with 

two or more weekly lags. More particularly, for the value of zero weekly lag (when the 

same week is used as predicted period) the autocorrelation is absolutely 1. For the one 

weekly lag, the temporal autocorrelation decreases to 0.4, for the two weekly lags the 

value is half (0.2) and so on. Therefore, with one weekly lag it is assumed that the 

required temporal autocorrelation can be satisfied.  

 

Figure 19: Temporal Autocorrelation of data sets based on week resolution  

3.4.4  Pre-processing steps 

This subsection includes the pre-processing steps that required for transforming the 

input datasets into suitable form (the R using code can be seen either in github 

repository or in the external appendix file). 

The pre-processing of input datasets consists of 14 steps which take place in R-studio in 

order to get reliable and appropriate format of datasets by avoiding manually editing 

and therefore to eliminate coarse errors. The table below (table 3), represents these steps 

with the necessary details. To be noted that steps with * concern only the STARMA 

method. 

 

 



52 
Thesis Report: Exploring a Space-Time Autoregressive Moving Average (STARMA) model in spatial crime 

forecasting (Rentzelos A., 2019 - 2020) 
 

Table 3: Pre-processes for Crime Incidents Datasets 

7 Pre-processing steps for Crime Incidents Datasets 

1. Input data 
1,048,575 observations (from 9/2014 to 12/2017) 

2. Selection of appropriate attributes for both using datasets 
For crime incidents: “ARREST_DATE”, “OFNS_DESC”, “ARREST_BORO”, “X_COORD_CD”, 

“Y_COORD_CD” 

For study zones: the attributes related to unique id, geometry and area  

3. Selection of the study period 
Year 2016 => 314,864 observations  

4. Clear data 
Delete empty subscriptions (2,708 incidents) and strange descriptions (i.e. “F.C.A.P.I.N.O.S.” with 4,402 

incidents) => 312,403 observations. 

5. Division of crimes to totally three types 
58 different crime incidents (all), from which 14 crimes are defined as property (p), 12 as violent (v) and 

32 incidents that cannot be characterized either as property or violent.  

6. Extract information about temporal resolution 
Transform daily information to weekly => (53 in software ~ 52.3 in reality) 

7. Setting the appropriate Projected Coordinate Reference System (PCRS) 
The coordinates refer to New York State Plane Coordinate System, Long Island Zone, and “NAD 83” with 

feet as measurement units (FIPS 3104). This Projected Coordinate Reference System corresponds to the 

code number “102318” according to ESRI Projection10. 

8. Spatial Join 
Crime incidents are grouped based on the study zones where they spatially belong. 

9. Summarizing the amount of crime incidents per study zones and per crime type 
The outputs contain for each week and for each study zone the amount of crime incidents for each type of 

crimes; property, violent and all as incidents. 

10. Replace the N.A. (non-available) values with zero number of incidents 
Every study zone should have in numeric format the number of incidents. 

11. Replacing of polygons with points regarding the geometry of study zones 
The final format of study zones should be represented by their centroids (points) according to how 

methods require inputs.  

12. Make separate files for each type crime* 
A division of data per type crime is required. 

                                                            
10Spatial Reference of ESRI Projection: https://www.spatialreference.org/ref/esri/102318/ 

https://www.spatialreference.org/ref/esri/102318/
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13. Transposition of data * 
The step transposes the data in order to have "weeks" as rows and "zip-codes" as columns 

14. Extract information for study zones' geometry* 
This last step will be used to create the neighborhood of study area 

 

3.5 Implementation of the Naïve Approach (Baseline) 

As mentioned in previous chapters, a baseline method is usually used for comparing 

other methods with a non-extreme situation but with a realistic condition. In this case, 

the baseline is based on the simple scenario that the data remains the same as one week 

before. For example, the original data for week t is the same as for week t-1, without any 

processing. The following figure (fig. 20) illustrates this choice. 

 

Figure 20: Representation of how the naïve baseline is used 

3.6 Implementation of the Kernel Density Estimation (Conventional) 

This section provides a clear explanation of the implementation of the method by 

focusing on both its implementation and technical features (e.g. inputs, outputs and 

parameters). The implementation of KDE through an ArcGIS software requires three 

input parameters, namely the bandwidth (search radius),  the kernel function (k), t, and 

the “cell size”, related to the resolution of outputs (Hart & Zandbergen, 2014). The 

following figure (fig. 21) represents the operation of these parameters of KDE. 

 

Source: Hart & Zandbergen, 2014 

Figure 21: Visual process of kernel density estimation (KDE) 
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The following schema (fig. 22) illustrates how a KDE method works. By importing the 

three input parameters, the KDE command of an ArcGIS software uses the tool “Kernel 

Density”. The outputs of this process is a range of values which represent the density of 

points in the selected measurement units.  

 

Figure 22: KDE input parameters and outputs 

Given that “KDE is not without its faults” (Chainey et al., 2008; p. 9), an important issue 

that discussed by Chainey (2013) is how these two input parameters (cell size and 

bandwidth) “fit” within the study area; an issue related to the size of the study area and 

the values of the input parameters. In other words, the outputs from the study area with 

appropriate values of these two (input) parameters may create small spiky surfaces 

with the hotspot areas also being very small. This problem could be faced by dividing 

the implementation of a KDE method into two parts; the first part, in which some key 

hotspot areas (big size areas) are identified for the whole study area and a second one, 

in which these key hotspot areas are the study areas and other more specific areas are 

characterized as hotspots.  

Although this technique is theoretically considered to be correct, in practice it is in 

doubt whether hotspot locations can be identified across the whole study area or not. 

Furthermore, the GIS software today offers reliable toolsets in order to define the 

hotspot areas over a threshold value and this makes the previously mentioned 

technique purely subjective. When the hotspot areas refer to small areas (e.g. blocks) 

compared to the whole study area (e.g. N.Y.C.), the strange “spiky” surfaces could 

correspond to the size of blocks.  

According to Chainey (2013) the most appropriate values for the two parameters 

(cell size and bandwidth) can be identified by a number of experiments. However, 

many researchers make the final selection by looking at the appearance of the mapping 

output instead of the influence of the selected values to results. Chainey (2013) refers 

that there is little literature guidance and there is no universal doctrine about the values 

and under which circumstances these two input parameters are selected (Chainey et al., 



55 
Thesis Report: Exploring a Space-Time Autoregressive Moving Average (STARMA) model in spatial crime 

forecasting (Rentzelos A., 2019 - 2020) 
 

2008). The following table (table 4) summarizes the characteristics of the different 

options of these two input parameters (cell size and bandwidth).  
Table 4: Overview of options for two input parameters (cell size and bandwidth) of Kernel Density 

Estimation 

 Options Implementation Advantage(s) Disadvantage(s) Source 

Ce
ll 

si
ze

 

1st 
option 

Shorter side of the study area 
divided by 150 

Easy to be 
calculated 

It has not been 
evaluated 

(Hart & 
Zandbergen, 

2014) 

2nd 
option 

Default value by the ArcGIS 
software (the shorter of the width 
of the output extent in the output 
spatial reference, divided by 250) 

There are not 
extreme values 

Ideal value is unknown (Hart & 
Zandbergen, 

2014) 

Ba
nd

w
id

th
 

1st  
option 

0.68 x n -0.2 (n is number of 
observed events) 

Easy to be 
calculated 

Rough option and does 
not consider the spatial 

distribution of the 
observed events across 

the study area 

Bailey and 
Gatrell, (1995, p. 
86) in (Chainey 

et al., 2018) 

2nd   
option 

Shorter side of the study area 
divided by 150 and multiplied by 

5 

Simple method It provides only an 
estimation 

Chainey (2011) in 
(Chainey et al., 

2018) 

3rd  
option 

Default value by the ArcGIS 
software (the smaller of the width 
of the extent of the input, divided 
by 30 and reproducing it by 
multiply the default value for 
the output cell size parameter by 
25/3) based on Silverman's rule of 
thumb equation: 

(“σ” is the standard 
deviation of distribution and “n” 
is the number of crime events) 

ArcGIS 10.2 and 
over versions has 

improved the 
way of 

calculation of the 
default value 
(The lowest 

possible value is 
more suitable 

while the largest 
value impair 

KDE purpose) 

Lack of scientific 
justification 

Silverman (1986) 

It has been proved that even though the parameter of cell size has a little influence 

on a KDE hotspot mapping for predicting spatial patterns of crime, the smaller the 

value, the better the visualization of maps. Similarly, for the bandwidth parameter, 

which does affect the outputs of KDE, the smaller its value, the less the degrading of 

maps. Finally, the option of adopting the default setting values for these two 

parameters, is a quite popular approach among most users of KDE for hotspot mapping 

(Chainey, 2013).  
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Regarding the third input parameter, there are different types of kernel functions 

that can be used as input in the implementation of the KDE, such as Gaussian, 

Epanechnikov, Triangle, etc. (Epanechnikov, 1969). 

The following graph (fig. 23) illustrates the Gaussian and the Quadratic model 

curves. In this figure, the selected sample, provided by Chen and Guo (2016), has 

bandwidth (h) equal to 1, mean equal to 0 and a variance equal to 0.4 for the Gaussian 

function and 2.5 for the Quadratic one. What is also different between these two models 

is that in the Gaussian all the observations are included with a relative importance 

while the Quadratic model uses fewer observations related to the search radius 

(bandwidth). This can be seen at the edges of the two curves; the blue one takes place 

on an unlimited range whereas the red one has specific limitations (Silverman, 2018). 

 

Source: Chen and Guo, 2016 - edited by author 

Figure 23: Gaussian and Quadratic kernel functions 

The kernel function used in ArcGIS software and then being adopted for this thesis is 

based on Quadratic model (Silverman, 2018). Even though Gaussian models are more 

popular for they assume that all random variables are normal random variables sharing 

the same mean and variance, the Quadratic kernel function can reduce the 

computational cost, which is higher in exponential functions, such as the Gaussian one 

(Chen & Guo, 2016).  
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3.6.1 Implementation of KDE method for NYC 

According to what previously mentioned, the implementation of the KDE method takes 

place through a model builder11 (see the graphical representation in Appendix A while 

the respective file is included in the external folder) in order to produce outputs in an 

automatic way. To be noted, this process (the duration of the model running) for one 

crime type and for 52 weeks is a time consuming process (~20 hours). Once the datasets 

with crime incidents have been imported in Kernel density tool and the number of 

crimes (for each crime type) is set as the population, the selection of defaults parameters 

and the whole study area as boundary give the first outputs (densities). These are 

classified into five Quantile classes (Chainey et al., 2008). The next figure (fig. 24) 

illustrates in brief this procedure. 

Figure 24: Overview of the implementation of the KDE method 

11Model Builder available in ArcGIS online by searching “Forecasting crime incidents with KDE”: 
https://uni-
utrecht.maps.arcgis.com/home/content.html?view=table&sortOrder=desc&sortField=modified&folder=de
d2a011b47a4ffda26acb84f87e0cb4#content 
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As it can be seen in the above figure, the five Quantile classes are grouped into two 

classes; non-hotspot (the first four of the five Quantile classes) and hotspot (the fifth 

class) and they refer to the full study area. This is transformed to raster information 

(grid codes, see figure 25) in order to continue with some statistical calculations. By 

spatial joining this raster information with the study zones and computing the mean of 

values of grid codes per study zone, the latter either characterized as hotspot (1) or non-

hotspots (0) or they get “NULL” values. The “NULL” values case occurs because of two 

reasons: a) the study zones’ geometry (schema) is not “covered” by any grid code, for 

example when the polygons have very small size and b) the polygons are coastal and 

the majority of the grid codes are not over the land (polygon) but on other areas (e.g. 

sea or river). In this case, with some tests, it was proved that when the values “NULL” 

are considered as non-hotspots (0) the forecasting is closer to the reality. The below 

figure (fig. 25) illustrates these two causes in a zoom area when census blocks are used 

as study zones.  

       
Figure 25: Example of having NULL values in KDE outputs 

 

3.7  Implementation of the Proposed (STARMA) Method 

By combining the limited literature and the description of ‘starma’ package from R-

studio, it is concluded that this method consists of seven main steps: a) input datasets, 

b) creation of neighborhood, c) creation of weight matrices for neighbors, d) simulation, 

e) identification of process, f) process estimation, and g) diagnose the process. However, 

in this thesis topic only the three first steps are followed, based on the use of the ready 

model package and with using its outputs (model residuals) in the same way like other 

methods (see Appendix B).  
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In the first step, the working datasets (crime incidents per study zone and per week 

with a simple geometry feature and study zones as polygons) should be imported in 

order to get not only the data values but also their geometry features.  

In the second step, based on the geometry of study zones (polygons) a type of 

neighborhood is created, according to a specific search radius in order to find neighbors 

for each polygon. A first estimation of the search radius could be done by observing the 

distance of polygons in maps, while the package requires more than one neighbors 

around the examined polygon in order to work. It should be mentioned that the higher 

the search radius, the more the neighbors for each polygon and thus the bigger size of 

the file. On the other hand, if the search radius is very low there is the danger to not get 

neighbors for some polygons (study zones), which leads to their deletion and therefore 

to smaller study area. Therefore, a balance should be kept between the value of search 

radius and the desirable number of neighbors for each polygon (study zone). The 

following figure (fig. 26) illustrates the positives (with green) and negatives (with red) 

when low or high radius is used. 

Figure 26: Search radius to find neighbours – positives and negatives for low and high search radius 

The third step is strongly associated with the previous one and according to Cheysson 

(2016) there are three different weight matrices that could be applied for neighbor 

polygons (study zones) and each of them with different features based on different 

considerations. The first type of weight that neighbors can have is the “dlist”. This type 

is based on the 100 km distance of neighbors measured from the centroids of polygons. 

According to Zhang (2012) this weight list is useful for spatial diffusive process (e.g. 

pollution, temperature, etc.) and it is impacted by the position of the centroids in the 

study areas. However, in this way big polygons (study zones) isolated and thus they 

have less impact to their neighbors. The second type is the “klist” which is based on the 

distance of their centroids. According to Zhang (2012), this weight list is the improved 

version of the ‘dlist’ because it controls the lower and the highest possible search radius 

and the big polygons (study zones) are not isolated. The last type is the “wlist” which 

presupposes that polygons (study zones) are considered neighbors if they share a 
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border. According to Zhang (2012) apart from the consideration of common border, this 

weight list is not based on centroids of polygons and therefore it can be more easily 

interpreted when modelling relationships between study zones.   

Regardless of the type of weight list that is used, the following figure (fig. 27) 

illustrates the neighbor orders in an ideal environmental. For instance, in the original 

code, four ‘klist’ orders of neighbors are created.  

 

Figure 27: Different orders of neighbours in an ideal environment 

Theoretically, in the fourth step, the model is simulated following the equation (9) for 

specific temporal lags. At the same time, an error parameter, which is in line as for its 

matrix dimensions with other parameters (i.e. weights), is used. The original code of 

package is based on the ‘klist’ weight matrices for neighbor and it creates a matrix with 

random values for the error parameter which follow the standard normal distribution 

(mean = 0, standard deviation =1). This means that values of error parameter follows the 

Gaussian distribution (Cheysson, 2016). 

In the fifth step, the model, based on the results from its simulation and the weight 

neighbour lists, is examined regarding the temporal autocorrelation and partial 

autocorrelation. The maximum number of t lags can be defined while the default option 

shows several number of t lags (Cheysson, 2016). 

In the pre-last step, the AR (the number of lags of the testing variable or ‘φ’-phi-) or 

/ and MA (the number of lags of the error term or ‘θ’-theta-) parameters are estimated. 

After that, a summary of the residuals of the model is available (Cheysson, 2016). 

The last step includes the space-time series non correlation test accompanied by 

X_square test and the relative p-value. This test is an extension of Box-Pierce test 

statistic in order to reject or not the hypothesis of non-correlation since its temporal and 

spatial lags and also the degrees of freedom (which should be set equal to the number 

of parameters of the model) have been set (Cheysson, 2016).  
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3.7.1 Implementation of STARMA method for NYC  

Even though the preferable study zones to implement the STARMA method according 

to the previous chapter is the census blocks, the effort to do that was not completed due 

to the high dimensions of matrices for STARMA processes, for the reasons which 

explained in the subsection 3.2.4. Therefore, like occurred in the other two methods, the 

STARMA also refers to the zip-code areas as study zones.  

The weight that the first order neighbors of study zones affects the forecasting is 

based on “klist” type for two main reasons. The first one is that there is no limit in the 

search radius, like the “dlist”. So, the selected radius to search for the closest neighbors 

is 30,000 ft; if it has smaller radius than this, a few study zones do not have neighbor 

polygons, which leads to their isolation. The second reason for this weight type is that it 

is not based on sides of polygons but in their centroids. In the case of using the sides 

there was again the possibility of isolation since two main parts (boroughs) of the whole 

study area (NYC) are isolated from the rest of the area. 

The STARMA method is implemented based on four different experiments 

regarding the parameters “autoregressive” (AR) (how many lags of the testing variable 

there are) and “moving average” (MA) (how many lags of the error term are estimated). 

In the first experiment both of the parameters ‘AR’ and ‘MA’ are equal to 1 in order to 

implement a default model. In the experiment 2, ‘AR’ is equal to 2 and ‘MA’ is equal to 

1. In the experiment 3, these parameters have inverse values and in the last experiment 

both of these parameters are equal to 2.  

For each experiment and for each type crime, additional parameters are 

implemented and examined; different number of neighbors and different search radius 

to find them. For every selected numbers of neighbors, various search radius are used. 

Every time the first radius to be used is the lowest possible radius followed by an 

average and a high radius. The lowest radius is the one within which only the exact 

number of examined neighbors are found (15,800 ft for two neighbors, 16,200 ft for three 

and four neighbors). The “high” radius is a radius within which many neighbors can be 

found (20,000 ft for all cases). To be noted, that the lowest radius for the case of two 

neighbors (“low”) cannot be used for the cases of both three and four neighbors. So, the 

lowest radius for the cases of three and four neighbors is the “average” used for the case 

of two neighbors.  

 



62 
Thesis Report: Exploring a Space-Time Autoregressive Moving Average (STARMA) model in spatial crime 

forecasting (Rentzelos A., 2019 - 2020) 
 

Table 5: Comparison of four experiments of STARMA for different parameters (type all) 

Number 

of 

neighbors 

Search 

radius  

Experiment 1 

(AR=1, MA=1) 

Experiment 2 

 (AR=2, MA=1) 

Experiment 3 

 (AR=1, MA=2) 

Experiment 4 

 (AR=2, MA=2) 

PAI 
(weekly 
average) 

Hit Rate 
(weekly 
average) 

PAI 
(weekly 
average) 

Hit Rate 
(weekly 
average) 

PAI 
(weekly 
average) 

Hit Rate 
(weekly 
average) 

PAI 
(weekly 
average) 

Hit Rate 
(weekly 
average) 

N=2 High 2.419 58.78% 2.408 58.79% 2.422 58.85% 2.422 58.83% 

Average 2.414 58.76% 2.379 58.8% 2.42 58.86% 2.419 58.78% 

Low 2.419 58.79% 2.414 58.85% 2.423 58.87% 2.419 58.78% 

N=3 High 2.417 58.78% 2.222 58.33% 2.421 58.86% 2.415 58.79% 

Average 2.423 58.79% 2.404 58.33% 2.425 58.86% 2.427 58.78% 

N=4 High 2.423 58.79% 2.346 58.69% 2.43 58.85% 2.427 58.8% 

Average 2.416 58.7% 2.107 58.24% 2.415 58.82% 2.425 58.8% 

 

As it is shown is the above table, the differences among the results (PAI, Hit rates) are 

insignificant. However, it is obvious that the experiments 3 and 4 show, in average, 

higher performance (higher values of PAI and Hit rate) compared to the experiment 1 

and 2. The highest performance of STARMA is observed for the third experiment when 

the higher the number of neighbors and the high search radius are used.  
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4 Results & Discussion 
This chapter shows the results of the three above discussed methods about forecasting 

crimes. The results are presented, per method for all the three crime types examined, in 

tables and graphs for the selected metrics and additional information. To be noted that 

even though two metrics are calculated (PAI, Hit rate), the PAI metric is considered 

more appropriated for evaluating these forecasting methods (section 2.7). In the last 

section, the results concerning the comparison amongst the three methods are 

discussed. 

4.1 Results of the implementation of the naïve Baseline method 

The forecasting of the naïve baseline method is based on the real crime incidents that 

occurred the week before, without any processing. Therefore, the threshold value that 

defines a study zone as a hotspot or non-hotspot, is actually a specific number of crimes 

every time. The table 6 below illustrates the weekly average of threshold values and 

number of hotspot study zones for each type of crime for a study area of 248 study 

zones. 
Table 6: Average of threshold values and number of hotspots for the Baseline method 

Crime Type 
Minimum 

value  

Average 

Value 

(weekly 

average) 

Maximum 

value  

Threshold value 

(weekly average) 

Number of 

Hotspot study 

zones (weekly 

average) 

All 0 131.4 239 45 51 

Property 0 56.8 71 10 53 

Violent 0 45.7 72 11 52 

According to the above table, the number of hotspot study zones closes range amongst 

the three crime types showing that 50 of 248 study zones (almost 1/5) are hotspots in 

weekly average.  In addition, this means that the majority of weekly observations have 

low number of crime incidents. 

The table below (table 7) illustrates the average of the weekly PAI values for each crime 

type, which is between 2.3 and 2.7. Evaluating these results, the naïve baseline method 

seems to perform well. More particularly, for each crime type the average percentage of 
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the hit rate is around 60% while the average ratio of size of hotspots regarding the study 

area is around 25%. To be noted that for each crime type the standard errors and the 

average of Mean Absolute Deviations (MAD) have been calculated.  
Table 7: Results of the naïve Baseline method 

Crime 

types 

Hit rate  Hotspots’ 

area / size 

of study 

area 

(average 

percentage) 

PAI 

Weekly 

Average 

of Hit 

rates  

Standard 

Errors 
Mean 

Absolute 

Deviation 

(average) 

Weekly 

average 

of PAI 

Standard 

Errors 
Mean 

Absolute 

Deviation 

(average) 

All 59.07% 0.008 0.044 24.47% 2.436 0.02 0.123 

Property 64.34% 0.007 0.037 24.27% 2.692 0.01 0.27 

Violent 60.98% 0.007 0.039 26.55% 2.318 0.03 0.13 

According to the values of table 7, the forecasting for ‘property’ crimes presents higher 

PAI values than ‘all’ crime type and even more than the ‘violent’ crimes while the last 

two types range quite close. The average of standard errors gives the lowest value to 

‘property’ type whereas this type has the highest mean absolute deviation. This shows 

that the forecasting for ‘property’ type shows a low robustness of the method. 

The following graph (fig. 28) summarizes for type ‘all’ the weekly information for 

both PAI, Hit rates and also the size ratio between the whole study area and the 

hotspots’ area.  

 
Figure 28: Weekly comparison of PAI values, Hit rates and ratio of areas for the Baseline method and 

type all 
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According to the above graph, the PAI metric ranges between 2 and 3 for all the study 

period (including the last week) and more particularly ffrroomm  22..110066 (6th week) to 2.863 

(48th week) or ttoo  22..994477 (53th week). The hit rate (PAI’s numerator) ranges ffrroomm  3377..4400%% 

(53th week) or from 46.6% (52th week) ttoo  7733..1133%% (6th week). For these weeks, the 

corresponding values for the ratio of the areas (orange line), which represents the 

denominator of PAI, are 1122..6699%%, 18.54% and 3344..7733%%.  

For type ‘all’, the two factors that define the PAI metric (hit rate and ratio of the 

areas) present similar behavior throughout the whole study period. It is observed that 

when both of the factors have high values the PAI value is low and vice versa. 

On the other hand, the types of ‘property’ and ‘violent’ crime include several 

(weekly) observations in which the factors that define the PAI values do not follow the 

same trend.  

4.2  Results of the implementation of the conventional KDE method 

For the conventional KDE method, the threshold values that define a study zone as 

hotspot or non-hotspot are based on the (kernel) densities (square miles). The table 8 

below illustrates for each type crime, the minimum, the maximum and in a weekly 

average the threshold values, the average of observations (densities) and the number of 

hotspot study zones for the whole study area (248 zones). 
Table 8: Average of threshold values and number of hotspots for the KDE method 

Crime Type 
Minimum 

value  

Average 

Value 

(weekly 

average) 

Maximum 

value  

Threshold value 

(weekly average) 

Number of 

Hotspot study 

zones (weekly 

average) 

All 0 183.93 257.24 31.89 60 

Property 0 73.41 108.7 6.45 66 

Violent 0 29.84 41.66 7.27 61 

According to the above table, with 60 – 66 to 248 study zones being hotspots, the KDE 

method forecasts about ¼ of the study area as hotspot. Even though there is a 

supremacy of type ‘all’ regarding the average and maximum values, it forecasts the 

smallest number of hotspot polygons compared to the other two crime types.  
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Table 9 shows the performance of the KDE method based on the hit rate and the PAI 

metric values. In addition, similarly to the previous method, the ratio of between the 

area of hotspots and the whole study area is calculated. 
Table 9: Results of the conventional KDE method 

Crime 

types 

Hit rate Hotspots’ 

area / size 

of study 

area 

(average 

percentage) 

PAI 

Weekly 

average 

of Hit 

rates 

Standard 

Errors 
Mean 

Absolute 

Deviation 

Weekly 

average 

of PAI 

Standard 

Errors 
Mean 

Absolute 

Deviation 

All 39.39% 0.005 0.03 16.33% 2.427 0.03 0.137 

Property 50.04% 0.006 0.03 16.28% 3.103 0.01 0.223 

Violent 37.48% 0.005 0.03 19.44% 1.938 0.02 0.101 

As it can be seen in the above table, only for the crime ‘property’ the percentage of Hit 

rate index is around 50% while for the other two types is lower than 40%. The PAI 

average values show that the ‘property’ type, which has the highest metric values, has 

the highest mean absolute deviation. All in all, this method shows higher performance 

for the ‘property’ type despite its high MAD value. 

The following graph (fig. 29) illustrates for the KDE method and type ‘all’, the 

weekly information for both PAI, Hit rates and also the size ratio between the whole 

study area and the hotspots’ area.  

 
Figure 29: Weekly comparison of PAI values, Hit rates and ratio of areas for the KDE method and all 

type  
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According to the above graph, both of the Hit rate and the ratio of the areas’ sizes 

present a fluctuated trend. Since PAI is influenced by both these two values, this 

explains why its performance is quite erratic. As for the type ‘all’, the nominator of the 

PAI having an average 3399..3399%% ranges between 29.72% (week 53) or 31.62% (week 29) 

and 47.03% (week 4). The corresponding values for the denominator of the PAI, which 

has average 1166..3333%%, for these weeks are 9.88% (the lowest), 13.95% (the closest to the 

second lowest) and 18.52% (very close to the highest 20.37%).  

For the property type, the ratio of areas’ sizes seem to have similar values, with an 

average 1166..2288%% while the hit rates present quite higher values 5500..0044%%. For violent 

crimes, the respective percentages are the highest 1199..4444%% and 3377..4488%%.  

4.3  Results of the implementation of the proposed STARMA method 
For the proposed STARMA method the threshold values that define a study zone as 

hotspot or non-hotspot are based on the sum of the residuals of the model and the 

normalized real data. The table 10 below illustrates for each type of crime, the 

minimum, and the maximum and in a weekly average the threshold values, the average 

of observations (probabilities) and the quantity of the hotspot study zones amongst the 

total of 248.  
Table 10: Average of threshold values and number of hotspots for the KDE method 

Crime Type 
Minimum 

value  

Average 

Value 

(weekly 

average) 

Maximum 

value  

Threshold value 

(weekly average) 

Number of 

Hotspot study 

zones (weekly 

average) 

All -1.15 4.90 12.49 0.8 50 

Property -1.42 7.56 10.53 0.61 50 

Violent -1.63 6.67 12.31 0.75 50 

According to the above values, for each crime type, there is equal average number of 

hotspot study zones, which is around the 1/5 of the study area and the three threshold 

values seem to not present significant differences in the ranges (minimum – threshold, 

threshold – maximum) for all the three crime types. 

Table 11 presents the metric values with their standard errors and MAD of the 

STARMA method and also the ratio of areas. The type ‘property’ is again the crime type 
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that the method performs better, based on the two metrics. For the two other crime 

types the PAI values are quite close but the Hit rates present a great difference.  
Table 11: Results of the proposed STARMA method 

Crime 

types 

Hit rate  Hotspots’ 

area / size 

of study 

area 

(average 

percentage) 

PAI  

Weekly 

average 

of Hit 

rates 

Standard 

Errors 
Mean 

Absolute 

Deviation 

Weekly 

average 

of PAI 

Standard 

Errors 
Mean 

Absolute 

Deviation 

All 58.85% 0.0004 0.02 24.16% 2.43 0.036 0.153 

Property 66.74% 0.0005 0.02 23.69% 2.853 0.042 0.242 

Violent 64.38% 0.0004 0.02 26.44% 2.446 0.03 0.158 

The below graph (fig. 30) illustrates for this proposed method and type ‘all’ the weekly 

PAI values, the Hit rates and the ratio of hotspots’ areas compared to the study area 

size. Apart from the last week, because there are only few observations and hence both 

of the metrics are significantly low, the PAI metric is high and with consistent values. 

 
Figure 30: Weekly comparison of PAI values, Hit rates and ratio of areas for the STARMA method and 

all type 

4.4  Discussion 

This thesis mainly builds on the Shoesmith (2013) study, where an ST-AR model is 

compared with advanced autoregressive methods (Vector auto-regressions and 

aggregate univariate models) regarding the forecasting crimes for different types of 

crimes. Adopting the main idea and same crime types of Shoesmith’s study, this thesis 
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studies an ST-AR method comparing it with simple methods for one spatial resolution 

(scale). As such, it contributes to the existing literature by highlighting the reliability of 

the STARMA method to be used for crime forecasting and the importance of taking into 

consideration both space and time parameters (something that does not apply for the 

conventional methods).  

Based on the results of each applied method, discussed in the previous sections, 

following can be summarized. For all the three methods the classification of values of 

crime incidents is done in the same way. However, the difference lies on how these 

values are represented. For example, while for the naïve Baseline method crime 

incidents are used without any processing, for the conventional KDE the values are 

being processed and their densities are used. For the proposed STARMA method, the 

values are also processed but in a different way, based on the model’s residuals and the 

normalization of the original data. This means that the tthhrreesshhoolldd  vvaalluueess that are used 

for each method are based on using different form of input crime data and thus they are 

not comparable as values. However, a comparable pattern among these methods could 

be seen by comparing the number of hotspot zones that they define. More particularly, 

the STARMA and the naïve baseline method forecast the 1/5 of the study area as 

hotspot whereas for the KDE method the forecast is ¼ of the study area.  

Regarding the performance of each method per crime type, what method 

performs better is based on multiple criteria, such as PAI and Hit rates. For ccrriimmee  ttyyppee  

‘‘aallll’’, based on both PAI and Hit rate metrics, the method with the highest performance 

is the naïve Baseline method. The performance of the STARMA method provides very 

close values not only for the PAI and Hit rate metrics but also for ratio of the areas 

(hotspots / study area). According to the above respective graphs (fig. 28 &  30), for type 

‘all’, the STARMA presents a higher level of weekly PAI values (despite the high 

standard errors and MAD values) while the naïve Baseline method presents a high 

average PAI due to some high weekly performances. For ccrriimmee  ttyyppee  ‘‘pprrooppeerrttyy’’, based 

on the PAI metric, the method with the highest performance is the KDE while based on 

the Hit rate, the STARMA excels. This can be explained due to the high ratio between 

hotspots’ area and the size of the study area for the STARMA method. Although the 

STARMA also presents higher Hit rate, the denominator of PAI metric (ratio of areas) 

affects more this metric. In addition to that, the STARMA method again presents higher 

values as for its standards errors and MAD. For the ccrriimmee  ttyyppee  ‘‘vviioolleenntt’’, the STARMA 
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method performs better for both the PAI and Hit rate metrics. The naïve Baseline 

method has the second performance with significant results. However, its lower Hit 

rates and its higher ratio of areas seem that subdue its PAI results. What should be 

noted is the high similarity of their standard errors and MAD values.  

In order to compare the performance of these three methods for a same week, 

three mmaappss (see Appendix D) are created for crime type ‘all’. The provided information 

across the three methods refers to the week 47, when, based on the PAI metric the 

STARMA presents low performance while the naïve Baseline method higher and the 

KDE the highest. Furthermore, for both the three maps, the information of number of 

crime incidents is taken into account for each study zone. For this week, the threshold 

values for the naïve Baseline method is 45, for the KDE 29.63 and for the STARMA 

0.385. By dividing the number of real crimes into four classes (0 – 11, 11 – 32, 32 – 58 and 

58 – 98), it is observed that the Baseline method forecasts as hotspots all the areas that 

have the maximum number of crimes, several zones with the third class of crimes and 

none of the two other classes. The KDE method defines as hotspots the zones that have 

some crime incidents (low number) and not all the zones that belong to the highest 

crime class. Regarding the STARMA method, not only it defines all the study zones of 

highest crime numbers as hotspots, like the Baseline, it also forecasts several study 

zones with lower number of crimes. Finally, for the examined week the STARMA 

method shows more spiky distribution of hotspots than the Baseline and even more 

than the KDE.  
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5 Conclusions 
In this chapter, research questions which were reported in the first chapter are 

answered, taking into account the aforementioned results. The second section refers to 

the limitations of this study and the last section to the research directions.  

5.1 Answers to research questions 

RQ 1.1. How effective is an ST-AR method in predicting crimes in space and time? 

The results of the proposed ST-AR method (STARMA) showed significant potential in 

forecasting crimes. Not only the hit rate values, which range from 58% to 67%, but also 

the PAI values (between 2.4 and 2.9) prove its effectiveness. The exploration of different 

experiments and by considering different parameters showed that this model presents 

success in different versions. Without having extreme different results among all the 

examined cases, when both space and time parameters are considered, the proposed 

method shows a credible behavior in forecasting.  
 

RQ 1.2. Are the predictive results sensitive to the parameterization of space and time? 

Taking into account different space and time parameters some slight differences are 

observed. More particularly, the examination of how the results change in different 

space parameters, different number of neighbors are tested. However, the parameter of 

space is quite complex since it is strongly associated with the search radius. The method 

provides various results among different types of crimes and different experiments. 

Regarding the time parameter, this is also associated with the results, according to the 

examined experiments. For example, the scenarios that use only one temporal lag for 

both the testing variables and error terms, the model presents low results. On the other 

hand, by using two temporal lags there is higher performance.  

Therefore, both the parameters of space and time affect the performance of the 

model. When there is increased use of lags (time and space) in most of the cases the 

model presents higher results than using lesser spatial and temporal lags.  
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RQ 1.3. How do predictive results vary among different types of crime?  

For all the examined experiments of the STARMA method the results of PAI values is 

not the same for all the three crime types. More particularly, the type of ‘property’ 

crimes for all the cases excels the other two types in a significant level. On the other 

hand, the other two crime types (‘all’ and ‘violent’) present quite similar results.  

 

RQ 2.1. Which methods perform better in terms of the robustness and accuracy of crime 

forecasts? 

Robustness is based on how close the PAI or the Hit rate values are among weekly 

forecasting values and this is expressed through both Mean Absolute Deviation (MAD) 

and the Standard Errors. According to the results, for the PAI, the three methods 

provide similar values of MAD and Standard Errors. KDE seems to perform better for 

crime types ‘property’ and ‘violent’ and the Baseline for type ‘all’. To be noted that the 

values of MAD for the STARMA method do not significantly differ. For the Hit rate, in 

terms of robustness, the STARMA method performs better for all crime types because it 

presents the lowest MAD and standard errors values.  

In terms of accuracy, based on the PAI values, for crime type ‘all’, the method with the 

highest performance is the naïve Baseline method (difference with STARMA values is 

marginal). For crime type ‘property’ the method that performs better is the KDE while 

for type ‘violent’ the STARMA excels. Based on the Hit rates, for type ‘all’ the naïve 

Baseline is again the one that performs better whereas for the other two crime types the 

STARMA method shows the highest performance. 

 

RQ 2.2. Is the ranking of performance of the examined methods consistent among different types 

of crime?  

According to the results, there is not one method which perform the best among the 

different types of crimes. For example, for type all the baseline (naïve) method comes 

first while the KDE last based on both the PAI and Hit rate metrics. Similarly, again 

based on both the two metrics, for the crime type ‘violent’ the STARMA seems that 

provides the best forecasting contrary to the baseline and even more to the KDE. For 

type ‘property’, the PAI and Hit rate metrics indicate different methods to have high 
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performance. All in all, which method performs better every time depends on the crime 

type and on the using performance metrics. 

5.2 Limitation of current study 

During this study, some limitations were faced. These were related mostly to the study 

area and the spatiotemporal resolution. Concerning the study area, the geography of 

the NYC consisting of many different parts (e.g. small islands, borders of polygons with 

rivers) affected the search of neighbours (i.e. isolated blocks) and therefore the study of 

spatial parameter. Another limitation related to spatial resolution was the high 

dimensionality of matrices by using census blocks making it impossible to allocate the 

outputs. 

Concerning the temporal resolution, if the study was applied using the original 

temporal resolution (days) there would be the risk of having files or tables with high 

dimensions and therefore to deal with the same limitation with using census blocks for 

spatial resolution. 

5.3 Research directions 

The above limitations can be perceived as opportunities for future work in order to deal 

with them and evaluate in a more complete way the proposed method. In this direction, 

it is recommended for further research to expand present study by analyzing more 

crime types. In this way, the results of STARMA performance will be validated 

providing a more robust position in the field of forecasting crimes. Moreover, since the 

STARMA method is a spatiotemporal model, it is proposed to be tested for different 

spatiotemporal resolutions in order to see its sensitivity. For instance, different temporal 

resolutions that could be used are days, 2-weeks period or months. Also, different 

spatial scale for both study area and study zones could be examined. For example, by 

using grid boundaries instead of administrative ones or higher spatial resolutions, such 

as census blocks.  
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APPENDICES  
Due to the large content of appendices, the majority of big tables and codes are located 

at an external file in the submitted folder and here only some of them are presented. 
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Appendix A: Model builder for KDE – graphical 
representation 
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Appendix B: Evaluation of KDE and naïve Baseline 
methods 

# The evaluation of the KDE is based on outputs from ArcGIS and more particularly the model builder 
process. 

# The following script is repeated 52 times  

#for (XX in 2:53) 

kde_trueXX<-as.data.frame(matrix(0,248,7)) 

for (i in XX:XX) { 

  filename <- sprintf("C:\\...all\\allforw%d",i) #this is the path of datasets  

  forecastkde <- read.csv(filename, header = TRUE, sep = ",", dec = ".") 

  filename2 <- sprintf("C:\\...all\\week%d",i)   #this is the path of datasets  

  realkde <- read.csv(filename2, header = TRUE, sep = ",", dec = ".") 

  kde_trueXX[,1]<-realkde$XCoord 

  kde_trueXX[,2]<-realkde$YCoord 

  kde_trueXX[,3]<-realkde$ZIPCODE 

  kde_trueXX[,4]<-forecastkde$ZIPCODES_ZONES.SHAPE_AREA 

  kde_trueXX[,5]<-realkde[,4] 

  kde_trueXX[,6]<-forecastkde[,5] 

  kde_trueXX[,7]<-realkde$WK 

} 

for (i in 1:248){ 

  kde_trueXX[i,8]<-BZ_def_geo$geometry[i] 

} 

# After 52 times, all the files are binded 

kde_outputs_all<-
rbind(kde_true2,kde_true3,kde_true4,kde_true5,kde_true6,kde_true7,kde_true8,kde_true9,kde_true1
0,kde_true11,                   
kde_true12,kde_true13,kde_true14,kde_true15,kde_true16,kde_true17,kde_true18,kde_true19,kde_tr
ue20,kde_true21,                      
kde_true22,kde_true23,kde_true24,kde_true25,kde_true26,kde_true27,kde_true28,kde_true29,kde_tr
ue30,kde_true31, 
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kde_true32,kde_true33,kde_true34,kde_true35,kde_true36,kde_true37,kde_true38,kde_true39,kde_tr
ue40,kde_true41, 

                       
kde_true42,kde_true43,kde_true44,kde_true45,kde_true46,kde_true47,kde_true48,kde_true49,kde_tr
ue50,kde_true51, 

                       kde_true52,kde_true53) 

# Columns get appropriate names 

colnames(kde_outputs_all)[1]<-"X" 

colnames(kde_outputs_all)[2]<-"Y" 

colnames(kde_outputs_all)[3]<-"ZIPCODE" 

colnames(kde_outputs_all)[4]<-"AREA" 

colnames(kde_outputs_all)[5]<-"CRIMES" 

colnames(kde_outputs_all)[6]<-"FORECAST_HOTSPOT" 

colnames(kde_outputs_all)[7]<-"WEEK" 

colnames(kde_outputs_all)[8]<-"geometry" 

# Assumption that NULL values of KDE outputs are "non-hotspot" areas 

sizef <- nrow (kde_outputs_all) 

for (k in 1:sizef){ 

  if (kde_outputs_all[k, 6]=="NULL"){ 

    kde_outputs_all[k, 6] = 0 

  } 

} 

kde_outputs_all[,6]<- droplevels(kde_outputs_all[,6])  

a=0 

N=0 

n=0 

for (i in 1:12896){ 

  if (kde_outputs_all$WEEK[i]==XX){ 

    N=N+sum(kde_outputs_all$CRIMES[i]) 

    if (kde_outputs_all$FORECAST_HOTSPOT[i]==1){ 

      n=n+sum(kde_outputs_all$CRIMES[i]) 
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      a=a+sum(kde_outputs_all$AREA[i]) 

    } 

  } 

} 

# the process is repeated for each type crime------------------------- 

#--------------------------------------------------------------------------------------- 

# The evaluation of the baseline method is based on output files, which created manually from real data. 

# The following script is repeated 52 times  

#for (XX in 2:53) 

baseline_trueXX<-as.data.frame(matrix(0,248,7)) 

for (i in 2:2) { 

  filename <- sprintf("C:\\...all\\allforw%d",i) 

  forecastb <- read.csv(filename, header = TRUE, sep = ",", dec = ".") 

  filename2 <- sprintf("C:\\...all\\week%d",i) 

  realb <- read.csv(filename2, header = TRUE, sep = ",", dec = ".") 

  baseline_trueXX[,1]<-realb$XCoord 

  baseline_trueXX[,2]<-realb$YCoord 

  baseline_trueXX[,3]<-realb$ZIPCODE 

  baseline_trueXX[,4]<-zip_area$ZIPCODES_ZONES.SHAPE_AREA 

  baseline_trueXX[,5]<-realb[,4] 

  baseline_trueXX[,6]<-forecastb[,4] 

  baseline_trueXX[,7]<-realb$WK 

  colnames(baseline_trueXX)[1]<-"X" 

  colnames(baseline_trueXX)[2]<-"Y" 

  colnames(baseline_trueXX)[3]<-"ZIPCODE" 

  colnames(baseline_trueXX)[4]<-"AREA" 

  colnames(baseline_trueXX)[5]<-"CRIMES" 

  colnames(baseline_trueXX)[6]<-"FORECAST_HOTSPOT" 

  colnames(baseline_trueXX)[7]<-"WEEK" 

} 
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# After 52 times, all the files are bind 

baseline_outputs_all<-
rbind(baseline_true2,baseline_true3,baseline_true4,baseline_true5,baseline_true6,baseline_true7,base
line_true8,baseline_true9,baseline_true10,baseline_true11,             
baseline_true12,baseline_true13,baseline_true14,baseline_true15,baseline_true16,baseline_true17,bas
eline_true18,baseline_true19,baseline_true20,baseline_true21,                         
baseline_true22,baseline_true23,baseline_true24,baseline_true25,baseline_true26,baseline_true27,bas
eline_true28,baseline_true29,baseline_true30,baseline_true31, 

baseline_true32,baseline_true33,baseline_true34,baseline_true35,baseline_true36,baseline_true37,bas
eline_true38,baseline_true39,baseline_true40,baseline_true41, 

baseline_true42,baseline_true43,baseline_true44,baseline_true45,baseline_true46,baseline_true47,bas
eline_true48,baseline_true49,baseline_true50,baseline_true51, 

                            baseline_true52,baseline_true53) 

Percentile_00  = min(baseline_outputs_all[,6]) 

Percentile_5th  = quantile(baseline_outputs_all[,6], 0.8) #classification based on quantile classes 

Percentile_100 = max(baseline_outputs_all[,6]) 

baseline_outputs_all[,6][baseline_outputs_all[,6] >= Percentile_00 & baseline_outputs_all[,6] <  
Percentile_5th]  = 0 

baseline_outputs_all[,6][baseline_outputs_all[,6] >= Percentile_5th & baseline_outputs_all[,6] <= 
Percentile_100] = 1 

k=XX 

a_all=0 

N_all=0 

nall=0 

for (i in 1:12896){ 

  if (baseline_outputs_all$WEEK[i]==k){ 

    N_all=N_all+sum(baseline_outputs_all$CRIMES[i]) 

    if (baseline_outputs_all$FORECAST_HOTSPOT[i]==1){ 

      nall=nall+sum(baseline_outputs_all$CRIMES[i]) 

      a_all=a_all+sum(baseline_outputs_all$AREA[i]) 

    } 

  } 

} 

# the process is repeated for each type crime------------------------- 
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Appendix C: Implementation and evaluation of 
STARMA method for this thesis 

# This file contains the implementation of starma based on zip code study zones and its evaluation 

# The process is repeated for each crime type: 

# Create neighbors based on the study area 

knb <- dnearneigh(my_sites_Bz, 0, 15800)  # radius can be changed (cases that examined: r=15800, 
r=16200 & r=20000) 

knb <- nblag(knb, 2) #different number of neighbors are examined (cases that examined: n=2 (only for 
r=15800), n=3 & n=4) 

klist <- list(order0=diag(248), # the number corresponds to the amount of study zones that used 

              order1=nb2mat(knb[[1]]), 

              order2=nb2mat(knb[[2]])) 

            # order3=nb2mat(knb[[3]])) 

            # order4=nb2mat(knb[[4]])) 

# Normalize the data 

all_norm<- stcenter(working_for_Zip_all) #for property type write "working_for_Zip_p" and for violent 
"working_for_Zip_v" 

# Estimate the process 

ar<-1 # Different scenarios are examined (ar=1 for scenarios 0 & 2 and ar=2 for scenarios 1 & 3) 

ma<-1 # Different scenarios are examined (ma=1 for scenarios 0 & 1 and ma=2 for scenarios 2 & 3) 

model <- starma(all_norm, klist, ar, ma) 

model 

summary(model) 

model$residuals #residuals of the model 

(max.print = 53) # because of 53 weeks 

res_ok_all_0<-model$residuals 

suma<-res_ok_all_0 + all_norm #calculation of propabilities based on real data values and their residuals 

# The code below refers to its evaluation with PAI and Hit rate metrics 

# Classify model 

mystar <- data.frame(matrix(NA, nrow = 248, ncol = 53)) # create new empty dataframe 

mystar<-as.data.frame(t(suma)) # transpose suma to get weeks as columns and polygons as rows 

colnames(mystar) <- paste("week", 1:53, sep = "") #rename 
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mystarq<-data.frame(matrix(NA, nrow = 3, ncol = 53)) #making the table to classify values based on 
quantile classes 

for (i in 1:53){ 

  colnames(mystarq) <- paste("week", 1:53, sep = "") 

} 

rownames(mystarq)[1]<-"Percentile_00" 

rownames(mystarq)[2]<-"Percentile_80" #the fifth class 

rownames(mystarq)[3]<-"Percentile_100" 

for (i in 1:53){ 

  mystarq[1,i] = min(mystar[,i]) #it was for suma, but i try for mystar 

  mystarq[2,i] = quantile(mystar[,i], 0.8) #get the top 20% of values 

  mystarq[3,i] = max(mystar[,i]) 

}  

suma2<-suma #classify the initial outputs to 0 and 1 

for (i in 1:53){ 

  for (j in 1:248){ 

    if (suma2[i,j] < mystarq[2,i]){ 

      suma2 [i,j] <- 0 

    } 

    else if (suma2[i,j] >= mystarq[2,i]){ 

      suma2 [i,j] <- 1 

    } 

  } 

} 

# Create a result file 

real_all <- working_for_Zip_all #for property type write "working_for_Zip_p" and for violent 
"working_for_Zip_v" 

colnames(real_all)[1] <- "83" #this information should be reset because the initial format is not numeric 

for (i in 1:248){ 

  if (zip_area$ZIPCODE[i]==colnames(real_all[i])){ # a file with zip codes and their areas has been made 
"zip_area" 
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    real_all[1,i] <- zip_area$ZIPCODES_ZONES.SHAPE_AREA[i] 

  } 

} 

# Calculation of PAI and HIT RATE indexes 

Hotspot_star <- data.frame(matrix(0, nrow = 53, ncol = 4)) 

colnames(Hotspot_star)[1]<-"n" #number of crimes when a study zone is hotspot 

colnames(Hotspot_star)[2]<-"N" #total number of crimes in the whole study area 

colnames(Hotspot_star)[3]<-"a" #total area of hotspots 

colnames(Hotspot_star)[4]<-"A" #total area of the whole study area 

for (i in 1:53){ 

  for (j in 1:248){ 

    if (suma2[i,j]==1){ 

      Hotspot_star[i,1] <- Hotspot_star[i,1]+ sum(real_all[i,j]) 

      Hotspot_star[i,2] <- sum(real_all[i,]) 

      Hotspot_star[i,3] <- Hotspot_star[i,3]+ sum(real_all[1,j]) 

      Hotspot_star[i,4] <- sum(real_all[1,]) 

    } 

  } 

} 

for (p in 1:53){ 

  Hotspot_star$PAI[p]<- (Hotspot_star[p,1]/Hotspot_star[p,2])/(Hotspot_star[p,3]/Hotspot_star[p,4]) 

} 

 

Hotspot_star <- cbind(Week = rownames(Hotspot_star), Hotspot_star) 

rownames(Hotspot_star) <- 1:nrow(Hotspot_star) 

for (i in 1:53){ 

  Hotspot_star[i,7]<-Hotspot_star[i,2]*100/Hotspot_star[i,3] 

} 

colnames(Hotspot_star)[7]<-"Hit_rate" 

Hotspot_star[1:2,c(2:7)]<-0 # the first two rows (two weeks) should be equal to zero because they are 
included for forecasting 
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Appendix D: Maps 
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