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Abstract 
The eastern African region continues to be extremely vulnerable to droughts. In Kenya alone, about 

50 million people have been affected by droughts since 1983. Rainfall in the region is bi-modal, with 

the long rains in the boreal spring and the short rains in the boreal autumn. Seasonal forecasts of 

rainfall are essential to improve drought preparedness and mitigation for water managers and farmers. 

The aim of this study was to forecast monthly rainfall totals at a set of locations in the equatorial east 

African region, using an Artificial Neural Network (ANN) called a Long Short-Term Memory (LSTM). 

The input dataset consisted of seasonal forecasts (SEAS5) of precipitation and temperature from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) in combination with several 

climate indices related to the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and 

the Madden-Julian Oscillation (MJO). The performance was assessed by means of the WNDI 

(Weighted Non-Dimensional Index) and the anomaly correlation. Benchmarks for the evaluation 

included: climatology, precipitation forecasts by SEAS5 and a multi-variate linear model based on the 

same input data as the LSTM. In addition, the ability of the model to forecasts anomalous seasonal 

rainfall was assessed based on the 2x2 contingency table and associated scores (hit rate, false alarm 

rate and Clayton Skill Score). Sensitivity analysis was carried out to evaluate the relative importance 

of the features in the input dataset.  

 

For all lead times, the LSTM outperformed both the linear model and SEAS5 in terms of both anomaly 

correlation and WNDI, although it is not clear whether or not this is statistically significant. Especially 

at longer lead times the LSTM shows improved performance relative to SEAS5, due to a good 

coupling with the climate indices. At a lead time of 4 months and in terms of WNDI and the anomaly 

correlation, differences in performance between the long rains and the short rains were small. The 

LSTM model showed slightly better performance with a WNDI of 0.75-0.85 (equal to an RMSE of 6-

7% of the mean annual rainfall) and an anomaly correlation of 0.76-0.77, compared to the linear 

model. In the context of anomalous seasonal rainfall, the performance in the short rains was 

substantially better, on average, with hit rates between 40-50%, false alarm rates of 4% and Clayton 

Skill scores of roughly 0.7. The linear model performed better at forecasting below-normal rainfall in 

the short rains. The LSTM showed better performance in the long rains, especially when forecasting 

below-normal rainfall, with a hit rate of 42%, false alarm rate of 8% and a Clayton Skill Score of 0.55, 

on average. With regard to operational use, especially forecasts of anomalous rainfall are of interest, 

as they may be associated with the occurrence of floods and droughts. The model developed in this 

study is underconfident in forecasting these anomalies and are therefore not sophisticated enough 

for operational use. However, due to the observed low false alarm rates, it may still provide valuable 

information to farmers and water managers near the stations. Several suggestions are made for the 

improvement of the model developed in this study.  
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Introduction  
Background  
The natural disaster of drought can be characterized by its severity, duration and spatial extent. Due 

to these characteristics, drought is ranked the number one natural hazard in terms of impacts on 1) 

loss of life 2) economy 3) social impacts and 4) long-term impacts (Sivakumar et al., 2014). Due to 

Africa’s large dependence on rainfed agriculture and growing population, vulnerability to this natural 

hazard is high (Van Loon et al., 2016; Mondiale, 2008). In Africa, about 95% of agriculture is rainfed 

(Van Aalst et al., 2007) and about 70% of the populations livelihood is characterized by dependence 

on uncertain rainfall and exposure to climate risk (Hansen et al., 2011). Economically, the agricultural 

sector in east Africa makes up for about 40% of the GDP (FAO, 2014). The population of east Africa 

has doubled between 1983-2008, whereas per-capita agricultural land has decreased by 33% (Funk 

et al., 2008). Soil moisture drought (or agricultural drought) may result in reduced income for farmers, 

hunger, increased food prices, unemployment and migration (Sivakumar et al., 2014). On the 

seasonal timescale, rainfall totals below 500 mm are a rough indicator for inadequate water availability 

for agriculture (Sheffield et al., 2014). Table 1 shows a historical record of drought occurrence in the 

study area between 1980-2020 and the number of affected people. Kenya suffered from the most 

droughts, followed by Tanzania. The EM-DAT database was consulted but did not indicate economic 

damage since information on this topic is scarce. Due to this large vulnerability to droughts, seasonal 

forecasts can help to improve drought preparedness and mitigation for water managers and 

smallholder farmers (Van Loon, 2015). 

 
Table 1 Historical drought years between 1980-2020 and number of affected people sorted by country (source: EM-DAT, 
2020) 

Country Drought years People affected (*106) 

Burundi 1999, 2003, 2005, 2008, 2009, 2010 3.1 

Kenya 1983, 1991, 1994, 1996, 1999, 2004, 2005, 2008, 2010, 2012, 2014, 2016, 2019 50.2 

Tanzania 1984, 1988, 1990, 1996, 2003, 2004, 2006, 2011 12.7 

Uganda 1987, 1998, 1999, 2002, 2005, 2008, 2010 5.0 

Rwanda 1984, 1989, 1996, 1999, 2003 4.2 

 

Problem definition  
Rainfall in equatorial eastern Africa is bimodal and concentrated in two rainy seasons: the “long rains” 

in the months March, April and May and the “short rains” in the months October, November and 

December. The main source of variability throughout the year is associated with the short rainy season 

even though rainfall is generally lower during this season (Camberlin & Phillipon, 2002). In the long 

rains, sources of rainfall variability have proven difficult to pin down and interannual variability of rainfall 

in individual months of the long rains are uncorrelated. Nicholson and Entekhabi (1986) found that 

the opposite is true for the short rains. This is largely due to the strength and persistence of the El 

Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) during the short rains and is 

associated with above-average rainfall (Ogallo et al.1988, Kiladis & Diaz, 1989; Woodman, 2020; 

Keijzer, 2020). In the long rains, Zorita & Tilya (2002) found that March and April rainfall is linked to 

surface zonal winds and the zonal contrast between the Indian Ocean and the East African landmass. 

For May they found a strong link between the Indian monsoon, characterized by the meridional 

temperature contrast between the Asian continent and the Indian Ocean and meridional surface 

winds. The maximum possible lead time for prediction of the long rains is about 2 months due to the 

spring predictability barrier. The spring predictability barrier is a result of the fast changing state of the 
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tropical pacific ocean during spring, compromising the predictability of ENSO based on pre-spring 

variables (Nicholson, 2017). In addition to interannual variability, Pohl & Camberlin (2006) found a 

strong influence of the Madden-Julian Oscillation (MJO) on long rain intraseasonal variability (44% of 

long rains seasonal rainfall variance between 1979-1995). The MJO is a 30-60 day oscillation around 

the equator and proven to be a source of weather variability in the tropics on an intraseasonal 

timescale (Madden & Julian, 1994).  

Seasonal prediction of rainfall in equatorial east Africa is of large interest to the climate 

community, with a large amount of research carried out over the last 30 years (Nicholson, 2017). 

Although reliable seasonal forecast have strong potential benefits, both analysis and prediction of 

rainfall is challenging because of the complexity of the rainfall regime (Diro et al., 2011; Segele et al., 
2009). Due to the large correlation between the months and strength and persistence of 

teleconnections, the short-rains are more predictable than the long rains in both statistical and 

dynamical models (Dutra et al., 2013, Mwangi et al., 2014). Generally, statistical models outperform 

dynamical models in terms of forecast skill and have higher predictability at longer lead times (Chen 

& Georgakakos, 2015). The use of atmospheric variables (such as zonal winds and low-level 

circulation) in statistical models is underexploited, but is shown to be able to improve forecast skill 

(Nicholson, 2017). Physically based and dynamical General Circulation Models (GCMs) are able to 

issue seasonal forecasts of rainfall and are available from different climate forecast systems. Wanders 

& Wood (2016) applied a linear weighting method to four seasonal forecasts to create a multi-model. 

The multi-model was shown to have higher skill compared to a standard equally weighted multi-model 

mean.   

Cohen et al. (2019) argue that the climate community and seasonal forecasting centres rely 

almost entirely on dynamical models and the potential of modern statistical techniques referred to as 

‘machine learning’ is underestimated and underexploited. With regard to seasonal prediction of 

rainfall, most studies employ simple linear regression techniques. However, nonlinear relationships 

are shown to exist between large scale factors such as ENSO, and the surface and upper level zonal 

winds over the central equatorial Indian Ocean and rainfall, on an interannual basis (Black et al., 
2003). For example, Nicholson (2015) showed that in wet years, 3 to 4 of the aforementioned factors 

were associated with anomalous conditions, whereas in dry years, merely 1 or 2 and sometimes even 

none of the factors were associated with anomalous conditions. In addition to the amount of factors, 

wet years showed strong linear relations with the factors, but in dry years the sign of individual factors 

seemed to play a role, indicative of a non-linear response to changes in these factors.  

In contrast to linear models, Artificial Neural Networks (ANN) are a highly flexible model class 

based on data driven learning. As a result, ANNs make no implicit assumptions about a systems 

behaviour and are therefore applicable to both linear and nonlinear tasks. In the context of the problem 

in this study, this is highly desirable. In practice, ANNs have proven successful in the field of rainfall 

prediction due to the ability of ANNs to 1) learn from the past (data driven learning) and 2) to account 

for the aforementioned linear relationships between rainfall and the large scale climate indices 

(Parmar et al., 2017; Nayak, et al., 2013). Mwale & Gan (2005) acknowledged the nonlinear and 

nonstationary characteristics of the data (rainfall and SST) and showed that using an artificial neural 

network model calibrated by a genetic algorithm (ANN-GA) outperforms a traditional linear canonical 

correlation model (CCA) often used in prediction studies. The Pearson corelation was used as a 

performance measure and was observed to be 0.25-0.55 for the CCA versus 0.70-0.90 for the ANN-

GA, in East Africa.  
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Objectives and Research Questions 
The aim of this study is to forecast monthly rainfall totals at a set of locations in the equatorial east 

African region, using an ANN model with seasonal forecasts from ECMWF SEAS5 in combination with 

climate indices.   

 

The following specific objectives are defined: 

1. Compile a pre-processed dataset holding all inputs, including rainfall data at multiple gauged 

locations. 

2. Set up a model routine that allows forecasting at a 1-6 month lead time. 

3. Evaluate the skill of the ANN model relative to: climatology, a multivariate linear model and the 

seasonal forecast of ECMWF-SEAS5.  

4. Evaluate the skill of the ANN model with regard to anomalous seasonal rainfall.  

5. Evaluate the feature importance of individual features for all lead times and stations. 
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Study Area  
The study area is located between roughly 30-41°E and 4°N-7°S. It encompasses the countries of 

Tanzania, Kenya, Uganda, Rwanda and Burundi, and is similar to the study area of Woodman (2020). 

A digital elevation model is shown in Figure 1. A map of mean annual rainfall is shown in Figure 2. 

Largest rainfall amounts are found in Uganda and around Lake Victoria. Smallest rainfall amounts are 

found in large parts of northern and eastern Kenya.  

Figure 1 Digital Elevation Model (GTOPO30) of the study area (USGS, 1993) . 

 

Figure 2 Mean Annual Rainfall in EEA. Adopted from: Woodman (2020).  
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Figure 3 gives an overview of the locations of 

the 17 rainfall stations considered in this study, 

and their elevation. Most of the stations are 

located in Kenya and few in Northern Tanzania 

and Uganda. Elevations range from 138 m to 

1869 m.  

 

Topography & rainfall  

The topography is highly variable due to the 

presence of the East African rift that has a north-

south orientation and two branches running 

through the area. The area is characterized by 

lowlands and highlands, with Mt. Kilimanjaro 

peaking at 5895 meters above sea level. 

Although mean elevation has little influence on 

rainfall amounts, it has strong control on rainfall 

frequency (Camberlin et al., 2014). Low 

topography in northern parts of Kenya combined 

with high topography in Ethiopia result in a 

channel-like shape of the landmass with a south-

east to north-west orientation. As a result, a low-

level jet, referred to as the ‘Turkana Jet’ is formed. 

It is shown to affect low-level divergence in the 

area and is linked to the November-March 

northeast monsoon and the May-September 

southwest Monsoon (Figure 4; Nicholson, 2016). 

Spatially, increased values of divergence are 

associated with decreased values of rainfall 

(Figure 2). 

 

Coastal climate 

The coastal regions up to 50 kilometres inland 

have a different climate compared to inland 

regions due to sea breeze circulation in this area 

and its interaction with the Indian ocean 

monsoon. Long rains are enhanced, rainfall 

maximum occurs in May (instead of April for 

inland areas) and a moderate decrease of rainfall 

in the summer season (Camberlin & Planchon, 

1997).  

 

  

Figure 4 Mean vector wind and divergence at 850 mb during 
Nov-Mar (a) and May-Sep (b). Adopted from: Nicholson (2016). 

Figure 3 Rainfall stations in the research area. 
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Methods 
Figure 5 shows a schematic overview of the workflow of this study. In this chapter, the data and the 

modelling process will be discussed consecutively.  

 

Figure 5 Schematic overview of the workflow in this study. 

Data  
Station data 

The availability of monthly rainfall data on a station basis has been in the decline since the 1980’s in 

equatorial east Africa (Camberlin & Phillipon, 2002). Therefore, post-1990 temporal coverage of 

station data was relatively limited. However, Professor Sharon S. Nicholson (Florida State University) 

has provided a helping hand by sharing her personal gauge dataset for this study. The dataset 

compromised rainfall data derived from meteorological and agricultural bulletins and from unpublished 

archives from meteorological services (Nicholson, 1986). Stations were selected to meet the following 

criteria: 1) near full temporal coverage in between 1993-2011 and 2) <2 missing values. Missing 

values in the station data were replaced by the mean monthly rainfall, corresponding to the month 

that is missing. Furthermore, a basic analysis of the mean rainfall for each station was carried out to 

gain insight in the distribution of the rainfall. To be able to investigate differences in the long rains and 

short rains, stations with a clear bimodal distributions were of specific interest in this study. Stations 

without a clear bimodal distributions were removed. These included mostly stations where peak 

rainfall was observed outside of the defined rainy seasons.   

Seasonal forecast data  

Seasonal forecasts at a lead time varying from 1-6 months were obtained from the long-range 

forecasting system SEAS5, from the European Centre for Medium-Range Weather Forecasts 

(ECMWF). Both forecasts for precipitation as well as temperature were used in this study. More 

specifically, so called hindcast products (forecasts that are produced retrospectively) were used. The 

hindcast period available was 1993-2016, setting a lower limit to the temporal range of the study.  

Large scale climate indices 

Table 2 shows the results of a cross-correlation test with a 12-month window between rainfall in 4 

sub-regions and two lagged climate indices carried out by Woodman (2020). The climate indices 

include the Dipole Mode Index (DMI) and the Multivariate Enso Index (MEI). It is shown by the 



7 

 

correlation coefficient (r) that significant correlation exists between rainfall and climate indices up to 

a lag of -4 months for MEI in subregion 4. In this study DMI and MEI were also be used. Although the 

correlation between rainfall and an individual predictor may be low, the ANN model is able to model 

the nonlinear relationships between multiple predictors and rainfall, and after training the model output 

is expected to have a larger correlation with rainfall (Abbot & Marohasy, 2012). Berhane and Zaitchik 

(2014) showed a large influence of indices of the Madden-Julian oscillation between 80° and 120° of 

on rainfall in the study area. The indices described were retrieved from the Royal Dutch Meteorological 

Institute (KNMI) Climate Explorer.  

Table 2 Cross-correlation in a 12-month window between rainfall, DMI and MEI expressed by the r (modified after: 
Woodman, 2020) 

Region Description DMI MEI 

 r Lag (months) r Lag (months) 

EEA Full region: North-Tanzania, Kenya, Uganda, Rwanda, Burundi 0.34 -1 0.20 -3 

SR1 Eastern half of Kenya 0.37 0 0.26 -2 

SR2 Northwest Kenya 0.30 -1 0.15 -3 

SR3 Western Uganda, Rwanda 0.22 -1 0.14 -4 

SR4 North Tanzania, southwest Kenya 0.29 -2 0.19 +3 

(EEA: Equatorial East Africa, SR1-SR4: sub-region 1 – sub-region 4) 

The modelling process 
For each individual lead time, a separate model was created. This method is also referred to as a 

direct multi-step forecasting strategy (Brownlee, 2018). For each individual lead time model, the 

corresponding ECMWF SEAS5 data was selected (i.e. for the model at a lead time of two months, 

the SEAS5 input data was also produced at a lead time of two months). A function was developed 

to automatically generate the correct input dataset based on the lead and lag times of the model 

and features, respectively. 

The machine learning model that was used in this study is an artificial neural network (ANN). This 

model class is highly flexible model for relating a collection of inputs (e.g. lagged measurements or 

model forecasts at a set of locations) to a collection of outputs (in this case rainfall at different 

stations/locations) (Cohen et al., 2019). The inputs undergo a series of non-linear transformations in 

the ANN’s hidden layers based on the training data. These transformations are associated with 

weights that are optimized to minimize the prediction error of the model.  

In this study, the main interest was to forecast monthly rainfall based on a set of inputs. There are 

many ANN types and it is impossible to know in advance which type of network will perform the best 

(Abbot & Marohasy, 2014). Abbot & Marohasy (2012) used a simple recurrent network (SRN) called 

a Jordan-Elman network (Elman, 1990; Ding et al., 2013) to produce medium-range monthly rainfall 

forecasts at 1-3 month lead based on several climate indices and atmospheric variables. In this study, 

a Recurrent Neural Network (RNN) called a Long Short-term Memory (LSTM) was used. The LSTM 

cell is more successful at capturing long-term patterns and faster at training than other recurrent 

neural networks (Géron, 2019). In the following section, RNNs, memory cells and the LSTM will be 

described and explained schematically.  
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RNNs, memory cells & LSTM 

Inspired by biological neurons, 

the most basic neural network is 

based on an artificial neuron 

called a linear threshold unit 

(LTU). The LTU computes a 

weighted sum of the inputs 

(Figure 6a). A weighted sum 

(lower half of the circle in the 

figure) of the input values is 

applied to a step function (upper 

half of the circle in the figure) 

resulting in the output.  

Although there exists many types 

of RNNs, the most simple one 

consists of one neuron that feeds 

its output back into itself as 

shown schematically in Figure 

6b. Since the output of a 

recurrent neuron is dependent on 

all the inputs of previous 

timesteps, it has a form of 

memory. A (memory) cell is the 

part of the neural network that preserves a certain ‘state’ across timesteps (Figure 6c). Generally, the 

state of the cell at timestep 𝑡 (𝒉𝑡) is a function of inputs at the timestep and the state in the previous 

timestep (𝒉𝑡 = 𝑓(𝒉𝑡−1, 𝒙𝑡) . The output 𝒚𝑡 at the timestep is also a function of the state at the previous 

timestep and the inputs at the current timestep. Stacking multiple recurrent neurons such as the one 

in Figure 6a, results in a layer of recurrent neurons (Figure 6d). Note that because of the stack the 

output is no longer a scalar, but a vector. 

Figure 6 a) linear threshold unit (LTU) b) simple recurrent neural network c) 
schematic (memory) cell (left), through time (right)( d) layer of neurons (left) 
through time (right) (modified after: Géron, 2017) 
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The LSTM cell is an advanced version of 

a basic cell as described above and 

introduced by Hochreiter & Schmidhuber 

(1997). The LSTM cell is more successful 

at capturing long-term patterns and 

faster at training than other neural 

networks. The structure of an LSTM cell 

is shown in Figure 7. Instead of only one 

vector representing the (short-term) 

state of the cell, as in a basic cell as 

described above, the state of an LSTM 

cell is split into two vectors 𝒉𝒕 and 𝒄𝒕 that 

represent the short-term and long-term 

state, respectively.  The main idea behind 

an LSTM cell is that it can learn what it 

should store in, discard from and read 

from its long-term state. This is controlled by 

the input, forget and output gates, 

respectively. The cell contains four layers, of which the layer outputting 𝒈𝒕 is the main layer. In a basic 

cell, this is only a layer that is present and will return its output to 𝒚𝑡 and 𝒉𝒕 directly. The behaviour of 

this layer is the same as explained above, analysing the current input and previous (short-term) state. 

In contrast to a basic cell, in an LSTM cell the most important output of this layer is stored in the long-

term state 𝒄𝒕. The other three layers are gate controllers and ouput values are between 0 and 1, 

based on the logistic activation fuction. The element wise multiplication allows for the control of the 

gates, closing when they are 0 and opening when they are 1.  

The LSTM model has two important parameters that can be adjusted manually: the number of neurons 

and the batch size. These parameters are referred to as hyperparameters. Increasing the number of 

neurons in the LSTM network, increases the learning capacity of the network and training time 

(Brownlee, 2018). Using too many neurons might cause overfitting. During training, the LSTM network 

updates its weights every time a batch of training data is fed into it. The batch size therefore 

determines how often network weights are updated. In the case of this study, a batch size of 6 

corresponds to 6 months of training data. To properly align the batches with the training and test data, 

batch sizes tested were chosen to be a factor of both the train and test set size. 

With regard to the terminology, names and definitions vary between the statistical literature and the 

neural network literature. Table 3 indicates some of these differences to prevent confusion. In this 

study, neural network jargon will be used. In neural network literature, there are no equivalents for the 

terms ‘sample’ and ‘population’ but data is often divided in a ‘training set’ and ‘test set’ that are used 

for cross-validation (Sarle, 1994). 

  

Figure 7 Architecture of an LSTM cell. Adopted from: Géron (2017). 
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Table 3 Conversion table of statistical and neural network jargon (Sarle, 1994). 

 

 

 

 

 

 

 

 

Pre-processing the data 

Before training, all features were normalized so that the feature distribution had a range between 0 

and 1. This was done by applying the following statistical transformation: 

 

𝑋𝑠𝑡𝑑 = (𝑥 −
min(𝑋)

max(𝑋)
− min(𝑋))         1) 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋𝑠𝑡𝑑 ∗ ((max(𝑋) − min(𝑋)) − min(𝑋))        2) 

 

where 𝑥 represents a datapoint taken from the distribution 𝑋.  

 

Removing trends and seasonality from input data is common practice in time series forecasting with 

models such as the autoregressive integrated moving average (ARIMA) model. However, RNNs are 

capable of learning seasonal trends from the data.  Géron (2019) noted that detrending is therefore 

not necessary, as performance is expected to only increase slightly at best.  

 

Training the model  

The quality of a machine learning model can be expressed in terms of its variance and bias. The 

variance in this case refers to the spread in performance when the model is exposed to data that it 

was not trained on. A high-variance model might be able to reach a very good fit to the training data 

but fail to generalize well to unseen data. This is also referred to as overfitting. Bias, on the other hand, 

refers to how well the model is able to capture essential patterns in the data. A model with high bias 

will fail to capture these essential patterns and result in underfitting the data. An optimal model can 

be described as one that has low variance and low bias so that is both captures the essential patterns 

in the training data, but also generalizes well to unseen data. As variance and bias are negatively 

correlated, at the basis of every machine learning problem is the so called bias-variance trade-off.  

Before training, the data was split into two sets: the training set and the test set. The training and test 

sets compromised 60% and 40% of the original data, respectively. Since the data is a time-series and 

a certain level of time-dependency is assumed, it was not desirable to shuffle the data and split 

randomly. Therefore, the training data compromised a period from the start of the dataset to 60% of 

the total time period of the dataset. The test set was then defined as the last 40% of the time within 

the dataset. This created a realistic approach to the problem, since the test results are based on data 

that is collected after the training period. This is comparable to an operational forecast scenario, 

where future conditions are not known.  

 

Statistical jargon Neural Network jargon 

Variables  Features 

Independent variables Inputs 

Predicted values Outputs 

Dependent variables  Targets or training values  

Residuals  Errors  

Estimation Training 

Estimation criterion Error function 

Parameter estimates (Synaptic) weights 
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During the training phase, the neural network optimizes the weights so that the model output matches 

the training target as well as possible. In this study, the training targets were the monthly rainfall totals 

as measured at different stations. The RNN network processes the training set that is a time-series, 

in a step-by-step manner. Since it was desirable for the model to be trained on multiple timesteps, the 

LSTM layer was defined to make a prediction based on the inputs at every timestep. In this study a 

separate model is created for every lead time. Figure 8 shows the process as described above for a 

lead 1 model. In this set-up, the model produces a continuous time-series and was able to account 

for seasonal biases in the seasonal forecasts of the GCMs.  

 

 

Figure 8 Schematic overview of the single- step, lead time=1 model. 

To prevent both the linear and the LSTM models from overfitting, an automated procedure was 

implemented that monitored both the training and test error during training. The procedure stopped 

training after reaching a minimum train and test error on the data. There were several optimization 

algorithms available that could be implemented for this procedure. In this study, the Adam 

optimisation algorithm was implemented for its computational efficiency and the little memory 

requirements (Kingma & Ba, 2014). The stochastic nature of the optimization algorithm may produce 

slight differences in performance (Brownlee, 2018).  
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Forecast verification 
Verification methods for a continuous predictand 

The forecast model designed in this study produced forecasts of a continuous predictand (rainfall) in 

a non-probabilistic fashion. In this case, two scalar measures are in common use: the Root Mean 

Square Error and the Mean Absolute Error (Wilks, 2006).  

 

The Root Mean Square Error (RMSE) is a very basic measure of the difference between predicted 

and observed values. It is the square root of the average of squared errors as can be seen in equation 

3, where y𝑡 represents a value from the prediction and 𝑜𝑡 represents the observed value. Values of 

RMSE are always positive and values close to 0 indicate a near-perfect fit. In addition, it takes the 

square root of the Mean Squared Error (MSE), which is also applicable, but the RMSE has the 

advantage that errors can be expressed in the same physical dimension as the variable that is 

evaluated: rainfall.  

 

𝑅𝑀𝑆𝐸 =  √∑ ( y𝑡−𝑜𝑡)2𝑁
𝑡=1

𝑁
=  √𝑀𝑆𝐸        3) 

        

 

The second scalar measure, the Mean Absolut Error (MAE), is less sensitive to outliers compared to 

the MSE where forecast errors are squared. Since both RMSE and MAE have the same physical 

dimensions as rainfall, they may be interpreted as a typical magnitude for forecast errors (Wilks, 

2006).  

 

𝑀𝐴𝐸 =  
∑ |y𝑡−𝑜𝑡|𝑁

𝑡=1

𝑁
          4) 

 

Since the RMSE squares the errors, it is more sensitive to outliers than the MAE. In this study, the 

largest errors were expected to be found in the months with the largest amounts of rainfall: the long 

rains and the short rains. Combining these two observations, the RMSE was considered the most 

relevant metric in this study. To prevent underfitting of rainfall in the rainy seasons, the RMSE was the 

selected metric to be observed by the Adam optimization algorithm during training.   

 

The model used in this study predicted monthly rainfall at different stations. However, the mean annual 

rainfall may have differed between rainfall stations, affecting the magnitude of the RMSE. To allow for 

a comparison between stations, a weighted version of the RMSE was used: the Weighted Non-

dimensional Index (WNDI). The WNDI was defined as the RMSE relative to the mean annual rainfall 

as described in equation 5 (Johns et al., 2006). A WNDI of 0 indicates a perfect score. A WNDI  of 1 

equals an RMSE value equal to 1/12th of the mean annual rainfall and indicates a moderate score. A 

WNDI of 0.5 can be interpreted as a good score.  

 

𝑊𝑁𝐷𝐼 =  
𝑅𝑀𝑆𝐸∗12 

𝑚𝑒𝑎𝑛 𝑎𝑛𝑛𝑢𝑎𝑙 𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙
         5) 

As a measure of linear correlation between the forecasts and the actual values, the Pearson product-

moment coefficient of linear correlation was used. Correlating the forecasts directly with the 

observations may be misleading, as seasonal variation might cause very high values of correlation 

(Persson, 2001). To account for seasonal variation, the anomaly correlation coefficient (ACC) was 

calculated according to equation 6.  

https://en.wiktionary.org/wiki/%C5%B7#Translingual
https://en.wiktionary.org/wiki/%C5%B7#Translingual
https://en.wiktionary.org/wiki/%C5%B7#Translingual
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𝐴𝐶𝐶 =  
(𝑓−𝑐)(𝑎−𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

√(𝑓−𝑐)2(𝑎−𝑐)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
          6) 

Here, 𝑓 and 𝑎 represent the forecasted and actual values of precipitation and 𝑐 represents the mean 

monthly rainfall. For this reason, the ACC is a skill score relative to the climate. An ACC of 0 represents 

no correlation, ACC>0 represents an improvement over the climatology and ACC=1 represents a 

perfect forecast.  

In  order to objectively assess the quality of the forecasts produced by the LSTM, a systematic 

comparison was made with respect to climatology, ECMWF SEAS5 and a multivariate linear model. 

The assessment was based on the WNDI and the ACC. Since the ECMWF SEAS5 was used as input 

to the models, both the linear and LSTM model were expected to have better performance. It was, 

however, useful to use SEAS5 as a benchmark to quantify the actual improvement over SEAS5. 

Finally, the linear model was used as a third reference to test the potential advantage of a non-linear 

model in seasonal rainfall forecasting.  

Verification methods for a discrete predictand 

So far, methods of forecast verification of a continuous variable (rainfall) have been presented. To 

assess the ability of the models to forecast extreme seasonal rainfall totals, the 2x2 contingency table 

was used (Figure 9, Wilks (2006)). The contingency table assumes a dichotomous outcome (either 

the occurrence or non-occurrence of a certain event) and compares the observed frequencies of 

occurrence and non-occurrence with the forecasted frequencies. Four possible scenarios are 

present: a) the event is observed and forecasted, b) the event is not observed but forecasted, c) the 

event is observed but not forecasted and d) the event is not observed and not forecasted. 

To analyse the total rainfall over a season three specific 

events were defined: below-normal seasonal rainfall, 

normal seasonal rainfall and above-normal seasonal 

rainfall. Assuming a near-normal distribution of the 

seasonal rainfall totals, normal seasonal rainfall was 

defined as the 𝑚𝑒𝑎𝑛 ± 0.8 × 𝑠𝑡𝑑 (Figure 10). The 

factorization of 0.8 × 𝑠𝑡𝑑 was chosen based on trial-

and-error to obtain a representable discrimination 

between categories. For each of the events a 2x2 

contingency table was constructed, indicating either the 

occurrence or non-occurrence of the event.  

 

 

  
Figure 9 The 2x2 contingency table comparing 
observed and forecast frequencies of occurrence and 
non-occurrence of a dichotomous event (adapted 
from: Wilks, 2006). 
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Based on the results obtained from the constructed contingency tables, several scalar attributes 

were computed to allow for an evaluation of the results. The letters (a, b, c, d) used in the equations 

are consistent with the definitions in Figure 9.          

The bias (B, equation 7), is the ratio between the number of yes forecasts and the number of yes 

observations. Unbiassed forecasts will have a bias of 1 (indicating that the number of yes forecasts 

is equal to the number of yes observations). 

𝐵 =
𝑎+𝑏

𝑎+𝑐
           7) 

The hit rate (H, equation 8) is the ratio between the number of yes forecasts that are also observed 

and the total number of yes observations and is also called the probability of detections (POD). A 

perfect hit rate is equal to 1 (indicating that all observed occurrences are also forecasts). 

𝐻 =
𝑎

𝑎+𝑐
           8) 

The false alarm rate (F, equation 9) is the ratio between the number of false alarms and the total 

number of cases for which the event did not occur. The best possible false alarm rate is 0 (indicating 

that an event was never forecast when it also did not occur.  

𝐹 =
𝑏

𝑏+𝑑
           9) 

In addition, the Clayton Skill Score (CSS) was computed (Clayton, 1927). The CSS is defined 

following equation 10. When an event occurs more frequently when forecast than when not 

forecast, the CSS indicates a positive skill. A CSS of 0 indicates a random forecast.  

 

Figure 10 The defined categories for below normal conditions (to the left of the lower 
boundary), normal conditions (between the lower and upper boundary) and above-
normal conditions (to the right of the upper boundary), based on the normal 
distribution. Boundaries are located at +/- 0.8 standard deviations from the mean.  
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𝐶𝑆𝑆 =
𝑎

𝑎+𝑏
−

𝑐

𝑐+𝑑
=

𝑎𝑑−𝑏𝑐

(𝑎+𝑏)(𝑐+𝑑)
         10) 

 

Sensitivity analysis  
Repeated experiments 

Multiple repeated experiments were carried out to find the optimal lag times for rainfall and the climate 

indices, as well as the optimal setting for the hyperparameters of the LSTM (number of neurons and 

batch size). A valid range of values was selected for the parameter under investigation and the model 

was run iteratively over each possible value. Each iteration was repeated 30 times to gain insight in 

the spread of performance for each setting, accounting for potential differences in performance due 

to early stopping and the stochastic nature of the learning algorithm. After the procedure was 

completed for a certain parameter under investigation, a setting with both lowest median RMSE and 

lowest spread was considered to be optimal.  

Robustness experiment 

The data split of 60% training data and 40% test data was initially done chronologically, as described 

before. However, Woodman (2020) showed significant trends throughout the research area in terms 

of SPI06, indicating both wetting and drying. SPI06 refers to the calculation of the SPI based on an 

accumulation period of 6 months. In case of a chronological split and the presence of a trend in the 

data, the training set does not represent the test set correctly. To test the variation in performance of 

the LSTM model when it is trained on shuffled data, a repeated experiment was designed. In the 

experiment, the years in the training and test sets were shuffled, but the months within each year were 

kept in chronological order. The procedure of the experiment is shown schematically in Figure 11.  

 

 

Figure 11 Schematic overview of the robustness experiment. 
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Feature importance  

The input dataset consisted of lagged observed rainfall, lagged indices and seasonal forecasts from 

SEAS5. Recognizing the potential differences in the relative importance of the features that may have 

been be present between stations, an experiment was designed to indicate the relative importance of 

each feature.  

In a linear model, it is valid to use the weights for feature importance testing after the model is trained, 

because the weights represent a direct linear relationship between the inputs and outputs. For a non-

linear model, such as an LSTM, this is not valid and an alternative method should be used. In the case 

of this study, the effect of individual features on the performance was tested in the following manner. 

First, a benchmark performance was created by running the LSTM model on none of the features, 

except the lagged rainfall amounts. Secondly, the model was run with the lagged rainfall amounts and 

one other feature under study. Finally, the difference in performance is assessed by means of the 

RMSE. This step was repeated for every feature in the input dataset and for all lag times.  

The criterium for a feature to be considered ‘relevant’, an increase in performance of >1% was used 

as a threshold.  

Software 

All programming was carried out in the Python programming language (Python Software Foundation, 

2020). Additional packages used included NumPy (Oliphant, 2006), TensorFlow (Abadi et al, 2016), 

Scikit-Learn (Pedregosa et al., 2011). The Keras API (Géron, 2019) was used for its built-in layers 

such as LSTM, so that advanced configuration choices will not have to be made.  
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Results 
Literature study 
Defining drought 

The qualitative description of drought is 

‘a deficit of water relative to normal 

conditions’ (Lloyd-Hughes, 2013). 

Traditionally, the drivers for drought 

were exclusively viewed in relation to 

climate variability, but Van Loon et al., 

(2016) propose the inclusion of human 

activities into the definition, since both 

natural and anthropogenic processes 

interact in a complex way. Here, 

drought is defined as a time-dependent 

propagation from meteorological 

drought to soil moisture drought to 

hydrological drought (Figure 12). 

Meteorological drought is defined as a 

prolonged and abnormal moisture 

deficiency in the atmosphere (Huschke, 

1959). The occurrence of a meteorological drought, might propagate into a soil moisture drought 

depending on boundary conditions and initial soil moisture conditions after a certain amount of time. 

The definition of soil moisture drought is ‘a period of below-normal soil moisture levels. In the context 

of crop growth, this type of drought is often referred to as ‘agricultural drought’: ‘a shortage of water 

harmful to man’s agricultural activities’ (Heathcote, 1974). Again, soil moisture drought might 

propagate into hydrological drought, defined as below-normal streamflow, groundwater and lake or 

reservoir levels’. In this research meteorological drought will be addressed.  

To be able to study drought, a qualitative definition is not sufficient. McKee et al. (1993) noted that 

droughts are implicitly related to time and proposed a universal, versatile tool to be able to quantify 

drought: the Standardized Precipitation Index (SPI). The SPI is based on only one input parameter 

(precipitation) and is an index that is computed on the basis of a precipitation anomaly over a set time 

period relative to average climate conditions. Due to its universality, the World Meteorological 

Organization (WMO) has recommended the use of the SPI for all National Meteorological services 

around the world (Svoboda, 2012). 

  

Figure 12 Drought definition framework. Adopted from: Van Loon et al. 
(2016). 
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Rainfall variability in equatorial east Africa 

Equatorial East Africa (EEA) has 

a semiarid-arid climate. Rainfall 

is controlled by a large set of 

controls that are depicted 

schematically in Figure 13 

(Nicholson, 2017). These 

controls have effects on different 

timescales. For this reason, 

variability of rainfall will be 

discussed for different 

timescales in the context of 

underlying controls.  

 

Seasonality  

Rainfall in equatorial eastern 

Africa (EEA) is bimodal and 

concentrated in two rainy 

seasons: the “long rains” in the 

months March, April and May 

(MAM) and the “short rains” in 

the months October and November and December (OND). Differences in the definition of the rainy 

seasons exists between authors (for example, Nicholson (2017) defines the short rains to include only 

October and November (Figure 13)). Camberlin & Phillipon (2002) carried out principal component 

analysis to assess spatial variation in rainfall between months, and found that March and April and 

October and November had similar spatial patterns, but May and December did not. Consequently, 

a universal definition of the rainy seasons is not present. In this study, the long rains are defined from 

March-May (MAM) and the short rains from October-December (OND).  

 

The definition of  the migration of the Intertropical Convergence Zone (ITCZ) is one of the main 

controls with regard to seasonal rainfall variation. The ITCZ is defined as “a region near the equator 

where trade winds converge” (Miller, 1996). However, over equatorial East Africa and other tropical 

landmasses, trade winds do not exist and convergence of the northeasterlies and southwesterly 

monsoon flow are used here to refer to the ITCZ (Nicholson, 2018). The Indian monsoon creates a 

low-level easterly/notheasterly flow from November to March and a southerly flow from May to 

October and the peak of the monsoon months corresponds to the dry season in East Africa 

(Nicholson, 2017). The ITCZ is often associated with a rainfall maximum, but this assumption is not 

valid over EEA. For this reason, Nicholson (2009) proposed the use of the term tropical rain belt and 

suggested that the use of ITCZ should be avoided over EEA, except for coastal areas being influenced 

by trade winds. Yang et al. (2015) suggested that the bimodal annual cycle is a result of the annual 

cycle of monsoonal winds combining with the annual cycle of the Indian Ocean SST. Sea surface 

temperatures in the western Indian Ocean, near the coast of EEA, are higher during the rainy seasons 

and highest during the long rains. Therefore, the long rains are longer and more intense than the short 

rains (Yang et al., 2015).   

 

Intraseasonal variation and predictability 

Intraseasonal variation of rainfall is highly crucial for agriculture, as it refers to the occurrence of dry 

spells and wet spells. Within the rainy seasons, dry spells occur about 3-4 times with a length of 5-10 

Figure 13 Schematic representation of Local Geographic Factors, Remote 
Forcing, Regional Circulation and Coastal Influences affecting the rainy 
seasons in eastern Africa. Adopted from: Nicholson (2017). 
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days (Nicholson, 2017). The short rains are more variable and generally less intense compared to the 

long rains and suffer from more dry spells that exceed 7 and 14 days (Den Daas, 2016). The 

occurrence of a dry-spell within the rainy season can be detrimental to rainfed crop production and 

risk reduction for dry spell induced crop failures are among the key strategies for improvement of 

agricultural management (Rockström et al, 2010). 

Pohl & Camberlin (2006) found a strong influence of the Madden-Julian Oscillation (MJO) on 

long rain variability (44% of long rains seasonal rainfall variance between 1979-1995). Common 

variance of MJO and rainfall on  an interannual basis is variable (5%-53%). Dry conditions are 

associated with a weak MJO and a stronger Walker-like circulation over the Indian Ocean. The MJO 

is a 30-60 day oscillation around the equator and proven to be a source of weather variability in the 

tropics on an intraseasonal timescale (Madden & Julian, 1994). It is apparent as a large-scale 

eastward propagating system of convection, zonal winds and upper-level velocity potential (Hendon 

& Salby, 1994). Indices of MJO are constructed based on the geographical location of the convective 

centre that leads to increased precipitation and is expressed by the longitude. Berhane & Zaitchik 

(2014) studied specifically the impact of the MJO on east African rainfall on an intraseasonal basis 

between 1998 and 2012. They found that indices of MJO at 70°-80°E and 120°W show highest 

correlations with East African rainfall. They also found that, related to the MJO, two important 

mechanisms (thermodynamic and convergence) affect East African rainfall in both the long rains and 

the short rains (Figure 14). In the figure, the MSE refers to the Moist Static Energy and SLP to Sea 

Level Pressure. Both mechanisms result in increased precipitation in East Africa. 

 

 
 
Figure 14 Meteorological mechanisms affecting East African rainfall, associated with the MJO. MSE refers to the Moist Static 
Energy and SLP to Sea Level Pressure (modified from Berhane & Zaitchik, 2014). 

 

Interannual variation and teleconnections 

When considering interannual variability of rainfall over the region, it is useful to note that the main 

source of interannual variability throughout the year is associated with the short rainy season even 

though rainfall is generally lower during this season (Camberlin & Phillipon, 2002). The long rains are 

less variable (or more reliable in other words) and have less of a relative effect on interannual variability 

(Den Daas, 2016).  

Even though the annual rainfall field over the research area is extremely heterogenous, strong 

coherence in the patterns of interannual variability exists (Woodman, 2020; Nicholson, 2017). 

Traditionally, interannual variability of rainfall over the region and its periodicity was suggested to be 

related to the Southern Oscillation Index (SOI) (Nicholson & Entekhabi, 1986). This index is a 
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standardized index based on the observed sea level pressure differences between Tahiti and Darwin, 

Australia. SOI is indicative of the El Niño Southern Oscillation (ENSO), which is a periodic fluctuation 

(every 2-7 years) in sea surface temperature (El Niño) and the air pressure of the atmosphere 

(Southern Oscillation). Links of ENSO to interannual variability of east African rainfall are well 

established (Ropelewski & Halpert, 1986; Ogallo & Janowiak, 1988; Woodman, 2020; Keijzer, 2020).  

The 1997/1998 El Niño event triggered a surge of research activity due to the strong and 

present link between ENSO and east African rainfall (Hansen et al., 2011). In 1999, a sea surface 

temperature (SST) mode was discovered to exist in the Indian Ocean that is referred to as the Indian 

Ocean Zonal Mode (IOZM) or Indian Ocean Dipole (IOD) (Webster et al., 1999; Saji et al., 1999). The 

positive phase of the IOD is associated with anomalously warm SST’s in the western Indian Ocean 

that are associated with anomalously large amounts of rainfall during the short rains (Black et al., 
2003; Woodman 2020; Keijzer 2020).   

There exists uncertainty to whether or not ENSO and IOD are independent phenomena, since 

it is shown that an atmospheric response to variations in the Indian Ocean is required for ENSO to 

impact east African rainfall (Saji et al., 1999; Goddard and Graham 1999). In addition, Goddard & 

Graham (1999) proved that zonal circulation over the Indian Ocean is critical for transmitting the 

ENSO signal to East Africa. Keijzer (2020) applied partial correlation between both ENSO, IOD and 

other teleconnections and rainfall in the Lake Manyara (Tanzania) catchment and found that IOD is 

least intercorrelated, whereas ENSO is correlated to a higher degree with other teleconnections. With 

respect to the actual correlation, Keijzer (2020) showed that IOD has the largest influence on OND 

rainfall compared to ENSO, MJO.  

Phenomena such as ENSO, related to sea surface temperatures and air pressure have an 

effect on large scale circulation systems that affect rainfall patterns worldwide. Pohl and Camberlin 

(2011) looked at wind shear between the lower and upper troposphere that is embedded in these 

large scale atmospheric configurations and showed and linked this with regional rainfall anomalies. 

ENSO was shown to modulate this circulation most frequently on an interannual basis. La Niña (an 

exaggeration of normal zonal gradients) normally peaks between October and December 

encompassing the short rains in east Africa, causing below-normal rainfall (Camberlin & Philippon, 

2002). 

 
Predictability and forecasting 

Seasonal prediction of rainfall in EEA is of large interest to the climate community, with a large amount 

of research carried out over the last 30 years (Nicholson, 2017). Although reliable seasonal forecast 

have strong potential benefits, both analysis and prediction of rainfall is challenging because of the 

complexity of the rainfall regime (Diro et al., 2011; Segele et al., 2009). Research has indicated that 

the short rains are relatively predictable whereas the long rains are not. With regard to types of 

forecasting models, statistical models generally outperform dynamical models in terms of forecast skill 

and have higher predictability at longer lead times (Chen & Georgakakos, 2015). The use of 

atmospheric variables (such as zonal winds and low-level circulation) in statistical models is 

underexploited, but is shown to be able to improve forecast skill (Nicholson, 2017).  

 

Long Rains 

For the long rains, sources of rainfall variability have proven difficult to pin down (Camberlin & Phillipon, 

2002). Nicholson and Entekhabi (1986), showed that interannual variability of individual months in the 

long rains are uncorrelated. Camberlin & Phillipon (2002) obtained differences in variability between 

months by applying a principal component analysis and suggested that May should be considered 

separately from March and April due to different sources of variability. This was also recommended 

by Keijzer (2020). According to Zorita & Tilya (2002) the March and April rainfall is linked to surface 
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zonal winds and the zonal contrast between the Indian Ocean and the East African landmass. For 

May they found a strong link between the Indian monsoon, characterized by the meridional 

temperature contrast between the Asian continent and the Indian Ocean and meridional surface 

winds.  

Camberlin & Phillipon (2002) were the first to accentuate atmospheric variables in their 

regression model. Among the predictors were SSTs in Nino 1.2, zonal wind over the Congo basin at 

1000 mbar, geopotential height of the 500 mbar surface over the Near East and the east-west moist 

static energy gradient between the East African highlands and the Sahel. Correlations between 

predicted and observed March to May rainfall for Kenya/Uganda was 0.66 in cross-validation mode. 

They noted that although weak teleconnections are present during the long rains, there still is some 

predictability during this season.  

Focusing on southern Ethiopia, eastern Kenya and southern Somalia, Funk et al. (2014) 

applied a principal component analysis (PCA) to CHIRPS March-May rainfall data over the East 

African Region between 1981 and 2013 to identify the two main modes of rainfall variability over the 

research area (PC1 & PC2). By recognizing more frequent droughts in the area due to a stronger 

Walker Circulation (Willams & Funk, 2011), a warming of the Indo-Pacific warm pool and increased 

western Pacific SST gradient, they showed that the two main modes of variability are tied to western-

central Pacific and central Indian Ocean SST’s. They used the WPG (West Pacific Gradient index; 

Hoell & Funk, 2013) and CIO (Central Indian Ocean index; Zhou et al., 2017) in January to predict 

the two rainfall modes, respectively. The underlying idea here is that more recent analysis (1993-2012 

(Funk et al., 2013; Lyon & DeWitt, 2012) of east African rainfall indicates a link between a precipitation 

dipole over the western and central Pacific ocean. In addition, a combination of La Niña with a strong 

WPG produces large SST gradients across the entire equatorial Pacific and appear to be linked to 

increased subsidence over the Horn of Africa. These studies did not distinguish individual months 

within the long rains. 

Nicholson (2014) used multiple linear regression and used several atmospheric variables 

including: omega, zonal and meridional winds at 925, 850, 700 and 200 mbar. Omega is a 

meteorological variable indicating the vertical motion of wind in the troposphere and at a synoptic-

scale. An interesting conclusion of the study was that these variables provide a larger forecast skill 

than sea surface temperature and sea level pressure. 

The maximum possible lead time for prediction of the long rains is about 2 months due to the 

spring predictability barrier, which is associated with limited predictability of ENSO in this time. This 

again, is related to the rapidly changing conditions in the tropical Pacific Ocean that make the 

prediction of the state of the ocean very difficult.  

 

Short Rains 

Nicholson and Entekhabi (1986), showed that interannual variability of individual months in the long 

rains are uncorrelated, while the opposite is true for the short rains. This is largely due to the strength 

and persistence of ENSO and IOD during the short rains and is associated with above-average rainfall 

(Ogallo et al.1988, Kiladis & Diaz, 1989; Woodman, 2020; Keijzer, 2020).  

In more physical terms, ENSO and the IOD are both modulating the Walker Circulation. The 

Walker Circulation extends over the whole equator, but is characterized by an easterly flow at 

200mbar and westerly winds as low-levels over the Indian Ocean and associated with rising in the 

east and subsidence in the west. This low-level flow modulates the short rains more strongly than 

ENSO (Bergonzini et al., 2004). Increased westerlies, leading to a stronger Walker cell over the Indian 

Ocean and increased subsidence were related to 2005 and 2010 short rain droughts (Hastenrath, 

2007; Hastenrath et al., 2010). Lyon (2014) showed that SST anomalies in the Indian and Pacific 



22 

 

Oceans have a strong link to drought in the short rainy season, but that this link is much weaker during 

the long rains.  

Camberlin et al. (2002) investigated the relationships between atmospheric dynamics over 

the global tropics with rainfall in the short rains. As a result, they constructed two indices by principal 

component analysis, indicative of circulation over the western Indian Ocean, meridional winds over 

the south-eastern tip of Africa and a monsoon index with a NE component at 200mb and a SW 

component at 850 mbar  

Nicholson (2014) also predicted rainfall in the short rains (defined as October and November), 

again by implementing atmospheric variables (zonal, meridional winds and omega) and other 

variables (SST, SLP and IOD). Based on the values of the variable in May, a correlation of 0.80 was 

obtained, indicating the potential of forecasting a lead time of 6 months.  

Woodman (2020) performed a time lag cross-correlation analysis in four subregions of EEA 

to investigate the link between drought variability and ENSO and IOD. He found a considerable 

influence of these factors on drought variability in the area, although this influence was not 

homogeneous.  

 

The effect of ENSO and IOD on East African rainfall has been proven to be non-stationary (Figure 15, 

Nicholson, 2014). The figure indicates a decreasing correlation between ENSO and IOD and the short 

rains between 1982 and 1997, after which the correlation became stronger again after a regime shift 

(black line) in 1997.  

 

 
Figure 15 Sliding 20-year correlation between October and November rainfall and the indices for ENSO and IOD. Vertical 
lines indicate regime shifts. Values above the striped line are significant (alpha = 0.05). Adopted from: Nicholson (2014). 

 

Seasonal forecasting by dynamical models 

Physically based General Circulation Models (GCM’s) are used to issue seasonal forecasts of rainfall 

and are available from different climate forecast systems. Forecasts are generally issued at a monthly 

or daily temporal resolution and 1° spatial resolution. These forecasts have improved for temperature 

but less so for precipitation (Kirtman & Pirani, 2009). This can be addressed to the inherent chaotic 

character of the atmosphere, where slightly different initial conditions may lead to a different resulting 

state of the atmosphere over time (Lorenz, 1963). To improve forecasting skill, multiple models can 

be combined to obtain a so called multi-model. Error cancellation can be achieved by running a multi-
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model, whereas uncertainties in initial conditions are addressed by the ensembles within the individual 

models (Hagedorn et al.,2005; Sikder et al., 2016). Error cancellation is a conceptual idea that refers 

to a situation where the single-model ensembles of two hypothetical models lie below and above the 

verification. When the two models are combined, the respective errors of the single-model ensembles 

with respect to the verification cancel each other out. Note that this is not always the case, but the 

concept is the most important reason for the superiority of multi-models (Hagedorn et al., 2005) over 

individual model ensembles. The commonly used method to achieve this is to compute an ensemble 

mean (Hao et al., 2018).  Wanders & Wood (2016) applied a linear weighting method to four seasonal 

forecasts to create a multi-model. The multi-model was shown to have higher skill compared to a 

standard equally weighted multi-model mean, showing the potential of using a weighted multi-model 

approach.  

Machine learning 

 Cohen et al (2019) argue that the climate community and seasonal forecasting centres rely 

almost entirely on dynamical models, and that the potential of modern statistical techniques, referred 

to as ‘machine learning’, is underestimated and underexploited. With regard to seasonal prediction of 

rainfall, most studies employ simple linear regression techniques. However, nonlinear relationships 

are shown to exist between large scale factors such as ENSO, the Indian Ocean Dipole and the 

surface and upper level zonal winds over the central equatorial Indian Ocean and rainfall on an  

interannual basis (Black et al., 2003). For example, Nicholson (2015) showed that in wet years, 3 to 

4 of the aforementioned factors were associated with anomalous conditions, whereas in dry years, 

merely 1 or 2 and sometimes even none of the factors were associated with anomalous conditions. 

In addition to the amount of factors, wet years showed strong linear relations with the factors, but in 

dry years the sign of individual factors seemed to play a role, indicative of a non-linear response to 

changes in these factors.  

Mwale & Gan (2005) acknowledged the nonlinear and nonstationary characteristics of the 

data (rainfall and SST) and showed that using an artificial neural network model calibrated by a genetic 

algorithm (ANN-GA) outperforms a traditional linear canonical correlation model (CCA) often used in 

prediction studies (Pearson r 0.70-0.90 for ANN-GA versus 0.25-0.55 for CCA). Parmar et al. (2017) 

reviewed several machine learning models for rainfall prediction and concluded that the use of ANN 

models is preferable due to the ability of these models to 1) learn from the past and 2) account for 

aforementioned nonlinear relationships in rainfall data.  
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Forecast overview 
In this study, forecasts were produced at 17 stations. Before starting to analyse the forecasts, this 

chapter provides a visual overview of the rainfall record, mean rainfall distribution and forecasts at the 

7 best performing stations. The names, locations and elevations of these stations are presented in 

Figure 16 and Table 4. Most figures in this chapter are shown for station 9 specifically, but identical 

figures for the other stations are presented in the Appendices C-F.  

Table 4 Location and elevation of the top 7 stations. 

Station  Country City Elevation (m) 

9 Kenya Dagorett 1836 

11 Kenya Embu 1432 

22 Kenya Makindu 995 

25 Kenya Meru 1584 

26 Kenya Moyale 1112 

27 Kenya Nairobi-Wilson 560 

37 Uganda Entebbe 1146 

 

Figure 17 provides an overview of the rainfall 

record at station 9. Some years are 

characterized by extreme rainfall peaks, 

whereas in other years rainfall is substantially 

less.  The corresponding mean monthly rainfall 

observed between 1994 and 2011 is plotted in 

Figure 18. Consistent with the general pattern 

observed in East Africa, the long rainy season 

lasts longer and is more intense compared to the short rainy season. Similar results for the additional 

stations are provided in Appendix C and Appendix D. The mean rainfall and standard deviation in both 

seasons at the stations are presented in Appendix A. In agreement with the literature, the short rains 

are more variable than the long rains (standard deviation of 71 mm versus 66 mm, respectively).  

  

Figure 17 Observed monthly rainfall at station 9 in the period between 1994 and 2011. 

Figure 16 The locations of the 7 best performing 
stations (x-axis = longitude, y-axis = latitude). 
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The analysis of the forecasts that will be presented in 

the next section of the report mainly focusses on 

forecasts issued at a lead time of 4 months, as long-

lead forecasts are especially relevant for water users 

near the stations. Forecasts made by SEAS5, the 

linear model and the LSTM model at a lead time of 4 

months are presented in Figure 19. A wet bias of the 

SEAS5 forecasts can be recognized and both the 

linear model and the LSTM tend to underestimate 

some of the rainfall peaks throughout the record. 

Differences between the linear model and the LSTM 

are present, but no clear systematic differences can 

be recognized from this figure. A similar overview for 

the additional stations is presented in appendix E. 

  

Figure 19 Forecasts of monthly rainfall by SEAS5 (bottom), the linear model (middle) and the LSTM (top) for station 9 at a 
lead time of 4 months. 

Figure 18 Mean monthly rainfall at station 9 between 
1994 and 2011. 
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Figure 20 & Figure 21 show the actual and forecasted total seasonal rainfall in the long rains and the 

short rains at station 9. The figures are sorted by the actual rainfall to provide an insight in the 

performance in the below-normal, normal and above-normal seasons. The most important 

observation is that below-normal rainfall is generally over-forecasted and above-normal rainfall is 

under-forecasted. This effect seems to be stronger in the long rains. Identical results for the other 

stations are presented in Appendix F, where similar general observations can be found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An overview of the behaviour of ENSO, DMI, MJO80 and MJO120 is provided in Appendix B. The 

extreme El Niño of 1997/1998 can be clearly recognized, as well as La Niña Events from 1998-2001 

and 2010-2012.  

 

  

Figure 20 Long rains total rainfall at station 9, sorted by actual rainfall.  

Figure 21 Short rains total rainfall at station 9, sorted by actual rainfall.  
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Forecast verification 
This chapter aims to give an extensive overview of the performance of the models to address multiple 

relevant aspects: differences between stations, models, lead time and the long and short rains. As 

mentioned before, the focus of this chapter will be on forecasts issued at a lead time of 4 months, as 

especially long-lead forecasts are relevant to water users near the stations. Especially relevant to 

water users near the stations is the ability of the model to forecast anomalous seasonal rainfall, as 

they may be associated with the occurrence of floods and droughts.  

The metrics used are: WNDI (a weighted version of the RMSE), the anomaly correlation and several 

scores associated with the 2x2 contingency table.  

Anomalous seasonal rainfall (4-month lead time) 

To quantify the forecasts quality in the context of anomalous total seasonal rainfall, three categories 

of were defined: 1) below normal, 2) normal, 3) above normal (Figure 10). Based on these categories, 

forecasts issued at a lead time of 4 months were evaluated by means of the 2x2 contingency table. 

Table 5 provides a comprehensive summary of these results in terms of the bias, hit rate, false alarms 

rate (F) and the Clayton Skill Score (CSS) for below-normal and above-normal seasons. The values 

represent the mean statistic of the scores obtained from the 7 best performing stations. Several 

observations can be drawn from Table 5. 

First of all, the model is underconfident in forecasting anomalies. This is reflected by the hit rate. The 

hit rate ranges between 0.07 and 0.48, indicating that 7-48% of the times an anomaly occurs it is also 

forecasted. This is consistent with what can be observed visually from Figure 20 and Figure 21. 

Second of all, false alarm rates are generally low (between 4% and 17%). This indicates that when 

the model does forecasts an anomaly, it occurs in 83-96% of the cases. A combination of a relatively 

high hit rate in combination with a relatively low false alarm rate, results in relatively high values of the 

Clayton Skill Score (CSS). The CSS is indicates positive skill when the chance of an event occurring 

is higher when it is forecasted, compared to when it is not forecasted. 

Thirdly, the short rains generally exert higher skill, compared to the long rains. In the short rains, the 

linear model shows better skill when forecasting below-normal rainfall, with a hit rate of 40% and a 

false alarm rate of 4%. In the long rains, the LSTM model shows a substantial improvement over the 

linear model, especially when forecasting below-normal rainfall, with a hit rate of 42% and a false 

alarm rate of 8%.  

The performance of the forecast by SEAS5 exerted no skill in regards to the 2x2 contingency table 

and was therefore not included in this analysis. 
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Table 5 Mean scores (Bias, Hit Rate, False Alarm Rate (F) and CSS skill score) over the best 7 stations for below-normal 
and above-normal conditions.  

Season Domain Model Bias Hit Rate F CSS 

Long Rains below- 

normal 

linear 1,04 0,28 0,17 0,17 

lstm 0,77 0,42 0,08 0,55 

above- 

normal 

linear 0,63 0,07 0,12 -0,06 

lstm 0,4 0,12 0,05 0,29 

Short Rains below- 

normal 

linear 0,5 0,4 0,03 0,7 

lstm 0,41 0,28 0,04 0,5 

above- 

normal 

linear 0,6 0,45 0,04 0,67 

lstm 0,64 0,48 0,04 0,68 

 

A detailed overview of the results for individual stations is provides in Appendix G. From this overview 

the variation in scores between stations can be observed. Although the mean performance of the 

LSTM is higher in the long rains (compared to the linear model), some stations exert very low skill for 

both models. The increased performance of the linear model in the short rains in below-normal 

seasons, is more consistent over all of the stations and the LSTM shows no skill at some of the 

stations.  

Seasonal differences (4-month lead time) 

From a more general perspective (not considering seasonal anomalies in particular), the performance 

differences between the seasons were assessed by means of the WNDI and the anomaly correlation. 

Whereas the WNDI is a measure of the error between observations and forecast, the anomaly 

correlation is a measure of linear correlation between the observations and forecasts with respect to 

the climatological mean. In this analysis, the forecasts of SEAS5 were included for comparison.   

Figure 22 provides a comprehensive overview of the median scores, based on the 7 best performing 

stations. The wet bias of SEAS5, 

observed in Figure 19 is reflected 

here by relatively high values of 

WNDI. In both seasons, the linear 

model and LSTM show substantially 

lower error, with WNDI values ranging 

between 0.75 and 0.85. These values 

of WNDI correspond to an RMSE 

equal to roughly 6-7% of the mean 

annual rainfall. In terms of the 

anomaly correlation and with respect 

to SEAS5, performance is not lifted in 

the long rains. The anomaly 

correlation of the LSTM is 0.77. In the 

short rains, the anomaly correlation is 

increased by the linear model and the 

Figure 22 Median performance comparison between LSTM, Linear and 
SEAS5 in the long rains and short rains based on the Anomaly 
Correlation and WNDI at a lead time of 4 months 
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LSTM, with values of 0.71 and 0.76, respectively.  

A detailed overview of the performance of individual stations, is presented in appendix H. the anomaly 

correlation seems to be relatively consistent between seasons, although at some stations the 

performance is relatively better in one of the seasons.  

Lead time and performance 

So far, the performance of the models at a lead time of 4 months has been discussed. Also the effect 

of lead time on performance was studied. Here, all months were considered and no differences 

between seasons were evaluated.  

Figure 23 gives a comprehensive overview of the median performance of the different models in terms 

of WNDI and anomaly correlation, based on the 7 best performing stations and with respect to lead 

times ranging from 1 to 6 months.  

The wet bias of SEA5, reflected by 

high values of WNDI, is also observed 

here. This wet bias is most 

pronounced at longer lead times. At a 

lead time of one month, the 

performance of SEAS5 is observed to 

drop quickly, in terms of both the 

WNDI and the anomaly correlation. 

Both the linear model and the LSTM 

are able to sustain a better 

performance at longer lead times, 

although after a lead time of 4 

months, performance drops more 

rapidly. The LSTM generally shows 

slightly better performance in terms of 

both WNDI and LSTM.  

Sensitivity analysis 

To investigate the relative importance of forecasts of SEAS5 and the climate indices at different lead 

times, sensitivity analysis was carried out.  

In the procedure, the LSTM model was first trained on only the rainfall lags and consequently run on 

the rainfall lags in combination with one feature (for example ENSO). Subsequently, the performance 

difference was evaluated. If performance was lifted by at least 1%, the feature was labeled to be 

relevant. This analysis was carried out for each feature and on all of the 17 stations and for all lead 

times.  

  

Figure 23 Performance as a function of lead time based on the top 7 
stations. 
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Figure 24 provides an overview of the 

relevancy of different features at different 

lead times. This is expressed by counting 

the number of stations for which a specific 

feature (i.e. ENSO) increased 

performance. Figure 24 indicates that 

forecasts of SEAS5 (both precipitation and 

temperature) are especially relevant at a 

lead time of 1 month. At lead times longer 

than 1 month, this relevancy is observed to 

drop substantially, whereas the climate 

indices are observed to be more relevant. 

The combined results observed in Figure 

23 and Figure 24 indicate that the 

sustained performance at longer lead 

times is due to a good coupling between 

the forecasts of SEAS5 and the climate 

indices.  

Figure 25 shows the relevancy of different 

climate indices for individual stations, this 

time by counting the lead times at which a 

feature is relevant. A substantial degree of 

variation can be observed from this figure. 

Some stations barely show any relevancy 

with any of the indices, whereas other 

stations show a stronger connection. For 

example, station 9 shows a strong 

connection to ENSO and MJO80. Likely 

due to this strong connection, 

performance at station 9 is observed to be 

one of the best in both the long rains and 

the short rains (Appendix G & Appendix 

H). 

The sensitivity analysis carried out above, aimed to gain an understanding in the relevancy of different 

features in the input dataset. Other sensitivity analyses were carried out to find the optimal lag times 

for different indices, to tune the hyperparameters of the LSTM and to test the robustness of the model. 

As these results have little physical relevance and mainly refer to the methodology, they are presented 

and described in Appendix I.  

 

 

  

Figure 25 The number of stations at each lead time where a feature is 
increasing performance. 

Figure 24 Count of lead times in which ENSO/ IOD or MJO was 
improving model performance (note: the count lead time does not 
correspond to the actual lead time). 
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Discussion 
Methodology and data 
Data quantity and quality 

In every machine learning problem, a sufficient amount of data has to be available for training and 

testing. When too little data is available, it will be difficult to reach an optimum with regard to the bias-

variance trade-off problem. Essential patterns within the data might not be captured well enough and 

cause a high bias, or the model might not generalize well to unseen data and result in a high variance 

model. Therefore, the data quantity is an essential factor for a successful model.  

The hindcasts as generated by the ECMWF SEAS5 model range from 1993 onward, setting the lower 

temporal limit of this study. The gauge data set the upper limit to the temporal range of this study, 

since rainfall data was only available until 2012. The original range of the data was therefore 1993-

2011. The forecasts range was 1994-2011, due to the inclusion of lead and lag times. Thus, a total 

temporal coverage of 18 years was achieved. A similar study applying an ANN to a seasonal rainfall 

forecasting by Abbot and Marohasy (2012) used a comparable time period of data ranging from 1993 

to 2009. Compared to a linear model, ANNs like LSTMs require more data due to their complexity 

(Brownlee, 2018). In this study, the LSTM generally outperformed the linear model, but differences 

were small. However, due to the limited data availability of 18 years, the LSTM might not have reached 

its full potential (over a linear model) for seasonal forecasts and performance is likely to increase when 

more data becomes available in the future. 

Another aspect is the data quality. In this study the personally assembled gauge dataset of Professor 

Sharon S. Nicholson (Florida State University) was used and included data derived from 

meteorological and agricultural bulletins. This personally assembled dataset may have been an effort 

to account for the decline in available gauge data in East Africa since the 1980s (Camberlin & 

Phillipon, 2002). The quality of this data cannot be assessed but it is assumed to be a potential source 

of variability in the study results.  

Seasonality, long-term trends and nonstationary relationships 

Several pre-processing techniques were applied to modify the data set into a usable format for both  

models. No seasonal trends were removed from the rainfall data before training, based on the 

knowledge that the LSTM is able to learn the seasonal patterns. However, performance might have 

been lifted slightly (Géron, 2019).  

Woodman (2020) performed a trend analysis of SPI06 in East Africa in a time period from 1980 to 

2014. Significant drying trends are found in West-Uganda, Tanzania and South-Kenya. Significant 

wetting trends were found in Western Kenya (Figure 27).  
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For the models, the presence of long-term trends may be problematic and the optimal methodology 

would include detrending the data before training. However, comparing Figure 26 and Figure 27, the 

best forecasts were made mostly in areas where no significant trend was present. Trend analysis was 

not a part of this study, but might be useful for the detection of trends at the stations and for detrending 

the data before training.  

The non-stationarity between ENSO and IOD on the short rains is considered to be an important point 

of discussion. In the period between 1993 and 2011 under consideration in this study, the strength of 

the teleconnections between ENSO and IOD and the short rains was overall significant and relatively 

stationary, but lower before 1997 and lowest in 1995 (Figure 15). In the time range considered in this 

study, the varying strength of the teleconnections may have had an effect on the performance of the 

models. With regard to operational use of the models, the potential occurrence of a regime shift (as 

indicated in Figure 15) is likely to be detrimental to the quality of the forecasts.   

Direct Multi-Step Forecasting 

In this study a direct approach was used to make forecasts at multiple lead times, also referred to as 

direct multi-step forecasting. In this approach, a separate model is created for every lead time. Implicit 

to this methodology is the fact that all models act independently of each other and dependencies 

between lead times are not modelled. Alternative methods include recursive multi-step forecasting 

and multi-output strategies. In the recursive approach, one model is used multiple times and the 

prediction at a prior timestep is used in the input dataset for the prediction at a following time-step. In 

this way, the dependency is modelled but the forecast quality might quickly degrade when prediction 

errors accumulate (Brownlee, 2018). In the multi-output strategy (only applicable to LSTMs), the 

LSTM can be configured to predict not just one value one step ahead, but multiple values multiple 

steps ahead. Due to time constraints in this study, the multi-step approach could not be implemented 

but performance is expected to improve at longer lead times using a multi-step method.  

  

Figure 26 Drying and wetting trends in Equatorial East Africa (SPI06, 
75% confidence level). Adopted from: Woodman (2020). 

Figure 27 Geographical distribution of the 
top 7 stations (at a lead time of 4 months). 
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Sensitivity analysis 

The method applied to test the relative importance of individual features in the input dataset was 

relatively simple. In the procedure, the model was run on the rainfall lags and one of the inputs and 

the performance difference is evaluated. As this procedure only tests the importance of one feature 

at a time, it is not able to provide any information on the importance of interrelations between multiple 

inputs. This has been witnessed during the analysis at one station, where none of the individual 

features improved performance, but including all of the features lifted performance by 10%. The 

presence of some of these interrelations is known to exist. For example, during an El Niño, extreme 

events in the long and the short rains have been related to the phase of the MJO, increasing 

convection over eastern Africa (Pohl and Camberlin, 2011). From the literature, no alternative 

methods have been found for feature importance assessment for LSTM networks. However, if a 

method would be available to provide information on the interrelations between features it could 

potentially provide useful information to better understand these interrelations.  

Performance evaluation 
The quality of the forecasts produced in this study was assessed by means of the WNDI, anomaly 

correlation and several scores associated with the 2x2 contingency table, all of which aim to address 

different aspects of the forecast quality. First, the effect of lead time on performance will be addressed. 

Then, the differences between de seasons will be discussed in relation to the forecasts at a lead time 

of 4 months. Finally, the value of the models developed in this study for operational use will be 

discussed.  

 

Lead time and performance 

With respect to the performance of the models at different lead times, both the linear model and the 

LSTM have proven to be capable of increasing performance relative to the SEAS5 system and 

climatology. The performance of SEAS5 was shown to drop substantially after a lead time of 1 month, 

whereas the linear model and the LSTM are able to sustain a better performance at longer lead times. 

From the sensitivity analysis it was shown that the climate indices remain relevant, also at longer lead 

times. As a result, the increased performance at longer lead times is likely due to a good coupling by 

the linear model and the LSTM between the climate indices and the rainfall observed at the stations.  

 

Differences between the seasons 

Consistent with what is observed in the literature, the performance of the models was generally better 

in the short rains. Although the mean values of WNDI and anomaly correlation over the 7 best stations 

indicated rather similar performance in the seasons, the results obtained from the 2x2 contingency 

table indicate a substantial improvement in the short rains, when forecasting anomalous seasonal 

rainfall.  

 

For the LSTM, mean values of WNDI and anomaly correlation were observed to range between 0.75-

0.85 (equal to an RMSE of 6-7% of the mean annual rainfall) and 0.76-0.77 in both seasons. The 

linear model showed slightly worse values, although it is not clear whether or not these differences 

are statistically significant. With respect to the SEAS5 system, no improvement was made in the long 

rains in terms of the anomaly correlation.  

 

With respect to quality of the forecasts in the context of anomalous total seasonal rainfall, the LSTM 

model showed a substantial improvement over the linear model in the long rains, especially when 

forecasting below-normal rainfall. Whereas the linear model exerted minimal to negative skill, the 
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mean hit rate of the LSTM was observed to be 42%, with a false alarm rate of 8% and a Clayton Skill 

Score of 0.55, in the long rains and in below-normal seasons. The most extensive study carried out 

in regard to the long rains in East Africa between 1968 and 1997, was carried out by Camberlin & 

Phillipon (2002). Their model predicted seasonal anomalies 70% of the time and with a correlation of 

0.66, based on February predictors related to SSTs and atmospheric variables. The increased 

performance compared to this study may be due to the more extensive input dataset used specifically 

for the long rains, a shorter lead time and different time period.  

 

The best scores were observed in the short rains, with hit rates between 40-50%, false alarm rates of 

4% and Clayton Skill Scores of around 0.7. With regard to the below-normal seasons in the short-

rains, the linear model performed better than the LSTM. Nicholson (2014) produced forecasts of 

October and November rainfall in the equatorial east African region for the period 1950-2005. She 

found a correlation of 0.80 between observed and predicted values. However, it is unclear how well 

the model forecasted anomalous rainfall over the region.  

 

As known from the literature, ENSO and IOD primarily modulate the short rains. For this reason, the 

performance of the models is generally better in the short rains, compared to the long rains. However, 

performance in the short rains is still suboptimal, since a significant portion (50-60%) of the anomalous 

events is not captured accurately. Although ENSO and IOD play an important role in modulating the 

short rains, their effect is not always consistent. This was also found in the literature, where Nicholson 

& Kim (1997) showed that anomalously high rainfall was observed in 12/20 of the El Niño events, an 

anomalously low in 12/17 of the La Niña events.  

 

During the long rains, the state of the ocean is rapidly changing and the ESNO index switches its sign. 

For this reason, the predictability of ENSO is limited to 2 months in the long rains, also known as the 

spring predictability barrier. Therefore, ENSO and IOD are limited sources of predictability during the 

long rains. The MJO, however, is shown to be an important source of rainfall variability in the long 

rains (Camberlin & Phillipon, 2002). This was also found in this study, for example at station 9, where 

the sensitivity analysis showed a strong association with the MJO80 index. As a result of this 

association, the performance in the long rains at this station was lifted substantially. However, the 

influence of any of the indices on rainfall was shown to vary between stations. Some stations showed 

a high degree of association, whereas at other station association was limited and other factors may 

play a more important role in the modulation of the rainfall (Figure 13).  

 

Value of the forecasts for operational use 

The scores associated with the 2x2 contingency table are presumably the most relevant when 

assessing the value of the forecasts for operational use. Especially the hit rate and the false alarm rate 

are intuitive to understand as they provide a straightforward measure of forecast quality. One of the 

main limitations of the models developed in this study is that they are observed to be underconfident 

when forecasting seasonal anomalies. In other words, a substantial amount (roughly 50-60%) of 

extreme events is not accurately forecasted by the models, on average. For this reason, the models 

developed in this study are considered to be not sophisticated enough for operational use. However, 

the observed false alarm rates were generally low (between 4-8%), indicating that in most cases, 

when the model forecasts an anomaly, it is also likely to occur. Therefore, the models may still provide 

valuable information to water-users near the stations, as the forecasts are relatively reliable.  
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Recommendations 
Forecasting rainfall in eastern Africa remains a difficult task as processes driving rainfall (especially in 

the long rains) are inadequately understood (Nicholson, 2017). Several suggestions will be made that 

may increase the performance of the model developed in this study.  

From SEAS5, only forecasts of temperature and precipitation were used in this study. However, 

forecasts of sea surface temperatures and sea level pressures are also available from the SEAS5 

system. By implementing these variables, forecasts of ENSO and IOD can be constructed and used 

as input into the model. By doing this, the model not only has access to the observed values of ENSO 

and IOD in the past but also to forecasts of ENSO and IOD in the future. In addition to using more 

variables in the input dataset, including other forecasting systems may also be explored.  

In addition to the use of sea surface temperature and pressure and the associated indices, the use of 

atmospheric variables such as zonal and meridional winds at different locations has been proven to 

be more successful than the use of sea surface temperature pressure in increasing forecasting skill 

in the short rainy season, especially at shorter lead times (Nicholson, 2014). For the long rains, 

Camberlin & Phillipon (2002) used February predictors of ENSO, an energy gradient from the East 

African highlands, geopotential height anomalies over the Near-East, and westerly winds from the 

Congo basin. Unfortunately, the study of Camberlin & Phillipon (2002) provides little value with respect 

to operational use due to the limited lead time.  

Although multiple suggestions are made for the improvement of the forecasting model developed in 

this study, the lack of understanding of the processes driving rainfall in the eastern African region 

remain a limiting factor, especially in the long rains. Further investigation into the driving processes is 

required for the improvement of seasonal forecasts.  
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Conclusion 
In this study, forecasts of monthly totals of rainfall at 17 rainfall stations in the equatorial east African 

region between 1994 and 2011 were produced, based on climate indices of ENSO, IOD and MJO 

and seasonal forecasts of temperature and precipitation from the ECMWF SEAS5 seasonal 

forecasting system. A long short-term memory (LSTM) model was developed to forecast rainfall at 

each individual station at lead times ranging from 1-6 months. The performance was evaluated with 

respect to the long rainy season and the short rainy season and with respect to different lead times. 

Benchmarks for performance evaluation included a simple multi-variate linear model, the precipitation 

forecasts of SEAS5 and climatology. Performance metrics included the anomaly correlation and the 

WNDI (a weighted index of RMSE to allow comparison between stations). The relevance of individual 

features in the input dataset were also evaluated between stations and lead times.  

For all lead times, the LSTM outperformed both the linear model and SEAS5 in terms of both anomaly 

correlation and WNDI, although it is not clear whether or not this is statistically significant. Especially 

at longer lead times the LSTM shows improved performance, due to a good coupling with the climate 

indices. Both the LSTM and the linear model prove to be successful at correcting the wet bias of 

SEAS5 that is observed at all stations, as the WNDI generally improved with about 200%.  

The main portion of this study focused on forecasts at a lead time of 4 months at the 7 best performing 

stations. In terms of WNDI and the anomaly correlation, differences between the long rains and the 

short rains were small. The LSTM model showed slightly better performance with a WNDI of 0.75-

0.85 (equal to an RMSE of 6-7% of the mean annual rainfall) and an anomaly correlation of 0.76-0.77. 

In the context of anomalous seasonal rainfall, the performance in the short rains was substantially 

better, on average, with hit rates between 40-50%, false alarm rates of 4% and Clayton Skill scores 

of roughly 0.7. The linear model performed better at forecasting below-normal rainfall. The LSTM 

showed to be more valuable in the long rains, especially when forecasting below-normal rainfall, with 

a hit rate of 42%, false alarm rate of 8% and a Clayton Skill Score of 0.55, on average.  

 

With regard to operational use, especially forecasts of anomalous rainfall are of interest, as they may 

be associated with the occurrence of floods and droughts. The models developed in this study are 

underconfident in forecasting these anomalies and are therefore not sophisticated enough for 

operational use. However, due to the observed low false alarm rates, they may still provide valuable 

information to farmers and water managers near the stations.  

 

As the drivers for both interannual and intraseasonal variability of the rainy seasons in equatorial east 

Africa are still inadequately understood and since the quality of seasonal forecasts are rooted in this 

understanding, further research is necessary to improve seasonal forecasts in the future.  
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Appendix A: Basic statistics at all rainfall 

stations 

 
    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean statistics over all stations: 

 Long Rains Short Rains 

Mean rainfall (mm) 108  100 

Mean std (mm) 66 71 
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Appendix B: Overview climate indices  
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Appendix C: Rainfall records at additional 

stations 
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Appendix D: Mean rainfall distributions at 

additional stations 
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Appendix E: Forecasts at additional stations 
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Appendix F: Seasonal rainfall totals at 

additional stations 
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Appendix G: 2x2 contingency tables and 

scores for individual stations 
 

Season Station Domain Model Bias Hit 

Rate 

F CSS 

Long 

Rains 

9 below- 

normal 

linear 1 0,6 0,15 0,45 

lstm 0,8 0,6 0,08 0,61 

11 below- 

normal 

linear 0,5 0 0,06 -0,12 

lstm 0,5 0,5 0 0,94 

22 below- 

normal 

linear 1,75 0,25 0,43 -0,13 

lstm 1,5 0,5 0,29 0,17 

25 below- 

normal 

linear 1 0,33 0,13 0,2 

lstm 0,33 0,33 0 0,88 

26 below- 

normal 

linear 1,5 0 0,19 -0,13 

lstm 1 0 0,12 -0,12 

27 below- 

normal 

linear 1 0,25 0,21 0,04 

lstm 0,75 0,5 0,07 0,53 

37 below- 

normal 

linear 0,5 0,5 0 0,88 

lstm 0,5 0,5 0 0,88 

Short 

Rains 

9 below- 

normal 

linear 0,75 0,5 0,07 0,53 

lstm 0,75 0,5 0,07 0,53 

11 below- 

normal 

linear 0,8 0,6 0,08 0,61 

lstm 0,4 0,2 0,08 0,25 

22 below- 

normal 

linear 0,25 0,25 0 0,82 

lstm 0,5 0,25 0,07 0,31 

25 below- 

normal 

linear 0,4 0,4 0 0,81 

lstm 0,4 0,4 0 0,81 

26 below- 

normal 

linear 0,5 0,5 0 0,94 

lstm 0 0 0   

27 below- 

normal 

linear 0,6 0,4 0,08 0,47 

lstm 0,8 0,6 0,08 0,61 

37 below- 

normal 

linear 0,17 0,17 0 0,71 

lstm 0 0 0   
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Season Station Domain Model Bias Hit 

Rate 

F CSS 

Long 

Rains 

9 normal linear 1,22 0,78 0,44 0,35 

lstm 1,44 1 0,44 0,69 

11 normal linear 1,07 0,87 1 -0,19 

lstm 1,07 0,93 0,67 0,38 

22 normal linear 0,5 0,1 0,5 -0,49 

lstm 0,8 0,5 0,38 0,12 

25 normal linear 1,09 0,55 0,86 -0,33 

lstm 1,45 0,91 0,86 0,12 

26 normal linear 1 0,69 0,8 -0,11 

lstm 1,15 0,85 0,8 0,07 

27 normal linear 1,4 0,7 0,88 -0,25 

lstm 1,5 0,9 0,75 0,27 

37 normal linear 1,6 1 0,75 0,62 

lstm 1,6 1 0,75 0,62 

Short 

Rains 

9 normal linear 1 0,7 0,38 0,32 

lstm 1,1 0,8 0,38 0,44 

11 normal linear 1,2 0,8 0,5 0,33 

lstm 1,4 0,8 0,75 0,07 

22 normal linear 1,3 1 0,38 0,77 

lstm 1,4 0,9 0,62 0,39 

25 normal linear 1,67 1 0,67 0,6 

lstm 1,44 0,89 0,56 0,42 

26 normal linear 1,23 1 0,6 0,81 

lstm 1,31 1 0,8 0,76 

27 normal linear 1,44 0,78 0,67 0,14 

lstm 1,11 0,78 0,33 0,45 

37 normal linear 2,29 1 0,82 0,44 

lstm 2,43 1 0,91 0,41 
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Season Station Domain Model Bias Hit 

Rate 

F CSS 

Long 

Rains 

9 above- 

normal 

linear 0,5 0,25 0,07 0,31 

lstm 0,25 0,25 0 0,82 

11 above- 

normal 

linear 1 0 0,06 -0,06 

lstm 1 0 0,06 -0,06 

22 above- 

normal 

linear 1,5 0,25 0,36 -0,08 

lstm 1 0,25 0,21 0,04 

25 above- 

normal 

linear 0,75 0 0,21 -0,27 

lstm 0,25 0 0,07 -0,24 

26 above- 

normal 

linear 0,67 0 0,13 -0,19 

lstm 0,33 0,33 0 0,88 

27 above- 

normal 

linear 0 0 0   

lstm 0 0 0   

37 above- 

normal 

linear 0 0 0   

lstm 0 0 0   

Short 

Rains 

9 above- 

normal 

linear 1,25 0,75 0,14 0,52 

lstm 1 0,75 0,07 0,68 

11 above- 

normal 

linear 0,67 0,33 0,07 0,38 

lstm 0,67 0,33 0,07 0,38 

22 above- 

normal 

linear 1 1 0 1 

lstm 0,5 0,5 0 0,88 

25 above- 

normal 

linear 0,25 0,25 0 0,82 

lstm 0,75 0,5 0,07 0,53 

26 above- 

normal 

linear 0,33 0,33 0 0,88 

lstm 0,33 0,33 0 0,88 

27 above- 

normal 

linear 0,5 0,25 0,07 0,31 

lstm 1 0,75 0,07 0,68 

37 above- 

normal 

linear 0,2 0,2 0 0,76 

lstm 0,2 0,2 0 0,76 
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Appendix H: performance at individual stations 
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Appendix I: model calibration and robustness  
Optimal lag times for rainfall, ENSO, IOD and MJO 

The input dataset used in this study consisted of lagged monthly rainfall, lagged climate indices and 

seasonal forecasts produced by the ECMWFs SEAS5. Multiple repeated experiments were carried 

out to find the optimal lag times of these features. Note that an optimal lag time of, for example, 4 

months means that all smaller lag times are also included (1, 2 and 3 months).  

The figure below provides an overview of the results. Optimal lag times for ENSO were found between 

3 and 6 months. For DMI, the optimal setting was found at 6 months. Combining the results of the 

repeated experiments with a physical understanding of the ENSO and IOD phenomena, the lag time 

for both ENSO and IOD was set to 6 months. MJO lags were set to 3 months and the lags of 

precipitation to 12 months as those settings resulted in the lowest mean/spread.  

  

Boxplots of RMSE for several lag times for ENSO, IOD, MJO and Rainfall (in months). 
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Hyperparameter tuning  

The Long Short-Term Memory (LSTM) model was tuned specifically for the data used in this study. 

Optimal settings for 2 hyperparameters (number of neurons & batch size) were found based on 

another repeated experiment. Based on the results in the figure below, the number of neurons was 

set to 100 and the batch size was set to 3. Additional experimentation with smaller and larger values 

of the number of neurons, indicated an optimum somewhere between 100 and 200 neurons. As 

higher numbers of neuron may increase the risk of overfitting, the number of neurons was set to 100.  

 

 

 

 

 

 

  

Boxplots of RMSE for different settings for LSTM hyperparameters: number of neurons (left)  and batch size (right). 
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Robustness experiment 

The final repeated experiment was carried out to evaluate the robustness of the model when the 

input dataset is shuffled before training. In the procedure, only the years are shuffled and the 

months within the years are kept in chronological order (Figure 11 in the main text). The figure 

below shows the results of the repeated experiment. Shuffle 0 represents the original chronological 

input dataset (so without any shuffling applied) and shuffle 1-9 indicate randomly shuffled versions of 

the input dataset. The range of median RMSE values observed throughout the experiment is about 

(65-105) 40 mm. 5/10 experiments have a median RMSE below 80 and the largest variance is 

observed for the largest median values. The original chronological dataset is observed to result in 

the 3rd best performance.  

 

 

Boxplots of RMSE as a function of the shuffle (shuffle=0 represents the 
chronological dataset, shuffle 1-9 are randomized) 


