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Abstract

In this thesis I would like to discuss the idea of n-dimensional topological quantum field theories, or nD-
TQFTs. Any nD-TQFT can be described as a symmetric monoidal functor from nCob, the category of
n-dimensional cobordisms, to Vectk, the category of finite-dimensional vector spaces over some ground field
k. An nD-TQFT is also known as a linear representation of nCob. Especially the examples of 2Cob and
1Cob can be interesting.

I will discuss the fact that 2Cob is a free symmetric monoidal category on a commutative Frobenius
object. This means that 2Cob carries Frobenius structure. The image of 2Cob under any 2D-TQFT will
automatically carry the same structure, and specifically the image of the circle, a basic object in 2Cob, will
be a commutative Frobenius algebra. A Frobenius algebra itself can be regarded as a Frobenius object in
Vectk. The conclusion of this part will be that the collection of 2D-TQFTs itself is again a category, and
that this category is equivalent to the category of commutative Frobenius algebras.

I will also discuss the fact that 1Cob is a free symmetric monoidal category on a dualizable object. The
image of the positively oriented point will be a dualizable vector space, which can be regarded as a dualizable
object in Vectk. The conclusion of this part will be that the category of 1D-TQFTs is equivalent to the
category of dualizable vector spaces.

I will mainly follow the book by J. Kock ([7]), be it in a rather different order, but I will also discuss
some other articles, namely those of M. Atiyah ([4]) and of C. Blanchet and M. Turaev ([8]). I will discuss
three different ways of defining topological quantum field theories, as mentioned in [7], [4] and [8], and I will
try to compare them.

I will also discuss adjacent research topics. Chapters 3 and 9 can be viewed as reports on independent
research I did. In Chapter 3 I will discuss the topic of porting over monoidal structure from an arbitrary
monoidal category to a skeleton, not yet provided with structure. There I will try to use a general, or
universal approach. In Chapter 9 I will discuss the category 1Cob and its skeleton 1cob. There I will
mainly focus on the graded disjoint union and its behaviour.
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1 Introduction

The central questions this thesis will answer are the following:

• How are the three different definitions of topological quantum field theories, as mentioned in [7], [4]
and [8], related? The answer can be found in Section 10.1, 10.2 and 10.3.

• What can we say about the category of 1-dimensional topological quantum field theories, and how
is this category related to the category of dualizable vector spaces? The answer can be found in
Section 10.5. The category of dualizable objects in an arbitrary symmetric monoidal category will be
introduced in Section 2.4.

• What can we say about porting over the symmetric monoidal structure from 1Cob to the skeleton
1cob? The answer can be found in Chapter 9.

• What can we say in general about porting over the monoidal structure from an arbitrary monoidal
category to one of its skeletons? The answer can be found in Chapter 3.

• How does a topological quantum field theory A with source category 1Cob induce a topological
quantum field theory A′ with source category 1cob? The answer can also be found in Section 10.5,
where we introduce SVectk, the category of signed vector spaces.

About Chapter 1. In this chapter (see Section 1.1 and 1.2) I would like to give a somewhat more physical
introduction to the topic of topological quantum field theories. The next chapters will be about definitions
from category theory, dualizable objects, Frobenius objects, Frobenius algebras, the theory of cobordisms
and finally topological quantum field theories.

About Chapter 2,3,4 and 5. Chapter 2 will mainly be about categories. A category can be regarded
as a collection of elements, including connections with direction, between elements. The elements will be
renamed as objects, and the connections will be renamed as arrows. Arrows can be composed, or horizontally
composed. We will introduce the idea of skeletons of a category. A skeleton of a category can be regarded
as a minimal subset of the collection of objects and arrows, still carrying the same structure of the category
itself. We also say that a skeleton is a minimal full subcategory of the main category. In many cases we have
many possibilities for choosing a skeleton.

We can add more structure to many categories, for example monoidal structure and symmetric structure.
We will call the result a symmetric monoidal category. In such a category, objects and arrows can also be
vertically composed. A functor is a map between categories and a symmetric monoidal functor is a map
between symmetric monoidal categories.

As a key example, we will shortly introduce Vectk, the category of vector spaces over some ground field
k. Its objects are vector spaces, and its arrows are linear maps. The horizontal composition of arrows will
be the ordinary composition of linear maps, and the vertical composition of objects (or arrows) will be a
matter of taking tensor products of vector spaces (or linear maps).

In Section 2.4 we will introduce dualizable objects in the general setting. (In Chapter 9 and in Section
10.5 we will introduce dualizable objects in different specific settings.)

After introducing the concept of symmetric monoidal categories, we can directly discuss the technical
details of porting over monoidal structure from a (symmetric) monoidal category to a skeleton, see Chapter
3. Then we will discuss the details of (commutative) Frobenius objects in a (symmetric) monoidal category,
see Chapter 4. In Section 4.1 we will introduce Frobenius objects, which are objects satisfying some extra
rules. Then we will also introduce Frobenius structure, which applies to categories generated by a single
object. In Section 4.2 we will introduce Frobenius objects in Vectk, or Frobenius algebras, as a special
example, and in Section 4.3 we will introduce cFAk, the category of commutative Frobenius algebras. Then
Chapter 5 will be a self-contained short introduction of Morse functions. We will use special Morse functions
in the next chapters, for splitting up cobordisms.
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About Chapter 6,7,8 and 9. Chapter 6 will be about cobordisms in general, and Chapter 7 will be about
how to define (symmetric monoidal) categories of cobordisms. A cobordism in dimension n is an oriented
smooth manifold with a closed oriented boundary of dimension n − 1. We can say that each cobordism
has an initial boundary, or in-boundary, and a final boundary, or out-boundary. Thus a cobordism (or,
to be more precise, a cobordism class) can be regarded as an arrow between two objects. The name of
the symmetric monoidal category in question is nCob. The horizontal composition of these arrows is a
matter of connecting the out-boundary of one cobordism to the in-boundary of another cobordism, and
the vertical composition is a matter of taking disjoint unions of the objects or arrows in question. We can
also do horizontal decomposition, or just a splitting, of a cobordism. Then we can split up cobordisms into
smaller ones, and for this we can use special Morse functions, as introduced in Chapter 5. In Chapter 6 a
procedure for splitting up cobordisms will be introduced, and in Chapter 7 a procedure for gluing them will
be presented.

We will also discuss two special examples of cobordism categories. In Chapter 8 we will discuss 2Cob
and in Chapter 9 we will discuss 1Cob. There we will also discuss skeletons of these categories, and we will
try to turn them into symmetric monoidal categories also. Generators and relations of these skeletons will
also be presented.

About Chapter 10. Chapter 10 will be about topological quantum field theories. A topological quantum
field theory (we have more of them) can be regarded as a map between a collection of cobordisms and the
collection of vector spaces and linear maps. Using more formal language: an nD-TQFT is a symmetric
monoidal functor between the symmetric monoidal category of cobordisms of dimension n, or nCob, and
the symmetric monoidal category of vector spaces and linear maps, or Vectk. This is mainly the definition
of [7], see Section 10.1. In Section 10.2 and 10.3 we will compare this definition with alternative definitions,
as mentioned in [4] and [8]. These three definitions look very different at first sight, and we will discuss how
they are related.

About Section 10.4. Here we will discuss 2-dimensional topological quantum field theories. We can start
with the source category 2Cob of any 2D-TQFT, but we could as well start with 2cob (or small 2Cob)
instead, which is a skeleton of 2Cob, generated by the standard oriented (unit) circle. At least Kock [7]
uses this approach in his Section 3.3. We can say that a 2D-TQFT mapping from 2cob instead of 2Cob is
much easier to describe, but it still carries the most relevant information.

The circle can be regarded as a commutative Frobenius object in 2cob, as already explained in Chapter
8. Then we can say that this skeleton 2cob (thus not 2Cob itself!) is a free symmetric monoidal category
on a commutative Frobenius object, or a free symmetric monoidal category carrying Frobenius structure.
These notions will already be introduced in Section 4.1. Any 2D-TQFT will map the circle to a commutative
Frobenius algebra. These algebras will already be introduced in Section 4.2.

In this section we will also mention that the collection of 2D-TQFTs can again be turned into a category.
Then the category of 2D-TQFTs with source category 2Cob will be equivalent to cFAk, and the category
of 2D-TQFTs with source category 2cob will be isomorphic to cFAk.

About Section 10.5. Here we will discuss 1-dimensional topological quantum field theories. The original
idea was to directly start with the source category 1cob, a skeleton of 1Cob, of any 1D-TQFT, just as we
did in Section 10.4, when we started with 2cob as the source category of any 2D-TQFT. However, we can
as well start with the source category 1Cob′, which can be regarded as a minimal full symmetric monoidal
subcategory of 1Cob. We will present both 1Cob′ and 1cob as a source category of 1D-TQFT’s.

The objects p+ and p−, which are positively and negatively oriented points, can be regarded as the
objects generating both 1cob and 1Cob′. These points can be regarded as dual objects of each other. We
can also say that p+ (or p−) is a dualizable object. Then we can say that both 1Cob′ and 1cob (thus, again,
not 1Cob itself!) are free symmetric monoidal categories on a dualizable object. Now any 1D-TQFT will
map this p+ to some vector space V , and p− to some W (which is isomorphic to V ∗, the canonical dual of
V ). Then V and W will be dualizable objects in Vectk, or dualizable vector spaces.
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We will mention that also the collection of 1D-TQFTs can again be turned into a category. Then the
category of 1D-TQFTs with source category 1Cob will be equivalent to DVSk, the category of dualizable
vector spaces over k. The categories of 1D-TQFTs with source category 1cob or 1Cob′ will both be
isomorphic to DVSk.

More about Chapter 3 and 9. It was my choice to study 1D-TQFTs with source category 1cob. For
me this raised the question of how to carry over the symmetric monoidal structure correctly from 1Cob to
1cob. The ordinary disjoint union, an operation on 1Cob, will not work correctly on 1cob, so the monoidal
structure cannot be exactly copied from 1Cob to 1cob. We can say 1cob is a minimal full subcategory of
1Cob, but not a symmetric monoidal one. Thus a slightly different approach is needed then, and this is why
some questions arose to me. Chapter 3 and a large part of Chapter 9 are about the independent research I
did.

Chapter 9 will be about 1Cob and its skeleton 1cob. We mainly need the graded disjoint union, as 1cob
is not closed under the operation of taking ordinary disjoint unions. Mainly without consulting literature,
I did some independent research for Chapter 9 to find an explicit method of checking if porting over the
symmetric monoidal structure from 1Cob to 1cob will work out correctly. I used an explicitly defined
projection functor P : 1Cob → 1cob, and made a special choice for this P . This P was meant for porting
over the monoidal structure, but the symmetric structure of 1Cob was already needed for this P . Another
question arose: does it really depend on this explicit choice of definition of P , whether or not the monoidal
structure can be successfully ported over from 1Cob to 1cob? Chapter 3 was meant for finding this out.

Chapter 3 will have its own topic, but this topic is still adjacent to the main topic of this thesis. If
we know that C is a monoidal category, and if C′ is a skeleton of C, not yet provided with structure, then
we can choose a projection functor P : C → C′, and check if this functor can help us porting over the
structure. I also did some independent research to find a formal, universal approach for finding out if this
functor P will really do the job, also mainly without consulting literature. The result was meant to find
an alternative way for porting over the monoidal structure from 1Cob to 1cob, and this way fairly differs
from the explicit method, discussed in Chapter 9. For example, the universal approach does not need strict
monoidal structure, explicit definitions or any symmetric structure. This chapter assures that it does not
depend on the explicit behaviour of P or on the specific properties of 1Cob.

About Chapter 11. Chapter 11 will be about the conclusions and retrospective views of this thesis.
There will be a summary of the answers to the central questions.

1.1 The physical background

Classical Mechanics. In classical mechanics, physicists study moving objects in a specified setting, and
the main problem is to specify and to solve the equations of motion. These equations of motion are formulated
as boundary value problems or differential equations. The standard procedure to find a solution of a boundary
value problem often consists of three stages. In the first stage one needs to perform a series of algebraic
manipulations. In the second stage one needs to compute a series of integrals, which yields a so-called
‘general solution’. In the third and final stage, one should insert initial values or boundary values, which
could for example be a specified position and velocity of an object, given at a certain time. This third stage
reflects the fact that classical experiments which look different at first sight, can be described by the same
underlying theory. For example, an apple falling from a tree and the moon orbiting the earth are described
by the same equation. The difference lies in the boundary values.

When studying objects which are accelerated under the influence of a force, one first needs to specify a
differential equation. Usually this equation involves a function which depends on time, and this equation
is valid in the general sense. Whatever the initial location and speed of the object is, it should always be
possible to derive the time evolution of the object’s motion by this equation. After performing the first two
stages of solving this equation, one must insert the boundary values. In physics these boundary values are
often referred to as degrees of freedom.
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In the example mentioned above it was clear that there is just one degree of freedom. We needed to
specify two boundary values, which were the initial location and velocity, but conventionally we speak of
just one degree of freedom. This reflects the fact that the equations of motion correspond to a second order
differential equation. This means that the space of solutions can be described as a manifold of dimension
two, at least when we are dealing with a linear equation. To find a solution, one only needs to specify initial
conditions, which are values for the function in question and for its time derivative, or, using physical words,
the position and velocity of an object at a given moment in time. For a combined system, consisting of a
finite number of moving objects, also possibly interacting with each other, we say that the system has just
as many degrees of freedom as the number of objects involved. In the theory of classical mechanics any such
combined system and its mechanics are described by a corresponding boundary value problem.

To go one step further, we can consider the boundary value problem of a chain of many classically
interacting objects. Imagine a series of objects tied to each other with springs. There are now many degrees
of freedom. In theory we can describe the dynamics of a violin string by performing a limiting procedure on
such a model with a finite number of degrees of freedom. In this procedure we keep the length of the chain
constant, but the distance between all the links goes to zero, while the number of links goes to infinity. This
is why we should call this a model with an infinite number of degrees of freedom.

Classical Field Theory. Classical field theory describes physical systems with an infinite number of
degrees of freedom. Mathematically these are described by partial differential equations, in contrast to a
single object or a finite group of objects, which are described by ordinary differential equations and a finite
number of degrees of freedom. The aim of classical field theory is, for example, to solve the equations of
motion for a violin string, or a vibrating membrane. The ripples in a pond can also be described by a
classical field theory, and here the interesting part starts. Imagine a piece of wood floating in the middle of
a pond, which at first is totally in rest. After you throw a stone in the water, you will see a series of waves
propagating from the point where the stone hit the water. At a certain moment the waves will reach the
piece of wood, which will start to move. In this scenario we thus see a kind of interaction from a distance
between two objects.

There exist many simplified models for classical field theories, described by linear homogeneous par-
tial differential equations which have exact solutions. In reality though, classical field theories tend to be
inhomogeneous and non-linear. Very few of these problems are exactly solvable; most of them can only
approximately be solved by using classical perturbation theory.

Quantum Mechanics. In the early 20th century the theory of Quantum Mechanics was born. It can
be regarded as an extension of the already fully developed theory of classical mechanics. At the time this
theory of quantum mechanics was fully developed, the procedure for quantizing any classical boundary value
problem was generally applicable. Quantum mechanics is centered around the famous Schrödinger equation,
which is a linear partial differential equation of the following form:

i~
∂

∂t
ψ(r, t) = Ĥψ(r, t) (1.1)

The variables r and t are space and time variables respectively. The operator Ĥ, called the Hamiltonian,
is a linear partial differential operator which contains derivatives up to second order with respect to space
variables only. Any solution of this equation is specified by a wave function, or state function, which is
complex valued. We note that equation (1.1) is of first order with respect to t, thus we could say that
it directly dictates the time evolution of a wave function. The boundary values, needed to solve (1.1)
completely, are specified by a time-independent wave function, which is a wave function at a fixed moment in
time, and as such only depends on space coordinates. Every smooth and square-integrable function should
be valid. If a time-independent wave function ψi(r) is known at a specific time ti, we can easily generate a
solution of (1.1) as follows:

ψ(r, t) := exp(− i

~
(t− ti)Ĥ)ψi(r). (1.2)
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Thus the result will be a time-dependent function. We thus see that an initial time-independent wave
function must be specified in order to solve the Schrödinger equation completely.

In more mathematical terms, we are dealing with a Hilbert space H of possible time-independent wave
functions. This Hilbert space is characterized by the specific boundary value problem belonging to the
classical model considered. We will use vector notation for elements of H, thus any ψ(r) will be written
as |ψ(r)〉. Then there is a time evolution operator T (tf , ti) : H → H, which is linear. This operator is
equivalent to the exponent as written in (1.2). If |ψi(r)〉 is a boundary value of the theory, then we can find
a specific solution |ψ(r, t)〉 of (1.1). We should note that these time-dependent state vectors also generate a
Hilbert space, but this is not the same space as H. Restricting this |ψ(r, t)〉 to any other constant time tf ,
it will satisfy:

|ψ(r, t)〉t=tf := |ψf (r)〉 := T (tf , ti)|ψi(r)〉.

Note that, in most traditional applications, we assume the model itself will not change in time, thus we will
use the same space H of possible time-independent wave functions for all moments in time.

In quantum mechanics we are often interested in a statistical quantity called the transition amplitude.
It is defined as the probability of a quantum mechanical system prepared in a certain state |ψi(r)〉 at time
ti to be found in state |φf (r)〉 at another time tf . Therefore we first need to apply time evolution to the
initial state |ψi(r)〉, and then we can compute the inner product of the resulting state and |φf (r)〉. This
yields 〈φf (r)|T (tf , ti)|ψi(r)〉, where 〈·|·〉 is just the inner product as defined on H. Taking the square of its
absolute value will give us a probability number, which we will call the transition amplitude. Traditionally,
the transition amplitude is computed by first solving the Schrödinger equation and then computing its
corresponding time evolution operator.

Quantum Field Theory. In a later stage of the development of quantum mechanics, new techniques
were invented to compute transition amplitudes and other quantities of statistical importance belonging
to the quantum model corresponding to a classical field theory, which we will call a quantum field theory.
Here classical just means not quantum, thus also models obeying Einstein’s theory of special relativity are
allowed. Especially the theory of electromagnetism was one of the first to be described in this new setting of a
quantum field theory. The new techniques of quantum field theory differ from ordinary quantum mechanics,
based on the Schrödinger equation, and a lot more brute-force computations are needed, for example the
Feynman path integral.

1.2 Topological Quantum Field Theories

A topological quantum field theory is a quantum field theory with the additional property that transition
amplitudes do not depend on the geometry of the underlying space-time, only on its topology. Thus when a
space-time for example smoothly warps or contracts, the transition amplitudes do not change. We could also
define a metric on the underlying space, but the model will not depend on this metric. We should note that
if this underlying space-time is just Minkowski space, which is the background space-time R4 equipped with
the Minkowski metric of special relativity, then there is really nothing interesting going on. The Minkowski
space is a contractible space, thus it has only trivial topological properties.

It gets more interesting when the background space-time has non-trivial topology, especially when not
every time slice has the same topology also. This type of spaces especially shows up in for example string
theory. In closed superstring theory, we consider compact oriented manifolds of dimension two, embedded
in a Minkowski space of dimension 10, and the embedding map can be regarded as a field theory. Usually,
these manifolds are described as Riemann surfaces, or to be more precise, these M are the image of some
embedding Σ → R10, where Σ is a Riemann surface. Let T (t0) be the manifold of constant time t0, then T (t0)
is a contractible submanifold of R10 of dimension 9. Then we can define the intersection X(t0) := M ∩T (t0).

In many cases X(t0) will be a compact manifold of dimension one. This X(t0) has some number N(t0)
of connected components X(t0)j , and each component carries its own space H(X(t0)j) of possible quan-
tum states. The total space H(X(t0)) of quantum states possible on X(t0) is the tensor product of these
H(X(t0)j). However, we should take care when X(t0) is not a proper manifold. Any compact M without
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boundary has intersections of this type which are not proper submanifolds. We assume that it is always
possible to find a Morse function, defined on M , such that for all t0 we can interpret X(t0) as a level set of
this Morse function. In case this X(t0) is not a proper manifold, we are dealing with a critical point of this
Morse function, lying in X(t0).

We should note that in many quantum field theories the metric is a dynamical field. This means that
making any final conclusions about the model in use, we also need to consider all possible metrics, thus we
need to perform an extra path integral over this dynamical variable. In a topological quantum field theory
we do not desire transition amplitudes or any other quantity depending on a metric. According to [5], to
make sure this will indeed not happen, we first need to realize that a background metric is needed when
constructing the theory itself, so one needs to choose a background metric. So at first sight the complete
Hilbert space HC will include quantum states whose amplitudes will depend on the metric. However, any
TQFT admits a symmetry, a BRST-like operator Q : HC → HC , which is nilpotent. The Hilbert space of
physical states is defined as the Q-cohomology group:

Hphys := Ker(Q)/Im(Q).

This will project out all quantum states whose amplitudes depend on the metric, or, to be even more precise,
it divides out all metric-dependence. This means that it does not matter which specific background metric
we start with, and varying this metric also does not have any effect. Thus a path integral over all possible
metrics is not needed now, thus many computations can be simplified.

In quantum mechanics it is common use to make a difference between three types of models. Let H be
the Hilbert space corresponding to the model, then we consider the following three types:

• H is infinite-dimensional with an uncountable basis.

• H is infinite-dimensional with a countable basis.

• H is finite-dimensional, thus consequently it carries a finite basis, which is countable by definition.

A model of a free particle propagating in R3 with constant velocity is an example of a model of the first
type. A model of an oscillating particle, trapped in a potential, is an example of a model of the second
type. A model of a particle only carrying spin is an example of a model of the last type, as there is only
a finite number of spin-states. Especially models of the last type are interesting in the context of TQFTs.
The classical axioms of a TQFT, described in [4], apply to finite-dimensional Hilbert spaces by definition,
and in this case these axioms are exact. According to [4] it is also possible to apply the theory of TQFTs
to infinite-dimensional Hilbert spaces, but then we must make proper redefinitions of the axioms, making
them less exact. For simplicity we will ignore the first two possible types from now on, and only consider
finite-dimensional Hilbert spaces.

12



2 Monoids, Categories and Functors

I would like to give an introduction of some basic concepts in category theory, without entering too much
into detail. For the reader who is interested in a more detailed introduction, especially written for the
subjects discussed further, I would like to suggest reading [7]. In this book one can find a lot of figures which
might help to get more intuition.

The development of the concept of categories is a successful attempt to describe the grammar of many
mathematical structures. The structure of Frobenius algebras and of cobordisms, and the things we would
like to do with them, can be nicely summarized in terms of categorical language. Just like words can
be decomposed into letters, we can decompose any 2-dimensional cobordism into elementary pieces. We
will observe that some of these ‘words’, built up as different sequences of ‘letters’, will in fact be equal as
cobordisms. This yields relations, in fact identities, between words or parts of words, which might look
different at first sight.

As a standard example, we will shortly introduce the symmetric monoidal category of vector spaces near
the end of Section 2.3. Then we will also introduce the category of dualizable objects in Section 2.4. More
examples of categories, also symmetric monoidal ones, will be studied in more detail in later chapters.

2.1 Monoids

A monoid is a set M , together with a binary operation µ : M ×M → M , written like multiplication
µ : (a, b) 7→ a ·b. This multiplication is associative and has a neutral element e ∈M , satisfying e ·a = a ·e = a
for all a ∈M . This e is unique.

A more formal description of a monoid can be introduced. Let M be a set. Let Mm denote the m-fold
Cartesian product of M , written as Mm = M×· · ·×M . We define the singleton set 1 := M0. The singleton
set satisfies the property 1 ×M = M = M × 1. In what follows IdM : M → M will mean the identity
function.

A monoid is a set M together with two maps

µ : M ×M →M , η : 1 →M,

where µ satisfies the associativity relation

µ ◦ (µ× IdM ) = µ ◦ (IdM ×µ)

and η satisfies

µ ◦ (IdM ×η) = π(M,1) , µ ◦ (η × IdM ) = π(1,M).

Here π(M,1) and π(1,M) are the canonical projection maps

π(M,1) : M × 1 →M , π(1,M) : 1×M →M.

We can express these properties using the following commuting diagrams:

M ×M ×M
µ×IdM

wwooooooooooo
IdM ×µ

''OOOOOOOOOOO

M ×M

µ
''OOOOOOOOOOOO M ×M

µ
wwoooooooooooo

M

M × 1
IdM ×η//

π(M,1)
%%KKKKKKKKKK M ×M

µ

��

1×M
η×IdMoo

π(1,M)
yyssssssssss

M

(2.1)

We note that associativity implies that µ induces uniquely defined maps µ(m) : Mm →M . Any monoid
is written as a triple (M,µ, η), or alternatively (M, ·, e).
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When M and M ′ are two monoids, a monoid homomorphism φ : M → M ′ is a function for which the
following diagrams commute:

M ×M
φ×φ //

µ

��

M ′ ×M ′

µ′

��
M

φ
// M ′

M
φ // M ′

1

η

__@@@@@@@@ η′

>>}}}}}}}}

With this formal description of a monoid we can later define the notion of a monoidal category.

2.2 Categories

Categories: The main definition. A category C is given by a collection C0 of objects and a collection
C1 of morphisms, or arrows. These collections are equipped with the following structure:

• Each arrow has a domain and a codomain, which are objects. If X is the domain of the arrow f , and
Y its codomain, alternatively written as X = dom(f) and Y = cod(f), then we write f : X → Y .

• For any two arrows f : X → Y and g : Y → Z, another (unique) arrow gf : X → Z exists. We say gf
is the composition of f and g.

• The composition is associative, that is, given f : X → Y , g : Y → Z and h : Z → W , then
h(gf) = (hg)f . Thus we are allowed to write hgf : X →W .

• For every object X there is an identity arrow IdX : X → X which satisfies f IdX = f and IdX g = g
for all f : X → Y and g : Y → X. For all X this identity arrow is unique.

We remark that the arrows always point from an object to an object, thus it defines some sense of direction.
There is one subtlety though. When an arrow f : X → Y exists, there is no reason to assume another arrow
g : Y → X exists. For any pair X,Y ∈ C0 we define C(X,Y ) as the collection of arrows with domain X and
codomain Y .

Example of a category. As an example of a category, considering monoids as objects and monoid homo-
morphisms as arrows, we can define the category of monoids, written as Mon.

Subcategories. Let C and D both be categories, then D is a subcategory of C if the following hold:

• Any object in D is also an object in C.

• Any arrow in D is also an arrow in C.

• The composition of arrows with respect to C and with respect to D is the same.

• The identity arrows with respect to C and with respect to D are the same.

If for every pair of objects X and Y in D we have D(X,Y ) = C(X,Y ), then we call D a full subcategory of
C.

Isomorphisms, isomorphism classes and skeletons. An arrow f : X → Y is called an isomorphism
if there exists another (unique) arrow g : Y → X such that gf = IdX and fg = IdY . Then we say X and Y
are isomorphic, and we will write g = f−1. To any object X an isomorphism class ιX is associated, which
contains all objects isomorphic to X. For any Y isomorphic to X we have ιY = ιX .
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A skeleton of a category C is a category D satisfying the following:

• Every object in D is an object in C.

• For every pair of objects X and Y in D, the arrows in D are precisely the arrows in C, thus D(X,Y ) =
C(X,Y ).

• For every object X in D, its identity arrow with respect to D coincides with its identity with respect
to C.

• The composition law of arrows in D equals the composition law of arrows in C, when restricted to
arrows in D.

• Every object in C is isomorphic to some object in D.

• There exists no isomorphism between any pair of distinct objects in D.

This means that D is a full subcategory of C and that it contains exactly one object from each distinct
isomorphism class of C, and that the only isomorphisms in D are arrows, not necessarily identities, from an
object to itself.

A skeleton is not unique, but any two skeletons D and D′ are isomorphic, in the sense that for both the
objects and arrows in D and D′ a one-to-one relation exists, thus for every object or arrow in D there is a
unique corresponding object or arrow in D′. Thus a skeleton is only unique up to isomorphisms of categories.

We will not claim that for every category there exists a skeleton, but when a skeleton of C exists, we can
say that it describes the essential structure of C.

Example of a category: A groupoid. A category C is called a groupoid if all of its arrows are isomor-
phisms. Then we see that, for any object X, C(X,X) can be regarded as a group. As a nice example we
could introduce the fundamental groupoid ΠX of a topological space X. The objects in ΠX are points in X,
and for any two points p and q the arrows from p to q are homotopy classes of paths, lying in X, from p to
q. Here we recall that a path from p to q is specified by a continuous map γ : [0, 1] → X, with γ(0) = p and
γ(1) = q. Then π1(X, p) := ΠX(p, p) is the fundamental group of X at p. We note that a topological space
X needs not be connected. This means that its fundamental groupoid is also not connected. Of course, in
an arbitrary category, two distinct objects do not need to be connected by arrows. In general, a groupoid
needs not be connected.

Generators and relations. When we have found a skeleton D of C it is possible to study its further
structure. A generating set G(D) is a collection of arrows in D so that every other arrow in D can be
obtained by composing arrows in G(D). This set is not necessarily unique, but we assume it is minimal.
Any arrow in G(D) is called a generator . A relation is the equality of two distinct ways of writing a given
arrow in terms of these generators. A minimal set R(D) of relations is called complete if every other relation
can be obtained by combining relations in R(D).

Functors. A functor is a map between categories. Given two categories C and D, a functor F : C → D
consists of operations F0 : C0 → D0 and F1 : C1 → D1, so that for each f : X → Y , where X,Y ∈ C0 and
f ∈ C1, we have F1(f) : F0(X) → F0(Y ) and:

• For f : X → Y and g : Y → Z, we have F1(gf) = F1(g)F1(f).

• F1(IdX) = IdF0(X) for each X ∈ C0.

A trivial example is the identity functor from a category C to itself. It maps any object or arrow to itself.
It is written as IdC .

Strictly speaking, it is common use to make a difference between covariant functors and contravariant
functors. The definition above is really a covariant functor, as it preserves the direction of arrows. A
contravariant functor reverses the direction of arrows. From now on, when saying some map F is a functor,
we will automatically mean a covariant functor.
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The Cartesian product of categories. For each pair of categories C and D, we define its Cartesian
product C ×D as follows. For any X ∈ C0 and Y ∈ D0 we have an object (X,Y ) of C ×D. The set of arrows
from (X,Y ) to (X ′, Y ′) is the Cartesian product C(X,X ′)×D(Y, Y ′). This defines the Cartesian product of
categories completely. The singleton category, or the empty product category, which means the product of
zero factors, is denoted by 1 = C0. This 1 contains only one object and only one arrow, which is the identity
arrow of the single object.

The Cartesian product of categories satisfies the rules (C×D)×E = C×(D×E) and C×1 = C = 1×C. The
equality symbols should be interpreted as natural identifications, not as exact equalities. Strictly speaking,
the Cartesian product of sets itself is not associative. As a consequence, the Cartesian product of categories
is also not associative. However, there are natural identifications, and these are generated by canonical
functors. From now on we will not care about this subtlety. We will ignore the brackets and we will use the
n-fold Cartesian product of categories. For example, we will write Cn = C × · · · × C. Furthermore, we can
define the canonical projection functors π(1,C) and π(C,1):

π(1,C) : 1× C → C , π(C,1) : C × 1 → C.

The composition and the Cartesian product of functors. The composition and the Cartesian prod-
uct of two functors can be defined in a natural way. The composition of a pair of functors F : C → D and
G : D → E is written as GF : C → E . This composition is associative. For any pair of functors F : C → D
and F ′ : C′ → D′ their Cartesian product is written as F ×G : C × C′ → D ×D′.

Isomorphism of categories: The formal definition. We say the categories C and D are isomorphic if
functors F : C → D and G : D → C exist such that GF = IdC and FG = IdD. As mentioned earlier, any two
skeletons D and D′ of C are isomorphic. However, we should realize that the responsible isomorphism is not
unique.

A functor from a category to a skeleton. If C is a category, and if C′ is a skeleton of C, then we can
define a projection functor P : C → C′. Any object X ′ in C′ is also an object in C. Let iX′ be its isomorphism
class in C. Then P will map any object X ∈ iX′ to X ′, thus we will write P0(X) = X ′. This projection
functor is not unique. Only its behaviour with respect to objects is unique, but we need to make a choice
for its behaviour with respect to arrows, and there does not really exist any canonical choice.

So, how to choose this functor? For any X ′ ∈ C′0 and for any X ∈ iX′ there are isomorphisms from X to
X ′. In fact it is possible there are many different isomorphisms from X to X ′, and this is really the cause of
a projection functor not being unique. Suppose X and Y are two arbitrary objects in C, and f is an arrow
from X to Y . Now define X ′ := P0(X) and Y ′ := P0(Y ), which are objects in C′. Then f can be mapped to
an arrow from X ′ to Y ′, which is an arrow in C′. If for example ι1 : X → X ′, ι2 : X → X ′, ι3 : Y → Y ′ and
ι4 : Y → Y ′ are all different isomorphisms, then we could define f1 := ι3fι

−1
1 , f2 := ι3fι

−1
2 , f3 := ι4fι

−1
1

and f4 := ι4fι
−1
2 . All of these should be different arrows in C′ from X ′ to Y ′, and all of these can equally

well be chosen as the image P1(f), so none of these should be preferred.
The functor P is completely determined after choosing one of the isomorphisms for every pair of distinct

objects from the same isomorphism class: for any X ∈ iX′ one isomorphism ιX : X → X ′ = P0(X) is chosen.
If X = X ′ then we will choose ιX = ιX′ := IdX′ , but for all other X 6= X ′ such a canonical choice is not
possible. If f is an arrow from X to Y in C, then f ′ := P1(f) is an arrow from X ′ := P0(X) to Y ′ := P0(Y ),
and it is defined by P1(f) := ιY fι

−1
X . Doing this for all arrows in C should define P completely. If f is

already an arrow in C′, then we write P1(f) = f .

We can introduce a notation convention. Whenever an object carries a ′-sign, it is automatically assumed
to lie in C′. For any object X in C, we will write X ′ := P0(X), but it will depend on the context. Sometimes
we will only discuss objects in a skeleton. Then we do not automatically assume that X ′ is the projected
object related to some other X.
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There is a unique canonical inclusion functor, say I : C′ → C. Any object or arrow in C′ is always an
object or arrow in C, thus I will really do nothing but mapping any object or arrow to itself. This functor
satisfies PI = IdC′ , which implies that the action of P is uniquely determined when P is restricted to C′
itself, as it should be. Two exact relations hold:

π(1,C′) = Pπ(1,C)(Id1×I), π(C′,1) = Pπ(C,1)(I × Id1). (2.2)

Natural transformations. A natural transformation α between two functors F,G : C → D is a family of
arrows αX : F0(X) → G0(X), which are arrows in D, where X indexes all objects in C, such that for any
pair X,Y ∈ C0 and for any arrow f ∈ C1, f : X → Y the following diagram commutes in D:

F0(X)
αX //

F1(f)

��

G0(X)

G1(f)

��
F0(Y )

αY

// G0(Y )
(2.3)

In this case we say the arrows αX are natural. We will write α : F ⇒ G, or draw the following diagram:

C

F

''

G

77⇓ α D

For any functor F : C → D there exists an identity natural transformation IdF : F ⇒ F . We will write
(IdF )X = IdF0(X).

The Cartesian product of natural transformations. The Cartesian product of functors naturally
induces a Cartesian product of natural transformations. For any pair of natural transformations α : F ⇒ G
and β : H ⇒ J we write α × β : F ×H ⇒ G × J . Identity natural transformations are trivially related by
IdF×G = IdF × IdG.

Serial composition of natural transformations. Natural transformations can be composed, and can
be interpreted as arrows between functors. If α : F ⇒ G and β : G ⇒ H are natural transformations, then
βα : F ⇒ H, defined by (βα)X := βXαX for all X, is the result of composing them. We can call this
serial composition. Associativity of composing arrows implies associativity of serial composition of natural
transformations. Any pair of categories C,D induces a new category DC , where the objects are functors
F : C → D and the arrows are natural transformations between these functors. Any natural transformation
α : F ⇒ G satisfies IdG α = α = α IdF .

Parallel composition of natural transformations. Let F and G be functors from C to D, and let
H and J be functors from D to E . If natural transformations α : F ⇒ G and β : H ⇒ J exist, then
these trivially induce another natural transformation γ : HF ⇒ JG, which can be regarded as a parallel
composition of α and β. We could write γ = β ∗α to express this. This can be visualized as in the following
diagram:

C

F

''

G

77⇓ α D

H

''

J

77⇓ β E = C

HF

''

JG

77⇓ γ E
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So, how to define this parallel composition? For any object X in C we can define an arrow γX :
H0(F0(X)) → J0(G0(X)):

γX := J1(αX)βF0(X) = βG0(X)H1(αX). (2.4)

For any arrow f : X → Y in C it is easy to show that it is compatible with γ:

γYH1(F1(f)) = βG0(Y )H1(αY )H1(F1(f)) = βG0(Y )H1(αY F1(f)) = βG0(Y )H1(G1(f)αX) =
βG0(Y )H1(G1(f))H1(αX) = J1(G1(f))βG0(X)H1(αX) = J1(G1(f))γX .

Thus we can safely conclude that γ is indeed another natural transformation. Associativity of composing
functors implies associativity of parallel composition of natural transformations.

For any pair of functors F : C → D and G : D → E , and for identity natural transformations IdF and
IdG, we will write IdGF = IdG ∗ IdF .

Composing natural transformations and functors. Suppose we have the following situation:

C

F

''

G

77⇓ α D H // E

Then α : F ⇒ G and H induce another natural transformation IdH ∗α : HF ⇒ HG. Using (2.4) we can
write

(IdH ∗α)X = (IdH)G0(X)H1(αX) = IdH0(G0(X))H1(αX) = H1(αX).

We could call this the left composition of a natural transformation and a functor.
We could also have the following situation:

C F // D

G

''

H

77⇓ α E

Then F and α : G⇒ H induce another natural transformation α ∗ IdF : GF ⇒ HF . Again, using (2.4) we
can write

(α ∗ IdF )X = αF0(X)G1((IdF )X) = αF0(X)G1(IdF0(X)) = αF0(X) IdG0(F0(X)) = αF0(X).

We could call this the right composition of a natural transformation and a functor.
Combining the previous two diagrams gives us:

C F // D

G

''

H

77⇓ α E J // F

Then F , α and J induce another natural transformation IdJ ∗α ∗ IdF : JGF ⇒ JHF , and we can write

(IdJ ∗α ∗ IdF )X = J1((α ∗ IdF )X) = J1(αF0(X)).

Natural isomorphisms. We say a natural transformation α between functors F,G : C → D is invertible
if for all objects X in C the arrows αX in D are isomorphisms. In this case we will call all αX natural
isomorphisms, as they all commute with the structure as in diagram (2.3).
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Equivalence of categories. We say the categories C and D are equivalent if there are functors F : C → D
and G : D → C and invertible natural transformations α : IdC ⇒ GF and β : IdD ⇒ FG. It should
be clear that an isomorphism of categories is a special case of an equivalence of categories: the natural
transformations in question are trivial.

As a key example, when C′ is a skeleton of C, then we can say C and C′ are equivalent: the functors in
question are the canonical injection functor I : C′ → C and a projection functor P : C → C′. We already
know PI : C′ → C′ equals IdC′ , resulting in the identity natural transformation β : IdC′ ⇒ PI, and we
can indicate a natural transformation κ : IdC ⇒ IP . When P is specified, we already choose isomorphisms
ιX : X → X ′ = P0(X). For any arrow f : X → Y in C there is an arrow P1(f) : X ′ → Y ′, defined
by P1(f) = ιY fι

−1
X . This is also an arrow in C itself, as I shows. Now we need to find an invertible

natural transformation. An obvious choice of natural isomorphisms would be ιX itself, as we already know
P1(f)ιX = ιY f for any f , thus defining κX := ιX for any X defines an invertible natural transformation
from IdC to IP . In fact this is the main principle behind projection functors from a category to a skeleton:
a natural transformation κ defines the arrows ιX needed to specify such a projection functor completely.

As a side note, when P and P ′ are different projection functors from C to C′, then also two different
invertible natural transformations exist, say κ and κ′. As a consequence, there exists an invertible natural
transformation from P to P ′.

2.3 Monoidal categories

Strict monoidal categories: Main definition. Despite the fact that we are only interested in monoidal
categories, also called tensor categories, we will start with the definition of a strict monoidal category. A
strict monoidal category is a category C together with two functors

µ : C × C → C , η : 1 → C, (2.5)

where µ satisfies

µ(µ× IdC) = µ(IdC ×µ) (2.6)

and η satisfies

µ(η × IdC) = π(1,C), µ(IdC ×η) = π(C,1). (2.7)

As now µ and η are functors, and especially µ defines a binary operation, or some kind of product, we
would like to pick a symbol for writing products of objects and arrows. For any pair of objects X and Y
in C we will write µ0(X,Y ) = µ(X,Y ) = X2Y , and for any pair of arrows f and g in C we will write
µ1(f, g) = µ(f, g) = f2g, where dom(f2g) = dom(f)2 dom(g) and cod(f2g) = cod(f)2 cod(g). Identity
arrows are trivially related by

IdX2Y = IdX 2 IdY . (2.8)

We will call this the vertical composition of arrows, and the ordinary composition of arrows can be called
horizontal composition.

Relation (2.6) is called the associativity axiom, and relations (2.7) are called the unit axioms. Associativ-
ity of µ then implies we can forget the brackets when writing products of any number of objects or arrows,
for example X2Y2Z. Using the image 1 of the empty product category 1, or 1 = η(1), any strict monoidal
category is now written as a triple (C, µ, η), or alternatively (C,2, 1). We should make clear that 1 is an
object satisfying X21 = X = 12X for any object X in C and f2 Id1 = f = Id1 2f for any arrow f in C. Of
course 1 and Id1 are the only object and arrow satisfying these properties, which implies that there is only
one possible choice of η. We say that (1, Id1) is the neutral object of C.

Another relation: let f , g, h and j be arrows in (C,2, 1), satisfying dom(g) = cod(f) and dom(j) =
cod(h). Then the arrows gf and jh exist, and we can write the relation (g2j)(f2h) = gf2jh. This can
be derived from the composition rules of arrows in C × C and the standard functor properties. The arrows
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f , g, h and j in C canonically induce arrows (f, h) and (g, j) in C × C. Then (g2j)(f2h) = µ(g, j)µ(f, h) =
µ((g, j)(f, h)) = µ(gf, jh) = gf2jh. A special example is

IdA 2gf2 IdB = (IdA 2g2 IdB)(IdA 2f2 IdB), (2.9)

for some arbitrary objects A and B.

Strict monoidal categories: Examples. A monoid is a trivial example of a monoidal category, perhaps
justifying similarity in the notions. A (strict) monoidal category which has no arrows other than identity
arrows, can be regarded as a monoid.

Another example is the category CC of functors from a category C to itself. The objects are functors
F : C → C and the arrows are natural transformations α : F ⇒ G. Composition of these arrows is defined
by serial composition of natural transformations. Any two such functors can be composed, giving us again a
functor from C to itself: for any pair F and G we simply write G2F := GF . The identity functor Id exactly
satisfies Id2F = F = F2 Id for any other F . Associativity and unit properties of functors implies that the
associativity and unit axioms of this category are satisfied. Parallel composition of natural transformations
α : F ⇒ G and β : H ⇒ J gives us β2α := β ∗ α. The identity natural transformation IdId exactly satisfies
IdId 2α = α = α2 IdId for any other α.

Nonstrict monoidal categories. When a category C only satisfies the properties of a strict monoidal
category in the weak sense, which means that the equalities (2.6) and (2.7) of the functors are replaced by
invertible natural transformations, satisfying the so-called coherence constraints, then C is called a nonstrict
monoidal category, or just a monoidal category. So what does this mean? The associativity axiom will be
replaced by the weak associativity axiom. Instead of assuming equality of µ(µ× IdC) and µ(IdC ×µ), which
are functors from C×C×C to C, we assume an invertible natural transformation α : µ(µ× IdC) ⇒ µ(IdC ×µ),
called the associator, exists. This means that for any triple A,B,C of objects in C there exists a natural
isomorphism αA,B,C : (A2B)2C → A2(B2C). These isomorphisms are compatible with all arrows, as
in diagram (2.3). Similarly, the unit axioms can be replaced by the weak unit axioms. Then we assume
invertible natural transformations β : µ(η × IdC) ⇒ π(1,C) and γ : µ(IdC ×η) ⇒ π(C,1) exist. Thus for any
object A in C there exist natural isomorphisms βA : 12A→ A and γA : A21 → A.

The newly introduced natural transformations α, β and γ should now satisfy the coherence constraints,
which means that for any quadruple of objects A,B,C,D the two diagrams

((A2B)2C)2D
αA2B,C,D //

αA,B,C2 IdD

PPPP
P

((PPPP
P

(A2B)2(C2D)
αA,B,C2D // A2(B2(C2D))

(A2(B2C))2D
αA,B2C,D

// A2((B2C)2D)

IdA 2αB,C,Dnnnnn

66nnnnn

(2.10)
and

(A21)2B
αA,1,B //

γA2 IdB %%LLLLLLLLLL
A2(12B)

IdA 2βByyrrrrrrrrrr

A2B

(2.11)

should commute. Or, just using symbols:

αA,B,C2DαA2B,C,D = (IdA 2αB,C,D)αA,B2C,D(αA,B,C2 IdD), (2.12)
(IdA 2βB)αA,1,B = γA2 IdB . (2.13)
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Using these weaker definitions, a (nonstrict) monoidal category is specified by a sextuple (C, µ, η, α, β, γ),
where α, β and γ are invertible natural transformations satisfying the coherence constraints. Then C is a
strict one if α, β and γ are identity natural transformations, which should not lead to any confusion, as in
that case we already have the equality (A2B)2C = A2(B2C) for any triple of objects.

We should realize that, even if the empty product category 1 itself contains only one object, there could
be multiple objects in C to be chosen as the image 1 of this object under the functor η. Thus we have more
freedom to choose η, as long as it satisfies the weak unit axioms, and 1 should satisfy (2.11). Thus η is in
general not unique, contrary to the case of a strict monoidal category. However, any two possible choices of
1 are related by an isomorphism. Thus the isomorphism class of 1 contains multiple objects, or, using other
words, 1 is only unique up to isomorphisms.

We will see that the monoidal categories, discussed in later chapters, will in fact all be nonstrict monoidal
categories. However, as can be read in more detail in [6], there is no problem in treating nonstrict monoidal
categories as strict ones. When the coherence constraints are satisfied, we can treat all natural isomorphisms
αA,B,C , βA and γA as if they were equalities, without contradictions. So we will not care if the natural
transformations are treated as identities, as in (2.6) and (2.7). Thus from now on we will call a category
a monoidal category, regardless of whether it is a strict or a nonstrict one. In practice this means we can
ignore the parentheses, as we can assume µ to be associative. For example, we can write A2B2C again, as
in the strict monoidal case, instead of (A2B)2C or A2(B2C).

Of course this can be expressed with more subtlety. We can choose to make exact identifications between
for example A12A22A32A4 and ((A12A2)2A3)2A4, thus writing all parentheses to the left, and ignore all
other possible objects with parentheses at different locations. Then a 2-product of two such objects can be
written again in this form, using associators. Stated otherwise, we let the natural transformations α, β and
γ be absorbed into µ and η, and write µ̄ and η̄ instead, which should be functors turning C into a strict
monoidal category. Then we can write (C, µ̄, η̄) instead of (C, µ, η, α, β, γ), and we can say that now C has
been strictified. However, these categories are not identical, but should be regarded as equivalent, or even
monoidally equivalent, as explained in [6].

In later chapters, where we will look at specific monoidal categories, we will use the symbols of disjoint
union q or the tensor product ⊗ instead of 2, and we will realize that the associator related to these is such
a trivial thing, we could easily forget about it.

Monoidal functors. The notion of a monoid homomorphism can be extended to monoidal categories. If
C and C′ are strict monoidal categories, then a functor F : C → C′ is called a strict monoidal functor if it
commutes with all the specified structure, as in the following commuting diagrams:

C × C
F×F //

µ

��

C′ × C′

µ′

��
C

F
// C′

C F // C′

1

η

^^>>>>>>> η′

??�������

There is another way to look at it. The image of a strict monoidal functor acting on a monoidal category
is again a monoidal category, which means that a strict monoidal functor preserves monoidal structure of
the source category.

As we will be dealing with nonstrict monoidal categories in later chapters, we should make a subtle exten-
sion to this definition. The functor in question should also be compatible with the natural transformations
α, β and γ, specified in the definition of C, and we will still call it a strict monoidal functor. After strictifying
C and C′ we can again say that the functor in question is an ordinary strict monoidal functor.

There are other types of monoidal functors, but, to keep it simple, we will only make a difference between
strict and nonstrict monoidal functors. From now on we will assume that any monoidal functor we discuss
is also strict, unless stated otherwise. In the later chapters we will also ignore the natural transformations
α, β and γ. For more details about nonstrict monoidal categories and monoidal functors, the reader can
consult [7].
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Symmetric Monoidal Categories. A strict monoidal category (C,2, 1) is called a symmetric monoidal
category if for any pair of objects X,Y a twist arrow

τX,Y : X2Y → Y2X

is defined, satisfying the following properties:

1. For any pair of objects X,Y the arrows τX,Y are natural, which means that τ can be interpreted as
a natural transformation between functors (X,Y ) 7→ X2Y and (X,Y ) 7→ Y2X. We will call this
naturality of the twist arrow . Thus for any pair of arrows f : X → Y and g : X ′ → Y ′ the equation

(g2f)τX,X′ = τY,Y ′(f2g) (2.14)

is satisfied.

2. For any pair of objects X,Y we have τY,XτX,Y = IdX2Y , making any twist arrow into an isomorphism.

3. For any triple of objects X,Y, Z the following diagram commutes:

X2Y2Z
τX,Y 2Z //

τX,Y 2 IdZ ''NNNNNNNNNNN Y2Z2X

Y2X2Z

IdY 2τX,Z

77ppppppppppp
(2.15)

Note that (2.15) implies that τY 2Z,X = τ−1
X,Y 2Z = (τY,X2 IdZ)(IdY 2τZ,X), or, after a relabeling of the

objects:
τX2Y,Z = (τX,Z2 IdY )(IdX 2τY,Z). (2.16)

An important remark to be made here is that this collection of twist arrows itself is not related to
properties of a given monoidal category, but rather a structure to be specified. We would thus like to write
(C, µ, η, τ) to specify any symmetric monoidal category. It is another question though whether it is possible
to specify a symmetric structure for any monoidal category.

Now suppose Y = Z = X and X ′ = Y ′ = X2X, and write τX instead of τX,X . Then (2.14) reduces
to (τX2 IdX)τX,X2X = τX,X2X(IdX 2τX), when applied to f = IdX and g = τX , and (2.15) reduces to
τX,X2X = (IdX 2τX)(τX2 IdX). Combining these will give

(τX2 IdX)(IdX 2τX)(τX2 IdX) = (IdX 2τX)(τX2 IdX)(IdX 2τX). (2.17)

This relation should remind us of a well known property of ordinary permutations.
Here is another useful relation:

• Lemma. For any X the following identity holds:

τX,1 = IdX = τ1,X . (2.18)

Proof. We already know that X21 = X = 12X, thus τX,1 and τ1,X are arrows from X to itself.
Inserting Y = Z = 1 into (2.15) and using 121 = 1 ⇒ τX,121 = τX,1 gives us:

τX,1 = τX,121 = (Id1 2τX,1)(τX,12 Id1) = τX,1τX,1.

Now combining this with the identity τ1,XτX,1 = τX,1τ1,X = IdX yields

τX,1 = τX,1 IdX = τX,1τX,1τ1,X = τX,1τ1,X = IdX .

Thus τX,1 = IdX . As τ1,X is the inverse arrow of τX,1 this implies that τ1,X = IdX .

�
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Note that we first assumed that C is already a strict monoidal category before defining symmetric structure.
In general this is not necessary. A nonstrict monoidal category can also be equipped with symmetric
structure, but the definitions and properties of a nonstrict symmetric monoidal category are more complex
then. To keep it simple we will only consider strict monoidal categories equipped with simplified symmetric
structure, or strict symmetric monoidal categories.

Symmetric Monoidal Categories: A key example. If V and W are vector spaces over a ground field
k, then V ⊗W is again a vector space over k. There are canonical identifications k⊗ V ' V ' V ⊗ k and a
canonical twist map τV,W : V ⊗W →W ⊗ V . This twist map is linear and maps any v ⊗w to w⊗ v. Then
we can define the symmetric monoidal category

(Vectk,⊗,k, τ). (2.19)

Its objects are simply vector spaces over k, and its arrows are linear maps between these vector spaces. For
any pair of arrows f : V → W and f ′ : V ′ → W ′, f ⊗ f ′ : V ⊗ V ′ → W ⊗W ′ is another arrow, thus the
usual tensor product of linear maps can be used to specify the monoidal structure of arrows.

Symmetric Monoidal Functors. When C and C′ are symmetric monoidal categories, then a monoidal
functor F : C → C′ is called a symmetric monoidal functor if it preserves the symmetric structure. Let τ
and τ ′ be the twist arrows as defined on C and C′ respectively, then we have

F1(τX,Y ) = τ ′F0(X),F0(Y )

for all X,Y ∈ C0. Again, there is another way to look at it. The image of a symmetric monoidal functor
acting on a symmetric monoidal category is again a symmetric monoidal category.

Monoidal natural transformations. Let (C,2, 1) and (C′,2′, 1′) be a pair of monoidal categories. If F
and G are (strict) monoidal functors from (C,2, 1) to (C′,2′, 1′), then a natural transformation α : F ⇒ G
is called a monoidal natural transformation if for every pair of objects A and B we have

αA2′αB = αA2B

and if α1 = Id1′ . This will also be the case when we add symmetric structure to C and C′, and if F and G
are symmetric monoidal functors.

If (C,2, 1, τ) and (C′,2′, 1′, τ ′) are symmetric monoidal categories, then we can define the category
SymmMonCat(C, C′) whose objects are the symmetric monoidal functors from C to C′, and whose arrows
are the monoidal natural transformations between such functors. The category SymmMonCat(C, C′) is
called a symmetric monoidal functor category .

2.4 Dualizable objects

In this section we will introduce dualizable objects in the general case. In Chapter 9 we will discuss
the category 1Cob of 1-dimensional cobordisms. At least we can say that all of its objects are dualizable.
In Section 10.5 we will also mention the category of dualizable objects in the destination category of any
topological quantum field theory.

Main definition. Let (C,2, 1, τ) be a symmetric monoidal category. An object X in C is called a dualizable
object if another object Y exists, together with arrows κ : X2Y → 1 and λ : 1 → Y2X, such that the
following identities hold:

IdX = (κ2 IdX)(IdX 2λ) , IdY = (IdY 2κ)(λ2 IdY ). (2.20)
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We will call these the zig-zag identities. We can say that Y is a dual object of X, and that (X,Y, κ, λ)
specifies all information of one specific dualizable object X, after making a choice for Y , κ and λ. (In general
we cannot say that X has a unique dual object.)

As we are dealing with a symmetric monoidal category, we can also define κ̃ := κτY,X and λ̃ := τY,Xλ.
If we use the naturality of the twist arrows, then we can say that (X,Y, κ, λ) automatically induces another
dualizable object (Y,X, κ̃, λ̃). Thus, if Y is a dual object of X, then X is also a dual object of Y . Using
these κ̃ : Y2X → 1 and λ̃ : 1 → X2Y we can rewrite (2.20) as follows:

(κ2 IdX)(IdX 2λ) = IdX = (IdX 2κ̃)(λ̃2 IdX),
(κ̃2 IdY )(IdY 2λ̃) = IdY = (IdY 2κ)(λ2 IdY ). (2.21)

These identities can also be expressed by the following commuting diagrams:

X2Y2X
κ2 IdX

$$JJJJJJJJJJ

X
IdX //

IdX 2λ
::tttttttttt

λ̃2 IdX $$JJJJJJJJJJ X

X2Y2X

IdX 2κ̃

::tttttttttt

Y2X2Y
κ̃2 IdY

$$III
III

III
I

Y
IdY //

IdY 2λ̃
::uuuuuuuuuu

λ2 IdY $$III
III

III
I Y

Y2X2Y

IdY 2κ

::uuuuuuuuuu

We can say that (1, 1, Id1, Id1) is the trivial dualizable object in any symmetric monoidal category.

Dualizable homomorphisms. If we have a pair of dualizable objects (X,Y, κ, λ) and (X ′, Y ′, κ′, λ′) in
C and if fX : X → X ′ and fY : Y → Y ′ are arrows in C, then we say that f := (fX , fY ) is a dualizable
homomorphism in C if it is compatible with all the structure as in the following commuting diagram:

1
λ̃ //

λ̃′ ''PPPPPPPPPPPPP X2Y
κ //

fX2fY

��

1

X ′2Y ′
κ′

77nnnnnnnnnnnnn

Of course any pair of identity arrows (IdX , IdY ) is a dualizable homomorphism, and composing two dualizable
homomorphisms gives us another dualizable homomorphism: (f, g)(h, j) = (fh, gj). We can also say that
(Id1, Id1) is the trivial dualizable homomorphism from (1, 1, Id1, Id1) to itself.

Note that if C and D are symmetric monoidal categories and if F : C → D is a symmetric monoidal
functor, then the image (F0(X), F0(Y ), F1(κ), F1(λ)) of any dualizable object (X,Y, κ, λ) in C, will be a
dualizable object in D. Similarly, the image (F1(f), F1(g)) of any dualizable homomorphism (f, g) in C will
be a dualizable homomorphism in D.

The category of dualizable objects. If C is a symmetric monoidal category, written as (C,2, 1, τ), then
DO(C) is the category of dualizable objects in C. Its objects are the dualizable objects in C and its arrows
are the dualizable homomorphisms in C. This category DO(C) can be equipped with monoidal structure.
If (X,Y, κ, λ) and (X ′, Y ′, κ′, λ′) are dualizable objects in C, then we can also turn X2X ′ into a dualizable
object. We define the needed arrows as follows:

κ′′ := (κ2κ′)(IdX 2τX′,Y 2 IdY ′) , λ′′ := (IdY 2τX,Y ′2 IdX′)(λ2λ′).

Then we will write:
(X,Y, κ, λ)2(X ′, Y ′, κ′, λ′) = (X2X ′, Y2Y ′, κ′′, λ′′). (2.22)

24



For any pair of dualizable homomorphisms (f, g) and (h, j) we will write (f, g)2(h, j) := (f2h, g2j), which
is again a dualizable homomorphism. Using naturality of the twist arrows it is easy to check that also X2X ′,
as defined in (2.22), is a dualizable object. We thus see that DO(C) is closed under vertical composition,
or 2-products. Also note that ((1, 1, Id1, Id1), (Id1, Id1)) can be regarded as the neutral object for taking
2-products. We conclude that (DO(C),2, 1) can be regarded as a monoidal category.

A key example. Any vector space V of finite dimension (over k) has a unique canonical dual V ∗. Thus
V , together with choices for κ : V ⊗ V ∗ → k and λ : k → V ∗ ⊗ V , can be regarded as a dualizable
object in (Vectk,⊗,k, τ). Then we say V is a dualizable vector space. Of course we can choose another
finite-dimensional vector space W as a dual of V , if an isomorphism exists from W to V ∗. Any pair of
finite-dimensional vector spaces V and V ′ induces another finite-dimensional vector space V ⊗ V ′, which is
again dualizable.

The category of dualizable vector spaces. Now we can define the category DVSk of dualizable vector
spaces over k:

DVSk := DO(Vectk) = DO(Vectk,⊗,k, τ). (2.23)

Note that DVSk can be regarded as a monoidal category (DVSk,⊗,k). In Section 10.5 we will discuss a
relation between DVSk and the category of 1-dimensional topological quantum field theories.

25



26



3 Skeletons of Monoidal Categories

Note: the results of this chapter are not really needed elsewhere in this thesis. This chapter can be
regarded as a side topic, so it is not really a problem if the reader decides to skip this chapter and reads it
later. However, the subject of this chapter is still one of the purposes of this thesis.

In later chapters we will study some (symmetric) monoidal categories, and some skeletons of these cate-
gories. Then we will also study how the monoidal structure of these categories can induce monoidal structure
for these skeletons, and we will do this explicitly. In this chapter we will study how to do it in general, using
a formal, universal approach. If C is a monoidal category, and if C′ is a skeleton of C, then we will present a
proposal for deriving monoidal structure for C′ from the monoidal structure of C. For this purpose we will
use a projection functor P : C → C′. (An arbitrary projection functor can be used!)

The presented techniques are especially meant for nonstrict monoidal categories. In general we can only
say with certainty that, after porting over the structure, the skeleton C′ will be a nonstrict, or not necessarily
strict monoidal category. It does not matter if the monoidal structure of C is strict or nonstrict.

The main thing to do here is checking if the proposed techniques are correct. We will check this by finding
out if C satisfying the coherence constraints, will imply that also C′, equipped with the newly constructed
candidate monoidal structure, will satisfy the coherence constraints. The answer will be yes, but to check
this we need some elaborate steps.

This will also show that in general we do not need the explicit properties of C, or a special choice for
these properties. It is also no problem if C is nonstrict.

So, how will this apply to the things discussed in later chapters? There are examples in which the
operations 2 and 2′ turn out to be the same. For example in 2Cob, the category of oriented cobordisms of
dimension 2. See Chapter 8. Then we define 2 = 2′ := q. The objects in 2Cob are manifolds of dimension
1, and for any two objects X and Y , their disjoint union XqY is again an object. Then the objects in 2cob,
a skeleton of 2Cob, are just disjoint products of circles with standard orientation. Thus q also defines a
product of objects in 2cob. This means that the monoidal structure of C and C′ coincides, at least for this
choice of skeleton. Indeed, the chosen skeleton is closed under the operation of taking disjoint union, as we
can also read in [7]. Then we could easily ignore the subtleties discussed in this chapter.

However, we will also study 1Cob, the category of oriented cobordisms of dimension 1, with skeleton
1cob. See Chapter 9. Then we are forced to define 2 and 2′ differently. However, 2 is already chosen
to be q. The objects in 1Cob are sets containing a finite number of oriented points, and the arrows are
oriented manifolds of dimension 1 between them. Specifying the skeleton 1cob means that we need to pick
objects which can be used as basic building blocks. We will encounter objects which are a finite disjoint
union of positively and negatively oriented points, and we would like to see all positively oriented points in
the left part of the disjoint product. Now, if we take an ordinary disjoint product of two such objects, then
not all positively oriented points will be guaranteed to be on the left. At least,1cob is not closed under the
operation of taking ordinary disjoint union. However, there are still isomorphisms from such an object to
another object which satisfies the desired property. This construction will be used to define such a thing as
the graded disjoint union, which results in a 2′ defined differently. To make sure this 2′ satisfies elegant
properties, derived from the properties of 2, is a topic on its own, and an explanation of a solid theoretical
basis for this fits best here, in the context of the previous chapter.

A more explicit check of properties will be discussed in Chapter 9. Then we will also add symmetric
structure τ ′ to 1cob, also ported over from the symmetric structure τ of 1Cob itself. This means that
1Cob should already be regarded as a strict monoidal category then. We should note that τ is needed
then for explicitly checking the porting over of the monoidal structure, before porting over the symmetric
structure. Then the projection functor P will be related to τ .

In the more general case, as discussed here, we do not need any explicitly defined P , and we also do not
need any (simple) symmetric structure, thus at the same time we also do not need the source category to
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be strict. At least this chapter shows that the explicit check is not needed for porting over the monoidal
structure, and it does not depend on the specific properties of the category in question. The only extra thing
to do afterwards might be strictifying the monoidal structure of the skeleton, if desired.

So this chapter shows that it is no coincidence that we can port over the monoidal structure from 1Cob
to 1cob. The possibility of porting over this structure does not depend on the specific properties of 1Cob.

Formal introduction. If (C, µ, η, α, β, γ) is a nonstrict monoidal category, and if C′ is a skeleton of C, then
we can induce functors µ′ and η′ and natural transformations α′, β′ and γ′ from µ, η, α, β and γ, turning C′
also into a nonstrict monoidal category. Thus (C′, µ′, η′, α′, β′, γ′) can be derived from (C, µ, η, α, β, γ). To
do this we can make use of a projection functor P : C → C′ and the canonical injection functor I : C′ → C.
These functors will be used for deriving a (nonstrict) monoidal structure for C′ from the (nonstrict) monoidal
structure of C.

Let Id : C → C and Id′ : C′ → C′ be identity functors, let κ : Id ⇒ IP be the natural transformation
induced by P and let κ−1 : IP ⇒ Id be its inverse. Apart from that, note that Id′ = Id |C′ . Now define
µ′ := Pµ(I × I) and η′ := Pη, expressed by commuting diagrams:

C × C
µ // C

P

��
C′ × C′
I×I

OO

µ′ // C′

1
η //

η′ ��?
??

??
??

C

P

��
C′

(3.1)

If X ′ and Y ′ are objects in C′, then we write

X ′2′Y ′ := µ′0(X
′, Y ′) = (µ0(X ′, Y ′))′ = (X ′2Y ′)′ = P0(X ′2Y ′), (3.2)

which is another object in C′. Similarly, if f ′ : X ′ → Y ′ and g′ : Z ′ →W ′ are arrows in C′, then this defines
another arrow f ′2′g′ : X ′2′Z ′ → Y ′2′W ′, and we will write

f ′2′g′ := µ′1(f
′, g′) = (µ1(f ′, g′))′ = (f ′2g′)′ = P1(f ′2g′) = κY ′2W ′(f ′2g′)κ−1

X′2Z′ . (3.3)

Porting over the weak associativity axiom. We can write µ′(µ′ × Id′) and µ′(Id′×µ′) in terms of µ,
Id, I and P :

µ′(µ′ × Id′) = Pµ(I × I)((Pµ(I × I))× Id′) = Pµ(IPµ(I × I)× I Id′) = Pµ(IPµ(I × I)× Id I)
= Pµ(IPµ× Id)(I × I × I) = Pµ(IP × Id)(µ× Id)(I × I × I)

µ′(Id′×µ′) = Pµ(Id×IP )(Id×µ)(I × I × I).

• Lemma. Weak associativity of µ will imply weak associativity of µ′.

Proof. The natural transformations κ and κ−1 induce natural transformations κ−1 × IdId : IP × Id ⇒
Id× Id and IdId×κ : Id× Id ⇒ Id×IP . These in turn induce natural transformations:

µ′(µ′ × Id′) = Pµ(IP × Id)(µ× Id)(I × I × I)
IdP µ ∗(κ−1×IdId)∗Id(µ×Id)(I×I×I)��

Pµ(Id× Id)(µ× Id)(I × I × I) = Pµ(µ× Id)(I × I × I)
IdP ∗α∗IdI×I×I��

Pµ(Id×µ)(I × I × I) = Pµ(Id× Id)(Id×µ)(I × I × I)
IdP µ ∗(IdId×κ)∗Id(Id×µ)(I×I×I)��

Pµ(Id×IP )(Id×µ)(I × I × I) = µ′(Id′×µ′)
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We can define

ρ := IdPµ ∗(κ−1 × IdId) ∗ Id(µ×Id)(I×I×I),

α := IdP ∗α ∗ IdI×I×I ,
σ := IdPµ ∗(IdId×κ) ∗ Id(Id×µ)(I×I×I) . (3.4)

Composing these three natural transformations induces another natural transformation α′ : µ′(µ′ ×
Id′) ⇒ µ′(Id′×µ′), thus α′ = σαρ. Attaching object labels yields the following commuting diagram:

(A′2′B′)2′C ′
ρA′,B′,C′ //

α′
A′,B′,C′

22((A′2B′)2C ′)′
αA′,B′,C′ // (A′2(B′2C ′))′

σA′,B′,C′ // A′2′(B′2′C ′)

This α′ precisely defines an associator on C′. Thus weak associativity of µ implies weak associativity
of µ′.

This can be expressed alternatively:

C × C

IP×Id

++

Id× Id

33⇓ κ−1 × IdId C × C µ

��
C′ × C′ × C′

I×I×I // C × C × C

µ×Id 00

Id×µ ..

⇓ α C P // C′

C × C

Id× Id

++

Id×IP

33⇓ IdId×κ C × C µ

II (3.5)

.

�

We should note that, even if C is a strict monoidal category, then C′ is still not necessarily a strict monoidal
category. If we replace α in diagram (3.5) by an identity natural transformation, then the remaining natural
transformations will not exactly cancel, so there is no guarantee that α′ is an identity natural transformation.

Porting over the weak unit axioms. We can write µ′(η′ × Id′) and µ′(Id′×η′) in terms of µ, η, Id, I
and P :

µ′(η′ × Id′) = Pµ(IP × Id)(η × Id)(Id1×I),
µ′(Id′×η′) = Pµ(Id×IP )(Id×η)(I × Id1).

• Lemma. If η satisfies the weak unit axioms, then η′ does also.

Proof. This can again be expressed alternatively:

C × C

IP×Id

++

Id× Id

33⇓ κ−1 × IdId C × C µ

��
1× C′

Id1×I // 1× C

η×Id 11

π(1,C)

22⇓ β C P // C′
(3.6)
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Using (2.2) we see that composing the functors in the bottom part yields π(1,C′). Thus the natural
transformation β : µ(η × Id) ⇒ π(1,C) induces a natural transformation β′ : µ′(η′ × Id′) ⇒ π(1,C′). A
similar diagram can be drawn in case of µ′(Id′×η′), so that the natural transformation γ : µ(Id×η) ⇒
π(C,1) induces a natural transformation γ′ : µ′(Id′×η′) ⇒ π(C′,1). Then η satisfying the weak unit
axioms indeed implies η′ satisfying the weak unit axioms.

�

Again we should note that, even if C is a strict monoidal category, then C′ is not necessarily a strict monoidal
category. If we replace β in diagram (3.6) by an identity natural transformation, then the remaining natural
transformation is not guaranteed to be an identity natural transformation.

Porting over the coherence constraints (Step 1). Now we would like to know, when µ and η satisfy
the coherence constraints, whether µ′ and η′ also satisfy the coherence constraints. To find this out we will
start with rewriting some already known symbols. Knowing the definitions of α′, ρ, α and σ, as in (3.4), we
will write, for any triple of objects A′, B′ and C ′ in C′, the following:

ρA′,B′,C′ = (IdPµ ∗(κ−1 × IdId) ∗ Id(µ×Id)(I×I×I))A′,B′,C′

= (Pµ)1(κ−1 × IdId)((µ×Id)(I×I×I))0(A′,B′,C′)

= (Pµ)1(κ−1 × IdId)A′2B′,C′

= (Pµ)1(κ−1
A′2B′ , IdC′) = P1(κ−1

A′2B′2 IdC′)
= κ(A′2B′)2C′(κ−1

A′2B′2 IdC′)κ−1
(A′2B′)′2C′

αA′,B′,C′ = (IdP ∗α ∗ IdI×I×I)A′,B′,C′

= P1(α(I×I×I)0(A′,B′,C′)) = P1(αA′,B′,C′)

= κA′2(B′2C′)αA′,B′,C′κ
−1
(A′2B′)2C′

σA′,B′,C′ = (IdPµ ∗(IdId×κ) ∗ Id(Id×µ)(I×I×I))A′,B′,C′

= (Pµ)1(IdId×κ)A′,B′2C′ = (Pµ)1(IdA′ , κB′2C′)
= P1(IdA′ 2κB′2C′) = κA′2(B′2C′)′(IdA′ 2κB′2C′)κ−1

A′2(B′2C′)

Thus we have

α′A′,B′,C′ = (σαρ)A′,B′,C′ = σA′,B′,C′αA′,B′,C′ρA′,B′,C′

= κA′2(B′2C′)′(IdA′ 2κB′2C′)αA′,B′,C′(κ−1
A′2B′2 IdC′)κ−1

(A′2B′)′2C′ (3.7)

which is an arrow from (A′2′B′)2′C ′ to A′2′(B′2′C ′). Relation (3.7) can also be explained using the
following diagram, which commutes by definition:

(A′2′B′)2′C ′ = ((A′2B′)′2C ′)′
κ−1
(A′2B′)′2C′ //

α′
A′,B′,C′ ��

(A′2B′)′2C ′
κ−1

A′2B′2 IdC′ // (A′2B′)2C ′

αA′,B′,C′
��

A′2′(B′2′C ′) = (A′2(B′2C ′)′)′ A′2(B′2C ′)′
κA′2(B′2C′)′oo A′2(B′2C ′)

IdA′ 2κB′2C′oo

Then we can use that, in general, the natural isomorphisms αA,B,C and αA′,B′,C′ are, by definition,
related by

αA,B,C = (κ−1
A 2(κ−1

B 2κ−1
C ))αA′,B′,C′((κA2κB)2κC), (3.8)

as for any triple of objects A, B and C in C, the functors µ(µ×Id) and µ(Id×µ) map the arrow (κA, κB , κC) :
(A,B,C) → (A′, B′, C ′) to (κA2κB)2κC and κA2(κB2κC) respectively. As an example, if A is an object
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in C and if B′ and C ′ already are objects in C′, then κB′ = IdB′ and κC′ = IdC′ , thus

αA,B′,C′ = (κ−1
A 2(κ−1

B′ 2κ
−1
C′ ))αA′,B′,C′((κA2κB′)2κC′) =

= (κ−1
A 2(IdB′ 2 IdC′))αA′,B′,C′((κA2 IdB′)2 IdC′)

= (κ−1
A 2 IdB′2C′)αA′,B′,C′((κA2 IdB′)2 IdC′).

Of course we could write, for example, αA′2B′,C′,D′ in a similar fashion, and we will encouter similar relations
in the following definitions, see (3.9), (3.10) and(3.11).

Porting over the coherence constraints (Step 2). Now define the following natural isomorphisms:

i1 : ((A′2B′)2C ′)2D′ → ((A′2′B′)2′C ′)2′D′,

i2 : (A′2B′)2(C ′2D′) → (A′2′B′)2′(C ′2′D′),
i3 : A′2(B′2(C ′2D′)) → A′2′(B′2′(C ′2′D′)),
i4 : (A′2(B′2C ′))2D′ → (A′2′(B′2′C ′))2′D′,

i5 : A′2((B′2C ′)2D′) → A′2′((B′2′C ′)2′D′),

i1 := κ((A′2B′)′2C′)′2D′(κ(A′2B′)′2C′2 IdD′)(κA′2B′2 IdC′)2 IdD′),
i2 := κ(A′2B′)′2(C′2D′)′(Id(A′2B′)′ 2κC′2D′)(κA′2B′2 IdC′2D′)

= κ(A′2B′)′2(C′2D′)′(κA′2B′2 Id(C′2D′)′)(IdA′2B′ 2κC′2D′)
= κ(A′2B′)′2(C′2D′)′(κA′2B′2κC′2D′), (3.9)

i3 := κA′2(B′2(C′2D′)′)′(IdA′ 2κB′2(C′2D′)′)(IdA′ 2(IdB′ 2κC′2D′)),
i4 := κ(A′2(B′2C′)′)′2D′(κA′2(B′2C′)′2 IdD′)((IdA′ 2κB′2C′)2 IdD′),
i5 := κA′2((B′2C′)′2D′)′(IdA′ 2κ(B′2C′)′2D′)(IdA′ 2(κB′2C′2 IdD′)).

Then we can write out all natural isomorphisms α′, appearing in diagram (2.10) applied to C′, in terms of
the five isomorphisms defined in (3.9) and the natural isomorphisms α which already satisfy (2.10):

α′A′2′B′,C′,D′ = i2αA′2B′,C′,D′i−1
1 ,

α′A′,B′,C′2′D′ = i3αA′,B′,C′2D′i−1
2 ,

α′A′,B′,C′2
′ IdD′ = i4(αA′,B′,C′2 IdD′)i−1

1 , (3.10)

α′A′,B′2′C′,D′ = i5αA′,B′2C′,D′i−1
4 ,

IdA′ 2′α′B′,C′,D′ = i3(IdA′ 2αB′,C′,D′)i−1
5 .

Then (2.12) implies

α′A′,B′,C′2′D′α′A′2′B′,C′,D′ = i3αA′,B′,C′2D′i−1
2 i2αA′2B′,C′,D′i−1

1 = i3αA′,B′,C′2D′αA′2B′,C′,D′i−1
1

= i3(IdA′ 2αB′,C′,D′)αA′,B′2C′,D′(αA′,B′,C′2 IdD′)i−1
1

= i3(IdA′ 2αB′,C′,D′)i−1
5 i5αA′,B′2C′,D′i−1

4 i4(αA′,B′,C′2 IdD′)i−1
1

= (IdA′ 2′α′B′,C′,D′)α′A′,B′2′C′,D′(α′A′,B′,C′2
′ IdD′). (3.11)

In other words, if α satisfies its coherence constraints, then α′ does also.

Now, what about β′ and γ′? Just like we worked out α′ in terms of α and other natural isomorphisms,
we can work out β′ and γ′ from the already given structure. Without showing all the steps we can write for
any object A′ in C′:

β′A′ = βA′(κ−1
1 2 IdA′)κ−1

1′2A′

γ′A′ = γA′(IdA′ 2κ−1
1 )κ−1

A′21′
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Then, similarly to (3.9), (3.10) and (3.11), we can show that (2.13) implies

(IdA′ 2′β′B′)α
′
A′,1′,B′ = γ′A′2

′ IdB′

In other words, if β and γ satisfy their coherence constraint, then β′ and γ′ do also.
One subtlety here is that the unit objects 1 ∈ C0 and 1′ ∈ C′0, related by 1′ = P0(1), are not necessarily

the same. We already know that in a nonstrict monoidal category there is only a weak axiom saying that 1
is only unique up to isomorphisms. Knowing that the isomorphism class ι1 can contain multiple objects, we
conclude there is freedom to choose 1 and 1′ differently. However, in later chapters we will mainly discuss
specific nonstrict monoidal categories with only one possible unit object, which can also be used as the unit
object of the chosen skeleton, thus in that case we simply write 1′ = 1.

About the functor P itself. Assuming that C and C′ are not necessarily strict or strictified yet, we can
have a closer look at the projection functor P : C → C′. A priori we can only say this is a functor of a not
yet specified type. After deriving the monoidal structure for C′ from C we could say it is a monoidal functor.
However, it is not necessarily a strict one, but we could say it is at least a nonstrict monoidal functor. To
be more precise, P is at least a strong monoidal functor, and it is not difficult to check this. Of course this
is no surprise, as P was needed first to derive the (not necessarily strict) monoidal structure for C′ from C.
Or, to say differently, only afterwards we can say that P is a strong monoidal functor from C to another
category, C′, which obtained its monoidal structure from C and P .

A trivial example. First assume (C, µ, η) is already a strict monoidal category, and let C′ be a skeleton
of C. Also assume C′ already contains 1, which is the unit object of C. Then we know that, as usual, µ and η
satisfy (2.6) and (2.7). This is equivalent to saying that for any triple of objects and for any triple of arrows,
for convenience both denoted by (A,B,C), we can write (A2B)2C = A2(B2C) and 12A = A = A21
(where 1 is either the unit object itself or the unit arrow Id1). Now, if for any pair X ′, Y ′ ∈ C′0 we again
have µ0(X ′, Y ′) = X ′2Y ′ ∈ C′0, and if for any pair f ′, g′ ∈ C′1 we again have µ1(f ′, g′) = f ′2g′ ∈ C′1, then
we can choose a projection functor P : C → C′ satisfying P0(X ′2Y ′) = X ′2Y ′ and P1(f ′2g′) = f ′2g′ for
all objects X ′ and Y ′ and arrows f ′ and g′ in C′. We can already say that P satisfies 1′ := P0(1) = 1. This
means that we can define

µ′ := Pµ(I × I) = µ|C′ (3.12)

which is equivalent to saying that 2′ := 2. Then it is easily proven that also µ′ and η′ satisfy (2.6) and (2.7)
on C′. Thus we can say (C′,2, 1) is a skeleton of (C,2, 1), and it is also a strict monoidal category.

A summary. Now we can summarize all previous elaborate steps. If C = (C, µ, η, α, β, γ) is a nonstrict
monoidal category, then a skeleton C′ can also be turned into a nonstrict monoidal category by porting over
the structure. Then we can write C′ = (C′, µ′, η′, α′, β′, γ′). Even if C is strict, then C′ is still not guaranteed
to become strict. However, if C satisfies the coherence constraints, then C′ does also. Then we can treat C′
as a strict monoidal category.

Generators and relations for a skeleton of a monoidal category. Now we know that a skeleton C′
of a monoidal category C can also be described as a monoidal category, we can talk about its generators and
relations. As now arrows in a skeleton can be composed horizontally and vertically, by using 2′, we can try
to find a generating set G(C′) of arrows in C′ so that every other arrow can be obtained by composing arrows
in G(C′) both horizontally and vertically. In many cases this generating set should be smaller, compared to
when we are only allowed to split up arrows horizontally to find a set of generators.
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4 Categories with Frobenius structure and Frobenius algebras

Now we know what a symmetric monoidal category is, we can introduce Frobenius structure. In Section 4.1
we will first introduce monoids, comonoids and (commutative) Frobenius objects. Then we will introduce
the details of (commutative) Frobenius objects in a (symmetric) monoidal category. After this we can
say what a free (symmetric) monoidal category on a (commutative) Frobenius object is. Finally we will
introduce Frobenius structure, which applies to categories generated by a single object. In Section 4.2 we
will introduce Frobenius objects in Vectk, also known as Frobenius algebras. There are some equivalent
definitions for Frobenius algebras. In the rest of this thesis we will mainly focus on the fourth definition. In
Section 4.3 we will introduce cFAk, the category of commutative Frobenius algebras.

4.1 Frobenius structure

Monoids. A monoid in a (strict) monoidal category (C,2, 1) is an object X together with two arrows

µX : X2X → X , ηX : 1 → X

satisfying associativity and unit axioms, thus µX and ηX satisfy

µX(µX2 IdX) = µX(IdX 2µX), µX(ηX2 IdX) = IdX , µX(IdX 2ηX) = IdX . (4.1)

The arrow µX is called multiplication, and the arrow ηX is called unit . In a strict monoidal category, we have
the identity X21 = X = 12X for any object X. This means that any arrow with domain or codomain X is
also an arrow with domain or codomain X21 or 12X. That is why for example ηX2 IdX : 1×X → X ×X
can be regarded as an arrow with domain X. As a side note, we should not confuse a monoid in a monoidal
category with an ordinary monoid, however, an ordinary monoid is an example of a monoid in the specific
monoidal category (Set,×, 1).

• Lemma. For any arrow µX the associated arrow ηX is unique.

Proof. Suppose ηX and η′X satisfy the monoid relations, then

η′X = IdX η′X = µX(IdX 2ηX)η′X = µX(η′X2ηX) = µX(η′X2 IdX)ηX = IdX ηX = ηX .

Thus ηX is unique.

�

Comonoids. A comonoid in a (strict) monoidal category (C,2, 1) is an object X together with two arrows

δX : X → X2X , εX : X → 1

satisfying coassociativity and counit axioms, thus δX and εX satisfy

(δX2 IdX)δX = (IdX 2δX)δX , (εX2 IdX)δX = IdX , (IdX 2εX)δX = IdX . (4.2)

The arrow δX is called comultiplication, and the arrow εX is called counit . Thus relations (4.2) for δ and
ε are similar to relations (4.1), except that now the direction of the arrows is reversed. Similarly to the
previous lemma we can say that for any arrow δX the associated arrow εX is unique. There exist categories
with objects being a monoid and a comonoid at the same time.

Commutative monoids and cocommutative comonoids. LetX be a monoid in a symmetric monoidal
category (C,2, 1, τ) and let τX := τX,X : X2X → X2X be the twist arrow related to X. Then X is called
commutative if it satisfies µXτX = µX . If X is a comonoid in a symmetric monoidal category (C,2, 1, τ),
then it is called cocommutative if it satisfies τXδX = δX .
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Graphical representation of monoid and comonoid relations. The monoid and comonoid relations
can be graphically represented. By convention, the domain of an arrow is drawn on the left and the codomain
of an arrow is drawn on the right. The notation order of two composed arrows is from right to left, but in
the diagrams we will now introduce, this order is vice versa. The following diagrams graphically represent
the five basic arrows involved in monoid and comonoid relations:

µX ηX δX εX IdX

The following diagrams graphically explain the monoid relations:

µX(µX2 IdX) = µX(IdX 2µX) µX(ηX2 IdX) = IdX = µX(IdX 2ηX)

(4.3)

The following diagrams graphically explain the comonoid relations:

(δX2 IdX)δX = (IdX 2δX)δX (εX2 IdX)δX = IdX = (IdX 2εX)δX

(4.4)

In these diagrams, vertical composition of arrows is ordered from down to up.

Graphical representation of some relations concerning the twist arrows. The following diagrams
graphically represent the twist arrow of an object in a symmetric monoidal category and the relations a
commutative monoid and a cocommutative comonoid need to satisfy:

τX µXτX = µX τXδX = δX

(4.5)

And these diagrams graphically represent relation (2.17):

(τX2 IdX)(IdX 2τX)(τX2 IdX) = (IdX 2τX)(τX2 IdX)(IdX 2τX)

(4.6)
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Frobenius objects. A Frobenius object in a monoidal category (C,2, 1) is an object X together with four
arrows

µX : X2X → X , ηX : 1 → X , δX : X → X2X , εX : X → 1

satisfying the unit and counit axioms

µX(ηX2 IdX) = IdX = µX(IdX 2ηX) , (εX2 IdX)δX = IdX = (IdX 2εX)δX

and the Frobenius relation

(µX2 IdX)(IdX 2δX) = δXµX = (IdX 2µX)(δX2 IdX)

(4.7)

Note that we should write X = (X,µX , ηX , δX , εX) to completely specify a Frobenius object.

• Lemma. A Frobenius object satisfies associativity and coassociativity axioms.
Proof. Composing the arrows in (4.7) with εX2 IdX and applying the counit properties yield the
following relation:

(εX2 IdX)(µX2 IdX)(IdX 2δX) = (εX2 IdX)δXµX = µX

(4.8)

As relations like (2.9) show, we can easily insert or remove identity arrows. Inserting (4.8) into
µX(µX2 IdX) yields

µX(µX2 IdX) = µX((εX2 IdX)(µX2 IdX)(IdX 2δX)2 IdX)
= µX(εX2 IdX 2 IdX)(µX2 IdX 2 IdX)(IdX 2δX2 IdX).

Now applying the Frobenius relation multiple times we obtain the following relation, graphically ex-
plained by
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This finally shows that µX(µX2 IdX) = µX(IdX 2µX), turning µX into an associative multiplication
arrow.

Of course we can repeat this for the comultiplication: we can easily replace εX by ηX and interchange
µX and δX . After inverting the direction of composing arrows, we find a coassociative comultiplication
δX .

�

Thus we can safely conclude that a Frobenius object is a monoid and a comonoid at the same time.

• Lemma. A Frobenius object satisfies the following relation:

(εX2 IdX)(µX2 IdX)(IdX 2δX)(IdX 2ηX) = IdX =
(IdX 2εX)(IdX 2µX)(δX2 IdX)(ηX2 IdX). (4.9)

This relation is called the snake relation.

Proof. We can use the Frobenius relation and the unit and counit relations to prove this. We can do
this graphically:

(4.10)

The top part of this diagram just represents relation (4.9).

�

Free monoidal categories on a Frobenius object and Frobenius structure. Let (C,2, 1) be a
monoidal category and let X be a Frobenius object in C. Then we call C a free monoidal category on a
Frobenius object if all other objects can be written as n := Xn = X2 · · ·2X, and all arrows can be written
as serial and parallel composition of the four basic arrows µX , ηX , δX and εX . If C is such a category, then
we say C carries Frobenius structure.

Commutative and cocommutative Frobenius objects. Let (C,2, 1, τ) be a symmetric monoidal cate-
gory and letX be a Frobenius object in C. Then we callX a commutative Frobenius object if it is commutative
as a monoid, and it is called a cocommutative Frobenius object if it is cocommutative as a comonoid. We will
claim that X is cocommutative if and only if X is commutative. To prove this we need some intermediate
steps, represented as lemmas.

• Lemma. If we keep µX , ηX and εX fixed, and if the counit and Frobenius relations are satisfied for
both δX and δ′X , graphically represented by
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δX δ′X

then δX and δ′X must be the same arrow.

Proof. We will prove this graphically:

(4.11)

The third equality in this diagram is based on the equality µX = (IdX 2εX)(IdX 2µX)(δX2 IdX),
which is similar to (4.8). So we conclude that, if µX , ηX and εX are already chosen, then δX is unique.

�

• Lemma. We have the following two equalities:

IdX 2εX = (εX2 IdX)τX (IdX 2τX)(τX2 IdX)(IdX 2δX) = (δX2 IdX)τX

(4.12)

Proof. Naturality of the twist arrow implies the following two commuting diagrams

X2X
τX //

IdX 2εX

��

X2X

εX2 IdX

��
X21 τX,1

// 12X

X2X
τX //

IdX 2δX

��

X2X

δX2 IdX

��
X2X2X τX,X2X

// X2X2X

The arrow τX,1 in left diagram equals IdX , as proven in (2.18), and we already know that τX,X2X =
(IdX 2τX)(τX2 IdX).

�

Now suppose δX already satisfies the counit and Frobenius relations, and define δ′X := τXδX , graphically
represented by
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Then we would like to know whether this δ′X also satisfies the counit and Frobenius relations.

• Lemma. If δX already satisfies the counit and Frobenius relations, then δ′X also satisfies the counit
and Frobenius relations.

Proof. If δX satisfies the counit relation, then the left diagram of (4.12) implies

(εX2 IdX)δ′X = (εX2 IdX)τXδX = (IdX 2εX)δX =
IdX = (εX2 IdX)δX = (IdX 2εX)τXδX = (IdX 2εX)δ′X .

Thus δ′X also satisfies the counit relation. Now, if δX also satisfies the Frobenius relation, then the
right diagram of (4.12) and commutativity of µX imply (µX2 IdX)(IdX 2δ′X) = δ′XµX , graphically
explained by

The second equality comes from the identities (τX2 IdX)(τX2 IdX) = IdX2X2X and µXτX = µX . The
third equality comes from applying (4.6). The fourth equality comes from the right diagram of (4.12)
and its dual, i.e. turning the diagram 180 degrees. The other steps should be trivial. In a similar way
we can show that δ′XµX = (IdX 2µX)(δ′X2 IdX). Then we see that δ′X also satisfies the counit and
Frobenius relations.

�

To conclude, we see that, in case of δ′X = τXδX , the conditions for identity (4.11) are satisfied, thus δ′X = δX .
In other words, commutativity of µX implies cocommutativity of δX . Now we can discuss the final lemma.

• Lemma. X is a cocommutative Frobenius object if and only if X is a commutative Frobenius object.

Proof. If X is a commutative Frobenius object, then µX is commutative, as an arrow. Then δX is
cocommutative, turning X into a cocommutative Frobenius object. The reverse statement being true
can be derived from all previous steps when reversing the composition of all arrows and interchanging
the roles played by (µX , ηX) and (δX , εX).

�

A trivial example of a (commutative) Frobenius object. In any monoidal category (C,2, 1), the
object 1, together with the trivial arrow Id1, can be interpreted as a Frobenius object. As we know, 1 = 121,
thus we can make a trivial choice:

µ1 = η1 = δ1 = ε1 = Id1 .

It is easy to check that this Frobenius object is also commutative.

Free symmetric monoidal categories on a commutative Frobenius object. Let (C,2, 1, τ) be
a symmetric monoidal category and let X be a commutative Frobenius object in C. Then we call C a
free symmetric monoidal category on a commutative Frobenius object if all other objects can be written as
n := Xn = X2 · · ·2X, and all arrows can be written as serial and parallel composition of the five basic
arrows µX , ηX , δX , εX and τX . Of course this is a special case of a monoidal category on a Frobenius object,
thus C also carries Frobenius structure. In this case the Frobenius structure is commutative.
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Frobenius homomorphisms. Let X and Y be Frobenius objects in a monoidal category C. Then an
arrow f : X → Y is called a Frobenius homomorphism in C if it is compatible with all the structure as in
the following commuting diagrams:

X2X
µX //

f2f

��

X
δX //

f

��

X2X

f2f

��
Y2Y µY

// Y
δY

// Y2Y

1
ηX //

ηY ��?
??

??
??

? X
εX //

f

��

1

Y

εY

??�������� (4.13)

Of course the identity arrow IdX is a Frobenius homomorphism, and composing two Frobenius homomor-
phisms gives another Frobenius homomorphism. If C is also symmetric, then naturality of the twist arrow
implies that a Frobenius homomorphism is automatically compatible with this symmetric structure.

The category of Frobenius objects. If C is a monoidal category, written as (C,2, 1), then Frob(C)
is the category of Frobenius objects in C. Its objects are the Frobenius objects in C and its arrows are the
Frobenius homomorphisms in C. If C is also symmetric, then cFrob(C) is the category of commutative
Frobenius objects and Frobenius homomorphisms in C.

These two categories Frob(C) and cFrob(C) can be equipped with monoidal structure. If C is a symmetric
monoidal category and if (X,µX , ηX , δX , εX) and (Y, µY , ηY , δY , εY ) are Frobenius objects in C, then we can
also turn X2Y into a Frobenius object. We define the needed arrows as follows:

µX2Y := (µX2µY )(IdX 2τY,X2 IdY ),
ηX2Y := ηX2ηY , (4.14)
δX2Y := (IdX 2τX,Y 2 IdY )(δX2δY ),
εX2Y := εX2εY .

Using naturality of the twist arrows it is easy to check that associativity of µX and µY implies associativity
of µX2Y . Similarly coassociativity of δX and δY implies coassociativity of δX2Y . Also ηX and ηY satisfying
the unit axioms, implies that ηX2Y satisfies the unit axioms. The same applies to the counit axioms and
the Frobenius relation. Thus the four arrows defined in (4.14) turn X2Y into a Frobenius object.

If X and Y are commutative Frobenius objects and if we also write

τX2Y := τX2Y,X2Y = (IdX 2τX,Y 2 IdY )(τX2τY )(IdX 2τY,X2 IdY ) (4.15)

as implied by (2.16), then X2Y is again a commutative Frobenius object. Again it is easy to check that
commutativity of X and Y implies commutativity of X2Y .

We thus see that Frob(C) and cFrob(C) are closed under vertical composition, or 2-products. As
(1, Id1) can be regarded as the neutral object for taking 2-products of (commutative) Frobenius objects, we
conclude that (Frob(C),2, 1) and (cFrob(C),2, 1) can be regarded as monoidal categories. In addition we
can assert that a canonical monoidal embedding exists turning (cFrob(C),2, 1) into a monoidal subcategory
of (Frob(C),2, 1).

We could ask whether these are monoidal subcategories of C itself. We should be careful however. Of
course, for any pair X and Y of objects in (Frob(C),2, 1), we should write

(X,µX , ηX , δX , εX)2(Y, µY , ηY , δY , εY ) = (X2Y, µX2Y , ηX2Y , δX2Y , εX2Y ).

We thus see that the symbol 2 does not exactly have the same meaning, when appearing in (C,2, 1) and
in (Frob(C),2, 1), so the answer to our question is negative. There is even a simpler explanation. The
category Frob(C) is not a subcategory of (C,2, 1), just because more information is needed for specifying
any object in Frob(C)). To be more precise, specifying an object in Frob(C) means specifying an object A
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in (C,2, 1) and the needed arrows turning A into a Frobenius object. There could be many different ways of
turning A into a Frobenius object, so the class of objects in the category Frob(C) can be much larger than
that of C itself. For example, in case of C = Vectk every object V admits countlessly many sets of arrows
(µV , ηV , δV , εV ) turning V into a Frobenius object.

A subtle remark. If C is a free symmetric monoidal category on a commutative Frobenius object, and if
X is the commutative Frobenius object generating all other objects Xn, then we can say that all the other
objects Xn (n ≥ 2) are also commutative Frobenius objects. We can simply apply relations (4.14) and (4.15)
to these objects. So, saying that C is a category on a commutative Frobenius object does not mean that
it only contains one commutative Frobenius object. It only means that C contains only one commutative
Frobenius object generating all others.

4.2 Frobenius algebras

Algebras. Let k be a ground field, for example R or C, and let A be a vector space over k. We say that A
can be regarded as an abelian group equipped with a k-action A×k → A. As usual we write A∗ := Hom(A,k)
for the space dual to A. If A has finite dimension, then A∗ is isomorphic to A. If a basis for A is defined,
then we can find a dual basis for A∗. There is also a natural isomorphism from A to A∗∗ = Hom(A∗,k).

Now let µ : A⊗A→ A, called a multiplication map, and η : k → A, called a unit map, be k-linear maps.
Then A is called a k-algebra if the following diagrams commute:

A⊗A⊗A
µ⊗IdA

xxqqqqqqqqqq
IdA ⊗µ

&&MMMMMMMMMM

A⊗A

µ

&&MMMMMMMMMMMM A⊗A

µ

xxqqqqqqqqqqqq

A

A⊗ k
IdA ⊗η//

$$JJJJJJJJJJ A⊗A

µ

��

k⊗A
η⊗IdAoo

zztttttttttt

A

Of course we mean tensor products over k, or ⊗ = ⊗k. In fact we see that these diagrams are similar to
the diagrams in (2.1). Only × is replaced by ⊗ and 1 is replaced by k. We say a k-algebra is a monoid in
(Vectk,⊗,k).

Coalgebras. Let δ : A→ A⊗A, called a comultiplication, and ε : A→ k, called a counit map, be k-linear
maps. Then A is called a k-coalgebra if the following diagrams commute:

A⊗A⊗A

A⊗A

δ⊗IdA

88qqqqqqqqqq
A⊗A

IdA ⊗δ
ffMMMMMMMMMM

A

δ

ffMMMMMMMMMMMM δ

88qqqqqqqqqqqq

A⊗ k A⊗A
IdA ⊗εoo ε⊗IdA // k⊗A

A

δ

OOddJJJJJJJJJJ

::tttttttttt

We say a k-coalgebra is a comonoid in (Vectk,⊗,k).

Definitions of Frobenius algebras. The following three definitions, copied from [7], are equivalent:

1. A Frobenius algebra is a k-algebra A of finite dimension, equipped with a linear functional ε : A → k
whose nullspace contains no non-trivial left ideals. The functional ε ∈ A∗ is called a Frobenius form.
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2. A Frobenius algebra is a k-algebra A of finite dimension, equipped with an associative nondegenerate
pairing β : A⊗A→ k. We call this pairing the Frobenius pairing.

3. A Frobenius algebra is a finite-dimensional k-algebra A equipped with a left A-isomorphism to its dual.
Alternatively (and equivalently) A is equipped with a right A-isomorphism to its dual.

The first definition can also be stated alternatively and equivalently. If, instead of left ideals, we write right
ideals nothing really changes.

Terminology not defined here, but also the elaborate proofs of the equivalences can be found in [7]. The
author uses a lot of diagrams to make the reader feel comfortable with these proofs. The definitions will
turn out to represent just the same underlying concept, but described from diffferent points of view. We
should add that the pairing β, mentioned in the second definition, cannot be nondegenerate if we admit a
vector space A of infinite dimension. That is why we would like to restrict to finite dimension.

There is another equivalent definition:

4. A Frobenius algebra is a k-vector space A of finite dimension, equipped with four suitable maps

µ : A⊗A→ A , η : k → A , δ : A→ A⊗A , ε : A→ k

turning A into a k-algebra and a k-coalgebra at the same time, and making A satisfy the Frobenius
relation

(µ⊗ IdA)(IdA⊗δ) = δµ = (IdA⊗µ)(δ ⊗ IdA),

which is the analogue of (4.7).

We should note that, in general, a vector space A, or an algebra (A,µ, η), is not necessarily a Frobenius
algebra. Even a vector space (A,µ, η, δ, ε), which is already an algebra and a coalgebra at the same time, is
still not necessarily a Frobenius algebra. Only if the four maps (µ, η, δ, ε) are related correctly, we can say A,
equipped with these four maps, is a Frobenius algebra. This only depends on properties of these four maps.

We see that a Frobenius algebra is nothing more than a Frobenius object in (Vectk,⊗,k). The symmetric
monoidal category (Vectk,⊗,k, τ) also admits commutative Frobenius objects. We will call these commuta-
tive Frobenius algebras. For any Frobenius algebra A there exists a (canonical) twist map τA : A⊗A→ A⊗A,
and A is called a commutative Frobenius algebra if µAτA = µA. Whether A can be interpreted as a com-
mutative Frobenius algebra or not depends on the structure.

We should also note that in general there are many different possibilities of turning A into a Frobenius
algebra. If A1 := (A,µ, η, δ, ε) and if A2 := (A,µ′, η′, δ′, ε′) are Frobenius algebras, then the two groups of
related maps can differ. For example, A1 can be a commutative Frobenius algebra, while A2 is not.

The snake relation. Any Frobenius object satisfies the snake relation, defined in (4.9). Written in the
language of (Vectk,⊗,k) this translates to

(ε⊗ IdA)(µ⊗ IdA)(IdA⊗δ)(IdA⊗η) = IdA =
(IdA⊗ε)(IdA⊗µ)(δ ⊗ IdA)(η ⊗ IdA) (4.16)

for any Frobenius algebra. As it is quite common to use the pairing β : A ⊗ A → k, β := εµ, and the
copairing γ : k → A⊗A, γ := δη, relation (4.16) can also be written as

(β ⊗ IdA)(IdA⊗γ) = IdA = (IdA⊗β)(γ ⊗ IdA). (4.17)

However, it depends on the chosen point of view whether these β and γ are defined this way or not. If the
maps µ, η, δ and ε were already defined, then it suffices to define β and γ this way. But, in other cases, see
the second definition, β (and γ) are already defined from the start, and then µ and ε are related to δ and η
by β and γ.

In the later chapters about cobordisms we will see a relation similar to (4.17), and this relation goes under
the name of snake decomposition. However, there is still a subtle difference between the snake decomposition
and the snake relation.
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4.3 The category of Frobenius algebras

Let k be a ground field. Then Vectk = (Vectk,⊗,k, τ), as already defined in (2.19), is a symmetric
monoidal category. We know that (commutative) Frobenius algebras are (commutative) Frobenius objects
in Vectk. We can use (4.14) for showing that taking the tensor product of two Frobenius algebras yields
another Frobenius algebra. If A = (A,µA, ηA, δA, εA) and B = (B,µB , ηB , δB , εB) are Frobenius algebras,
then

A⊗B = (A,µA, ηA, δA, εA)⊗ (B,µB , ηB , δB , εB) = (A⊗B,µA⊗B , ηA⊗B , δA⊗B , εA⊗B) (4.18)

with

µA⊗B := (µA ⊗ µB)(IdA⊗τB,A ⊗ IdB),
ηA⊗B := ηA ⊗ ηB ,

δA⊗B := (IdA⊗τA,B ⊗ IdB)(δA ⊗ δB),
εA⊗B := εA ⊗ εB

is another Frobenius algebra. We can do something similar in case of taking the tensor product of two
commutative Frobenius algebras. Then the resulting object will also be a commutative Frobenius algebra.

Now we can define the category of Frobenius algebras over k,

FAk := Frob(Vectk) = Frob(Vectk,⊗,k, τ),

and the category of commutative Frobenius algebras over k,

cFAk := cFrob(Vectk) = cFrob(Vectk,⊗,k, τ). (4.19)

These can be defined as monoidal categories

(FAk,⊗,k) , (cFAk,⊗,k)

and there exists a canonical monoidal embedding of (cFAk,⊗,k) into (FAk,⊗,k).
The arrows in FAk (and in cFAk), which are Frobenius homomorphisms when regarded as arrows in

Frob(Vectk), will be called Frobenius algebra homomorphisms. According to a lemma, any Frobenius
algebra homomorphism is in fact an isomorphism. (A proof of this lemma can be found in [7].) This turns
FAk and cFAk into groupoids. These groupoids should of course contain multiple connected components,
as we know that not every pair of Frobenius algebras needs to be connected by an isomorphism.
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5 Morse functions

First of all, the notion of Morse functions is very useful for the understanding of the category of cobordisms,
to be defined in the next two chapters. However, this chapter should be regarded as self-contained. The
notion of Morse functions will be explained, but we will also take a look at the most important property of
a Morse function. For any Morse function we can define a Hesse matrix at every point. This is in general no
tangent space tensor as it does not transform correctly under coordinate transformations. The components
of the Hesse matrix are thus not the components of some tensor field defined on our manifold of interest.
However, we are only interested in the behaviour of the Hesse matrix at critical points of the Morse function.
We will show that, at critical points, the Hesse matrix does transform as a tangent space tensor. In other
words, at critical points, the Hesse matrix can be written as a coordinate free object. The fact that also
the location of critical points of the Morse function, as well as their property of being nondegenerate, do
not depend on the coordinate chosen, is one of the main reasons justifying the usage of Morse functions
as topological objects. The reader who is already familiar with Morse theory can skip all of this chapter,
but is adviced to read at least the last paragraph. There I will explain the custom notion of special Morse
functions, which we will explicitly use in the next chapters.

Critical points. Recall that a topological m-manifold M is a Hausdorff space which is locally homeomor-
phic to Rm. Here, m is the dimension of M , which is finite. M is called a smooth manifold if there exists a
maximal C∞ atlas on M . The C∞-property means that all transition maps in this atlas are smooth. Now,
let M be a compact smooth manifold and let f : M → R be a smooth map. This means that for every chart
(U, κ), the map f ◦ κ−1 : κ(U) → R is also smooth. We define I := f(M), which is of course a closed and
bounded, thus also compact, subset of R. Thus f : M → I is a smooth surjective map.

For any p ∈ M we denote the tangent space of M at p by TpM , and f induces a linear map between
tangent spaces, f∗(p) : TpM → Tf(p)I, which is called the tangent map at p. A point p ∈ M is called a
critical point of f if the induced map f∗(p) is the zero map. Now let us define Mc(f), which is the set of
critical points of f .

Mc(f) := {p ∈M |f∗(p) = 0}.

Another way to write the tangent map is as follows. If X ∈ TpM then we can define X(f)(p) = f∗(p)(X).
This can be interpreted as X acting on f at p. Let now κ = {κi} be a local coordinate around p and define
f (κ) := f ◦ κ−1. Then we can write f (κ)(κ(p)) = (f ◦ κ−1)(κ(p)) = (f ◦ κ−1 ◦ κ)(p) = f(p). We can use this
to denote the action of X on f at p as follows:

X(f)(p) =
m∑
i=1

Xi
(κ)

∂f (κ)

∂κi
(κ(p)). (5.1)

Now we can express the vector X in terms of the local coordinate κ:

X =
m∑
i=1

Xi
(κ)

∂

∂κi
.

Let T ∗pM denote the dual space of TpM , then the local coordinate also defines a basis for T ∗pM . For a
covector ω ∈ T ∗pM , we write

ω =
m∑
i=1

ω
(κ)
i dκi.

It acts on a vector X ∈ TpM according to

ω(X) =
m∑
i=1

ω
(κ)
i dκi(

m∑
j=1

Xj
(κ)

∂

∂κj
) =

m∑
i,j=1

ω
(κ)
i Xj

(κ)dκ
i(

∂

∂κj
) =

m∑
i,j=1

ω
(κ)
i Xj

(κ)δ
i
j =

m∑
i=1

ω
(κ)
i Xi

(κ).
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The differential of f at p, denoted by df(p), is an element of T ∗pM . In terms of a local coordinate κ, it
can be written as

df(p) :=
m∑
i=1

∂f (κ)

∂κi
(κ(p))dκi.

In a critical point p, f∗(p) is the zero map. This means that or all X ∈ TpM we have f∗(p)(X) = 0, or

∀X : X(f)(p) = 0 =⇒ ∀X :
m∑
i=1

Xi ∂f
(κ)

∂κi
(κ(p)) = 0.

Thus the statement “f∗(p) is the zero map” is equivalent to the statement “df(p) = 0”. Note that the
property of a point being a critical point of f , is independent of the used coordinate.

Let now λ = {λi} be another local coordinate around p. Then we can express X(f)(p) with respect to λ.

X(f)(p) =
m∑
i=1

Xi
(λ)

∂f (λ)

∂λi
(λ(p)).

Now denote the transition map λ ◦ κ−1 by λ(κ). Then f (κ) = f ◦ κ−1 = f ◦ λ−1 ◦ λ ◦ κ−1 = f (λ) ◦ λ(κ), and
λ(p) = λ(κ)(κ(p)). Then, for all i,

∂f (κ)

∂κi
(κ(p)) =

∂f (λ) ◦ λ(κ)

∂κi
(κ(p)) =

m∑
j=1

∂f (λ)

∂λj
(λ(p))

∂(λ(κ))j

∂κi
(κ(p)).

Substituting this into (5.1) gives:

X(f)(p) =
m∑
i=1

Xi
(κ)

∂f (κ)

∂κi
(κ(p)) =

m∑
i=1

Xi
(κ)

m∑
j=1

∂(λ(κ))j

∂κi
(κ(p))

∂f (λ)

∂λj
(λ(p))

=
m∑
j=1

(
m∑
i=1

Xi
(κ)

∂(λ(κ))j

∂κi
(κ(p))

)
∂f (λ)

∂λj
(λ(p)) =

m∑
j=1

Xj
(λ)

∂f (λ)

∂λj
(λ(p)).

This means that, under a coordinate transformation from coordinate κ to coordinate λ, the vector compo-
nents of X transform according to:

Xi
(κ) → Xi

(λ) =
m∑
j=1

Xj
(κ)

∂(λ(κ))i

∂κj
(κ(p)).

Or, in compact notation, using Einstein summation convention for repeated dummy indices:

Xi
(κ) → Xi

(λ) =
∂λi

∂κj
Xj

(κ).

The Hesse matrix. When p ∈ M is fixed and a local coordinate κ is chosen, we can define the Hesse
matrix (related to κ) of f at p by:

H
(κ)
ij (p) :=

∂2f (κ)

∂κi∂κj
(κ(p)).

Note that, since f is smooth, the operators ∂/∂κi mutually commute. Therefore H(κ) is a symmetric matrix,
thus it can be diagonalized by conjugation with an orthogonal matrix. There exists an orthogonal matrix
M , satisfying MTM = MMT = I (the identity matrix), and a diagonal matrix D with real coefficients, so
that H(κ) = MTDM .
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Now let us derive how H(κ) transforms under coordinate transformations.

H
(λ)
ij (p) =

∂2f (λ)

∂λi∂λj
(λ(p)) =

∂

∂λi
∂f (λ)

∂λj
(λ(p))

=
∂

∂λi

(
∂f (κ) ◦ κ(λ)

∂λj
(λ(p))

)
=

∂

∂λi

(
m∑
l=1

∂f (κ)

∂κl
(κ(p))

∂(κ(λ))l

∂λj
(λ(p))

)

=
m∑
l=1

∂

∂λi
∂f (κ)

∂κl
(κ(p))

∂(κ(λ))l

∂λj
(λ(p)) +

m∑
l=1

∂f (κ)

∂κl
(κ(p))

∂

∂λi
∂(κ(λ))l

∂λj
(λ(p))

=
m∑
l=1

m∑
k=1

∂2f (κ)

∂κk∂κl
(κ(p))

∂(κ(λ))k

∂λi
(λ(p))

∂(κ(λ))l

∂λj
(λ(p)) +

m∑
l=1

∂f (κ)

∂κl
(κ(p))

∂2(κ(λ))l

∂λi∂λj
(λ(p)).

Or, dropping arguments and summation symbols, H(κ)
ij transforms according to

H
(κ)
ij → H

(λ)
ij =

∂2f (λ)

∂λi∂λj
=
∂κk

∂λi
∂κl

∂λj
∂2f (κ)

∂κk∂κl
+

∂2κl

∂λi∂λj
∂f (κ)

∂κl
=
∂κk

∂λi
∂κl

∂λj
H

(κ)
kl +

∂2κl

∂λi∂λj
∂f (κ)

∂κl
. (5.2)

We see that, under a coordinate transformation, H(κ)(p) does not transform as a tangent space tensor. In
general it is not a tensor field. However, at a critical point p ∈Mc(f), we see that df(p) = (∂f (κ)/∂κi)dκi = 0.
Thus ∂f (κ)/∂κi = 0 for all i. This means that in such a point the second term in (5.2) vanishes. Thus, only
in critical points, the components of H perfectly transform like those of a symmetric tangent space tensor
of type (0, 2):

H
(κ)
ij → H

(λ)
ij =

∂κk

∂λi
∂κl

∂λj
H

(κ)
kl .

This means that, in critical points p ∈Mc(f), H(p) can be used to define a coordinate-independent object.
In this case, when we define Mij := ∂κi

∂λj , then

H
(λ)
ij = MkiH

(κ)
kl Mlj = (MT )ikH

(κ)
kl Mlj =⇒ H(λ) = MTH(κ)M.

For an arbitrary coordinate λ, we can always find a valid coordinate κ such that M , induced by this
coordinate transformation, is orthogonal, and det(M) = 1. This coordinate transformation can be regarded
as a lift of the change of basis of TpM , from λ to a non-coordinate basis. For the corresponding coordinate
transformation we can simply choose a rotation around the point λ(p). We may allow any rotation, thus we
can choose κ such that H(κ) is diagonal, containing the eigenvalues of the original matrix H(λ).

Nondegenerate critical points. A critical point p ∈ Mc(f) is called nondegenerate if and only if the
Hesse matrix H(p) with respect to an arbitrary local coordinate κ, written as

H
(κ)
ij (p) :=

∂2f (κ)

∂κi∂κj
(κ(p)),

is nonsingular, which means that H(κ) has no zero eigenvalues, thus det(H(κ)) 6= 0.
Note that the property of a critical point p being nondegenerate is again independent of the used coordi-

nate. The matrix M corresponding to the coordinate transformation is always nonsingular, thus, if we have
det(H(κ)) 6= 0 at p, then also

det(H(λ)) = det(MTH(κ)M) = det(MT ) det(H(κ)) det(M) 6= 0.

This means that the property of H being nondegenerate, does not depend on the coordinate chosen.
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Morse functions. Let M be a compact smooth manifold of dimension m, and let f : M → I ⊂ R
be smooth and surjective, then f is called a Morse function if all critical points of f are nondegenerate.
According to [3], Morse functions always exist. From now on, let f be a Morse function.

Let p ∈ Mc(f) and let λ be a local coordinate with respect to which H is diagonal. Then the index of
f at p, denoted by np(f), is the number of negative values on the diagonal of H(λ). This is equivalent to
defining the index as the number of negative eigenvalues of H (counted with multiplicity) with respect to
an arbitrary local coordinate κ. The index np(f) has another equivalent definition. It equals the maximum
of the set of dimensions of possible linear subspaces of TpM on which H, regarded as a (0, 2) tangent space
tensor, is negative definite. Thus the index is also a coordinate-independent quantity, which is also confirmed
by Sylvester’s law of intertia. A more detailed explanation of this can be found in [1] and [3].

The index np(f) can be any element of {0, · · · ,m}. If np(f) = 0, then p is called a (local) minimum of
f . If np(f) = m, then p is called a (local) maximum of f . Otherwise p is called a saddle point of f . We will
see that f maps all of its saddle points to values lying in the internal part of I. Suppose M is connected.
Then I is also connected, thus it is a closed interval. In this case, if a critical point of f is mapped to a
boundary point of I, then we are dealing with a global minimum or maximum. The remaining critical points
are all local minima or maxima, or saddlepoints. When M is not connected, the previous still holds for the
connected components of M , be it separately.

For a Morse function f , the Hesse matrix behaves like a type (0, 2) tangent space tensor at every p ∈
Mc(f). It is symmetric and nonsingular, thus, locally, it behaves like a metric with signature. In the context
of calculus on flat spaces like Rm, the Hesse matrix tells us in which direction a function changes with the
largest speed, and these directions, regarded as unit vectors, should be mutually orthonormal. However,
we should be careful when trying to adapt this idea to abstract manifolds, as the components of the Hesse
matrix always depend on the coordinate chosen. Besides, we would need to define a metric before we can
say whether a tangent vector is a unit vector.

Euler characteristic. When the critical points of any function are nondegenerate, we can easily see that
these points are isolated, thus we are dealing with countable sets of critical points. So we will not get into
trouble computing sums over all critical points. The number of critical points of any Morse function on a
compact manifold is finite. This justifies the following alternative definition of the Euler characteristic.

The Euler characteristic of a smooth compact manifold M , denoted by χ(M), is closely related to the
index of all critical points of any Morse function f on M . It can be defined as

χ(M) =
∑

p∈Mc(f)

(−1)np(f).

What is really remarkable is that it does not matter how the Morse function is exactly defined, as long as it
is a Morse function.

Special Morse functions. Before introducing the concept of special Morse functions, we will discuss
separate critical points. Let p and q be two distinct critical points of a surjective Morse function f : M →
I ⊂ R, but with the same critical value, say v, thus f(p) = f(q) = v. Then we will call p and q mutually
separate if there exists no path in the level set f−1(v) ⊂ M connecting p and q. We will also call p and q
mutually separate if f(p) 6= f(q).

We will call f a special Morse function if all of its critical points are mutually separate. This is equivalent
to saying that every connected component of any level set f−1(v) contains at most one critical point of
f . In the application of Morse functions for the understanding of cobordisms, it is desirable to choose a
special Morse function. It will especially help us splitting up a cobordism correctly into disjoint products of
generators. We can split up I into closed subsets Ik, each of which containing at most one critical value, lying
in its interior (or in ∂I), so that Ik ∩ Il does not contain any critical value, for any k 6= l. As a consequence,
any critical point of f will lie in the internal part of some f−1(Ij) ⊂M . We claim without proof that such
a special Morse function always exists. In the following chapters we will only consider these special Morse
functions.
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6 Cobordisms

We assume the reader is already familiar with the concept of smooth structure. A cobordism in dimension
n can be interpreted as a smooth interpolation between two compact manifolds of dimension n− 1, without
boundary. These (n − 1)-manifolds are then precisely the boundary of the cobordism. This interpolation
needs not be unique. For an arbitrary pair of (n− 1)-manifolds a cobordism needs not exist between them,
however, if it does, we will call these (n − 1)-manifolds cobordant. We will discuss how to split up a given
cobordism into smaller cobordisms, making use of Morse functions. We will discuss some trivial but at the
same time important examples of cobordisms, for example the cylinder. Though we will introduce the concept
of abstract twist cobordism in the next chapter, we will introduce the concept of natural twist cobordism here,
which is not really a universal notion to be found in the literature though. In an early stage we will define
oriented cobordisms, which permits a sense of direction. The boundary of an oriented cobordism can be
split up into the in-boundary and the out-boundary. We can say this cobordism is a cobordism from its
in-boundary to its out-boundary. This is one of the first steps towards the idea of a category of oriented
cobordism classes, discussed in great detail in the next chapter.

6.1 Manifolds with boundary

Half-spaces. For any n ≥ 1 and for any nonzero linear map L : Rn → R we can define a half-space Hn
L by

Hn
L := {x ∈ Rn|L(x) ≥ 0}.

We should note that any half-space is contractible, as its topology is induced from that of Rn. The boundary
of Hn

L is defined by
∂Hn

L := {x ∈ Rn|L(x) = 0}.

We should note that ∂Hn
L is homeomorphic to Rn−1. When Hn

L is regarded as a subset of Rn, we can study
its topology induced from Rn. Following terminology of [2] we will call this induced topology the subspace
topology. According to this topology, we will call a subset A of Hn

L open if there exists an open B ⊂ Rn such
that A = B ∩Hn

L. This definition of open subsets of Hn
L allows us to give a straightforward definition of a

manifold with boundary.

Manifolds with boundary. A topological space M is said to be a manifold with boundary of dimension
n if every point p ∈M has a neighbourhood U homeomorphic to an open subset of some Hn

L. The L should
depend on the coordinate patch considered. Here we should note that we could have a patch U ⊂M mapped
to the internal part of some Hn

L. Here internal means internal with respect to the ordinary topology of Rn.
In fact, if we have found all such U , then their plain union will be an ordinary manifold, which we will call
M̃ . The boundary of M is then defined by ∂M := M − M̃ . We note that ∂M itself is locally homeomorphic
to ∂Hn

L, and as such it should define a manifold of dimension n−1. We note that the boundary itself can be
defined as an ordinary manifold, thus we say that it has no boundary itself. In general the identity ∂∂M = ∅
holds. In later applications of manifolds with boundary, we will require all coordinate transformations to be
smooth, and when a manifold with boundary is mentioned, we really mean a smooth manifold with boundary.

We should note that the tangent space TpM , for any p ∈ ∂M , is still a full vector space. Recall that
a tangent vector is just an equivalence class of smooth curves through p going in or coming from the same
direction. Knowing one half of a curve is sufficient to know its direction.

Some examples.

• For n = 1 we have a trivial example. Let M be a closed interval in R, say [a, b] (a < b). Then the
internal part (a, b) is an open interval, which is an ordinary manifold of dimension 1. For any c ∈ (a, b)
we see that [a, c) and (c, b] are homeomorphic to open subsets in a half-space of dimension 1. Thus the
set {a, b} is the boundary of M , which is an ordinary manifold of dimension 0 and has two connected
components.
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• For n = 2 we have another trivial example. Let M be the Cartesian product of the previous example
and the circle. Then we have a closed cylinder. The internal part is (a, b) × S1, which is an ordinary
manifold of dimension 2. The set {a, b} × S1 = ({a} × S1) ∪ ({b} × S1) is the boundary of M , which
is an ordinary manifold of dimension 1 and has two connected components, namely two circles.

Closed manifolds. A closed manifold M is, by definition, a compact manifold without boundary. The
latter only means that it suffices to describe M as an ordinary manifold. We should note that, in case we
are only discussing ordinary manifolds, the latter property is automatically satisfied. Only in the context of
manifolds with boundary, this definition makes sense. Of course every ordinary manifold M can be described
as a manifold with boundary, but in this case ∂M = ∅. From now on, when mentioning a manifold, we will
mean an ordinary manifold.

Morse functions on manifolds with boundary: A convention. Let M be a (smooth) manifold with
boundary. Recall the notion of a special Morse function from the previous chapter. It is a Morse function
with all critical points being mutually separate. From now on, when discussing any Morse function on M ,
we will assume that it is a special Morse function, and that it is constant when restricted to ∂M . Thus we
will also assume that ∂M contains no critical points of this Morse function. We will mainly be interested in
compact manifolds M with boundary, which means that M itself is a compact space, and that its boundary
is a closed manifold. Recall that if f is a Morse function on M , which means that it is a smooth function,
then I := f(M) is a compact subset of R.

Later we will discuss the behaviour of the extrema of Morse functions. We will also discuss the appli-
cation of special Morse functions, and hopefully afterwards it will get more clear why we are interested in
special Morse functions in the first place. For now we just start with this formal definition without further
explanations.

6.2 Orientation

Orientation of vector spaces. Let V be a real vector space of dimension n, and let {e1, · · · , en} be a
basis of V . We should remark that we can consider this basis to be ordered. A matrix can be used for
reordering the basisvectors to obtain another basis. In general, an invertible matrix Mij can be used to
define a new basis for V . If we define

fi :=
n∑
j=1

Mijej

then we have found another basis for V . The matrix can thus be regarded as a basis transformation. The
determinant of an invertible matrix is always nonzero, and as such it has a signature. We will call M
orientation preserving when its determinant is positive. Otherwise we will call it orientation reversing. We
directly see that if M is an even permutation of basis vectors, it is orientation preserving, and if M is an
odd permutation, it is orientation reversing.

An orientation of V assigns a sign to each ordered basis. This should be compatible with the idea
that a basis transformation can preserve or reverse the orientation. In other words, all bases which can be
transformed into each other by an orientation preserving transformation will have the same sign.

In the special case where V has dimension 0, there is only one (trivial) basis, namely the empty set. The
only basis transformation is the trivial one, which is orientation preserving by definition. Thus we are free
to assign a plus or a minus sign to this unique basis, which can be regarded as being equivalent to assigning
a sign to V itself. Thus, in this case, the property of a map preserving or reversing the orientation, only
depends on properties of the sets involved.

When V is equipped with an orientation, we will call V oriented .

Orientation of the Cartesian product of two oriented vector spaces. Let V and W be oriented
vector spaces of dimension m and n respectively, then there is a canonical way to assign orientation to their
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Cartesian product V × W . Let {e1, · · · , em} and {f1, · · · , fn} be positively oriented bases of V and W
respectively. Then we would like the basis {e1, · · · , em, f1, · · · , fn} of V ×W to be a positively oriented one.
From now on we automatically assume that, when we are dealing with a pair of oriented vector spaces, the
canonical orientation will be assigned to their Cartesian product.

Orientation of manifolds. Let M be a smooth manifold, let (U, κ) be some coordinate patch in its atlas
and let U itself be connected. Then κ induces an ordered basis of TpM for any p ∈ U . Then, if for some
p ∈ U , an orientation is chosen for the tangent space TpM , we can extend this to an orientation of TqM for
any other q ∈ U , just by smoothly transporting a local frame, associated to the tangent bundle, from p to q.
Then we will say the patch U is oriented. Let (V, λ) be another connected coordinate patch, such that U ∩V
is nonempty and connected, then the orientation on U can be extended to V . Then, if M is connected, it is
called orientable if it is possible to repeat this procedure for any patch in its atlas, so that orientation will
agree on any intersection of two patches. Note however that this M will remain orientable if we discard the
choice of orientation afterwards. Thus orientability of M does neither depend on the actual atlas chosen,
nor on the orientation chosen locally on its patches. If M is orientable, we can define a global orientation
on M by making a consistent choice of local orientations, agreeing on all intersections of patches. Then we
say M is oriented . In this case M admits two global orientations. To summarize, every oriented manifold
is orientable. However, if a manifold is orientable it does not need to be oriented yet. Thus the collection
of orientable manifolds contains the collection of oriented manifolds, but when a manifold is unoriented it is
not necessarily unorientable.

Now suppose M is not connected, but instead has a finite number N of connected components. Then for
each component Mj we can figure out whether it is orientable, and if so we could fix an orientation. If all its
connected components are orientable, we will say M is orientable, and we can make a choice of orientation
for each component Mj . This means there are 2N possible orientations for M .

From now on we will only be dealing with orientable manifolds with a finite number N of connected
components, thus with 2N possible orientations.

In the special case where the dimension ofM is zero, we will just assign a sign to any connected component
Mj itself. These Mj are just points, and we are still dealing with 2N possible orientations.

We should make clear that assigning an orientation to any orientable manifold M is a matter of adding
information to the bare manifold. If we want to be precise we would need to write (M,σ), where σ tells us
how each connected component of M is oriented. If an orientation σ is assigned to M , we can assign the
opposite orientation σ as well. Thus (M,σ) is the same as (M,σ) with opposite orientation. We will drop
this σ from our notation from now on, and write M instead of (M,σ). We always assume M and M carry
the same smooth structure.

The empty manifold ∅ has exactly one orientation. We could say there is only one map from ∅ to {−,+}.
This also means that we can write ∅ = ∅.

Orientation of the Cartesian product of two oriented manifolds. Let M and N be oriented mani-
folds, then there is a canonical way to assign orientation to their Cartesian product M ×N . For all p ∈M
and q ∈ N , the tangent spaces TpM and TqN are oriented. Using the canonical orientation of the Cartesian
product of two vector spaces, we will assign an orientation to T(p,q)(M ×N) ' TpM × TqN . This induces a
canonical orientation on M ×N . From now on we automatically assume that, when we are dealing with a
pair of oriented manifolds, the canonical orientation will be assigned to their Cartesian product.

Orientation of manifolds with boundary. Let M be an m-dimensional manifold with boundary and
let M̃ be its internal part, which is an ordinary manifold. If M̃ is oriented, it assigns an orientation to
every TpM̃ . Now note that this can be extended to any p ∈ M , especially for p ∈ ∂M . Thus orientation
of M̃ induces an orientation on M . For any p ∈ ∂M , TpM has an induced orientation. However, ∂M itself
is a manifold of dimension m − 1. That is why it is not possible to induce orientation on Tp∂M without
introducing extra information. We need to define an orientation on each connected component of ∂M . We
should note that if M̃ is orientable, then M is orientable. Then also ∂M is orientable.
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In-boundary and out-boundary. In many cases we will see that ∂M has multiple, say N , connected
components, denoted by ∂Mj . Each of them can have its own orientation. Suppose M and ∂M are oriented.
Now take j fixed. Let p ∈ ∂Mj and let {e1, · · · , em−1} be a basis of Tp∂Mj , with positive orientation. As
Tp∂Mj is a linear subspace of TpM , we can try to extend this basis to a basis of TpM . Let {e1, · · · , em−1, f}
be a basis of TpM with positive orientation, with respect to the orientation of M . Then there exists a curve
through p which has f as its tangent vector. If this curve points inwards, into M , we will call ∂Mj an
in-boundary , and if it points outwards, out of M , we will call ∂Mj an out-boundary . This way we can relate
orientation of M and orientation of the connected components of its boundary. We will call f a positive
normal. According to [7] we should note that the normal bundle TM |∂Mj

/T∂Mj is a trivial vector bundle
on ∂Mj , thus for any other point q ∈ ∂Mj we come to the same conclusion whether ∂Mj is an in-boundary
or an out-boundary.

We should note that this relation works in both directions. If we know orientations of M and of each
∂Mj , then we also know which ∂Mj are in-boundaries and which are out-boundaries. On the other hand,
if we know an orientation of M̃ , thus of M , and if orientation of ∂Mj is not specified yet, but if we already
know which ones we want to be in-boundaries or out-boundaries, we can define the orientations of all ∂Mj

to agree our desires.
Soon we will encounter manifolds with boundary which for example only have an in-boundary. Its

out-boundary is just an empty manifold. We will also encounter manifolds with only an out-boundary.

Orientation preserving diffeomorphisms and orientation reversing diffeomorphisms. Let M and
N be connected oriented manifolds of dimension m, and suppose a diffeomorphism φ : M → N exists. Then
φ can either preserve the orientation, or reverse the orientation. For any p ∈ M we can choose an ordered
basis of TpM , say {e1, · · · , em}, with positive orientation. Now note again that these vectors ej correspond
to equivalence classes of curves, which are maps from R to M . It is possible to define a trivial pushforward
such that these curves become maps from R to N , just by composing with φ. This means that there is
a canonical way to map the vectors ej to vectors fj ∈ Tφ(p)N . The orientation of N tells us whether we
are dealing with an ordered basis of Tφ(p)N with positive or negative orientation. If positive, we will call φ
an orientation preserving diffeomorphism or OPD, and if negative, we will call φ an orientation reversing
diffeomorphism or ORD. We should note that we only need to test whether φ is an OPD or an ORD in one
point p. Global orientability of M and N can be used to transport our checks from p to any other arbitrary
q ∈M . The result will be the same.

Again, if M and N have multiple connected components, and φ : M → N is a diffeomorphism, then it
can act independently as an OPD or an ORD on each component. In general, a diffeomorphism φ : M → N
is an OPD (ORD) if and only if it is an OPD (ORD) on each of the connected components of M . On
the other hand, when M is an oriented manifold of dimension m ≥ 2, but N is not oriented yet, we can
canonically define an orientation on N by using the natural pushforward of ordered bases of tangent spaces
of M . Then φ is automatically an OPD.

A special case will be the (artificial) map

I∅ : ∅ → ∅. (6.1)

As ∅ has only one orientation we could say that I∅ is automatically an OPD. This map is idempotent and
can always be inserted as an identity. There are no other OPDs from ∅ to itself.

Trivial examples of OPDs and ORDs.

• If we have φ : M →M : p 7→ p, then φ is an OPD.

• If we have φ : M →M : p 7→ p, then φ is an ORD.

These simple examples should make clear that being an OPD or an ORD is not totally an intrinsic property
of a diffeomorphism. A diffeomorphism being an OPD or an ORD often also depends on the manifolds
involved, and how they are oriented.
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This especially applies if we are looking at points, also known as connected oriented 0-manifolds. Let p
be an arbitrary single point and let p+ and p− be oriented versions of p. Of course the orientation of p+

(p−) is positive (negative). Then the maps φ++ : p+ → p+ and φ−− : p− → p− are orientation preserving,
and the maps φ+− : p+ → p− and φ−+ : p− → p+ are orientation reversing. As any map between points
can automatically be regarded as a diffeomorphism, we can say φ++ and φ−− are OPDs, and φ+− and φ−+

are ORDs. Thus in this case it does not depend on the intrinsic properties of the map at all whether we are
dealing with an OPD or an ORD.

Orientation preserving diffeomorphisms between manifolds with boundary. Let M and N be
oriented manifolds with boundary and let φ : M → N be a diffeomorphism. Then φ is an OPD between
manifolds with boundary if it is an OPD when restricted to ∂M and to M̃ , thus if φ|∂M : ∂M → ∂N and
φ|M̃ : M̃ → Ñ are OPDs in terms of ordinary manifolds.

6.3 Oriented cobordisms

Let m ≥ 1, and let M be a compact oriented manifold with boundary and with dimension m. Then ∂M
is a closed oriented manifold of dimension m− 1. Let ∂+M be the in-boundary of M , and let ∂−M be the
out-boundary of M . Then ∂+M ∩ ∂−M = ∅ and ∂+M ∪ ∂−M = ∂M .

Now let X and Y be closed oriented manifolds of dimension m−1. A compact oriented manifold M with
boundary is called an oriented cobordism from X to Y , if there exist orientation preserving diffeomorphisms
ι+ : X → ∂+M and ι− : Y → ∂−M . Thus a cobordism M is specified by the following information:
(M,X, Y, ι+, ι−). Note that we could as well say that M is just an oriented cobordism from ∂+M to ∂−M .
However, the more abstract definition will allow us to study cobordisms from X to itself, and to compose
cobordisms. This is one of the first steps making it suitable to study categorical aspects of cobordism theory,
which we will do in the next chapter.

We should note that alternative definitions exist for oriented cobordisms. It is only a matter of convention
to say that there exist OPDs for both the in-boundary and the out-boundary. We could have made a different
choice of convention.

From now on we automatically assume any discussed cobordism to be smooth, compact and oriented, and
its boundary to be smooth, closed and oriented, so we will drop the adjectives. We assume any boundary is
denoted by a capital symbol from the end of the alphabet, for example X, Y , Z or W . Any cobordism itself
is denoted by a capital symbol from the middle of the alphabet, for example M , N or P .

In general there will not always exist a cobordism from any X to any Y , but when a cobordism from X
to Y exists, X and Y are said to be cobordant. It is also possible to study cobordisms from X to Y in case
X or Y (or both) is the empty set.

Reversing the orientation of a cobordism. If M is a cobordism from X to Y , equipped with OPDs
ι+ : X → ∂+M and ι− : Y → ∂−M , then we can reverse the orientation of M to obtain a cobordism from
Y to X. Reversing the orientation of M really means reversing the orientation of its internal part M̃ , thus
the orientation of the boundary of M will be fixed. Despite this subtlety, we will write M for this oriented
manifold with boundary. As a consequence, the roles of the in- and out-boundaries will be exchanged, so
∂+M = ∂−M and ∂−M = ∂+M . The result will be that M will be a cobordism from Y to X.

Examples of oriented cobordisms. The following examples of oriented cobordisms should really be
regarded as key examples.

• Let {0} ∈ R and {1} ∈ R be manifolds of dimension zero, and with positive orientation. Let the open
interval (0, 1) ⊂ R be a manifold of dimension one, and assign positive orientation to any tangent
vector pointing from 0 to 1. Then the closed interval [0, 1] ⊂ R, constructed with these (0, 1), {0} and
{1}, is an oriented manifold with boundary. Its in-boundary is {0} and its out-boundary is {1}, thus
it is a cobordism from 0 to 1. We will call its orientation the standard orientation.
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• In general we could start with the closed interval Iαβ := [0, 1], where α, β ∈ {+,−}. Here {0} will
carry orientation α, and {1} will carry orientation β, and we will use the symbols 0α and 1β to indicate
these oriented points. The interior (0, 1) will still carry the same orientation as defined in the previous
example. Thus I++ is the interval [0, 1] with standard orientation. Then 0+ is its in-boundary, and
1+ its out-boundary, or ∂+I++ = 0+ and ∂−I++ = 1+. We should be more careful with I+−, I−+ and
I−−. The oriented point 0− cannot be an in-boundary of (0, 1), and 1− cannot be an out-boundary.
On the contrary, 0− is an out-boundary and 1− is an in-boundary. Thus we have

∂+I++ = 0+ ∂−I++ = 1+

∂+I+− = 0+ ∪ 1− ∂−I+− = ∅
∂+I−+ = ∅ ∂−I−+ = 0− ∪ 1+

∂+I−− = 1− ∂−I−− = 0−

We can picture these cobordisms as follows:

I++ I+− I−+ I−−

In these figures the in-boundaries are on the left and the out-boundaries are on the right. The arrows
only indicate the choice of orientation for (0, 1).

• Let I be the closed interval [0, 1] with standard orientation, thus I := I++. For any closed oriented
X we can construct a trivial cobordism CX := X × I. Here ‘trivial’ means that it is induced by the
identity map from X to itself. Then, for ε ∈ {+,−}, we have ∂εCX = ∂ε(X × I) = X × ∂εI. Thus the
in-boundary is ∂+CX = X×{0}, and the out-boundary is ∂−CX = X×{1}. The maps X → ∂+CX and
X → ∂−CX are trivial OPDs. The cobordism CX (from X to itself) is called the cylinder generated
by X.

• Of course we could as well look at the cobordisms X × I+−, X × I−+ and X × I−−. In most of
the literature these cobordisms are also called cylinders. We should again be careful when indicating
the in- and out-boundaries. Again ∂ε(X × Iαβ) = X × ∂εIαβ . For example X × I+− has an empty
out-boundary, and its in-boundary is X × ∂+I+− = X × (0+ ∪ 1−). Similarly X × I−+ has an empty
in-boundary, and its out-boundary is X × ∂−I−+ = X × (0− ∪ 1+).

We should note that the trivial map from X to X×{p−} is orientation reversing, for any point p. This
can be fixed by replacing X by X. For example X × I−− can be regarded as a trivial cobordism from
X to itself. Again we can picture these subtleties:

(6.2) (6.3)

X × I+− X × I−+

The maps from X to X×0+ and to X×1+, and from X to X×0− and to X×1− should all be OPDs.
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Cobordisms between diffeomorphic manifolds. For any pair X and Y related by an orientation
preserving diffeomorphism φ : X → Y , we can construct a cobordism M from X to Y . We can always start
with the cylinder generated by Y . Let ι+ : Y → ∂+CY and ι− : Y → ∂−CY be the desired OPDs. Then
we can precompose ι+ with φ to obtain a cobordism from X to Y . The maps ι+ ◦ φ : X → ∂+CY and
ι− : Y → ∂−CY are the OPDs we can use to describe CY as a cobordism from X to Y . Of course there
is another way to generate a cobordism between X and Y , based on φ. We could as well start with the
cylinder generated by X and then precompose ι− with φ−1 instead. As will turn out later, this cobordism
will be equivalent to M .

Twist cobordisms. Again, let X and Y be related by an OPD, say φ : X → Y , which has an inverse
ψ : Y → X, and assume X∩Y = ∅. Now define Φ : X∪Y → X∪Y as the OPD mapping X to Y , according
to φ, and Y to X, according to ψ. Thus Φ|X = φ and Φ|Y = ψ, or Φ(X) = Y and Φ(Y ) = X. Then Φ will
generate a non-trivial cobordism from X ∪ Y to itself. We can define this cobordism as

TX,Y := (X ∪ Y )× I = (X × I) ∪ (Y × I) = CX ∪ CY .

Then ∂+TX,Y = ∂+CX ∪ ∂+CY and ∂−TX,Y = ∂−CX ∪ ∂−CY . Now φ induces an OPD from X to ∂+CY
and ψ induces an OPD from Y to ∂+CX . The OPD from X ∪ Y to ∂−TX,Y is the canonical one.

We will call this TX,Y the natural twist cobordism. Later on, when discussing categories of cobordisms,
we will also introduce a more abstract twist cobordism which in general is conceptually rather different.

The existence of OPD-generated cobordisms is also interesting when studying OPDs from X to itself. For
example in dimension 1, if X has N connected components, which are all diffeomorphic to a circle, then there
will always exist diffeomorphisms φ : X → X such that for any p ∈ X, lying in some connected component
of X, the point φ(p) lies in some other connected component of X. Thus OPDs from X to itself are not all
trivial. Smoothness of φ implies that for any connected component Xj we have φ(Xj) = Xφ∗(j), where φ∗ is
in fact a permutation.

Morse functions, defined on oriented manifolds with boundary. Let M be an oriented manifold
with boundary, and let f : M → R be a (special) Morse function. From now on we assume that f will reach
its global extrema on ∂M : if ∂+M is not empty, then we assume that the global minimum of f will occur
on ∂+M , and if ∂−M is not empty, we assume that the global maximum of f will occur on ∂−M . Note that
in these cases the global extrema are not supposed to be related to any critical point of f , but to the fact
that f has extrema on the boundary of its domain. This will be different when ∂+M or ∂−M is the empty
set, but in every case we can safely assume that none of the critical points of f lie in ∂M .

Splitting cobordisms into smaller ones by using a Morse function. Let M be a cobordism from X
to Y , and let f : M → I ⊂ R be a surjective (special) Morse function. Let Ī := [p, q] be the smallest interval
containing I, thus p, q ∈ I and p ≤ r ≤ q for all r ∈ I. A value a in the interior of I is called a regular value
if the level set Z := f−1(a) ⊂ M contains no critical points of f . This implies that Z itself can again be
described as a manifold. Now we can split up I into two closed subsets I1 and I2 such that I1 ∩ I2 = {a},
and such that for all b ∈ I1 and c ∈ I2 we have b ≤ a ≤ c. It is clear that I1 = I ∩ [p, a], I2 = I ∩ [a, q] and
I = I1 ∪ I2. We will write I1 ≤ I2.

We should note that for any a in the interior of Ī, but not lying in I itself, thus a ∈ Ī−I, we can consider
intervals I1 and I2 as well. As now a is not an element of I, we have I1 ∩ I2 = ∅, thus also Z = ∅.

Defining Mj := f−1(Ij) and assuming that the smooth structure of M is induced on these Mj , we can
define new cobordisms. These cobordisms should be regarded as new manifolds with boundary, and as such
we need to specify these boundaries. We are free to choose an orientation convention on the new boundary
components, and we will do so by doing the following. We will treat Z as the out-boundary of M1 and
at the same time as the in-boundary of M2. This is indeed a valid choice, as there is no continuous path
from a point in the interior of M1 to a point in the interior of M2, which will not cross Z. Thus we have
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∂+M1 = ∂+M , ∂−M1 = Z = ∂+M2 and ∂−M2 = ∂−M . We see that this gives us the following cobordisms:
M1 from X to Z, and M2 from Z to Y . In case of a ∈ Ī − I we will find that Z = ∅. Instead of Z we can
also use any other Z ′ diffeomorphic to Z (by OPD). Then we will say that M , from X to Y , is split up into
M1, from X to Z ′, followed by M2, from Z ′ to Y . Then we will write

M = M2M1,

and we will call this a decomposition of M .
As we know, f is a special Morse function on M , and after splitting up M we see that f restricted to M1

or M2 still remains a special Morse function. Thus further splitting up M1 and M2 can be done by using
the same f . We can repeat this procedure as many times as we desire. We can choose a set of N points aj
lying in Ī − ∂I, which are regular points or lying in Ī − I, such that j < k ⇔ aj < ak for all j and k. We
define Ij := I ∩ [aj−1, aj ] and Mj := f−1(Ij), thus I = ∪jIj and M = ∪jMj . Here a0 = p and aN+1 = q,
thus f−1(a0) = ∂+M and f−1(aN+1) = ∂−M . Again we can write I1 ≤ I2 ≤ · · · ≤ IN+1. The orientation
of Mj is canonically induced by the orientation of M . Then we can choose a collection of manifolds Zj
diffeomorphic to Mj ∩Mj+1 = f−1(aj) (by OPD). This will give us a chain of new cobordisms:

X
M1 // Z1

M2 // Z2
M3 // · · · MN // ZN

MN+1 // Y

Again note that it is also possible that one of these Zj is the empty set.

If M is empty it is not possible to define a Morse function on M , and we will not need it either, so we will
always assume that M is not empty. If we assume M is connected, then I = f(M) is also connected. On
the other hand, if I = f(M) is connected, then M is not necessarily connected.

We will also see that, even if M is a connected cobordism, after splitting it up into parts Mj , these parts
need not be connected cobordisms themselves.

Also, if M itself has no boundary, then f can reach its global extrema in arbitrary points, thus we
have more freedom in choosing this f , thus also in how to decompose M into smaller pieces. Using this
f , we can split up M into a pair of cobordisms: M1, followed by M2, where ∂+M1 = ∂−M2 = ∅ and
∂−M1 = ∂+M2 = f−1(a) 6= ∅, for some a ∈ I − ∂I. However, once such a manifold is split up into two
pieces, the direction is fixed for splitting it up further, at least when we are dealing with a connected manifold
or when we use the same Morse function to continue. We can think of numerous other examples looking
more exotic, but we will not discuss these here.

A subtlety in splitting a cylinder. Starting with the cylinder CX , a trivial cobordism from X to X,
we can try to split it up into two smaller cobordisms, each of which is diffeomorphic to the original cylinder.
We could for example end up with the cobordisms M1 := X× [0, 1

2 ] and M2 := X× [ 12 , 1]. However, the new
boundary M1∩M2 in the middle will have an already fixed orientation, according to the splitting rules. Thus
it is not possible to split up CX into smaller cobordisms, by using a copy of X with opposite orientation in
the middle, as in this figure:

(6.4)

Here X and X are submanifolds of this cylinder, up to OPDs, thus there exist OPDs from X to X × 0+

and X × 1+, and from X to X × 1
2−. This counter-example of splitting a cobordism was shortly introduced

in [7], but I would like to elaborate a bit more on this to give more direct and more detailed arguments.
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Assume M1 := X × [0+,
1
2−] is the left part and M2 := X × [ 12−, 1+] is the right part, then ∂+M1 =

∂M1 = X ×{0+,
1
2−}, ∂−M1 = ∂+M2 = ∅ and ∂−M2 = ∂M2 = X ×{ 1

2−, 1+}. Recall that the arrows, each
of which is representing some positive normal, should point inwards in case of an in-boundary, and outwards
in case of an out-boundary. The left part is similar to the cylinder X × I+− (see figure 6.2), having an
empty out-boundary, and the right part is similar to the cylinder X × I−+ (see figure 6.3), having an empty
in-boundary. Despite the fact that ∂−M1 = ∂+M2, both being empty, this is not what we are looking for,
as something similar to X × I+− followed by something similar to X × I−+ is not a connected cobordism.
Even worse, none of the newly created in or out-boundaries equals the in or out-boundary of the original
cobordism. So, what we have here is not a valid decomposition into smaller cobordisms.

Another argument to reject this type of decomposition comes from looking at Morse functions. A Morse
function f responsible for this decomposition, must take on the same value on the in-boundary, on the X in
the middle and on the out-boundary, however, we would like f to satisfy f(∂+CX) < f(X× 1

2−) < f(∂−CX).
As both ∂+M and ∂−M are not empty, f should reach its global extrema on the boundary, however, in this
case it should also reach a maximum on the interior of M1, and a minimum on the interior of M2. This
means f will not reach its global extrema on ∂M , unless f is constant, but then it is not a Morse function
anymore. In fact, this is why we chose conventions for the Morse function and the newly generated in and
out-boundaries in the first place.

The snake decomposition of a cylinder. For any X we can split up the cylinder CX = X × [0+, 1+] in
a special way. It is possible to define a Morse function f : CX → I we can use for splitting up this cylinder
into smaller cylinders X × [0+, a+], X × [a+, b−], X × [b−, c+] and X × [c+, 1+], for some 0 < a < b < c < 1,
as in the following figure:

This f is chosen such that it takes on the same value v ∈ I exactly on the three circles, representing
X×{a+, b−, c+}, in the middle of this figure, thus f−1(v) = X×{b+, c−, d+}. In fact this can be interpreted
as an extension of the counter-example as depicted in figure (6.4). However, this time it is possible to split
up this cylinder into two smaller parts, each of which can be described as cobordisms. If we define M1 as the
union of part 1 and 3, and M2 as the union of part 2 and 4, then we will see that ∂+M1 = ∂+M = X × 0+,
∂−M1 = ∂+M2 = X × {a+, b−, c+} and ∂−M2 = ∂−M = X × 1+. So why is this possible now? This
is simple. Note that now f satisfies f(∂+CX) < f(X × {b+, c−, d+}) < f(∂−CX), thus, contrary to the
counter-example, f does not need to satisfy f(X × b+) < f(X × c−) < f(X × d+)). We should also realize
that now f will not need to take on its global extrema on f−1(v) anymore. The only thing to make sure
is that extrema of f on part 2 and 3 lie somewhere between f(∂+M) and f(∂−M), and in any case it is
possible to find some f satisfying this proposition.

Now we can nicely illustrate this decomposition of CX into M1 and M2:

(6.5)
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The left hand side is just the cylinder CX itself. The right hand side is the cylinder decomposed with
respect to f , where M1 is the left part, and M2 is the right part. We see that M1 is nicely followed by M2,
but also that M1 and M2 together, despite being disconnected manifolds themselves, will nicely form the
cylinder. This decomposition, as illustrated in figure (6.5), of any cylinder is called the snake decomposition.
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7 Categories of oriented cobordisms

Morse functions are very useful for decomposing cobordisms into smaller ones. However, we also want
to study the reverse process of composing two cobordisms, to obtain a new one. This requires some other
techniques, and Morse functions will be ignored in this process. In fact this is a totally different context.
First we will introduce the concept of cobordism classes. These are much easier to compose and at the same
time a lot of superfluous information is ignored. We can already define a category of cobordism classes,
however, this category is not the final one yet, as we first need to specify more structure. We will introduce
the concept of disjoint union, an operation which will help us finding a monoidal structure. After adding the
monoidal structure we will add symmetric structure. Then we will define (nCob,q,∅, τ), the symmetric
monoidal category of cobordism classes in dimension n. The objects in this category are closed oriented
manifolds of dimension n − 1, and its arrows are cobordism classes based on oriented cobordisms between
these manifolds. The cobordisms themselves are manifolds of dimension n.

In the next chapters we will discuss cobordism categories in dimension 2 (see Chapter 8) and 1 (see
Chapter 9) and a skeleton of each of these. If we study the skeleton, then we can extract some essential
information from the cobordisms and cobordism classes, regarded as arrows. For example the ordering of the
connected components of their boundaries. This ordering is again motivated by the concept of disjoint union.
However, we should be careful when dealing with this ordering, so we need to discuss some subtleties. For
example, if a cobordism M has one or more connected components without boundary, then the possibility
of ordering connected components of M will be partially cancelled. See the part about ‘closed cobordisms
and some properties’ at the end of Section 7.3.

7.1 Cobordism classes

An equivalence relation. Let M and M ′ be oriented cobordisms from X to Y . Then there exist ori-
entation preserving diffeomorphisms (OPDs) ι+ : X → ∂+M , ι− : Y → ∂−M , ι′+ : X → ∂+M

′ and
ι′− : Y → ∂−M

′. We will define the following equivalence relation. The cobordisms M and M ′ are called
equivalent if there exists an OPD φ : M →M ′ such that the following diagram commutes:

M

φ

��

X

ι+

77ppppppppppppp

ι′+ ''NNNNNNNNNNNNN Y

ι−

ggNNNNNNNNNNNNN

ι′−wwppppppppppppp

M ′

(7.1)

Or, to be more precise, such that φ satisfies the following identities:

φ+ := φ|∂+M = ι′+ ◦ ι−1
+ , φ− := φ|∂−M = ι′− ◦ ι−1

− . (7.2)

It is easy to show that this indeed defines an equivalence relation.
The equivalence classes related to this equivalence relation are called cobordism classes, and any such

cobordism class can be represented by a cobordism. If M and M ′ are lying in the same cobordism class, then
we will write M ∼ M ′, or [M ] = [M ′]. (Here [M ] is a cobordism class.) Dividing out by this equivalence
relation will thoroughly reduce the amount of cobordisms to be studied. At least if M ∼M ′, then we could
say that the topological properties of M and M ′ are equal.

Observe that if X is empty, then the maps ι+ and ι′+ will vanish, so that only the right triangle in diagram
(7.1) will remain. (Note that we could also say that ι+ = ι′+ = φ+ = I∅. Knowing that I∅, as defined in
(6.1), is an idempotent map we conclude that φ+ satisfies (7.2).) Similarly, if Y is empty, then the maps ι−
and ι′− will vanish, so that only the left triangle in diagram (7.1) will remain. If both X and Y are empty,
then only the map φ will remain, but this also means that φ is not restricted anymore. Then we can simply
say that two cobordisms M and M ′ are equivalent, just if an OPD φ : M →M ′ exists.
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How to interpret the equivalence relation generating cobordism classes: A first step. We could
start with splitting up a cobordism M into its connected components, say Mj for 1 ≤ j ≤ N , where the
index should be regarded as just a label. Thus M = M1 ∪M2 ∪ · · · ∪MN . Now suppose we are studying
an arbitrary OPD φ : M → M ′. Then we could split up M ′ according to how M was split up. Any
diffeomorphism maps connected components to connected components, so we define M ′

j := φ(Mj). This also
gives us ∂+M

′
j = φ(∂+Mj) and ∂−M ′

j = φ(∂−Mj). Now, if for all j relation (7.2), restricted to ∂Mj instead,
holds, then also M ∼ M ′. However, suppose we are examining one φ, and the result is negative, thus (7.1)
does not commute, then it is still too early to draw any conclusions. In some cases it is possible to find
another φ′ which will satisfy. This φ′ can differ from φ by a permutation of the labeling of the connected
components of M , especially when some of its connected components themselves are diffeomorphic to each
other. Then we need to check all other possible permutations until we are really sure. Thus this first method
might seem a bit excessive.

However, we will see that it is always possible to make one of the two triangles in (7.1) commute. We
can always start with writing φ+ = ι′+ ◦ ι−1

+ by definition, even before we define φ itself. Then we can try to
find a lift φ of φ+, and if this lift exists we can define φ− := φ|∂−M . If this φ− satisfies φ− = ι′− ◦ ι−1

− , then
we are through. Then we immediately can say M ∼M ′. Otherwise, if one of the steps fails, we immediately
know that M � M ′. We could start this testing method with φ− as well.

We can describe this testing method as a sequence of two steps:

• Step 1. Define the OPD φ+ : ∂+M → ∂+M
′ by φ+ := ι′+ ◦ ι−1

+ . Is it possible to find an OPD
φ : M → M ′, which is a lift of φ+? Thus there exists an OPD φ such that φ|∂+M = φ+? If no, then
M � M ′, end of test. If yes, go to step 2.

• Step 2. Does φ− := φ|∂−M satisfy φ− = ι′− ◦ ι−1
− ? If no, then M � M ′, end of test. If yes, then

M ∼M ′ thus (7.1) is satisfied, end of test.

If we found a φ so that M ∼M ′, then we can define M ′
j := φ(Mj), and we will conclude that Mj ∼M ′

j

for all j individually. We should observe that Mj (and M ′
j) are connected sets, but ∂+Mj and ∂−Mj not

necessarily. For example, if ∂+Mj has multiple connected components for some j, and if an OPD ψ exists
from ∂+Mj to itself, permuting its connected components, then this action can not be detected by any φ
satisfying (7.1). I will try to clarify in more detail what this means later.

In [7] we can read about diffeomorphisms keeping the boundaries fixed, or diffeomorphisms rel ∂. However,
∂+M and ∂−M are not really fixed, but what it means is the following. If φ+ satisfies both steps, so that
we find a φ satisfying (7.1), then we can pretend that the boundaries are fixed.

How to interpret the equivalence relation generating cobordism classes: Some examples. In
the next examples we will look at cobordisms in dimension 2. In all examples we define X = Y = S1

1 ∪ S1
2 ,

a pair of distinct oriented circles, labeled 1 and 2. These circles can be unit circles and can be embedded
in any space, but we will not care about that, so they will be regarded as abstract circles. The cobordisms
considered, thus M , N , P and Q, will all be cobordisms from X to Y , thus from S1

1 ∪ S1
2 to itself. The

used figures should explain themselves for a large part. The labels 1 and 2 attached to the in- and out-
boundaries in these figures point out which circle is mapped to which connected component of a boundary
by the injections ι.

• Example 1. The following are examples of cobordisms which are not equivalent according to (7.1).
We will only compare M to the other two cobordisms.

M N P
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We immediately see that M � N , as M has two connected components, and N has only one, so it
is not possible to find any diffeomorphism between them. Comparing M to P we see that both have
two connected components, each having the form of a cylinder. In fact there exists a diffeomorphism
between M and P . However, this diffeomorphism cannot be regarded as a lift of any φ+ : ∂+M → ∂+P .
Translating this analysis to the two testing steps, we see that both examples immediately fail the first
step. The OPD φ+ is always possible, but in both situations it is impossible to find a proper lift of φ+.

• Example 2. The following are examples of cobordisms which are also not equivalent according to
(7.1). Their boundaries are not necessarily the same, only up to OPD. We will only compare M to the
other three cobordisms.

M N P Q

We see that for any pair of these, there exists an OPD relating the two. Now we can try to find a
lift φ of φ+. We will see that there exists a lift φN : M → N of φ+, but no lifts φP : M → P and
φQ : M → Q. Thus we immediately see that P and Q will fail the first step, thus M � P and M � Q.
We also see that φN will fail the second step, as M contains a cylinder from S1

1 to S1
1 , but N contains

a cylinder from S1
1 to S1

2 , thus φ− = φN |∂−M will not satisfy (7.2).

Seeing it from the other side, we can always define φ− to satisfy (7.2). Then we will see that there
exists a lift φP : M → P of φ−, but no lifts φN : M → N and φQ : M → Q. Thus we immediately see
that N and Q will fail the first step. Now we see that φP will fail the second step, as φ+ = φP |∂+M
will not satisfy (7.2).

• Example 3. The following is an example of a pair of equivalent cobordisms.

M N

We see that there exists a lift φ of φ+, and that φ− = φ|∂−M satisfies (7.2).

We see that there are different possible reasons why the first step could fail for a pair M and N of
cobordisms from X to Y . For example when there exists no diffeomorphism or no OPD from M to N , as in
example 1. In example 2 we see that φQ : M → Q will always fail the first step, but depending on whether
we start the test with φ+ or φ− we see that either φP : M → P or φN : M → N will fail the first step, and
none of the examples will reach the second step. So the first step is equivalent to testing whether M and N
are diffeomorphic at all (by OPD), and whether their in- or out-boundary can be treated as fixed.

As a side note, we should realize that in higher dimensions there exist manifolds which can be equipped
with different incompatible smooth structures. This means there exists no diffeomorphism from such a
manifold to itself, respecting this change of smooth structure. Only a homeomorphism exists. However, we
will ignore these subtleties here, as we will mainly concentrate on cobordisms in dimension 1 and 2, in which
smooth structure is unique. A detailed analysis can be found in [7], and this analysis applies to cobordisms
of any dimension. This analysis is based on the method of gluing topological manifolds. I would like to
introduce a slightly different, relatively simple approach, which should be enough in dimension 1 and 2.
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Orientation preserving diffeomorphisms and their induced cobordism classes. Let φ be an OPD
from X to Y . As stated earlier, there are two ways of inducing a cobordism from this φ. It is easy to show
that these two different cobordisms lie in the same cobordism class. Thus any φ uniquely induces cobordism
class [Mφ], a class of cobordisms from X to Y .

Let φ and ψ be a pair of OPDs from X to Y . These will generate cobordisms from X to Y , say Mφ

and Mψ. This pair of OPDs will be called smoothly homotopic if a smooth map Φ : X × [0, 1] → Y exists,
satisfying Φ(p, 0) = φ(p) and Φ(p, 1) = ψ(p) for all p ∈ X. A proposition says that [Mφ] = [Mψ] if and only
if φ and ψ are smoothly homotopic, so this proposition can be used to find differences between cobordism
classes. The proof of this proposition can be found in [7].

Horizontal composition of cobordism classes. Let M be a cobordism from X to Y and let N be a
cobordism from Y to Z. Then we can try to find another cobordism P from X to Z which can be regarded
as the horizontal composition of M and N . Of course this P should not be an arbitrary cobordism from
X to Z, so we would like to see properties of both M and N returning in P . At first sight we might say
we need to find a P which can be split up into two parts using a Morse function, such that one part equals
M and the other part equals N . However, it turns out to be highly exceptional for this to be possible, as
we would like ∂−M and ∂+N to be the same manifold, and it should be possible to consistently extend the
smooth structures of M and N to P , so we need a different approach. We will try to look from the other
side.

If P is a cobordism from X to Z, and if it can be split up into two parts, say P1 followed by P2, using a
Morse function, such that P1 ∼ M is a cobordism from X to Y , and P2 ∼ N is a cobordism from Y to Z,
then P can be regarded as a composition of M and N . From now on, assume this is the case. The problem
is that this P will not be unique. In other words, it is not possible to consistently compose cobordisms
themselves. However, for any other M ′ ∼M and N ′ ∼ N , any such P can also be regarded as a composition
of M ′ and N ′. So, to be able to find a unique composition, we will need to divide out by the equivalence
relation ∼ generating cobordism classes. We can define the operation of horizontal composition of cobordism
classes:

[P ] = [N ][M ].

This means that any P ′ ∈ [P ] can be split up into P ′1, followed by P ′2, such that [P ′1] = [M ] and [P ′2] = [N ].
This approach will also turn the horizontal composition into an associative operation. For any triple

of cobordisms, say M from X to Y , N from Y to Z and P from Z to W , there exists a cobordism Q
from X to W such that [Q] = ([P ][N ])[M ] = [P ]([N ][M ]). We can start with [Q] = ([P ][N ])[M ] and split
up Q with respect to a suitable Morse function, into two parts, say Q1 and R, such that [Q1] = [M ] and
[R] = [P ][N ]. Thus [Q] = [R][M ]. Using the same Morse function we can split up R into Q2 and Q3 such
that [Q2] = [N ] and [Q3] = [P ]. Thus we have split up Q into three parts, Q1, Q2 and Q3. It does not really
matter in which order we split it up. We can also split it up into three parts immediately. Now defining
S := Q1 ∪ Q2, ∂+S = ∂+Q1 and ∂−S = ∂−Q2, we immediately see that [S] = [Q2][Q1] = [N ][M ], thus
[Q] = [P ][S] = [P ]([N ][M ]). Associativity means that we can ignore parentheses and write [Q] = [P ][N ][M ]
from now on.

Now only information about topological properties of the manifolds involved will survive, making the
theory suitable for studying topological quantum field theories. There is a reason for calling this composition
the horizontal composition. There is also a vertical composition. These subtleties will be discussed later.

Invertible cobordisms. Let CX (CY ) be the cylinder cobordism from X (Y ) to itself. A cobordism M
from X to Y is said to be invertible if both [M ][M ] = [CX ] and [M ][M ] = [CY ]. The inverse of a cobordism
cannot unambiguously be indicated. In fact this is another reason to study cobordism classes instead. Then
we can say, if M is invertible, then [M ] is the unique inverse of [M ].

The cylinder itself is the most trivial example of an invertible cobordism. In fact it is its own inverse,
so [CX ][CX ] = [CX ], turning the cylinder into an idempotent cobordism class. It should be clear that if an
OPD φ : X → Y exists, then the cobordism generated by this φ is invertible.
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For any manifold M we define ν(M) as the number of its connected components. Then ν(M) = 0 if M is
the empty manifold and ν(M) = 1 if M is connected.

• Lemma. If M is an invertible cobordism from X to Y , then ν(X) = ν(Y ) = ν(M).
Proof. First of all, ν(CX) = ν(X×I) = ν(X) for any X. Of course we can safely assume ν(M) = ν(M)
and ν(M ′) = ν(M) for any M ′ ∈ [M ], so we can easily define the number of connected components of
a cobordism class: ν([M ]) := ν(M). If M is invertible, then [M ][M ] = [CX ] and [M ][M ] = [CY ], thus
ν([M ][M ]) = ν(X) and ν([M ][M ]) = ν(Y ). From now on assume M is invertible.
We call M horizontally connected if for any p ∈M there exist p+ ∈ ∂+M and p− ∈ ∂−M such that p,
p+ and p− lie in the same connected component of M . For this to work properly, we assume ∂+M and
∂−M are both not empty. In fact this means that M has no connected component without boundary,
or with only an in- or an out-boundary. We already know any cylinder is horizontally connected.
Splitting up a cylinder into two pieces which can be considered as mirror images of each other will
result in a pair of cobordisms which are also horizontally connected, and we can safely assume that
the topology of each of the two pieces is similar to the topology of the cylinder itself. This will be the
case when splitting up CX into CX,1 ∈ [M ] and CX,2 ∈ [M ], and CY into CY,1 ∈ [M ] and CY,2 ∈ [M ].
So we may conclude that ν(M) = ν(M) = ν([M ][M ]) = ν([M ][M ]), thus ν(X) = ν(M) = ν(Y ).

�

A special case of this lemma is when ν(M) = 1. If M is invertible and connected, then X and Y are also
connected.

Composition with a cylinder. Let CX and CY be cylinders.

• Lemma. For any cobordism M from X to Y the following identity holds:

[CY ][M ] = [M ] = [M ][CX ]. (7.3)

Proof. We can always find a suitable Morse function f we can use to split up M into three parts,
say M1, M2 and M3, assuming f has no critical points on M1 and M3. This is only possible when
M1 ∈ [CX ] and M3 ∈ [CY ], which implies that M and M2 share the same topological properties. In fact
M and M2 will be diffeomorphic by an OPD satisfying (7.1), so we can write [M ] = [M3][M2][M1] =
[CY ][M ][CX ]. Knowing that any cylinder is idempotent with respect to horizontal composition, we can
write [M ] = [CY ][M ][CX ] = [CY ][CY ][M ][CX ] = [CY ][M ][CX ][CX ], thus [M ] = [CY ][M ] = [M ][CX ].

�

The category of cobordism classes: A first step. Now it is possible to describe cobordisms and
their compositions in terms of category theory. We define nCob as the category of oriented cobordisms in
dimension n. The objects in nCob will be closed oriented manifolds of dimension n − 1, and the arrows
in nCob will be cobordism classes. Any arrow can be represented by an oriented manifold of dimension n
with boundary. If X and Y are objects, and if M is a cobordism from X to Y , where ι+ : X → ∂+M and
ι− : Y → ∂−M are the desired OPDs, then the cobordism class [M ] indicates an arrow from X to Y , and we
will write [M ] : X → Y . We should observe that the maps ι+ and ι− form part of the information specifying
an arrow.

Indeed, for any pair of cobordisms, say M from X to Y and N from Y to Z, the corresponding arrows
[M ] and [N ] can be composed, and the arrow [N ][M ] : X → Z is unique. This composition is associative, as
pointed out before. From (7.3) in the preceding paragraph, we can conclude that any cylinder [CX ] : X → X
constitutes an identity arrow, thus that IdX = [CX ]. Any invertible cobordism M can be interpreted as an
isomorphism [M ] between two objects.

In this context we can say that the action of reversing the orientation of a cobordism is the effect of
a contravariant functor from nCob to itself. This functor will map any object to itself, and reverse the
direction of any arrow.
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We say this is a first step because it is possible to indicate more structure. The category nCob can be
equipped with monoidal structure, and indicating this structure is really the right use of language, as no
additional structure on nCob itself is really needed, only a functor. After indicating monoidal structure we
will indicate symmetric structure, turning nCob into a symmetric monoidal category. But, before we do so,
we first need to introduce the concept of disjoint union.

The category of cobordism classes: Isomorphisms. As stated earlier, if for a pair of closed oriented
manifolds X and Y , now considered as objects, an orientation preserving diffeomorphism φ : X → Y exists,
then we can construct a cobordism Mφ, generated by φ. The diffeomorphism has an inverse, also being
orientation preserving, thus Mφ is an invertible cobordism. Then the corresponding cobordism class [Mφ]
also has an inverse arrow, so any cobordism class induced by an OPD between two objects, generates an
isomorphism between these two objects. To any OPD φ a unique isomorphism [Mφ] is associated, but it is
still possible for two distinct but smoothly homotopic OPDs φ and ψ to generate the same isomorphism.

7.2 Disjoint unions

The disjoint union of sets. Let a 6= b be two arbitrary points. Then, for any ordered pair of sets (X,Y )
we can introduce their (binary) disjoint union, written as X q Y . We could define it as

X q Y := Xa ∪ Yb := X × a ∪ Y × b.

The universal property of the disjoint union, which I will not explain in more detail, mainly says that it really
does not matter what we chose a and b to be. When we have another such pair of points a′ 6= b′, we can
canonically identify Xa′∪Yb′ to Xa∪Yb. So in fact it does not really matter how a and b were chosen, at least
as long as we keep it consistently. As a marginal note, we should realize that writing X qY = X × a∪Y × b
is also a matter of choice. We could as well use a×X instead of X × a, or something else. From now on we
will just write it down in a more abstract way, ignoring a and b, and just write X q Y = X1 ∪ Y2. We can
treat these numbers as labels. Later, when X and Y are oriented manifolds, we automatically assume 1 and
2 to be positively oriented points, thus X q Y = X × 1+ ∪ Y × 2+.

We note that in general Y qX = Y1 ∪X2 6= X1 ∪ Y2 = X q Y , contrary to the ordinary union of sets
X ∪ Y , which satisfies X ∪ Y = Y ∪X in a natural way, without more structure being specified. Of course
the input of the ordinary union could be regarded as an ordered pair of sets, thus (X,Y ) 7→ X ∪ Y , but as
the result for (Y,X) is the same, we say the ordinary union is a symmetric operation, and the disjoint union
is not.

However, we can define a canonical isomorphism between X q Y and Y q X. For any point p ∈ X
and q ∈ Y we write p1 and q2 as elements of X q Y , and p2 and q1 as elements of Y q X. We also write
τX,Y : X q Y → Y qX and τY,X : Y qX → X q Y , which are maps only interchanging the labels of points.

We could try to repeat this for any number of sets, however, the disjoint union is not a priori an associative
operation. Writing (X q Y )qZ = (X1 ∪ Y2)1 ∪Z2 = X11 ∪ Y21 ∪Z2 and X q (Y qZ) = X1 ∪ (Y1 ∪Z2)2 =
X1 ∪ Y12 ∪ Z22, we see that there is no exact equality. However, there is a unique canonical isomorphism
between these two.

The multi-disjoint union of sets. For any n-tuple of sets X1, · · · , Xn, we can define

X1 q · · · qXn := X1
1 ∪ · · · ∪Xn

n := X1 × 1 ∪ · · · ∪Xn × n.

Note that the upper index is just a label to keep track of the sets of interest. We could as well look at sets
like, for example, Xnq · · ·qX2qX1 = Xn

1 ∪ · · · ∪X2
n−1 ∪X1

n. If the n-tuple is already canonically ordered,
then we can easily identify the lower index to the upper one. Comparing this to the previous definition of
binary disjoint union, we can write unique canonical isomorphisms (XqY )qZ ' Xq (Y qZ) ' XqY qZ.
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The disjoint union and the multi-disjoint union of closed oriented manifolds. Let (X,Y ) be an
ordered pair of closed smooth oriented manifolds of dimension n. Then it should be clear that we can copy
smooth structure and orientation of X and Y to X q Y and Y qX in a canonical way, turning X q Y and
Y qX into smooth oriented manifolds. Doing this for the multi-disjoint union of any ordered n-tuple of such
manifolds does not really need any more effort.

A more subtle discussion is based on the idea of splitting up a closed manifold into smaller parts, each
again being a closed manifold. In the context of closed smooth manifolds we can easily introduce a concept of
irreducibility. If the manifold M is closed and connected, and if we split it up into two parts, each again being
a connected set, it is unavoidable that one part is open, thus is not compact, and the other part is compact
but has a boundary, thus is not closed. Thus splitting up any closed M , not necessarily being connected, into
its connected components gives us a collection of irreducible closed connected manifolds M1, · · · ,Mn. Now
the upper index is still nothing more than a label, however, we can order these components as we like, for
example using standard ordering 1 < · · · < n, and write a canonical isomorphism from M to M1q· · ·qMn.
Again, another arbitrary ordering is also allowed.

As an example, we could look at a pair of oriented closed connected manifolds X and Y satisfying
X ∩ Y = ∅. Then X ∪ Y is again an oriented closed manifold and the following diagram commutes:

X ∪ Y
ιXY

yyssssssssss
ιY X

%%KKKKKKKKKK

X q Y
τX,Y

--
Y qX

τY,X

mm
(7.4)

Here all maps are canonical orientation preserving diffeomorphisms. The maps ιXY and ιY X are just canon-
ical maps unambiguously attaching a label to any point,

In general, for any manifold M with n connected components, we can make such diagrams based on
multi-disjoint unions of n arbitrarily ordered factors. From now on we will ignore the subtle differences
between the ordinary disjoint union and the multi-disjoint union.

The disjoint union of compact oriented manifolds with boundary. Let M and N be compact
oriented manifolds with boundary. Then M qN is again a compact oriented manifold with boundary. We
write ∂+(M qN) = ∂+M q ∂+N and ∂−(M qN) = ∂−M q ∂−N .

The disjoint product of maps. Let X = X1 q X2 and Y = Y 1 q Y 2, and let φ1 : X1 → Y 1 and
φ2 : X2 → Y 2 be OPDs, then these maps canonically induce an OPD φ : X → Y . Restricted to the disjoint
factors Xj , this φ will coincide with φj . We will write φ = φ1 q φ2, and we will call it the disjoint product
of the maps φ1 and φ2.

The disjoint product of cobordisms. Let X, X ′, Y and Y ′ be closed oriented manifolds of dimension
n − 1. Then X q X ′ and Y q Y ′ are again closed manifolds with canonically induced orientation. If
M is a cobordism from X to Y and M ′ from X ′ to Y ′, then M q M ′ is a cobordism from X q X ′ to
Y q Y ′. This cobordism is again canonically constructed: We can write ∂+M q ∂+M

′ = ∂+(M qM ′) and
∂−M q ∂−M

′ = ∂−(M qM ′). If ι+ : X → ∂+M , ι′+ : X ′ → ∂+M
′, ι− : Y → ∂−M and ι′− : Y ′ → ∂−M

′

are the needed OPDs, then ι+ q ι′+ : X qX ′ → ∂+(M qM ′) and ι− q ι′− : Y q Y ′ → ∂−(M qM ′) are the
OPDs needed to turn M qM ′ into a cobordism from X qX ′ to Y q Y ′.

The disjoint product of cobordism classes. The concept of disjoint products of cobordisms is com-
patible with the concept of cobordism classes: if M and N are equivalent cobordisms from X to Y , and if
M ′ and N ′ are equivalent cobordisms from X ′ to Y ′, where φ : M → N and φ′ : M ′ → N ′ are the OPDs
needed to make (7.1) commute in each case, then φ q φ′ : M qM ′ → N q N ′ is again an OPD satisfying
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(7.1). Thus [M ] = [N ] and [M ′] = [N ′] implies [M qM ′] = [N q N ′]. The reverse implication is easily
shown, just by restricting the maps in question to the disjoint parts, thus

{[M ] = [N ]} ∧ {[M ′] = [N ′]} ⇔ {[M qM ′] = [N qN ′]}.

7.3 The symmetric monoidal category of cobordism classes

Introducing monoidal structure. Knowing nCob is a category, we can try to equip it with monoidal
structure. The disjoint product structure of cobordisms naturally induces a monoidal structure for the
category of cobordism classes. We define a functor µ : nCob×nCob → nCob as introduced in (2.5): for
any two objects X and Y we write µ0(X,Y ) = X2Y := X q Y , and for any two arrows [M ] : X → Y and
[M ′] : X ′ → Y ′ we write µ1([M ], [M ′]) = [M ]2[M ′] := [M qM ′], which is an arrow from X qX ′ to Y q Y ′.
Instead of [M ]2[M ′] we will write [M ] q [M ′]. We should be careful what q means in this case. It is not
literally the disjoint union of [M ] and [M ′], but it should really mean [M qM ′]. We will call this the vertical
composition of cobordism classes. Now we can use the q-symbol instead of the 2-symbol, in case of objects
and in case of arrows.

Now writing 1 := nCob0, which is the empty product category of nCob, we can define a functor
η : 1 → nCob as introduced in (2.5). The image of this functor will be the object 1 = η(1) := ∅, and the
arrow Id1 = Id∅ = [C∅] = [∅]. (Note that [C∅] can be regarded as the cylinder generated by the OPD I∅.)
This corresponds to the empty cobordism, which of course has empty boundary, thus [∅] : ∅ → ∅. Then
there are natural identifications ∅qX = X = X q∅, for any object X, and [∅]q [M ] = [M ] = [M ]q [∅],
for any arrow [M ]. A special case is when X = ∅ and [M ] = [∅]: then we have natural identifications
∅ = ∅q∅ and [∅] = [∅]q [∅].

We claim without proof that these functors µ and η satisfy (2.6) and (2.7), be it only in the weak sense,
thus only up to invertible natural transformations. We also claim without proof that these invertible natural
transformations satisfy the coherence constraints, and we will ignore them from now on. In other words,
we claim that the diagrams (2.10) and (2.11) commute in this case. Then (nCob, µ, η) = (nCob,q,∅) is
a monoidal category, or to be more precise, it is a nonstrict monoidal category. As discussed in Chapter 2
it is possible to treat a nonstrict monoidal category as a strict one, at least when the coherence constraints
are satisfied, which is the case here. Finding a canonical identification between repeated ordinary disjoint
unions and the multi-disjoint union, can be interpreted as finding a trivial associator making (2.10) and
(2.11) commute, after redefining µ and η. This allows us to observe q as an associative operation and to
ignore parentheses, thus to write ((W qX) q Y ) q Z = W qX q Y q Z, for example. So from now on we
can observe (nCob,q,∅) as a strict monoidal category, which also means that from now on any natural
identification can be regarded as an exact identification.

We should note that an arbitrary closed oriented n-manifold X is not necessarily the disjoint product of
smaller manifolds, but, as illustrated in figure (7.4), we can always split up X into connected components
X1, · · · , XN , and make a choice for ordering them. For any such choice there is a canonical OPD φ : X →
X1 q · · · qXN , and this OPD generates a unique cobordism class [Mφ], which is an isomorphism.

Twist diffeomorphisms and twist cobordisms: The abstract ones. For any pair X and Y of closed
oriented manifolds we can define a canonical diffeomorphism τX,Y : XqY → Y qX. It will only interchange
labels: for any p ∈ X and q ∈ Y we can write p1 and q2 as elements of X q Y and p2 and q1 as elements of
Y qX. Then τX,Y will map p1 to p2 and q2 to q1. We will call this diffeomorphism τX,Y the abstract twist
diffeomorphism. The inverse of τX,Y will be denoted by τY,X .

The diffeomorphism τX,Y induces a cobordism TX,Y called an abstract twist cobordism. Its cobordism
class [TX,Y ] is unique and invertible, and its inverse is written as [TY,X ], thus [TY,X ][TX,Y ] = [CXqY ] = IdXqY
and [TX,Y ][TY,X ] = [CYqX ] = IdYqX .

It should be clear that the abstract twist cobordism is not quite the same thing as the natural twist
cobordism, as X and Y do not need to be diffeomorphic themselves, and their intersection does not need to
be empty. So, in general, natural twist cobordisms and abstract twist cobordisms are conceptually rather
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different. However, any abstract twist cobordism from X q X to itself can also be described as a natural
twist cobordism from X q X to itself. Apart from that, monoidal structure was not needed to introduce
natural twist cobordisms. The abstract twist cobordism is not really needed to describe a cobordism from
X to itself, connecting different connected components, resulting in a natural twist cobordism.

From now on we will not discuss natural twist cobordisms anymore. So from now on, when a twist
diffeomorphism or twist cobordism is mentioned, we will assume it is an abstract one.

Now consider two cobordisms M from X to Y and M ′ from X ′ to Y ′. Then M qM ′ is a cobordism from
X qX ′ to Y qY ′, and M ′qM is a cobordism from X ′qX to Y ′qY . Then TX,X′ and TY,Y ′ are (abstract)
twist cobordisms. We claim without proof that these cobordisms, considered as cobordism classes, satisfy
the following:

[TY,Y ′ ][M qM ′] = [M ′ qM ][TX,X′ ].

As a consequence, we can write [M ′ qM ] = [TY,Y ′ ][M qM ′][TX′,X ].

As the diffeomorphisms τX,Y will not be discussed anymore from now on, we can reuse the symbol for
something else. We will now use the τX,Y symbol for the twist arrow, induced by a twist diffeomorphism.
So from now on we will write τX,Y := [TX,Y ].

Twist cobordisms and braiding. We should note that, in this context, specifying a twist cobordism
does not involve specifying which part twists over or under which other part, and the used figures reflect
this. In other words, we will not discuss braiding. Determining the degree of braiding is only possible
after introducing more rules, and for an arbitrary pair of connected components of a cobordism we need
to be sure it is possible at all to regard them as embedded into another space. And, even if the connected
components can be regarded as embedded, we still need to specify in which space we would like to see
them embedded, and we also need a reference point according to which one part twists over or under the
other. So, allowing braidings would restrict our framework, but they can be of more use when studying more
specific theories. For example in physics, if we would like to study 2-dimensional cobordisms embedded
into 4-dimensional spacetime, and the cobordism boundaries will have constant time, then there is a good
framework for studying the braiding properties of these cobordisms.

Introducing symmetric monoidal structure. For any X and Y it is possible to construct a twist
cobordism TX,Y , and its corresponding unique cobordism class can be regarded as an arrow τX,Y : X qY →
Y qX. We claim without proof that any such arrow satisfies the properties of a twist arrow, as discussed in
Chapter 2, so all these arrows together can be used to specify symmetric monoidal structure on nCob.

The symmetric monoidal category of cobordism classes. From now on we will sometimes drop the
square brackets indicating a cobordism class, thus we will write M instead of [M ]. Hopefully it will be clear
from the context whether a cobordism or a cobordism class is mentioned.

We started with the category nCob, and turned it into a nonstrict monoidal category (nCob,q,∅),
which can be strictified. Then we can add symmetric structure. The twist cobordism defines a twist arrow
for any pair of objects, so the monoidal category (nCob,q,∅) can be turned into a (strict) symmetric
monoidal category (nCob,q,∅, τ).

From now on we will sometimes write nCob instead of (nCob,q,∅, τ). This is a nice starting point for
studying two interesting symmetric monoidal categories, namely 1Cob and 2Cob, the category of cobordisms
in dimension 1 and 2. In this case, also considering that a complete classification of lines and surfaces is
known, we do not need to worry about problems with incompatible smooth structures of one and the same
manifold. All manifolds of dimension 1 or 2 carry unique smooth structure.
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Closed cobordisms and some properties. Let M and N be cobordisms, and let N also be closed, thus
∂N = ∅. Then N is a cobordism from ∅ to itself, in which case we will see that the ι-maps, appearing
in diagram (7.1), will vanish, so making this diagram commute gets much easier. Then the canonical OPD
from M qN to N qM , only interchanging labels, is compatible with diagram (7.1), thus it is easy to show
that [M qN ] = [N qM ]. We could say that any closed cobordism commutes with all other cobordisms with
respect to disjoint union, or vertical composition.

Now let also M be closed, then it is also easy to show that [M ][N ] = [N ][M ], thus any two closed
cobordisms commute with respect to ordinary (or horizontal) composition.

For any cobordism P in the cobordism class [M ][N ], an OPD from P to MqN exists, so we can combine
the former two properties and obtain the following identity:

[M qN ] = [N qM ] = [M ][N ] = [N ][M ]. (7.5)

Thus any two closed cobordisms commute with respect to horizontal and vertical composition, and we
can even exchange the procedures of horizontal and vertical composition themselves. We will review these
properties later when discussing topological quantum field theories.
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8 The category of 2-cobordisms

In this chapter we will study the category 2Cob of cobordism classes of dimension 2. We will also study
2cob, a skeleton of 2Cob. It is mainly the skeleton 2cob we will use later, in Section 10.4, when we will
study 2-dimensional topological quantum field theories. Before doing so, it would be nice if we can also
turn 2cob into a symmetric monoidal category. We know that 2Cob is already a symmetric monoidal
category, and after restricting its symmetric monoidal structure to 2cob, we will see that it still functions
as a symmetric monoidal structure. So there is a trivial way of porting over all the structure from 2Cob
to 2cob. This chapter will also present the properties of 2Cob and 2cob. We will study some generators
and relations of 2cob. We have relations like the naturality of the twist, the snake relation, monoid and
comonoid relations and the Frobenius relation. The circle S1 can be regarded as a commutative Frobenius
object in 2Cob and 2cob. We can say that the circle, also regarded as the basic object of 2cob, makes
2cob into a free symmetric monoidal category on a commutative Frobenius object.

2Cob, the category of oriented cobordisms in dimension 2. Any object X in 2Cob is a closed
oriented manifold of dimension 1, and has NX connected components. Any arrow in 2Cob, from X to Y , is
a class of equivalent cobordisms of dimension 2, from X to Y . Any connected component Xj of X has the
topology of a circle, thus we could say that any connected component of a 2-cobordism has the topology of
a compact surface of some genus and possibly with some open disks of dimension 2 missing. From now on,
if we mention any 1-manifold, we will assume it is closed and oriented. We claim without proof that for any
arbitrary pair of objects X and Y there exists at least one cobordism from X to Y .

The oriented circle, a basic object in 2Cob. Let S1, regarded as a manifold, be the standard unit
circle in R2 with standard orientation, and let S1 be the same circle with opposite orientation. There exists
a class of orientation preserving diffeomorphisms from S1 to S1. These two closed oriented manifolds can
be regarded as objects in 2Cob, and any OPD φ : S1 → S1 induces a cobordism Mφ, which we can call an
orientation reversing cobordism. The corresponding cobordism class [Mφ] can be regarded as a unique arrow
in 2Cob, and this arrow is an isomorphism.

Diffeomorphic objects and invertible cobordisms. Now, if we have an arbitrary (connected) object
X and if we found a diffeomorphism ψ : X → S1, then this ψ is either orientation preserving or orientation
reversing. In the latter case ψ is an OPD from X to S1, but, as there also exist OPDs φ from S1 to S1,
there exists an OPD φ−1 ◦ψ from X to S1. Thus the existence of a diffeomorphism from X to S1 implies the
existence of an orientation preserving diffeomorphism from X to S1. This OPD induces a unique cobordism
class, and it again generates an isomorphism in 2Cob.

Later we will see that this is not the case when we are dealing with oriented cobordisms in dimension
1. Then the diffeomorphism we start with must already be orientation preserving. However, as we do not
need to restrict to orientation preserving diffeomorphisms now, we will see that a skeleton of 2Cob will be
somewhat easier to define.

Another consequence: in general, in the category nCob, it is always possible to find a cobordism between
X qX and ∅. The cobordisms depicted in figure (6.2) and in figure (6.3), also called cylinders, reflect this.
However, in 2Cob a cobordism between for example S1 qS1 and ∅ is also possible. Similar cobordisms are
not possible in 1Cob, as we will discuss later.

Objects diffeomorphic to N copies of the circle. We already know that any connected component
Xj of X has the topology of a circle. As we are dealing with smooth manifolds this means that any Xj is
diffeomorphic to S1, which in turn implies that for any Xj there exists an OPD φj from Xj to S1. These
φj generate unique cobordism classes Mj : Xj → S1. Let SN be the multi-disjoint union of N circles:

SN := S1 q · · · q S1︸ ︷︷ ︸
N

. (8.1)
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Writing N = NX , the uniqueness of Mj implies that φ1 q · · · q φN generates a unique cobordism class

M1 q · · · qMN : X1 q · · · qXN → SN .

Note that here we equipped the connected components of X with ordering, and that this ordering coincides
with their labeling. We could call this canonical ordering. Now note that there exists a (canonical) cobordism
class from X to X1 q · · · qXN . Composing this with M1 q · · · qMN we obtain a cobordism class from X
to SN . This resulting cobordism class is again an isomorphism, and for any choice of labeling the connected
components of X, this isomorphism should be unique. As this cobordism class is an isomorphism, it also
has an inverse, and this inverse will help us finding a cobordism class from SN to X. So it does not matter
if X plays the role of an in-boundary or an out-boundary; in both cases X can represented by SN .

We should take some care however with this approach, so a short comment should be added here. We
could already have X := X1 qX2 as an object, where both X1 and X2 are connected. Then we do not need
to insert the cobordism class from X to X1 q X2. But, another example is when Y1 and Y2 are ordered
connected components of Y , but Y itself happens to be Y2 q Y1. Then we still need to insert the cobordism
class from Y to Y1 q Y2. We can interpret this as reordering the connected components of X or Y , in case
they are already ordered.

Of course, if also partial ordering is regarded, then nothing really changes. Here we mean if X = X1qX2,
but if X1 and X2 are still not connected themselves. In this case we are dealing with partial ordering. Thus
describing X (or Y ) with this approach comes down to overwriting the (partial) ordering which eventually
already exists. But from now on we will not really worry about this.

Diffeomorphic 1-manifolds. In general, if for a pair of 1-manifoldsX and Y a diffeomorphism φ : X → Y
exists, then there also exists an OPD φ′ : X → Y , and this OPD generates an invertible cobordism from X
to Y . Then the manifolds X and Y also have the same number of connected components.

We claim without proof that the reverse implication is also true. If there exists an invertible cobordism
from X to Y , then there also exists a diffeomorphism from X to Y . Thus saying that X and Y are
diffeomorphic is equivalent to saying that there exists an isomorphism from X to Y , regarded as objects in
2Cob.

Thus, if X and Y do not have the same number of connected components, then there exists no isomor-
phism between them either. A special case is when X = Sm and Y = Sn. If m 6= n, then X and Y do
not have the same number of connected components, thus there exists no isomorphism between them. As a
result we can say that for any skeleton C′ of 2Cob and for any pair of distinct objects X and Y in C′, the
corresponding manifolds also have distinct numbers of connected components.

2cob, a skeleton of 2Cob. Let M be a cobordism from X to Y , and let m = NX and n = NY be the
numbers of connected components of X and Y . Then we can choose an ordering of the connected components
of X and Y . These orderings induce OPDs φ : X → Sm and ψ : Sn → Y , and these OPDs in turn induce
cobordism classes [Mφ] and [Mψ]. Then we can split up M into three parts: [M ] = [Mψ]M̃ [Mφ], where M̃
is a cobordisms class from Sm to Sn, induced by M itself of course. We should note that [Mφ] and [Mψ] are
isomorphisms, thus we can also write M̃ = [Mψ]−1[M ][Mφ]−1 = [Mψ−1 ][M ][Mφ−1 ].

We already know that for any object X there exists an isomorphism from X to Sm, where m = NX . So
we can say the collection of objects Sk (with k arbitrary) forms a skeleton of 2Cob, and we will use the
notation 2cob to refer to this skeleton. The only remaining isomorphisms are those from any object Sk to
itself. A large class of objects and arrows in 2Cob will not appear in 2cob. For example, the orientation
reversing cobordism from S1 to S1 is an isomorphism between two distinct objects, so it will not appear as
an arrow in 2cob. The object S1 will also not appear as an object in 2cob, as S1 is already an object in
2cob, and there exists an isomorphism from S1 to S1.

Porting over the structure from 2Cob to 2cob. As stated earlier, 2Cob is just shorthand notation for
(2Cob,2, 1, τ), or (2Cob,q,∅, τ), so we are already dealing with a (strict) symmetric monoidal category.
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Now we can try turning 2cob into a symmetric monoidal category also. To do this we can shortly look at
candidate operators. In other words, we will try to find operators 2′, 1′ and τ ′ so that (2cob,2′, 1′, τ ′) is a
symmetric monoidal category. The claim will simply be that 2′ = 2 = q, 1′ = 1 = ∅ and τ ′ = τ , so that
also (2cob,q,∅, τ) is a symmetric monoidal category. Now we will elaborate on that.

Let us first have a look at porting over the monoidal structure from 2Cob to 2cob. For k and l arbitrary,
the oriented manifolds Sk and Sl are objects in 2cob. If we are dealing with the nonstrict monoidal category
2Cob, then we say there is a canonical isomorphism Sk qSl ' Sk+l, and Sk+l is also an object in 2cob. In
the strict case this isomorphism will of course be an identity: then we will just write Sk q Sl = Sk+l. Also
the disjoint union of two arrows in 2cob will be another arrow in 2cob, as easily shown, so 2cob is closed
under taking disjoint unions of objects and arrows. The object S0 can be identified with the empty set, so,
using formal symbols, this is all in accordance with the commuting diagrams in (3.1). See also the example
of (3.12). So we directly see that (2cob,q,∅) can be regarded as a strict monoidal category.

Now we can have a look at porting over the symmetric structure. Let τX,Y be the twist cobordism class
in 2Cob, regarded as an arrow from X q Y to Y qX. We should be aware that only some of these arrows
are also lying in 2cob: the arrow τX,Y only lies in 2cob if X q Y = Y qX. This reflects the fact that the
only isomorphisms in a skeleton, are arrows from an object to itself. The twist arrows remaining in 2cob
are τk,l : Sk q Sl → Sl q Sk. As 2cob carries the same monoidal structure as 2Cob we can say the arrows
τk,l are also twist arrows with respect to 2cob. Thus we can say (2cob,q,∅, τ) is a symmetric monoidal
category.

About the ordering of connected components of any object. Not every arbitrary object X in 2Cob
is equipped with an ordering or labeling of its connected components. On the other hand, every object in
2cob is automatically equipped with such an ordering. We can however discuss some of the properties of
these objects and their ordering within the context of Chapter 3: we can discuss any projection functor
P : 2Cob → 2cob. As we are already dealing with 2Cob and 2cob being strict monoidal categories, we
could as well say that P is a strict monoidal functor.

We should recall that there is no canonical way of choosing this functor, but suppose we already made
a choice. This means that for every object X in 2Cob, having N connected components, an isomorphism
ιX : X → SN is chosen. This means that, after choosing P , we also chose an ordering of the connected
components of every object in 2Cob. But, this is only mentioned as a sidenote; the functor P was not really
needed here, for porting over the monoidal structure. From now on we will mainly mention the skeleton
2cob, not 2Cob, so we will not mention any relation between objects (or arrows) in 2cob and objects (or
arrows) in 2Cob.

Generators and relations of 2cob. Every arrow f : Sm → Sn in 2cob, regarded as a cobordism class,
can be split up horizontally and vertically into six very simple basic arrows:

µ : S2 → S1 η : ∅ → S1 δ : S1 → S2 ε : S1 → ∅ Id : S1 → S1 τ : S2 → S2

(8.2)

We will call these the generators of 2cob. The arrow Id, also called a cylinder is nothing more than the
identity arrow of S1, so it satisfies Id2 = Id. If we take arbitrary m-fold disjoint products Idq · · · q Id,
then we see that we obtain the identity arrows Idm of all the other objects Sm. We can always write
f = Idn f = f Idm, for every arrow f : Sm → Sn, as expected. See also (7.3). Note that τ : S2 → S2

equals τ1,1 : S1 q S1 → S1 q S1, and we will call it the twist generator. Also note that τ is its own inverse:
τ2 = Id2 = Idq Id.

Every arrow f can be constructed by composing these generators horizontally and vertically. For example,
a vertical composition of the arrows Id, µ and η yields another arrow, say f := Idqµq η:
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f = Idqµq η

If f is an arrow from Sm to Sn, and if g is an arrow from Sn to Sp, then we can write gf as an arrow
from Sm to Sp, which we will call the horizontal composition of f and g. For example, suppose we have the
following two arrows: f : S2 → S3, f := Idqδ and g : S3 → S3, g := µq δ. Then the horizontal composition
of these gives gf = (µq δ)(Idqδ):

f = Idqδ g = µq δ gf = (µq δ)(Idqδ)

We should note that the connected components of any object are ordered. This ordering is induced by the
disjoint product structure and by the fact that every object in the skeleton 2cob is written as the disjoint
product of circles. The pictures we use, and which can also be found in [7], reflect this; knowing that
the connected components of any object are ordered justifies the way we depict the arrows. We will risk
confusion if we use the same way of depicting arrows in 2cob for depicting arrows in the category 2Cob.

If M is a cobordism, lying in the cobordism class f , then we can always define a surjective special Morse
function m : M → I ⊂ R. Recall that every connected component of any level set m−1(v) contains at most
one critical point of m, and that we can split up I into closed subsets Ij , each of which containing at most
one critical value, lying in its interior (or in ∂I). Using this m we can split up M into parts Mj := m−1(Ij).
However, splitting up should also satisfy another condition: we can split up further until all parts of Mj

containing more complex twists are split up into twist generators. Then we redefine Ij , according to the
final splitting. Finally we can redefine parts Mj := m−1(Ij), and each part can be expressed as a disjoint
product of generators. Note that this splitting will still satisfy the condition that each Ij contains at most
one critical value. We cannot say with certainty that this would all be possible if m is not a special Morse
function.

We should make clear that we use a Morse function to split up a cobordism, but we use a whole class of
equivalent Morse functions to split up the corresponding cobordism class f . We say two Morse functions m
and m′ are equivalent if the results of splitting up f with respect to m and m′ are the same.

Now we can discuss some relations. Most of these relations can be explained by using special Morse
functions. For example, assume f : S3 → S1 is an arrow which can be split up into f = µ(µ q Id) with
respect to one Morse function m. Just by choosing a different Morse function m′, not equivalent to m, we
can as well split up f into f = µ(Idqµ). This yields the relation µ(µ q Id) = µ(Idqµ). Similarly, we can
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split up the cylinder Id into µ(η q Id) or µ(Idqη), with respect to different Morse functions. Thus, using
Morse functions, we obtain some relations, and these relations are similar to those of a monoid, see (4.3).
The following diagrams should express these two relations:

µ(µq Id) = µ(Idqµ) µ(η q Id) = Id = µ(Idqη)

Similarly, we can find relations similar to those of a comonoid, see (4.4), as expressed by the following
diagrams:

(δ q Id)δ = (Idqδ)δ (εq Id)δ = Id = (Idqε)δ

There are some other relations however which cannot really be explained by using special Morse functions.
For example, the properties of a general twist cobordism cannot be detected by using a (special) Morse
function, but of course the information of interest is hidden in the corresponding cobordism class itself. The
class of equivalent injections ι, telling us how the connected components of X, ∂+M , Y and ∂−M are related,
carries this information. So, many times we can directly see whether two such cobordisms are equivalent, and
the following examples of splitting up such cobordisms will reflect this. For example, the following diagrams
express relations similar to those of commutative monoids and cocommutative comonoids, see (4.5):

µτ = µ τδ = δ

The naturality of the twist generator is another example of such a relation, see (4.6):

(τ q Id)(Idqτ)(τ q Id) = (Idqτ)(τ q Id)(Idqτ)
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There are numerous other relations similar to this one: see (2.14) for the naturality of the twist in general.
Using the naturality of the twist generator τ , we can explain how to express a general twist arrow

τk,l : Sk q Sl → Sl q Sk as a horizontal composition of disjoint products of τ and Id. These general twist
arrows can we used to generate arbitrary permutation cobordisms. As an example, let φ : S4 → S4 be
the OPD sending every point in connected component k to a point in connected component 5 − k, and let
f : S4 → S4 be the arrow generated by φ. Then we can write f = (Idqτ q Id)(τ q τ)(Idqτ q Id)(τ q τ).

Finally, we will present a relation similar to the Frobenius relation, see (4.7), and this relation can again
be explained by using special Morse functions:

(µq Id)(Idqδ) = δµ = (Idqµ)(δ q Id)

The relations introduced so far, also called the relations of 2cob, can be regarded as a minimal set of
relations, generating all other possible relations. These relations also tell us that the circle, the object S1,
can be regarded as a commutative Frobenius object in 2cob. We know that this object S1 generates all other
objects Sm in 2cob. We also know that every arrow in 2cob can be written as a horizontal and vertical
composition of the six generators. These six generators are the identity arrow Id and the five basic arrows
µ, η, δ, ε and τ . The conclusion will be that 2cob is a free symmetric monoidal category on a commutative
Frobenius object. We can again apply (4.14) and (4.15), and then we can say that S1 is the commutative
Frobenius object generating all other commutative Frobenius objects Sm in 2cob.

The snake relation. As (4.9) and (4.10) show, any Frobenius object satisfies the snake relation. As we
know, the circle can be regarded as a Frobenius object in 2cob, so it also satisfies the snake relation. On
the other hand, the cylinder generated by any object in nCob in general satisfies the snake decomposition,
see (6.5). The snake relation and the snake decomposition are not quite the same, but they are related. The
snake relation is a result of the Frobenius relation, but it can also be regarded as a slightly modified special
case of the snake decomposition. In 2cob we can split up the cylinder Id into four parts. One of these parts
can be regarded as an arrow β : S1qS1 → ∅, satisfying β = εµ, and another of these parts can be regarded
as an arrow γ : ∅ → S1 q S1, satisfying γ = δη. However, we should note that the snake relation does not
apply in nCob for all n. To be more precise, it does not apply in 1Cob, the category discussed in Chapter
9. Let p+ be a positively oriented point, and let p− be a negatively oriented point, both regarded as objects
in 1Cob. Arrows like β+ : p+ q p+ → ∅ or β− : p− q p− → ∅ are simply impossible in 1Cob, so it is
impossible to find a relation in 1Cob similar to the snake relation in 2cob. On the other hand, arrows like
β : p+ q p− → ∅ are possible in 1Cob, so at least the snake decomposition still holds in 1Cob.

Cobordisms in 2cob with some connected components being closed. Let f , g and h be arrows
in 2cob, and assume g and h can be represented by closed cobordisms. Then we know that we have the
identities f q g = g q f and gh = hg = g q h = h q g, as already explained in (7.5). Of course this means
that the pictures corresponding to the complex arrows f qg and gqf , looking different at first sight, should
be regarded as identical. The same applies to the pictures corresponding to each of the complex arrows gh,
hg, gqh and hq g. We could call this an artifact of the q-operator. As a consequence we might wonder, at
first sight, whether we can interpret the already used pictures correctly. But, there is no real problem, just
because it is mainly the ordering of the connected components of the objects that matters. The structure of
the arrows does not matter that much, so this artifact does not really contradict anything.
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The normal form of a connected cobordism in 2cob. Every connected cobordism M can be described
as a surface of genus g, with n open disks missing. If k of these disks contribute to the in-boundary, and
if l of these disks contribute to the out-boundary, then k + l = n. Then M can be described as a genus
g cobordism from Sk to Sl. Of course we assume M itself is not empty. According to a theorem, which
we will not explicitly prove here, the corresponding cobordism class can always be decomposed into three
parts, say M = M3M2M1, according to a standard scheme. We will call this scheme the normal form of
a connected surface, and to prove this theorem we can use the relations of 2cob. The first part M1, also
called the in-part, will be an arrow from Sk to S1 of the following form:

M1 = µ(µq Id)(µq Idq Id) · · · (µq Idq · · · q Id) = µ(µq Id)(µq Id2) · · · (µq Idk−2).

The middle part M2, also called the topological part, will be an arrow from S1 to S1, of the form M2 = (µδ)g.
This part can always be interpreted as a genus g surface with two disks missing. The last part M3, also
called the out-part, will be an arrow from S1 to Sl of the following form:

M3 = (δ q Idq · · · q Id) · · · (δ q Idq Id)(δ q Id)δ = (δ q Idl−2) · · · (δ q Id2)(δ q Id)δ.

Of course, if k = 0 then we assume M1 = η and if k = 1 then we assume M1 = Id. Similarly, if l = 0 then
we assume M3 = ε and if l = 1 then we assume M3 = Id. Finally, if g = 0 then we assume M2 = Id.

As an example, we can have a look at the normal form of the cobordism (class) M : S4 → S3 of genus
two:

(δ q Id)δµδµδµ(µq Id)(µq Idq Id)

It is striking that the generator τ is not involved in this context of connected cobordisms and expressing
them using the normal form. But, as we are dealing with connected cobordisms, we should realize that any
twist arrow, which eventually appears, will be cancelled by the relations µτ = µ and τδ = δ. Of course, if
we already decomposed a connected cobordism into generators, and assume a twist generator is involved by
accident, then we can always use naturality of τ to move it left or right, until it meets a generator µ or δ.
Just realize that both connected components of τ are somehow connected to each other, by a path within
the connected cobordism, so the fact that the cobordism is connected assures us that such a generator µ or
δ can always be found. Such a generator will cancel the twist generator.

Thus it is enough to use the generators µ, η, δ, ε and Id, and we should realize that using (special) Morse
functions is enough for finding out how to split up any connected cobordism into these five generators.

General cobordisms. Let M : Sj → Sk be a general cobordism class in 2cob. Then M can be considered
as the result of joining multiple connected cobordisms (or in fact cobordism classes) Mi. Each of these
Mi, when viewed as independent cobordism classes, can be decomposed into generators, according to the
normal form. However, the domain (and codomain) of M should in general be considered as a mixed up
composition of the domains (and codomains) of Mi, not just simply as the disjoint product of these domains
(and codomains). For example, if M = (τ q Id)(µ q δ)(Idqτ) then it is an arrow from S3 to S3. The
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connected components of M can be written as M1 = µ and M2 = δ, but we cannot say M equals M1 qM2

or M2 qM1. On the other hand we can write M = (τ q Id)(M1 qM2)(Idqτ) = (Idqτ)(M2 qM1)(τ q Id).
In general, if M : Sj → Sk has m connected components Mi, we can always write

M = T2(M1 q · · · qMm)T1.

The arrows T1 : Sj → Sj and T2 : Sk → Sk can be regarded as general permutation cobordisms, so they
can be regarded as being a horizontal and vertical composition of the generators Id and τ . Recall that the
arrows Mi, when written in normal form, do not contain any twist generators.

If N : Sk → Sl is another general cobordism, with n connected components and written as

N = U2(N1 q · · · qNn)U1,

where U1 : Sk → Sk and U2 : Sl → Sl are general permutation cobordisms, then

P := NM = U2(N1 q · · · qNn)U1T2(M1 q · · · qMm)T1

is an arrow from Sj to Sl. Using the naturality of the general twist we can move the middle part U1T2 to
the left or to the right, so that T1, U2, or some generator µ or δ absorbs the involved twist generators. Then
P can be rewritten as

P = V2(P1 q · · ·Pp)V1,

where V1 : Sj → Sj and V2 : Sl → Sl are again general permutation cobordisms.
We conclude by observing that the only permutation cobordisms appearing, are those which do a per-

mutation of those connected components of Sj and Sk which are not connected via M itself.
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9 The category of 1-cobordisms

In this chapter we will study the category 1Cob of cobordism classes of dimension 1. We will also study
1cob, a skeleton of 1Cob. But first we will look at the category 1Cob′, as an intermediate step, which we
will call a stripped version of 1Cob. This category is a full subcategory of 1Cob (but not a skeleton), and
it is still closed under the ordinary disjoint union q, so we can copy the symmetric monoidal structure from
1Cob to 1Cob′ without any difficulties. Here we can already study some generators and relations, without
much confusion. We have, for example, relations like the naturality of the twist and the snake decomposition.
Using some fuzzy language we could say that 1Cob′ is nearly a skeleton of 1Cob.

But finally we will focus on 1cob. We will also discuss 1cob when we will study 1-dimensional topological
quantum field theories in Section 10.5. Before doing so, it would be nice if we can also introduce 1cob with
symmetric monoidal structure. As 1Cob is already a symmetric monoidal category, we would like to find
a way of porting over this structure to 1cob. However, the monoidal structure of 1Cob cannot just be
copied to 1cob. It needs to be modified. The monoidal structure can be slightly altered in this case, and
this chapter will present a special proposal for this altered monoidal structure. The result will be that also
1cob can be regarded as a monoidal category (even a strict one). After that, we will find out how to copy
the symmetric structure from 1Cob to 1cob. Then we can rewrite the generators and relations we already
found for 1Cob′. Finally we could say that 1cob (but also 1Cob′) is a free symmetric monoidal category
on a dualizable object. This basic dualizable object (p+) generates all other dualizable objects in 1cob.

9.1 Introducing 1Cob, 1Cob′ and 1cob

1Cob, the category of oriented cobordisms in dimension 1. Any object X in 1Cob, fully written as
(1Cob,q,∅, τ) and regarded as a symmetric monoidal category, is a compact oriented manifold of dimension
0, and has NX connected components. Any manifold of dimension 0 can be assumed to have no boundary,
so they are automatically closed. Using somewhat less abstract language, any object is a finite collection of
oriented points. We define N+

X as the number of positively oriented points in X and N−
X as the number of

negatively oriented points in X. These numbers should, of course, satisfy N+
X + N−

X = NX . We then also
say that X has (N+

X , N
−
X ) connected components.

Any arrow in 1Cob, from X to Y , is a class of equivalent cobordisms of dimension 1, from X to Y . Any
connected component Xj of X is an oriented point, thus we could say that any connected component Mj of
a 1-cobordism M , with boundary ∂Mj not empty, has the topology of an oriented line with two ends.

If ∂Mj is empty, thenMj itself is represented by a closed connected 1-manifold. The only closed connected
1-manifold existing is the circle. There exist OPDs from S1 to S1 and we know ∂S1 = ∂S1 = ∅. Now see
(7.1) applied to the special case of X and Y both being empty. Then S1 and S1 lie in the same cobordism
class, thus the arrow corresponding to Mj will be the standard circle without orientation. From now on, if
we mention any 0-manifold or any connected 1-manifold with boundary, we will assume it is oriented.

We claim without proof that, contrary to the situation of 2Cob, not for any arbitrary pair of objects
X and Y there exists at least one cobordism from X to Y . We define the signature of each object X as
Σ(X) := N+

X −N−
X . We claim without proof that if and only if Σ(X) = Σ(Y ), then there exists at least one

cobordism from X to Y . As a consequence, there exist no cobordisms from X to Y if NY −NX is an odd
number.

If for example NX = NY = 0, then N+
X − N−

X = N+
Y − N−

Y = 0, thus a (closed) cobordism M , with
m connected components, exists from X to Y . Then any connected component Mj is closed, so M can be
regarded as a collection of m circles without orientation.

Basic objects in 1Cob. If we choose an arbitrary point p without orientation, then p+ and p− are
oriented points. We can use these two points as basic objects in 1Cob. Recall that there are no OPDs
possible between p+ and p−, thus no cobordisms exist from p+ to p−. Of course we already know that
Σ(p+) = 1 and Σ(p−) = −1, which implies that no arrows exist from p+ to p−.

We can take disjoint powers of p+ and p−, for example pk+ := p+ q · · · q p+. We can also take arbitrary
disjoint products of p+ and p−, for example p−qp+qp−qp−. There are 2n possible choices of such disjoint
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products of n oriented points, and these are also objects in 1Cob. We could look at a stripped version of
1Cob, only containing these objects, written as 1Cob′. Then 1Cob′ is a full subcategory of 1Cob. For
any object X in 1Cob having (k, l) := (N+

X , N
−
X ) connected components, we can say an isomorphism exists

from X to an object X ′ in 1Cob′. As the connected components of X ′ in 1Cob′ are already ordered, we
can say that each such an isomorphism also induces an ordering of the connected components of X.

Some other examples of cobordisms which are not possible in 1Cob. Knowing that the rule
Σ(X) = Σ(Y ) must be satisfied, we can say that there exist no cobordisms in 1Cob like the following:

M1 : p+ → p+ q p+ q p+, M2 : p+ q p+ → ∅, M3 : p+ → p− q p+, M4 : p+ → ∅.

As mentioned before, we can say that the snake relation, a relation valid in 2Cob, will not be applicable in
1Cob, knowing that cobordisms like M1 not being possible in 1Cob is mainly responsible for this. But, it
will get clear later that we can at least do snake decompositions.

Properties of the category 1Cob′. In 1Cob′ we can simply take ordinary disjoint products of objects
and arrows, and the resulting objects and arrows are again lying in 1Cob′. Or, to say differently, 1Cob′ is
closed under taking disjoint unions of objects and arrows. Also the empty set ∅ = p0

+ = p0
− is an object in

1Cob′, so we can say 1Cob′ carries the same monoidal structure as 1Cob. Thus (1Cob′,q,∅) can also be
regarded as a strict monoidal category.

Any twist arrow in 1Cob, also lying in 1Cob′, is also properly functioning as a twist arrow in 1Cob′.
So we can directly say that 1Cob′ carries the same symmetric monoidal structure as 1Cob. Then also
1Cob′ = (1Cob′,q,∅, τ) is a symmetric monoidal category, thus it is a full symmetric monoidal subcategory
of 1Cob.

Arrows and generators in 1Cob′. The basic cylinders in 1Cob′ are the identity arrows Id+ : p+ → p+

and Id− : p− → p−. By using disjoint products of these basic cylinders, we can construct general cylinders.
The following diagrams should express these two arrows:

Id+ Id−

The arrows drawn on the lines, not to be regarded as arrows in a category, indicate the orientation of the
1-manifold in question.

We also have some basic twists

τ+ : p+ q p+ → p+ q p+, τ− : p− q p− → p− q p−,
τ+− : p+ q p− → p− q p+, τ−+ : p− q p+ → p+ q p−,

satisfying

τ2
+ = Id++ = Id+q Id+, τ2

− = Id−− = Id−q Id−,
τ−+τ+− = Id+− = Id+q Id−, τ+−τ−+ = Id−+ = Id−q Id+ .

Note that τ−+ = τ−1
+− and τ+− = τ−1

−+. The following diagrams should express these four arrows:
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τ+ τ− τ+− τ−+

By using disjoint products and horizontal compositions of these four arrows and identity arrows we can
construct general twists and permutation arrows. Note that we cannot say that 1Cob′ is a skeleton of
1Cob, as arrows like τ+− and τ−+ are still allowed, which means that 1Cob′ still contains isomorphisms
between distinct objects.

We have another four arrows:

β : p+ q p− → ∅, γ : ∅ → p+ q p−, β̄ : p− q p+ → ∅ , γ̄ : ∅ → p− q p+.

The following diagrams should express these four arrows:

β γ β̄ γ̄

Two of these can be expressed as compositions of some of the other arrows:

β̄ = βτ−+ , γ̄ = τ+−γ.

Note that this implies that
β̄γ̄ = βτ−+τ+−γ = βγ. (9.1)

Note that the arrow βγ : ∅ → ∅ represents a connected cobordism without boundary, thus it represents the
circle. Also note that identity (9.1) reflects the fact that the arrow representing the circle does not carry any
information about its orientation. Only after splitting up a circle into two parts with boundary we see that
each part will be oriented again.

So finally we have eight independent arrows: Id+, Id−, τ+, τ−, τ+−, τ−+, β and γ. We claim that every
other arrow in 1Cob′ can be written as a horizontal and vertical composition of these arrows. We could say
these arrows are generators of 1Cob′.

Some relations in 1Cob′. There are a few relations which apply to the generators of 1Cob′. The relation
of the snake decomposition holds in any nCob. For example, we can apply the snake decomposition to the
cylinders Id+ and Id−. For Id+ we have the following relation:

(β q Id+)(Id+qγ̄) = Id+ = (Id+qβ̄)(γ q Id+)

(9.2)
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And for Id− we have the following relation:

(β̄ q Id−)(Id−qγ) = Id− = (Id−qβ)(γ̄ q Id−)

(9.3)

Of course the naturality of the twist implies other relations.
We could express the relation between the objects p+ and p− as follows. We could say p− is the object

dual to p+, and the existence of the generators β and γ and the snake decomposition support this. So, just
as we called 2cob a free symmetric monoidal category on a commutative Frobenius object, we could say that
1Cob′ is a free symmetric monoidal category on a dualizable object. (A similar statement can be found in
[9].) For that we can use the arrow β : p+ q p− → ∅ and its dual arrow, which is γ̄ : p− q p+ → ∅ in
this case. Thus (p+, p−, β, γ̄) can be regarded as a dualizable object, generating all other dualizable objects
in 1Cob′. (Note that (p+, p−, β, γ̄) induces another dualizable object (p−, p+, β̄, γ).) Note that the snake
decomposition implies the zig-zag identities, see (2.21), for these objects.

Splitting up a cobordism in 1Cob′ into generators. As we know, we can use a special Morse function
for splitting up any cobordism into disjoint products of generators. We are a bit lucky in this case, as any level
set of a Morse function on a 1-manifold is a finite collection of points. Then we can always say that especially
all critical points are mutually separate, so every Morse function on a 1-manifold is automatically a special
Morse function. Thus, after picking an arbitrary Morse function, we can always split up any cobordism
into generators, at least if it reaches its global minimum at the in-boundary, and its global maximum at the
out-boundary. The relation of the snake decomposition can again be explained by using Morse functions, as
already explained in Section 6.3.

Again, relations coming from the naturality of the twist cannot be explained by using Morse functions.
Only the twist parts cannot be detected by using any Morse function, but again we can use the information
hidden in the class of equivalent injections ι telling us how the connected components of X, ∂+M , Y and
∂−M are related. As already pointed out before, any arrow, or cobordism class, contains this information.

Thus, if f is a cobordism class, and if M is a cobordism lying in f , then we can define a surjective
Morse function m : M → I ⊂ R. Then we can split up I, using this m, into closed subsets Ij , each of
which containing at most one critical value, lying in its interior. Using this m we can again split up M into
parts Mj := m−1(Ij). Again, splitting up should also satisfy another condition: we can split up further
until all parts of Mj containing more complex twists are split up into twist generators. Then we redefine
Ij , according to the final splitting. Finally we can again redefine parts Mj := m−1(Ij), each expressed as a
disjoint product of generators.

Invertible cobordisms. If we have arbitrary objects X and Y in 1Cob, and if we found an orientation
preserving diffeomorphism (or just an orientation preserving map) ψ : X → Y , then this OPD induces a
unique cobordism class, and it generates an isomorphism in 1Cob. The reverse is also true: if an isomorphism
exists from X to Y , then there exists and OPD ψ : X → Y . The fact that β and γ are not invertible reflects
this. To conclude, we can say that an arrow f : X → Y is invertible if and only if (N+

X , N
−
X ) = (N+

Y , N
−
Y ).

The basic isomorphisms in 1Cob′ are Id+, Id−, τ+, τ−, τ+− and τ−+. Only the last two are isomorphisms
between distinct objects. If 1Cob′ has C′ as an arbitrary skeleton, which is also a skeleton of 1Cob itself,
then we can say that C′ does not contain the arrows τ+− and τ−+. For any C′ and for any pair of distinct
objects X and Y in C′ we can say that (N+

X , N
−
X ) 6= (N+

Y , N
−
Y ).
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1cob, a skeleton of 1Cob. We can choose a standard ordering for any object X in 1Cob′ with (N+
X , N

−
X )

connected components. There exist isomorphisms from X to pk+ q pl−, where k := N+
X and l := N−

X . The
collection of these objects of the form pk+ q pl− (with k and l arbitrary) can be used as a skeleton of 1Cob′

and 1Cob. We will use the notation 1cob to refer to this skeleton, and we can say that 1cob is also a full
subcategory of 1Cob′. Note that the empty set, regarded as the unit object in 1Cob, is also an object in
1cob, thus we can introduce it as the candidate unit object in 1cob. Now we will try to find operators 2′, 1′

and τ ′ so that also (1cob,2′, 1′, τ ′) is a symmetric monoidal category. First we will prove that (1cob,2′, 1′)
can be regarded as a strict monoidal category. As we know, 1′ = 1 = ∅, so we will write (1cob,2′, 1, τ ′)
from now on.

9.2 Porting over the structure from 1Cob to 1cob

We know that 1Cob is shorthand notation for (1Cob,q,∅, τ), so we are again dealing with a symmetric
monoidal category. Also 1Cob′ = (1Cob′,q,∅, τ) is a symmetric monoidal category. Then we can try
turning 1cob into a symmetric monoidal category also, but this step will not be totally trivial, as was the
case for 2cob.

Taking the graded disjoint union of objects. If we just take an ordinary disjoint product of two
arbitrary objects pk+ q pl− and pm+ q pn− in 1cob, then we obtain pk+ q pl− q pm+ q pn−, which is not an object
in 1cob, except in some cases. Thus we cannot say that 1cob is closed under the ordinary disjoint product
q. Thus, we need to define q′, regarded as a candidate operator on 1cob, differently. We first need a
projection functor P : 1Cob → 1cob (or P ′ : 1Cob′ → 1cob) to do this. So we define µ′ := Pµ(I × I),
where I : 1cob → 1Cob is the canonical injection functor. If X is an object in 1Cob with (k, l) connected
components, then we define X ′ = P0(X) := pk+ q pl−.

For any two objects X ′ := pk+ q pl− and Y ′ := pm+ q pn− in 1cob, we will write X ′ q′ Y ′ = (X ′ q Y ′)′ =
P0(X ′ q Y ′), if we apply (3.2) to q. We can do something similar in case of arrows, see (3.3).

Now we will define q′ explicitly for objects. Let X ′
+ := pk+ and let X ′

− := pl−, then X ′ = X ′
+qX ′

−. Then
we define:

X ′ q′ Y ′ = (X ′
+ qX ′

−)q′ (Y ′+ q Y ′−) = P0(X ′
+ qX ′

− q Y ′+ q Y ′−) := X ′
+ q Y ′+ qX ′

− q Y ′−. (9.4)

Or written differently:

X ′ q′ Y ′ = (pk+ q pl−)q′ (pm+ q pn−) = pk+ q pm+ q pl− q pn− = pk+m+ q pl+n− .

But also:

Y ′ q′ X ′ = (pm+ q pn−)q′ (pk+ q pl−) = pm+ q pk+ q pn− q pl− = pm+k
+ q pn+l

− = · · · = X ′ q′ Y ′.

Note that we already treat 1Cob as a strict monoidal category, thus its associator is trivial, thus we can
write

(X ′
+ qX ′

−)q′ (Y ′+ q Y ′−) = P0((X ′
+ qX ′

−)q (Y ′+ q Y ′−)) = P0(X ′
+ qX ′

− q Y ′+ q Y ′−),

which was used in (9.4). Also note that X ′ q′ Y ′ is again an object in 1cob, thus we can write

(X ′ q′ Y ′)+ = (X ′
+ q Y ′+ qX ′

− q Y ′−)+ = X ′
+ q Y ′+ = Y ′+ qX ′

+. (9.5)

Similarly we can write (X ′ q′ Y ′)− = X ′
− q Y ′− = Y ′− qX ′

−.
Note that for any object X ′ = pk+ q pl− in 1cob we have P0(X ′) = X ′, which implies the following:

pk+ q pl− = P0(pk+ q pl−) = (pk+ q pl−)′ = pk+ q′ pl− = pl− q′ pk+.
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We know that P0 is already defined, but we are still free to choose P1. Choosing P1 is a matter of choosing
isomorphisms ιX : X → pk+ q pl− for any object X in 1Cob, with (k, l) = (N+

X , N
−
X ) connected components.

Of course X ′qY ′ is still an object in 1Cob, for any two objects X ′ and Y ′ in 1cob. We can make a special
choice for P in case of disjoint products of any pair (X ′, Y ′). We define ιX′qY ′ , which is an arrow from
X ′ q Y ′ to X ′ q′ Y ′ = P0(X ′ q Y ′), as

ιX′qY ′ : X ′
+ qX ′

− q Y ′+ q Y ′− → X ′
+ q Y ′+ qX ′

− q Y ′− , ιX′qY ′ := IdX′
+
qτX′

−,Y
′
+
q IdY ′− . (9.6)

In general we will restrict ourselves to a projection functor P , related to natural isomorphisms ιX which
can be written as a (horizontal and vertical) composition of only three generators: Id+, Id− and τ−+. Of
course this is with respect to the full subcategory 1Cob′, instead of 1Cob itself, and any vertical composition
of these three generators is based on the ordinary disjoint product q, not q′. This restriction can be explained
using somewhat less abstract language: the mutual ordering of the positively oriented points, viewed as a
part of the total object X in 1Cob′, will not be changed by ι. The same applies to the mutual ordering
of the negatively oriented points, viewed as a part of the total object X in 1Cob′. We could say that the
positively oriented points will all be moved to the left, without destroying the mutual ordering.

If we take a look again at (9.6), then we see that the twist arrow τX′
−,Y

′
+

can indeed be written as a
composition of these three generators, and that indeed the mutual ordering is not destroyed. This is why we
will call the operator q′ the graded disjoint union, or the graded disjoint product.

Taking the graded disjoint union of arrows. Now we can write down q′ explicitly for arrows. Let
f ′ : A′ → B′ and g′ : C ′ → D′ be arrows in 1cob. Using (3.3) and (9.6) we can define f ′ q′ g′, regarded as
an arrow from A′ q′ C ′ to B′ q′ D′, as follows:

f ′ q′ g′ := P1(f ′ q g′) = (f ′ q g′)′ = ιB′qD′(f ′ q g′)ι−1
A′qC′

= (IdB′+ qτB′−,D′
+
q IdD′

−
)(f ′ q g′)(IdA′+ qτC′+,A′− q IdC′−). (9.7)

Now we can conclude that 1cob is closed under the graded disjoint union q′. As a consequence we can write
the following:

IdX′ q′ IdY ′ = P1(IdX′ q IdY ′) = P1(IdX′qY ′) = ιX′qY ′ IdX′qY ′ ι
−1
X′qY ′ = IdX′q′Y ′ . (9.8)

The identity (2.8), which already applies to q, was also used here. So, q satisfying (2.8) implies that q′ also
satisfies (2.8).

Assume f ′ and g′ can be written as f ′ = f ′+ q f ′− and g′ = g′+ q g′−, with arrows

f ′+ : A′+ → B′+ f ′− : A′− → B′− g′+ : C ′+ → D′
+ g′− : C ′− → D′

−

and note that we can write f ′ q g′ = (f ′+ q f ′−)q (g′+ q g′−) = f ′+ q f ′− q g′+ q g′−. Then (9.7) and naturality
of the twist τ will imply that

f ′ q′ g′ = (IdB′+ qτB′−,D′
+
q IdD′

−
)(f ′+ q f ′− q g′+ q g′−)(IdA′+ qτC′+,A′− q IdC′−)

= f ′+ q g′+ q f ′− q g′−. (9.9)

As a special example of (9.9) we can write:

IdX′ q′ IdY ′ = IdX′
+qX′

−
q′ IdY ′+qY ′− = (IdX′

+
q IdX′

−
)q′ (IdY ′+ q IdY ′−)

= IdX′
+
q IdY ′+ q IdX′

−
q IdY ′− = IdX′

+qY ′+qX′
−qY ′− = IdX′q′Y ′ .

This is in harmony with the (universal) identity (9.8).
If A′ q′ C ′ = A′ q C ′ and B′ q′ D′ = B′ qD′, then also ιA′qC′ = IdA′qC′ and ιB′qD′ = IdB′qD′ . Then

we can say that

f ′ q′ g′ = ιB′qD′(f ′ q g′)ι−1
A′qC′ = IdB′qD′(f ′ q g′) IdA′qC′ = f ′ q g′. (9.10)
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We already mentioned that τ+− and τ−+ are not arrows in 1cob. They will be projected to identity
arrows by P . If we write +− = p+ q p−, then we have ι+− = Id+− = Id+q Id− and ι−+ = τ−+. Then,
knowing that P0(p+ q p−) = P0(p− q p+) = p+ q p−, we obtain:

P1(τ+−) : P0(p+ q p−) → P0(p− q p+) , P1(τ+−) = ι−+τ+−ι
−1
+− = τ−+τ+− = Id+− .

Similarly we have P1(τ−+) = Id+−.

About the ordering of connected components of any object. Before choosing a projection functor
P : 1Cob → 1cob, not every arbitrary object X in 1Cob is equipped with an ordering or labeling of its
connected components. On the other hand, we already know that every object in 1cob is automatically
equipped with an ordering of its connected components. After choosing a projection functor P : 1Cob →
1cob also an isomorphism ιX exists for all objects X in 1Cob. These isomorphisms induce ordering of the
connected components of each X.

Porting over the monoidal structure from 1Cob to 1cob. Now a candidate operator q′ is defined,
but we still do not know exactly what type of category we are dealing with. According to the theory discussed
in Chapter 3, we can say that 1cob is at least a (not necessarily strict) monoidal category, but before porting
over the symmetric structure, we will first check that we are dealing with a strict monoidal category. If 1cob
is not a strict monoidal category, then we can strictify it, but this will alter the originally induced structure.
However, we can do some explicit checks, and in fact we are already dealing with a monoidal category which
is strict a priori. But, these explicit checks can be rather laborious. Anyway, we will try to do these checks
here.

A first step will be checking the strict behaviour of the unit object (and arrow). Let X ′ be an object in
1cob, then ∅ is the candidate unit object for 1cob:

∅q′ X ′ = (∅qX ′)′ = (X ′)′ = X ′ = (X ′ q∅)′ = X ′ q′ ∅.

So, indeed ∅ behaves like a (strict) unit object in 1cob, with respect to q′. This check was rather easy, and
we can do a similar thing in case of arrows.

A following step might be checking the strict behaviour of the operator q′, with respect to objects. We
can write X ′ q′ Y ′ = X ′

+ q Y ′+ qX ′
− q Y ′−, thus the associator α′ of q′ might be trivial if we can say that

(X ′ q′ Y ′)q′ Z ′ = X ′ q′ (Y ′ q′ Z ′), for all objects X ′, Y ′ and Z ′ in 1cob. This is indeed the case:

(X ′ q′ Y ′)q′ Z ′ = (X ′
+ q Y ′+ qX ′

− q Y ′−)q′ (Z ′+ q Z ′−) = X ′
+ q Y ′+ q Z ′+ qX ′

− q Y ′− q Z ′−
= (X ′

+ qX ′
−)q′ (Y ′+ q Z ′+ q Y ′− q Z ′−) = X ′ q′ (Y ′ q′ Z ′).

We need to do another check before we can say that q′ behaves like a strict operator. We did not check
yet whether its behaviour is strict with respect to arrows. We cannot do a similar trick in case of arrows,
but we can do it in a different way. Let f ′ : A′ → B′, g′ : C ′ → D′ and h′ : E′ → F ′ be an arbitrary triple of
arrows in 1cob. Then we can say that α′ will be trivial if we can say that (f ′ q′ g′)q′ h′ = f ′ q′ (g′ q′ h′),
for all arrows f ′, g′ and h′. To check this we will rewrite the triple products of arrows:

(f ′ q′ g′)q′ h′ = ι(B′q′D′)qF ′((f ′ q′ g′)q h′)ι−1
(A′q′C′)qE′

= ι(B′q′D′)qF ′(ιB′qD′(f ′ q g′)ι−1
A′qC′ q h

′)ι−1
(A′q′C′)qE′

= ι(B′q′D′)qF ′(ιB′qD′ q IdF ′)((f ′ q g′)q h′)(ι−1
A′qC′ q IdE′)ι−1

(A′q′C′)qE′

f ′ q′ (g′ q′ h′) = ιB′q(D′q′F ′)(f ′ q (g′ q′ h′))ι−1
A′q(C′q′E′)

= ιB′q(D′q′F ′)(f ′ q ιD′qF ′(g′ q h′)ι−1
C′qE′)ι

−1
A′q(C′q′E′)

= ιB′q(D′q′F ′)(IdB′ qιD′qF ′)(f ′ q (g′ q h′))(IdA′ qι−1
C′qE′)ι

−1
A′q(C′q′E′)

81



We already know that (f ′ q g′)q h′ = f ′ q (g′ q h′). Also note that, for example

(ι−1
A′qC′ q IdE′)ι−1

(A′q′C′)qE′ = (ι(A′q′C′)qE′(ιA′qC′ q IdE′))−1.

Then all we need to check is whether

ι(X′q′Y ′)qZ′(ιX′qY ′ q IdZ′) = ιX′q(Y ′q′Z′)(IdX′ qιY ′qZ′), (9.11)

for any triple of objects X ′, Y ′ and Z ′. Then we can conclude that (f ′ q′ g′)q′ h′ = f ′ q′ (g′ q′ h′). Indeed,
we know that α is trivial, as 1Cob is already strict. Then (3.7) shows us that α′ will also be trivial if (9.11)
holds.

We can explicitly write down the arrows ιX′qY ′ , in terms of identities and twists, to prove (9.11). We
should note that we need the arrows τX′,Y ′ , indicating the symmetric structure of 1Cob, to do this explicit
check. So, we already explicitly know the behaviour of the arrows ιX′qY ′ . In the general case we cannot do
it this way. In the context of this subject it is still a mystery how to do it in general.

Using the explicit definition (9.6) of ιX′qY ′ , but also relations (2.9), (2.15), (2.16) and (9.5), we can
rewrite (9.11). Here we have some intermediate steps:

ι(X′q′Y ′)qZ′ = Id(X′q′Y ′)+ qτ(X′q′Y ′)−,Z′+ q IdZ′− = IdX′
+qY ′+ qτX′

−qY ′−,Z′+ q IdZ′−
= IdX′

+
q IdY ′+ q(τX′

−,Z
′
+
q IdY ′−)(IdX′

−
qτY ′−,Z′+)q IdZ′−

= IdX′
+
q(IdY ′+ qτX′

−,Z
′
+
q IdY ′−)(IdY ′+ q IdX′

−
qτY ′−,Z′+)q IdZ′−

ιX′qY ′ q IdZ′ = IdX′
+
qτX′

−,Y
′
+
q IdY ′− q IdZ′+ q IdZ′−

ιX′q(Y ′q′Z′) = IdX′
+
qτX′

−,(Y
′q′Z′)+ q Id(Y ′q′Z′)− = IdX′

+
qτX′

−,Y
′
+qZ′+ q IdY ′−qZ′−

= IdX′
+
q(IdY ′+ qτX′

−,Z
′
+
)(τX′

−,Y
′
+
q IdZ′+)q IdY ′− q IdZ′−

= IdX′
+
q(IdY ′+ qτX′

−,Z
′
+
q IdY ′−)(τX′

−,Y
′
+
q IdZ′+ q IdY ′−)q IdZ′−

IdX′ qιY ′qZ′ = IdX′
+
q IdX′

−
q IdY ′+ qτY ′−,Z′+ q IdZ′−

Composing these arrows gives us:

ι(X′q′Y ′)qZ′(ιX′qY ′ q IdZ′)
= (IdX′

+
q(IdY ′+ qτX′

−,Z
′
+
q IdY ′−)(IdY ′+ q IdX′

−
qτY ′−,Z′+)q IdZ′−)(IdX′

+
qτX′

−,Y
′
+
q IdY ′− q IdZ′+ q IdZ′−)

= IdX′
+
q(IdY ′+ qτX′

−,Z
′
+
q IdY ′−)(IdY ′+ q IdX′

−
qτY ′−,Z′+)(τX′

−,Y
′
+
q IdY ′− q IdZ′+)q IdZ′−

= IdX′
+
q(IdY ′+ qτX′

−,Z
′
+
q IdY ′−)(τX′

−,Y
′
+
q IdZ′+ q IdY ′−)(IdX′

−
q IdY ′+ qτY ′−,Z′+)q IdZ′−

= (IdX′
+
q(IdY ′+ qτX′

−,Z
′
+
q IdY ′−)(τX′

−,Y
′
+
q IdZ′+ q IdY ′−)q IdZ′−)(IdX′

+
q IdX′

−
q IdY ′+ qτY ′−,Z′+ q IdZ′−)

= ιX′q(Y ′q′Z′)(IdX′ qιY ′qZ′)

The third equality is obtained after applying relation (2.14). This finally proves (9.11), which in turn
proves associativity of arrows in 1cob, using q′. Thus also α′ is a trivial natural transformation, turning
(1cob,q′,∅) into a strict monoidal category. Then we can try to add symmetric structure to 1cob.

Porting over the symmetric structure from 1Cob to 1cob. We know that (1Cob,q,∅, τ) is already
a symmetric monoidal category, thus the arrows τX,Y already satisfy the three rules mentioned in Section
2.3. See for example (2.14) and (2.15). On the other hand we know that q′ 6= q, contrary to the situation
of 2Cob and 2cob, so we need to find different twist arrows τ ′X′,Y ′ for 1cob. The arrows τX,Y satisfy the
rules for turning 1Cob into a symmetric monoidal category, but we need to define τ ′X′,Y ′ differently so that
these arrows satisfy the rules for turning 1cob into a symmetric monoidal category.

If X ′ and Y ′ is a pair of objects in 1cob, then the arrow τX′,Y ′ from X ′ q Y ′ to Y ′ qX ′ can be written
as follows:

τX′,Y ′ : X ′
+ qX ′

− q Y ′+ q Y ′− → Y ′+ q Y ′− qX ′
+ qX ′

−

τX′,Y ′ = (IdY ′+ qτX′
+,Y

′
−
q IdX′

−
)(τX′

+,Y
′
+
q τX′

−,Y
′
−
)(IdX′

+
qτX′

−,Y
′
+
q IdY ′−)
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Then we can define τ ′, regarded as the candidate twist arrow on 1cob:

τ ′X′,Y ′ := P1(τX′,Y ′) = ιY ′qX′τX′,Y ′ι
−1
X′qY ′

= (IdY ′+ qτY ′−,X′
+
q IdX′

−
)τX′,Y ′(IdX′

+
qτY ′+,X′

−
q IdY ′−)

= τX′
+,Y

′
+
q τX′

−,Y
′
−

(9.12)

We can say that τX′
+,Y

′
+

is purely generated by τ+ (and Id+), and that τX′
−,Y

′
−

is purely generated by τ−
(and Id−). Note that τ ′X′,Y ′ are also natural isomorphisms, as τ ′ itself is a composition of other natural
transformations:

τ ′ = IdP ∗τ ∗ IdI×I .

We should say that this is just an explicit choice for a candidate natural transformation, to be used to turn
(1cob,q′,∅) into a symmetric monoidal category. Within the material discussed here we cannot say that
this method will also work in general. Now we can check if the three relations mentioned in Section 2.3,
applied to τ ′, hold:

1. For any two arrows f ′ : A′ → B′ and g′ : C ′ → D′ we have:

(g′ q′ f ′)τ ′A′,C′ = P1(g′ q f ′)P1(τA′,C′) = P1((g′ q f ′)τA′,C′)
= P1(τB′,D′(f ′ q g′)) = P1(τB′,D′)P1(f ′ q g′) = τ ′B′,D′(f ′ q′ g′).

Thus 1Cob satisfying (2.14) implies that also 1cob satisfies (2.14).

2. For any two objects X ′ and Y ′ we have:

τ ′Y ′,X′τ ′X′,Y ′ = P1(τY ′,X′)P1(τX′,Y ′) = P1(τY ′,X′τX′,Y ′) = P1(IdX′qY ′) = IdX′q′Y ′

The last equality is a result of (9.8).

3. For any triple of objects X ′, Y ′ and Z ′ we have:

τ ′X′,Y ′q′Z′ = τX′
+,(Y

′q′Z′)+ q τX′
−,(Y

′q′Z′)− = τX′
+,Y

′
+qZ′+ q τX′

−,Y
′
−qZ′−

= (IdY ′+ qτX′
+,Z

′
+
)(τX′

+,Y
′
+
q IdZ′+)q (IdY ′− qτX′

−,Z
′
−
)(τX′

−,Y
′
−
q IdZ′−)

= (IdY ′+ qτX′
+,Z

′
+
q IdY ′− qτX′

−,Z
′
−
)(τX′

+,Y
′
+
q IdZ′+ qτX′

−,Y
′
−
q IdZ′−)

= ((IdY ′+ q IdY ′−)q′ (τX′
+,Z

′
+
q τX′

−,Z
′
−
))((τX′

+,Y
′
+
q τX′

−,Y
′
−
)q′ (IdZ′+ q IdZ′−))

= (IdY ′ q′τ ′X′,Z′)(τ
′
X′,Y ′ q′ IdZ′)

The first equality is a result of (9.12) and the fifth equality is a result of (9.9). Thus 1Cob satisfying
(2.15) implies that also 1cob satisfies (2.15).

Thus τ satisfying the three rules implies that also τ ′ satisfies the three rules. Thus we can say that
(1cob,q′,∅, τ ′) is a symmetric monoidal category.

A remark. To conclude, we can now finally say that, in this specific case, the fact that 1Cob is a symmetric
monoidal category implies that 1cob is also a symmetric monoidal category, but we should be aware that we
needed explicit definitions and checks for this. We could even think that we needed suitable choices for these
definitions. For example, we used explicit definitions for P , ι and τ ′. Especially note that the symmetric
structure of 1Cob was already needed for turning 1cob into a strict monoidal category.

In the general case, as discussed in Chapter 3, we do not need explicit definitions of P and ι, at least
not for copying the monoidal structure from a category C to a skeleton C′ of C. In that case even C being
nonstrict was no problem, and a symmetric structure was not needed yet. However, then we cannot be
sure if we are dealing with a skeleton which is a strict monoidal category a priori. So, in general this will
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be a mystery, but we could always strictify this skeleton afterwards, if desired. On the other hand, for the
approach introduced here we were already assuming 1Cob to be strict.

So both approaches, the formal one of Chapter 3 and the explicit one of this chapter, each have their
own advantages and disadvantages. At least we know that we do not really need special restrictions on P to
be sure that the skeleton can be regarded as a (not necessarily strict) monoidal category. So we would not
need specific properties of the mentioned categories at all. However, in this chapter the specific properties
of 1Cob and ι were needed for the explicit checks. We even made a special choice for ι, just to make sure
we obtain the desired result, and we can say this is a restriction. This restriction was used to make sure
that 1cob itself will a priori also be strict, as a monoidal category. Especially note that strictifications and
redefinitions are not needed then, thus adding simplified symmetric structure is directly possible. At this
moment we (still) cannot say that the explicit definitions and checks, of τ ′ and its properties, can be used in
the general case to make sure that the skeleton we are dealing with is also a symmetric monoidal category.

Of course, for the next chapter, we would like to know explicitly how the strict symmetric monoidal
structure of 1cob is defined, so the explicit porting over of the structure was at least needed for this. We can
say that Chapter 3 was needed to check whether the monoidal structure can be ported correctly in general,
and whether or not it all depends on the specific definitions and properties of C, a skeleton C′, P and ι.
Indeed, in general the monoidal structure can be ported, and no specific information of C is needed for this.
In some cases we only need to do one extra step, if desired, which is strictifying the skeleton in question.

9.3 Generators and relations of 1cob

Generators of 1cob. Every arrow f ′ : pk+ q pl− → pm+ q pn− in 1cob can be split up horizontally and
vertically into the six basic arrows Id+, Id−, τ+, τ−, β and γ. These can be regarded as a minimal set of
generators of 1cob. Then τ+ and τ− are the twist generators. Thus, again, every arrow f ′ in 1cob can be
constructed by composing these generators horizontally and vertically.

The connected components of any object are ordered. However, the ordering of the positively and
negatively oriented points is separate, which is induced by the properties of the graded disjoint union. We
should also note that β̄ and γ̄ are not arrows in 1cob, as the object p− q p+ and the arrows τ+− and τ−+

would be involved then.
Let f ′ and g′ be two arrows in 1cob. As already explained by relation (9.10), we can for example write

f ′ q′ g′ = f ′ q g′ in some special cases, if the domain and codomain of f ′ q g′ are already objects in 1cob.
For example:

Id+q′ Id− = Id+q Id−, Id+q′β q′ Id− = Id+qβ q Id−, τ+ q′ τ− = τ+ q τ−.

Relations of 1cob. Now we can discuss the relations of 1cob. Note that the snake decomposition in its
standard form will be invalid here, as objects like p+qp−qp+ and arrows like β̄ are involved then. However,
we can modify the snake decomposition. We know that in 1Cob′ we can write Id+ = (β q Id+)(Id+qγ̄).
Then we can write

Id+ = P1(Id+) = P1((β q Id+)(Id+qγ̄)) = P1(β q Id+)P1(Id+qγ̄)
= · · · = (Id+qβ)(τ+ q Id−)(Id+qγ).

We can rewrite Id− in a similar way, and the following two diagrams will express these relations:

Id+ = (Id+qβ)(τ+ q Id−)(Id+qγ) Id− = (β q Id−)(Id+qτ−)(γ q Id−)

(9.13)
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These relations are in fact equivalent to relations (9.2) and (9.3), which apply to 1Cob′. We can call these
relations examples of the modified snake decomposition. We could also say that the zig-zag identities (2.21)
hold with respect to q′:

Id+ = (β q′ Id+)(Id+q′γ) = (Id+qβ)(τ+ q Id−)(Id+qγ) = (Id+q′β)(γ q′ Id+),
Id− = (β q′ Id−)(Id−q′γ) = (β q Id−)(Id+qτ−)(γ q Id−) = (Id−q′β)(γ q′ Id−).

Of course this identity also holds in 1Cob′, so it should really be considered as a rewrite only. Note that we
used that

β = P1(β) = P1(β̄) , γ = P1(γ̄) = P1(γ). (9.14)

We can say that γ : p− q′ p+ → ∅ (or γ : p+ q′ p− → ∅) is the arrow dual to β : p+ q′ p− → ∅ (or
β : p− q′ p+ → ∅).

The other relations of 1cob remaining, are those coming from the naturality of the twist, see (2.14).
Note that we cannot say that any commutative object exists in 1cob, so there is no other way to cancel
twist generators. We know that 1Cob′ is a symmetric monoidal category on a dualizable object. We can
say that also 1cob is a symmetric monoidal category on a dualizable object. This time (p+, p−, β, γ) can
be regarded as a dualizable object, generating all other dualizable objects in 1cob, and it induces another
dualizable object (p−, p+, β, γ).

Relations of 1cob: An example. As an example of applying the relations, we will discuss the graded
disjoint product of β with itself. We know that β : p+ q p− → ∅ is an arrow in 1cob, so we can write:

β q′ β = (β q β)′ = ι∅(β q β)ι−1
+−+− = (β q β)(Id+qτ+− q Id−),

which is an arrow from p+ q p+ q p− q p− to ∅. This is still not written as a composition of the generators
of 1cob itself, as β q β and τ+− are no valid arrows in 1cob, so we will try to rewrite it. The first step will
be:

β q′ β = (β q β)(Id+qτ+− q Id−)
= β(β q Id+q Id−)(Id+qτ+− q Id−)
= β(Id+q Id−qβ)(Id+qτ+− q Id−).

The following diagram expresses this:

(9.15)

Now, using naturality of the twist, see (2.14), we can do a following step of rewriting. For example, the
following two relations are a result of (2.14), together with (2.18), applied to 1Cob′:

β q Id+ = τ∅,p+(β q Id+) = (Id+qβ)τp+qp−,p+ = (Id+qβ)(τ+ q Id−)(Id+qτ−+),
Id−qβ = τp−,∅(Id−qβ) = (β q Id−)τp−,p+qp− = (β q Id−)(Id+qτ−)(τ−+ q Id−).

As a consequence, we can say:
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(β q Id+)(Id+qτ+−) = (Id+qβ)(τ+ q Id−) (Id−qβ)(τ+− q Id−) = (β q Id−)(Id+qτ−)

These specific relations can be inserted into diagram (9.15), whereupon we will finally obtain the following
relation:

β q′ β = β(Id+qβ q Id−)(τ+ q Id−q Id−) = β(Id+qβ q Id−)(Id+q Id+qτ−)

This diagram helps us expressing β q′ β as a composition of generators of 1cob, and in the meantime the
second equality expresses a specific relation, derived from (2.14).

The generalized normal form of a cobordism in 1cob. Every cobordism class M in 1cob can be
described as a collection of oriented lines with boundary and circles without orientation. Let X = pk+ q pl−
and Y = pm+ q pn− be objects in 1cob, and assume k − l = m− n, so that at least one arrow exists from X
to Y . Now let M : X → Y be such an arrow in 1cob. Just like we did in Chapter 8, we claim without proof
that any cobordism class M can be decomposed into three parts, say M = M3M2M1, according to some
standard scheme. We will call this scheme the generalized normal form of an arrow. This scheme is rather
different when compared to the normal form of connected cobordisms in 2cob.

The first part M1 and the last part M3, also called the in-twist part and the out-twist part, will be
isomorphisms. These are arrows M1 : X → X and M3 : Y → Y . These arrows are compositions of the four
generators Id+, Id−, τ+ and τ− only. Note that we can say that

M1 = M+
1 q′M−

1 = M+
1 qM−

1 , M3 = M+
3 q′M−

3 = M+
3 qM−

3 .

Then M+
1 and M+

3 are compositions of Id+ and τ+, and M−
1 and M−

3 are compositions of Id− and τ−. The
middle part M2 : X → Y is a composition of the four generators Id+, Id−, β and γ only. It can be regarded
as a horizontal composition of parts, each being written as a graded disjoint product of multiple arrows of
type Id+ first, then either a β or a γ, and finally multiple arrows of type Id−. The splitting will not be
unique, because of the naturality of the twist.

As an example, we can have a look at the normal form of a cobordism class M : p4
+ q p3

− → p5
+ q p4

−:
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(9.16)

Using the naturality of the twist, we can rewrite any composition of multiple arrows into the generalized
normal form. Let M and N be two arrows, already written in the generalized normal form, and assume
NM exists, then we can move many of the twist parts from the middle to the left or to the right, using the
naturality of the twist. The remaining twists are part of a loop, and the relations in (9.13) can be used for
removing these loops immediately. Thus we can rewrite NM into the generalized normal form. Rewriting a
vertical composition of multiple arrows into the generalized normal form is only a matter of inserting some
extra twist arrows.

Any middle part M2 can be indicated by five positive integers (zero included), say (k, l,m, n, p), and this
information is sufficient. These numbers tell us that M2 contains:

• k cylinders with positive orientation, thus Idk+ = Id+q · · · q Id+,

• l half circles from p+ q p− to ∅, thus β,

• m circles,

• n half circles from ∅ to p+ q p−, thus γ,

• p cylinders with negative orientation, thus Idp− = Id−q · · · q Id−.

For example, the middle part M2 in diagram (9.16) obtains the numbering (k, l,m, n, p) = (2, 2, 3, 3, 1). Note
that M is an isomorphism if and only if l = m = n = 0. We directly see that l, m and n will not contribute
to the countings N+

X −N−
X and N+

Y −N−
Y . We also see that k = N+

X = N+
Y and p = N−

X = N−
Y , so that

Σ(X) = N+
X −N−

X = k − p = N+
Y −N−

Y = Σ(Y ).

The twist parts M1 and M3 can each be indicated by two permutations, one for the positively oriented
points and one for the negatively oriented points, contained in X or Y . So we have four permutations in
total, each being an element of one of the symmetric groups. Actually it depends on how points in the
boundary are connected, inside of M2, which of these combinations of four permutations will be considered
as identical. So, in many cases we do not need the full symmetric groups for indicating the twist parts. Any
arrow in 1cob can be written in generalized normal form, indicated by four permutations and five positive
numbers.
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Cobordisms in 1cob with some connected components being closed. As already mentioned in
Section 7.3, see (7.5), and in Chapter 8, we have some relations when closed cobordisms are concerned.
A closed connected component Mj of any arrow M in 1Cob′ can be placed anywhere in a picture. As a
reminder, any such Mj can only be a circle without orientation, so a cobordism with m closed connected
components simply contains m circles. In a picture of any arrow in 1cob, in generalized normal form, we
will however, by convention, draw the circles as a horizontal string of arrows βγ.
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10 Topological Quantum Field Theories

Finally we will discuss topological quantum field theories. First we will discuss three definitions, looking
very different at first sight.

In Section 10.1 we will start with the definition of TQFTs which looks very straightforward, nearly trivial.
It is the definition by J. Kock (see [7], 2003). The concepts of symmetric monoidal categories and functors,
as introduced in earlier chapters here, will mainly be discussed. In this section we will also shortly discuss
what is so topological about topological quantum field theories.

In Section 10.2 we will present the definition of TQFTs by M. Atiyah (see [4], 1988). This definition
looks totally different at first sight, and no categories and functors are explicitly mentioned. The axioms
presented there are not really explicitly focussed on cobordisms. We will compare this definition to the first
definition, by Kock.

In Section 10.3 we will present the definition of TQFTs by C. Blanchet & M. Turaev (see [8], 2005). At
first sight this definition seems to be a mixture of the definitions by Kock and Atiyah. The axioms presented
there are focussed on cobordisms. Categories and functors will also be discussed, be it briefly and only in an
alternative definition, not in the main definition. At the end of Section 10.3 we will compare this definition
to the definitions by Kock and Atiyah. The results can be regarded as the main conclusion of this thesis,
but not as the only conclusion. A short list of key points of this conclusion can be found in Chapter 11.

In Section 10.4 we will discuss 2D-TQFTs and present another result from [7]: the category of 2-
dimensional topological quantum field theories is equivalent to the category of commutative Frobenius
algebras. In this context we will restrict to 2cob, skeleton of 2Cob, as the source category for any 2D-
TQFT.

In Section 10.5 we will discuss 1D-TQFTs. We could say that the category of 1-dimensional topological
quantum field theories is equivalent to the category of dualizable vector spaces. In Chapter 9 we already
concluded that 1cob can also be regarded as a symmetric monoidal category, so in this context we can also
restrict to 1cob, skeleton of 1Cob, as the source category for any 1D-TQFT. We can also restrict to 1Cob′

instead.
In this chapter we will use an artificial symbol: we say that ∅(n) is the empty n-dimensional manifold.

Sometimes we will rewrite it as ∅(n) = ∅(n−1) × I, where I = [0, 1].

10.1 Topological Quantum Field Theories as described by Kock

Main definition. The definition of topological quantum field theories by Kock ([7]) looks very straight-
forward. Let nCob be the symmetric monoidal category of cobordism classes of dimension n, as introduced
in Section 7.3, and let Vectk be the symmetric monoidal category of vector spaces (and linear maps) over
some ground field k, see (2.19). An n-dimensional topological quantum field theory, or nD-TQFT, over k is
nothing more than a symmetric monoidal functor

A : (nCob,q,∅, τ) → (Vectk,⊗,k, τ). (10.1)

We will call the image of nCob under an nD-TQFT a linear representation of nCob. The empty set ∅(n−1),
together with its cylinder ∅(n) = ∅(n−1) × I, can be regarded as the neutral object of nCob. A TQFT will
map ∅(n−1) to k and ∅(n) to the identity map of k.

Alternative definition. An n-dimensional topological quantum field theory, over some ground field k, is
a rule A = (A0,A1) which maps each closed oriented manifold X of dimension n−1 to a vector space A0(X),
and maps each oriented cobordism (class) M , from X to Y , to a linear map A1(M) : A0(X) → A0(Y ).

This rule A should satisfy the following six axioms:

K1. Two cobordisms M and N have the same image if they are equivalent:

[M ] = [N ] ⇒ A1(M) = A1(N).
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K2. For any manifold X of dimension n − 1, the cylinder X × I (= X × I++), which is a cobordism from
X to itself, will be sent to the identity map of A0(X).

K3. If M can be written as a decomposition M = M2M1, then

A1(M) = A1(M2M1) = A1(M2)A1(M1).

K4. If X = X1 qX2 then
A0(X) = A0(X1 qX2) = A0(X1)⊗A0(X2).

Similarly, if M is a cobordism from X = X1 qX2 to Y = Y1 q Y2, and if there exist cobordisms M1

from X1 to Y1 and M2 from X2 to Y2, such that M = M1 qM2, then

A1(M) = A1(M1 qM2) = A1(M1)⊗A1(M2).

K5. The empty manifold will be sent to the ground field k:

X = ∅(n−1) ⇒ A0(X) = k.

K6. If TX,Y is the canonical (abstract) twist cobordism from X q Y to Y qX and if τV,W is the canonical
twist map from V ⊗W to W ⊗ V , then A1(TX,Y ) = τA0(X),A0(Y ).

The equalities in these axioms should be regarded as strict, not up to isomorphism or something else. We
note that axiom K5, combined with axiom K2, implies that the empty cobordism, which can be viewed as
the cylinder ∅(n), will be sent to the identity map of k. Also note that axiom K6, which was not explicitly
mentioned by Kock, is a consequence of axiom K4, thus we could say axiom K6 is rather trivial.

Axiom K1 says that the rule A does not fully depend on the cobordism, only on the cobordism class.
This is in harmony with describing the collection of cobordism classes as the arrows in the source category.
Axiom K3 can also be rewritten in terms of cobordism classes instead. We can split up cobordism classes,
but we can also compose them. Then axioms K2 and K3 show that we are dealing with a functor. Axioms
K4 and K5 show that we are dealing with a monoidal functor, and axiom K6 shows that we are dealing with
a symmetric monoidal functor. Then we can say that the main definition (10.1) is just a summarized version
of this alternative definition.

A proposition. Now we can discuss a consequence of these axioms, combined with the snake decomposition
(6.5). For example, see (9.2) for the snake decomposition of the identity Id+ in 1Cob (1Cob′). In nCob
we can rewrite this to

IdX = (βX q IdX)(IdX qγX), (10.2)

for any arbitrary X equipped with arrows βX : X qX → ∅ and γX : ∅ → X qX. If A is a (non-trivial)
TQFT, then (10.2) can be mapped to a relation in Vectk. We define the vector spaces V := A0(X) and
W := A0(X), and the linear maps β : V ⊗W → k, β := A1(βX) and γ : k → W ⊗ V , γ := A1(γX) and
write:

IdV = A1(IdX) = A1((βX q IdX)(IdX qγX)) = A1(βX q IdX)A1(IdX qγX)
= (A1(βX)⊗A1(IdX))(A1(IdX)⊗A1(γX)) = (β ⊗ IdV )(IdV ⊗γ). (10.3)

As can be read in [7] we can now draw a conclusion from this. The fact that relation (10.3) holds, is precisely
to say that the pairing β is nondegenerate.

The proposition will be that if A is an nD-TQFT and if X is a closed manifold (of dimension n−1), then
the image vector space V := A0(X) comes equipped with a nondegenerate pairing with W := A0(X). This
nondegenerate pairing induces a canonical identification of W with V ∗, the vector space dual to V . This
can be rewritten as another axiom

X 7→ V = A0(X) ⇒ X 7→ V ∗ = A0(X), (10.4)

90



but we should note that this rewritten axiom does not exactly fit anymore in the context of Kock’s axioms,
as a restriction is involved here. We conclude that this axiom is a consequence of the main definition of
TQFTs and the snake decomposition, which is a relation which holds in the source category nCob. We will
soon return to this conclusion, when we will discuss TQFTs as described by Atiyah: (10.4) fits best in the
context of Atiyah’s axioms. A corollary of (10.4) is that a TQFT will map any object in nCob to a vector
space of finite dimension.

A question. We could ask what is so topological about topological quantum field theories. We could say
that a quantum field theory is topological if definition (10.1) is sufficient to describe the theory completely.
In this case the theory will not depend on anything else, for example a metric, defined on the manifolds
and cobordisms in question. We could also say a theory is topological if it only depends on the topology,
direction and orientation of the manifolds in question.

We could say that a TQFT is at least topological with respect to the arrows in nCob. A cobordism class
mainly contains the topological information of the cobordisms involved.

A TQFT is not topological with respect to the objects in nCob, which may seem a bit remarkable. If
X and Y are distinct objects, then there is no rule in general saying that A0(X) = A0(Y ) in specific cases.
Even if an orientation preserving diffeomorphism φ : X → Y exists, then we still cannot say that A0(X) and
A0(Y ) should be identical, only isomorphic.

Topological invariants. If M is a cobordism class corresponding to a closed cobordism, then we see that
M is a cobordism from the empty set to itself, thus we can write M : ∅ → ∅. Any arbitrary TQFT A will
map this to A1(M) : A0(∅) → A0(∅), or A1(M) : k → k. This is a linear map from the field k to itself,
thus we can say that A1(M) can be described as a multiplication with an element cM ∈ k. This constant
cM can be regarded as a topological invariant of any closed cobordism lying in the cobordism class M .

Note that k itself is commutative and that k⊗ k = k, implied by the relation k⊗ V = V = V ⊗ k. If M
can be written as M = NP , and if N and P are also closed, then cM = cNcP = cP cN . If M can be written
as M = N qP , and if again both N and P are closed, then cM = cN ⊗ cP = cNcP = cP cN = cN ⊗ cP . Thus
we can write:

A1(N q P ) = A1(P qN) = A1(NP ) = A1(PN).

Of course this is no coincidence, as this should already follow from the relations closed cobordisms themselves
should satisfy, see (7.5). We conclude that the relations presented here, induced by the properties of k, are
in harmony with the relations expressed in (7.5), as expected.

10.2 Topological Quantum Field Theories as described by Atiyah

Main definition. The definition of topological quantum field theories by Atiyah ([4]) looks very different,
compared to the definition by Kock. In some relations the word functorial is mentioned, but in general we
will not encounter notions like categories and functors. The notion of cobordisms is used but cobordism
classes are not explicitly mentioned. We note that Atiyah mentions ground rings Λ and finitely generated
Λ-modules, but we will restrict to vector spaces, which are special examples of Λ-modules. We also note
that an n-dimensional topological quantum field theory as described by Atiyah, is equivalent to an (n+ 1)-
dimensional topological quantum field theory as described by Kock. We will slightly rewrite the definitions
and axioms of Atiyah: an nD-TQFT corresponds to an (n − 1)D-TQFT in [4], and we will mention vector
spaces over k instead of Λ-modules.

An n-dimensional topological quantum field theory, over some ground field k, is a rule Z consisting of
the following data:

• A vector space Z(X) of finite dimension over k, associated to each oriented closed smooth manifold X
of dimension n− 1.

• An element Z(M) ∈ Z(∂M) associated to each oriented smooth manifold (with boundary) M of
dimension n.
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These data are subject to the following axioms:

A1. Z is functorial with respect to orientation preserving diffeomorphisms of X and M .

A2. Z is involutory, thus Z(X) = Z(X)∗, where X is X with opposite orientation and Z(X)∗ denotes the
vector space dual to Z(X).

A3. Z is multiplicative.

A4. Z is subject to the non-triviality axiom.

More detailed definitions and some remarks. We will now elaborate on the precise meaning of these
axioms:

• Axiom A1 means that an orientation preserving diffeomorphism (OPD) f : X → Y induces an iso-
morphism Z(f) : Z(X) → Z(Y ) and that if g : Y → Z is another OPD then Z(gf) = Z(g)Z(f). (We
should also note that Z will map identity OPDs to identity linear maps.) Also, if f extends to an OPD
from M to N , with ∂M = X and ∂N = Y , then Z(f) takes Z(M) to Z(N).

• Axiom A2 already explains itself, so it should be clear.

• Axiom A3 can be split up further into three sub-axioms:

A3.1 If the closed oriented (n− 1)-manifold X can be written as X = X1 qX2, then

Z(X) = Z(X1 qX2) = Z(X1)⊗ Z(X2).

A3.2 If we have n-manifolds M1 and M2, with boundary ∂M1 = X1 q Y and ∂M2 = Y qX2, and if
M = M1 qY M2 is the manifold obtained by gluing together the common Y -component, then we
require:

Z(M) = 〈Z(M1), Z(M2)〉,

where 〈Z(M1), Z(M2)〉 denotes the natural pairing

Z(X1)⊗ Z(Y )⊗ Z(Y )⊗ Z(X2) → Z(X1)⊗ Z(X2).

A3.3 If we apply A3.2 to the special case Y = ∅(n−1), so that we can write M = M1qM2, then A3.2
reduces to the obvious multiplicative requirement

Z(M) = Z(M1 qM2) = Z(M1)⊗ Z(M2).

Note that if X1 = X2 = ∅(n−1) = X1 qX2, and if we write V := Z(∅(n−1)), then axiom A3.1 implies
that V = V ⊗ V . Also note that if M1 = M2 = ∅(n) = M1 qM2, and if we write f := Z(∅(n)) ∈ V ,
then axiom A3.3 implies that f = f ⊗ f . (Here we write ∂∅(n) = ∅(n−1).) These equations do not yet
imply that V and f are non-trivial.

Axiom A3.2 can be reformulated. First we could rewrite any boundary ∂M : we can choose X1 and
X2 such that ∂M = X1 qX2. Then axiom A3.1, combined with axiom A2, implies that

Z(∂M) = Z(X1 qX2) = Z(X1)⊗ Z(X2) = Z(X1)∗ ⊗ Z(X2) = Hom(Z(X1), Z(X2)).

Then we can reformulate M , with boundary ∂M , as a cobordism M̃ with in-boundary ∂+M̃ = X1

and out-boundary ∂−M̃ = X2. Thus ∂M̃ = ∂+M̃ ∪ ∂−M̃ ' X1 qX2. (Note that the same convention
introduced in Section 6.2 can be used here for the orientation of in- and out-boundaries.) The TQFT
Z will map this cobordism to the linear map

Z(M) : Z(X1) → Z(X2).
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Then we can write Z(M) = A1(M̃). (Here A means a TQFT according to Kock’s definitions, see
(10.1).) Now assume we have n-manifoldsM1 andM2 with boundary ∂M1 = X1qY and ∂M2 = YqX2,
and M = M1 qY M2. (We write X1 instead of X1 just for convenience.) Then these can be rewritten
as cobordisms M̃1 from X1 to Y and M̃2 from Y to X2. Then axiom A3.2 can be reformulated as

Z(M) = A1(M̃) = A1(M̃2)A1(M̃1) = Z(M2)Z(M1). (10.5)

From now on we will write M instead of M̃ , but we should realize that if an n-manifold M with
boundary, discussed in the context of Atiyah’s axioms, is rewritten as a cobordism M from X to Y ,
then the in-boundary of the cobordism M has reversed orientation compared to the original n-manifold
M .

• Also axiom A4 can be split up further into three sub-axioms:

A4.1 We would like ∅(n−1) to be mapped to the non-trivial solution of the equation V ⊗ V = V
(where V is a vector space over k):

Z(∅(n−1)) = k.

A4.2 We would like ∅(n) to be mapped to the non-trivial solution of the equation f2 = f (where
f ∈ k):

Z(∅(n)) = 1k.

A4.3 For any (n − 1)-manifold X, the cylinder X × I will be mapped to Z(X × I). We will assume
that Z(X × I) is an identity map.

The manifold X × I in axiom A4.3 should already be considered as a cobordism. In [4] we can read
that σ := Z(X × I) should be an element of End(Z(X)), and that this σ should be regarded as an
idempotent operator: σ2 = σ. Any such σ would be suitable in any TQFT as, according to [4], its
image will still satisfy all the axioms, but we simply choose σ = 1 so that the theory does not degenerate
into a (partially) trivial one.

Some other comments.

• When discussing axiom A4.3 we should remark that it is not totally clear a priori why we can say that
σ is idempotent, but hopyfully this can be more clearly understood if we take axiom A1 into account.
Gluing together two copies M1 and M2 of the cylinder X × I gives us another copy M of the same
cylinder. But from the context of [4] we cannot clearly conclude why they should be the same, or at
least give the same image under a TQFT. (Does M have twice the length of M1 or M2, or not? Is
their length of any importance anyway?) In [4] we can also find the statement Z(X×I) ∈ End(Z(X)),
so apparently M1, M2 and M are regarded as cobordisms from X to itself. Then at least their images
Z(M1), Z(M2) and Z(M) should be elements of the same vector space: Z(X q X). Then we can
apply axiom A1. If we use the trivial OPD fX : X → X (f(p) = p for all p ∈ X), then this fX
induces a trivial OPD gX from X qX to itself, and this OPD can in turn be lifted to OPDs Fj from
M to Mj . Then Z(Fj) should take Z(M) to Z(Mj), but knowing that gX is trivial this implies that
Z(M) = Z(M1) = Z(M2) = σ. Combining this with (10.5) implies that σ2 = σ.

However, it is still not clear why we can write Z(X × I) ∈ End(Z(X)) in the strict sense. Atiyah at
least does not make clear what q exactly means, and why we could write ∂(X× I) = XqX as a strict
equality. Of course we could say it is an equality up to, for example, an isomorphism.

Also note that Atiyah mentions the notion of disjoint union, but in [4] he uses the symbol ∪, not q,
which should mean ordinary union as usual. However, then we cannot say that axiom A3.1 has any
exact meaning, as in general we can write X ∪ Y = Y ∪ X, but not Z(X) ⊗ Z(Y ) = Z(Y ) ⊗ Z(X).
Thus, knowing that [4] could cause some confusion, we could still assume that the standard disjoint
union q was mentioned here.

93



• We see that all manifolds (possibly with boundary) involved here are regarded as oriented, but for
example ∂M and M can each have their own orientation, and these orientations are independent. This
also applies to each of the connected components of M and ∂M . In this context we do not decide yet
which part of ∂M is an in-boundary or an out-boundary.

• As we will soon discuss, (n − 1)-manifolds are related to objects in nCob in Kock’s context, and
n-manifolds with boundary are related to arrows then. Note that axiom A2 only mentions the effect
of reversing the orientation of the (n − 1)-manifolds. The effect of reversing the orientation of the
n-manifolds is not described by axiom A2 or any other basic axiom. However, an extra axiom can be
used to describe this effect. We will discuss this later.

• We also note that axiom A2 is in harmony with the idea that ∅ = ∅ and that k∗ ' k: Z(∅) =
Z(∅)∗ = k∗ ' k = Z(∅).

• Note that ifX = X1qX2, then the ordinary orientation reversal will give usX = (X1 qX2) = X1qX2.
Then axiom A2, combined with axiom A3.1, will give us:

Z(X) = Z(X)∗ = (Z(X1 qX2))∗ = (Z(X1)⊗ Z(X2))∗,
Z(X) = Z(X1 qX2) = Z(X1)⊗ Z(X2) = Z(X1)∗ ⊗ Z(X2)∗.

This yields an exact identity (V ⊗W )∗ = V ∗⊗W ∗. However, if V and W are finite-dimensional, then
there only exists a natural isomorphism between (V ⊗W )∗ and V ∗ ⊗W ∗. This raises the question
whether we should really understand axioms A2 and A3.1 as identities, or just as natural isomorphisms.

Comparing Atiyah’s definitions to Kock’s definitions. Now we can discuss the connection between
Atiyah’s axioms and definitions and Kock’s axioms and definitions.

• There seems to be a connection between axiom A1 and the definition and properties of nCob itself.
The first thing to notice is the relation between different n-manifolds M and N with the same boundary
X, and the relation it induces between Z(X), Z(M) and Z(N). Suppose ∂M = ∂N = X, and let
f : X → X be the identity OPD. This should of course induce the identity map Z(f) : Z(X) → Z(X).
If f can be extended to an OPD f̃ : M → N , then Z(f) takes Z(M) to Z(N). Knowing that Z(f)
is an identity map, this should induce that Z(M) = Z(N). This should remind us of (a special case
of) relation (7.1). Now we write X = X1 q X2 for convenience. Suppose X1 = ∂+M = ∂+N and
X2 = ∂−M = ∂−N , and suppose that the injections are all trivial. Then we can say that M and N
can be smoothly deformed into each other, with Z(M) = Z(N) remaining constant. In the context of
cobordisms we can say that the TQFT Z is insensible to smooth deformations. This seems to support
the idea of restricting to cobordism classes instead. Knowing that in Kock’s context the idea of gluing
cobordism classes is a more natural concept, compared to gluing cobordisms, we do not need to worry
about subtleties of composing cobordisms from now on. We conclude that axiom A1 is connected to
axiom K1, so that we can restrict to cobordism classes, which we will do from now on.

• In general there seems to be a connection between axiom A1 and generating cylinders as an intermediate
step. We could then say that axiom K3, especially applied to these cylinders, implies axiom A1. In
the context of Kock we could start with an OPD f : X → Y . Then, according to the properties of
nCob, f induces a general cylinder Cf from X to Y , regarded as a cobordism class, thus as an arrow.
We already know that this arrow is an isomorphism. Now assume A is a TQFT satisfying Kock’s
axioms, and that Z(X) = A0(X) for all (objects!) X. (Then Z also satisfies axioms A3.1 and A4.1.)
Then A will map Cf to A1(Cf ) : Z(X) → Z(Y ), which should again be an isomorphism. Then we
can simply define Z(f) := A1(Cf ), thus Z(f) : Z(X) → Z(Y ) is indeed an isomorphism. If now f can
be lifted to an OPD f̃ : M → N , where ∂M = ∂−M = X and ∂N = ∂−N = Y , so that M and N
can be represented by cobordism classes [M ] : ∅ → X and [N ] : ∅ → Y , then we can assume that
Cf [M ] = [N ], so that Z(f) will map Z(M) to Z(N). If we now assume that we have another OPD
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g : Y → Z, then this g induces another arrow Cg. The functorial property of A, see axiom K3, yields
that indeed

Z(gf) = A1(Cgf ) = A1(CgCf ) = A1(Cg)A1(Cf ) = Z(g)Z(f).

Thus Z is indeed functorial with respect to OPDs. Rewriting this into the context of Atiyah, with
∂Cf ' X q Y , gives us an equivalent statement: Z(f) ∈ Z(∂Cf ) ' Z(X)∗ ⊗ Z(Y ). We conclude that
if A is a TQFT according to Kock’s axioms, then Z satisfies at least axiom A1.

• Axiom A2 can be directly related to the ‘extra axiom’ described by (10.4). We can say that this axiom
is caused by properties (see the snake decomposition) of the source category nCob itself, as already
worked out. However, in Kock’s context we have more freedom in choosing an image W of X, if X is
already mapped to V . Then the strict relation W = V ∗, presented here, can be replaced by a weaker
relation W ' V ∗.

• Axiom A3.2, viewed from the context of cobordisms and related to the ordinary (horizontal) composi-
tion of arrows in nCob, can be directly related to axiom K3. Axiom A4.3 can be directly related to
axiom K2. Thus axioms A3.2 and A4.3 together are related to the properties of any ordinary functor.

• Axioms A3.1, A3.3, A4.1 and A4.2 can be related to the monoidal properties of a TQFT-functor.
Axiom A3.1 equals the rule for vertical composition of objects in nCob, and axiom A3.3 is related to
the rule for vertical composition of arrows in nCob. Thus axioms A3.1 and A3.3 are related to axiom
K4. Axioms A4.1 and A4.2 are related to axiom K5 and its consequences. Especially axiom A4.2 is
related to the combination of axioms K5 and K2.

• In the context of Atiyah there is no mention of symmetric structure and twist cobordisms, thus there
is no explicit connection with axiom K6. But as already discussed, axiom K6 is rather trivial, thus it
is not really needed.

We conclude that Atiyah’s definition and Kock’s definition are equivalent. Only their point of view differs.

Closed cobordisms. In mathematics there is always a risk of overlooking things. Why should we think
that the definitions and axioms of Kock and Atiyah are really equivalent? In many situations we can say
that these different approaches give the same result, but there are some exceptional situations when we are
studying closed cobordisms, and in these situations we are not sure yet. At least reading [4] could cause
some confusion when we focus on the details about closed cobordisms. There we can read that if M is a
closed cobordism, and if the extra hermitian axiom is satisfied, then Z(M) will change to its conjugate Z(M)
under orientation reversal (M 7→M). We know that if M is a closed cobordism, then Z(∂M) = Z(∅) = k.
For example if k = C, then we can say that Z(M) is simply the complex conjugate of Z(M) ∈ k. In [4] we
can read that the basic axioms A1,A2,A3 and A4 do not yet give a relation between Z(M) and Z(M) for
closed manifolds M , but also that the relation Z(M) = Z(M) implies that numerical invariant Z(M) might
help us detecting the orientation of M . Unfortunately this seems to be a mistake. To remove this mistake
we will introduce the proposition that in many cases Z(M) equals its own conjugate.

If we study Kock’s approach, then we directly see that for any closed cobordism M an OPD φ : M →M
exists, at least if dim(M) ∈ {1, 2}. (For dim(M) ≥ 3 we are not sure.) As ∂M = ∅ we can say that
φ has no restrictions, thus it automatically satisfies relation (7.1). Then we can say that the cobordism
classes [M ] and [M ] are equal. (As an example we have βγ = β̄γ̄ in 1Cob, see (9.1).) Then of course also
A1([M ]) = A1([M ]). Using Atiyah’s approach we can say that such a map φ can always be interpreted as
a lift of the canonical OPD I∅ : ∅ → ∅, see (6.1). Then we can apply axiom A1 and use the identity map
Z(I∅) : k → k. Then we should come to the same conclusion: Z(M) = Z(M). This should be the easiest
way.

Of course we could say that I∅ is a rather artificial map, thus it is not really an OPD, but then we can
still use a different approach and apply axiom A3 instead. For example, if M1 is a closed cobordism and
if M2 is an arbitrary one, so that M := M1 qM2, then we can write a relation. If X = ∂M2 then we can
write that Z(∂M) = Z(∂M1) ⊗ Z(∂M2) = k ⊗ Z(X) ' Z(X). Now we can write k := Z(M1) ∈ k. Then
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also Z(M) = Z(M1 qM2) = Z(M1) ⊗ Z(M2) = kZ(M2). Now define N := M1 qM2, and assume that
Z(M1) = k, then Z(N) will be mapped to kZ(M2). On the other hand, we know that ∂M = ∂N = X,
thus the trivial OPD fX : X → X can always be lifted to the OPD φ : M → N . Then also Z(M) = Z(N).
To conclude: then Z(M) = kZ(M2) = kZ(M2) = Z(N). As this should apply for all choices for M2, this
should imply that k = k. Thus k = Z(M1) is its own (complex) conjugate. This result is in harmony with
the result of Kock’s approach.

At least if dim(M) ∈ {1, 2} we conclude that the proposition of saying that k = k, for any k = Z(M),
with ∂M = ∅, is just a direct consequence of Atiyah’s basic axioms and the fact that an OPD φ : M →M
exists. Hopefully this removes the paradox we meet in the literature. Thus we can also safely conclude that
in many cases Z(M) does not depend on the orientation of M , also in case of a TQFT satisfying the extra
hermitian axiom.

We should also note that it is easy to get confused by reading the parts concerning closed cobordisms
in [4]. We could as well assume that there is no mistake there and start to wonder why Kock’s axioms
and Atiyah’s axioms differ (only) at this point. We know that Kock starts with the definition of cobordism
classes, which first mainly focusses on the cobordisms, before focussing on the boundaries: two cobordisms
M and N are considered equivalent if an OPD φ : M → N exists such that relation (7.1) holds. We also know
that Atiyah starts with axiom A1, but this axiom first focusses on the boundaries, not on the cobordisms
themselves. This might imply that we are really dealing with a subtle difference in describing equivalent
cobordisms. Luckily this does not seem to be the case.

Of course we cannot say that for every cobordism M with dim(M) ≥ 3 an OPD φ : M → M exists. In
this case there is no restriction on Z(M) either: it is not necessarily its own conjugate. Then all we know
is that Z(M) = Z(M). Thus, if M does not admit such an OPD φ, then we can indeed say that it might
perhaps be possible to detect its orientation.

10.3 Topological Quantum Field Theories as described by Blanchet & Turaev

Main definition. The definition of topological quantum field theories by Blanchet & Turaev ([8]) looks
a bit like a mixture of the definitions by Kock and Atiyah, but it also has an appearance of its own. The
main definition itself does not explicitly mention categories and functors, but a short alternative description
is also presented, indeed mentioning them. The notion of cobordism is mainly used, but also here cobordism
classes are not explicitly mentioned. All manifolds and cobordisms discussed here are supposed to be smooth
and oriented.

An n-dimensional topological quantum field theory V , over some ground field k, assigns to every closed
(n − 1)-dimensional manifold X a finite-dimensional vector space V0(X) over k and assigns to every n-
dimensional cobordism (M,X, Y ) a k-linear map

V1(M) = V1(M,X, Y ) : V0(X) → V0(Y ).

A cobordism (M,X, Y ) from X to Y is a compact manifold M with boundary. There is a diffeomorphism
from X q Y to ∂M . A TQFT must satisfy the following axioms.

BT1. Any orientation preserving diffeomorphism (OPD) of closed (n−1)-dimensional manifolds f : X → X ′

induces an isomorphism f] : V0(X) → V0(X ′). For an OPD g between the cobordisms (M,X, Y ) and
(M ′, X ′, Y ′), the following diagram is commutative.

V0(X)
(g|X)] //

V1(M)

��

V0(X ′)

V1(M
′)

��
V0(Y )

(g|Y )] // V0(Y ′)

(10.6)
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BT2. If a cobordism (W,X,Z) is obtained by gluing two cobordisms (M,X, Y ) and (M ′, Y ′, Z) along an
OPD f : Y → Y ′, then the following diagram is commutative.

V0(X)
V1(W ) //

V1(M)

��

V0(Z)

V0(Y )
f] // V0(Y ′)

V1(M
′)

OO

BT3. For any (n− 1)-dimensional manifold X, the linear map

V1([0, 1]×X) : V0(X) → V0(X)

is identity. (We assume that [0, 1] has standard orientation.)

BT4. There are natural isomorphisms

V0(X q Y ) ' V0(X)⊗ V0(Y ) , V0(∅) ' k

such that the following diagrams are commutative.

V0((X q Y )q Z) ' //

��

(V0(X)⊗ V0(Y ))⊗ V0(Z)

��
V0(X q (Y q Z)) ' // V0(X)⊗ (V0(Y )⊗ V0(Z))

V0(X q∅) ' //

��

V0(X)⊗ k

��
V0(X) = // V0(X)

The vertical maps are respectively the ones induced by the canonical OPDs, and the standard isomor-
phisms of vector spaces.

BT5. The isomorphism
V0(X q Y ) ' V0(Y qX)

induced by the canonical OPDs corresponds to the standard isomorphism of vector spaces

V0(X)⊗ V0(Y ) ' V0(Y )⊗ V0(X).

Comparing the definitions by Blanchet & Turaev to Kock’s and Atiyah’s definitions. Now
we can discuss the connections between the axioms and definitions by Blanchet & Turaev and Kock’s and
Atiyah’s axioms and definitions.

• We first note that we assume the ]-symbol satisfies the following equalities (for all f , g and X):

(gf)] = g]f] , (IdX)] = IdV0(X) .

(Of course this is no surprise as the ]-symbol is often used for denoting a functor.) This property is
equivalent to the first part of axiom A1.

• Note that there is a diffeomorphism, say ρ, from X qY to ∂M . We cannot find any a priori comments
in [8] about the behaviour of this ρ. Thus we can say that ρ is not necessarily orientation preserving.
However, mentioning X q Y seems to fit best in the context of Atiyah’s axioms, so we could assume
that this ρ is meant to be an OPD. (If X q Y = ∂M then ρ should be the trivial OPD.) It all depends
on the convention used for the orientation of ∂M . In this case we say that ∂M = ρ(X q Y ) takes over
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the orientation of X q Y . We will use the symbol ∂AM instead, and the subscript A means that we
are dealing with the boundary of an n-manifold in the context of Atiyah.

Now we can redefine the orientation of ∂M as follows: the orientation of ρ(X) will be reversed.
Something similar is discussed in Section 10.2, in the more detailed definition of axiom A3. There is
a relation between the orientation of the n-manifold M with boundary, in the context of Atiyah, and
the orientation of (the boundary of) the cobordism M̃ . After redefining the orientation of ∂M we can
rewrite ρ as an OPD ι = ιM,X,Y from X q Y to ∂M . In this case we say ∂M = ι(X q Y ) takes over
the orientation of X qY . From now on we will assume that ι, just like ρ, is an OPD. (The maps ρ and
ι are actually the same if we regard them as diffeomorphisms only.) We also note that ∂AM 6= ∂M if
orientation is considered.

Note that using ι is equivalent to Kock’s definition of a cobordism: ι maps X to ∂+M , which is the
in-boundary of M , and Y to ∂−M , which is the out-boundary of M .

• Note that maps like g|X (see axiom BT1) should be regarded as a pullback of the map g|∂M to a map
from X q Y to X ′ q Y ′, of course after restricting to X. We can do something similar to g|Y . If
ι = ιM,X,Y and ι′ = ιM ′,X′,Y ′ are OPDs, then the following diagram commutes:

X q Y ι //

g|XqY

��

∂M

g|∂M

��
X ′ q Y ′

ι′
// ∂M ′

Here we already assume that g|X maps X to X ′ and that g|Y maps Y to Y ′, thus we can also write
g|XqY = g|X q g|Y . We also note that g|∂M : ∂M → ∂M ′ is just the natural restriction of the map
g : M → M ′. Saying that g is an OPD from (M,X, Y ) to (M ′, X ′, Y ′) means that g|X , g|Y and g
restricted to the internal part of M , are OPDs.

• Now we note that axiom BT1 can be regarded as axiom A1, reformulated into the context of cobordisms.
We assume that ∂M = X q Y and that ∂M ′ = X ′ q Y ′, so that ι and ι′ are trivial OPDs and
g|XqY = g|∂M . Then we note that any OPD φ : X q Y → X ′ q Y ′, satisfying X ′ = φ(X) and
Y ′ = φ(Y ), can be rewritten as an OPD φA : X q Y → X

′ q Y ′. Then the boundaries of M and
M ′ can be redefined as ∂AM = X q Y and ∂AM

′ = X
′ q Y ′. Then we obtain an OPD (g|∂M )A =

(g|XqY )A = g|XqY = g|∂AM from ∂AM to ∂AM
′. Now define f := g|XqY . Especially note that g

itself can still be regarded as a lift of this f . Now we can rewrite diagram (10.6). First we rewrite maps
like (g|X)] : V0(X) → V0(X ′) as Z(g|X) : Z(X) → Z(X ′). A linear map like V1(M) : V0(X) → V0(Y )
will be an element Z(M) of Z(X)∗ ⊗ Z(Y ) = Z(∂AM). Then we can define Z(f) such that it will
map Z(M) to Z(M ′) = Z(g|Y )Z(M)Z((g|X)−1). This shows that axiom BT1 implies axiom A1. The
reverse implication also holds (at least for special cases of trivial ι). We conclude that axioms A1 and
BT1 are equivalent.

• If X ′ = X and Y ′ = Y and if the cobordisms M and M ′ from X to Y lie in the same cobordism class,
then we may assume that g|XqY reduces to an identity map. We then rewrite ι′ = ιM ′,X,Y and the
following diagram commutes:

X q Y ι //

ι′ $$IIIIIIIII ∂M

g|∂M

��
∂M ′
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This diagram is equivalent to diagram (7.1), and g|XqY = IdXqY implies that diagram (10.6) can be
reduced to the identity V1(M) = V1(M ′). This again shows that V1 only depends on the cobordism
class, thus we can say that we can restrict to cobordism classes only: V1(M) = V1([M ]). In other
words, we can say that V effectively maps from the category nCob to the category Vectk. We already
know that we can directly compose two cobordism classes [M ] and [M ′], corresponding to cobordisms
(M,X, Y ) and (M ′, Y, Z), thus we can also glue M and M ′.

• Axioms BT2 and BT3 are equivalent to the ordinary properties of a functor. If we have the trivial case
Y ′ = Y and f = IdY , then we also have f] = IdV0(Y ), so that we can write

V1(W ) = V1([W ]) = V1([M ′][M ]) = V1([M ′])V1([M ]) = V1(M ′)V1(M)

as a result of axiom BT2. This is the ordinary property of any functor. If Y ′ 6= Y or if f is not trivial,
then axiom BT2 reflects an extra property of the source category: any OPD f : X → X ′ generates a
cylinder from X to X ′, which in turn generates an isomorphism Cf in nCob, and V will map this Cf
to f]. We say that axiom BT3 is equivalent to axiom K2, which in turn is equivalent to axiom A4.3,
and that axiom BT2 is similar to axiom K3, which in turn is equivalent to axiom A3.2. Thus V is
indeed a functor, from nCob to Vectk.

• We already mentioned that the collection of axioms of Blanchet & Turaev has an appearance of its
own. We could say that axiom BT4 looks similar to assuming that V is a monoidal functor. However,
there are no exact equalities mentioned here, only natural isomorphisms. Apparently also (X qY )qZ
and X q (Y q Z) are considered to be distinct objects, so we can assume that in this context, nCob
and Vectk are regarded as nonstrict monoidal categories, and V as a nonstrict monoidal functor. To
be more precise, we assume V can be regarded as a strong monoidal functor. If we also take account of
axiom BT5, then nCob and Vectk seem to be nonstrict symmetric monoidal categories, and V seems
to be a nonstrict (or strong) symmetric monoidal functor.

On the other hand, the axioms of both Kock and Atiyah are in the context of strict monoidal categories
and strict monoidal functors. Then the symmetric structure is added to the already strictified categories
(nCob,q,∅) and (Vectk,⊗,k) before mentioning any strict symmetric monoidal functor. Thus, if we
strictify nCob and Vectk before writing down the axioms of Blanchet & Turaev, then all the natural
isomorphisms will turn into natural identities, so that we can ignore the two commuting diagrams in
the description of axiom BT4.

• We note that disjoint products of cobordisms, and their image under a TQFT, are not explicitly
mentioned in axiom BT4. At least not as the second part of axiom K4 shows us. However, we are
dealing with a natural isomorphism from V0(X q Y ) to V0(X) ⊗ V0(Y ). Assume we are dealing with
the strict monoidal categories (nCob,q,∅) and (Vectk,⊗,k) so that the natural isomorphism will in
fact be a natural identity. Then we can say that also V1(M q N) = V1(M) ⊗ V1(N), for any pair of
cobordism classes M and N . In this case we can say that axiom BT4 is equivalent to axioms A3.1,
A3.3 and A4.1 together, which in turn are equivalent to axioms K4 and K5 together. Thus axiom BT4
describes the properties of a monoidal functor.

• We know that axiom A4.2 is related to axioms K5 and K2. Similarly we can say that axiom A4.2 is
related to axioms BT3 and BT4. Thus, if ∅(n) is the empty cobordism, then axioms BT3 and BT4
imply that V1(∅(n)) = Idk.

• Axiom BT5 is equivalent to axiom K6, describing the property of a symmetric monoidal functor.

• Note that the equality V0(X) = V0(X)∗, which is equivalent to axiom A2, is also mentioned in [8], but
it is not introduced as one of the axioms. We know that it is also not introduced as an axiom in [7],
but there it is related to the snake decomposition, which is related to a property of the category nCob
itself.

99



A conclusion. We conclude that the definitions by Blanchet & Turaev are equivalent to Atiyah’s and
Kock’s definitions, even if they look very different at first sight. We could say that this conclusion is not
totally unexpected. We found relations between the three different collections of definitions and axioms, and
these relations are not that trivial.

10.4 Topological Quantum Field Theories in dimension 2

In this section we will present topological quantum field theories in dimension 2, or 2D-TQFTs. We will
use the definition of TQFTs by Kock, and we will also present the category of these 2D-TQFTs.

Main definition. A 2D-TQFT, over some ground field k, is a symmetric monoidal functor A from the
symmetric monoidal category 2Cob to the symmetric monoidal category Vectk:

A : (2Cob,q,∅, τ) → (Vectk,⊗,k, τ).

In Chapter 8 we discussed that the circle S1 can be interpreted as a commutative Frobenius object in 2cob,
skeleton of 2Cob. This object generates all other objects Sm in 2cob, as defined in (8.1), and these can also
be turned into commutative Frobenius objects if we apply (4.14) and (4.15). Thus 2cob is a free symmetric
monoidal category on a commutative Frobenius object, say S1 = (S1, µ, η, δ, ε). (See (8.2) for a definition
of the arrows µ, η, δ and ε.) Then we can say that also the image A(2cob) is a free symmetric monoidal
category on a commutative Frobenius object, say

A = (A,µA, ηA, δA, εA) = (A0(S1),A1(µ),A1(η),A1(δ),A1(ε)). (10.7)

Then A is a commutative Frobenius object in Vectk, thus it is a commutative Frobenius algebra over k.
(Note that the arrows Id and τ corresponding to S1 will always be mapped to the arrows IdA and τA in
Vectk, by any TQFT which maps S1 to A.)

We know that any object in 2cob can be written as Sk, for some k, and its image can be written as

Ak := A0(Sk) = A(S1)⊗ · · · ⊗ A(S1) = A⊗ · · · ⊗A.

Any arrow f in 2cob can be written as a composition of the six generators of 2cob, and A1(f) can be written
as a composition of the six generators IdA, τA, µA, ηA, δA and εA. To conclude, (10.7) completely defines A,
thus we can say there is a one-to-one correspondence between the collection of TQFTs A : 2cob → Vectk
and the collection of commutative Frobenius algebras.

The category of 2-dimensional topological quantum field theories. We define

2D-TQFTk := SymmMonCat(2Cob,Vectk)

as the symmetric monoidal functor category of linear representations of 2Cob. Any 2D-TQFT, first regarded
as a functor from 2Cob to Vectk, will now be regarded as an object in 2D-TQFTk, and the arrows are
monoidal natural transformations between them.

Now we define
2d-TQFTk := SymmMonCat(2cob,Vectk)

as the symmetric monoidal functor category of linear representations of 2cob, skeleton of 2Cob. We could
say this is a skeletal version of 2D-TQFTk.

There are relations between these categories 2D-TQFTk and 2d-TQFTk, and the category cFAk of
commutative Frobenius algebras. In Section 4.3 we already introduced cFAk as the category of commutative
Frobenius objects in Vectk, see (4.19). Then we write cFAk = cFrob(Vectk). The one-to-one correspon-
dence between the collection of TQFTs A : 2cob → Vectk and the collection of commutative Frobenius
algebras can be regarded as a one-to-one correspondence between the collection of objects in 2d-TQFTk
and the collection of objects in cFAk.
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What about the arrows? Let for example α be a monoidal natural transformation between TQFTs A
and A′, depicted by

2cob

A
**

A′
44⇓ α Vectk

Then S1 (together with the four generators µ, η, δ and ε) will be mapped to A := A0(S1) and A′ := A′0(S1),
and we define α1 : A → A′ as the natural arrow corresponding to S1. It suffices to check the natural
properties of α1 with respect to the generators, to be sure that this α1 indeed generates a monoidal natural
transformation, an arrow in 2d-TQFTk. We already know that A and A′ (together with the images of the
four generators) are commutative Frobenius algebras. Then α1 precisely corresponds to a Frobenius algebra
homomorphism, an arrow in cFAk. For example, the following diagram commutes:

A0(S2) = A0(S1)⊗A0(S1) = A⊗A
µA=A1(µ) //

α2=α1⊗α1

��

A = A0(S1)

α1

��
A′0(S2) = A′0(S1)⊗A′0(S1) = A′ ⊗A′

µA′=A
′
1(µ)

// A′ = A′0(S1)

This diagram is similar to the left part of the left diagram in (4.13).

Kock’s main conclusion. Now we can say that there is also a one-to-one correspondence between the
collection of arrows in 2d-TQFTk and the collection of arrows in cFAk. Then we can say that

• the category 2d-TQFTk is isomorphic to the category cFAk.

Similarly we can say that

• the category 2D-TQFTk is equivalent to the category cFAk.

Thus saying that 2d-TQFTk and cFAk are isomorphic should mean that for any commutative Frobenius
algebra A there exists a unique A in 2d-TQFTk such that A = A0(S1), and that for any Frobenius algebra
homomorphism f : A → A′ there exists a unique monoidal natural transformation α : A → A′. In general,
a monoidal functor is determined completely by its values on the generators of the source category. The
source category 2cob of any A in 2d-TQFTk has only six generators, so we only need the image of these six
generators to determine A completely. (Of course two of these six images are trivial: Id and τ will always be
mapped to IdA and τA respectively.) Thus such a TQFT can be described more easily if we restrict to 2cob
instead of 2Cob, as its source category, and this description corresponds exactly to that of a commutative
Frobenius algebra. This can be regarded as the main conclusion of Kock’s book [7].

The monoidal category of 2-dimensional topological quantum field theories. In Section 4.3 we
also discussed that cFAk itself can again be regarded as a monoidal category, say (cFAk,⊗,k). This implies
that at least also 2d-TQFTk can be regarded as a monoidal category. This is in harmony with the idea
that a pair of 2D-TQFTs A and A′ can be used to construct a new one, say A′′: if

(A,µA, ηA, δA, εA) = (A0(S1),A1(µ),A1(η)A1(δ)A1(ε))

and if
(A′, µA′ , ηA′ , δA′ , εA′) = (A′0(S1),A′1(µ),A′1(η)A′1(δ)A′1(ε)),
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then we can define

(A′′0(S1),A′′1(µ),A′′1(η)A′′1(δ)A′′1(ε)) := (A⊗A′, µA⊗A′ , ηA⊗A′ , δA⊗A′ , εA⊗A′).

Here we used that two commutative Frobenius algebras A and B will induce another commutative Frobenius
algebra A⊗B, see (4.18).

The extended version of Kock’s main conclusion. In many physical applications the theory of 2-
dimensional topological quantum field theories cannot really be described as a theory of functors from 2Cob
to Vectk. The original formulation of a TQFT A : 2Cob → Vectk does not allow supersymmetric theories.
But instead of mapping from (2Cob,q,∅, τ) to (Vectk,⊗,k, τ) we can map to another symmetric monoidal
category (grVectk,⊗,k, κ). This is the category of graded vector spaces, which is equipped with (for example)
a different collection κ of twist arrows. Any TQFT A : 2Cob → grVectk will allow supersymmetric theories.
The commutative Frobenius objects in grVectk are now called graded-commutative Frobenius algebras. The
cohomology ring of a compact oriented manifold is an example of a graded-commutative Frobenius algebra.

There seems to be no problem if we replace Vectk with an arbitrary symmetric monoidal category
(C,2, 1, ξ). (Similarly we can allow this in general for any nD-TQFT.) The extended version of Kock’s main
conclusion tells us that any symmetric monoidal functor

A : (2Cob,q,∅, τ) → (C,2, 1, ξ)

can be interpreted as a 2-dimensional topological quantum field theory, and that the category of 2D-TQFTs
over this C, will be equivalent to the category of commutative Frobenius objects in C:

2D-TQFTC := SymmMonCat(2Cob, C)'(equiv) cFrob(C).

We will suggest that we can also say that the skeletal version of the category of 2D-TQFTs over this C will
be isomorphic to the category of commutative Frobenius objects in C:

2d-TQFTC := SymmMonCat(2cob, C)'(iso) cFrob(C).

10.5 Topological Quantum Field Theories in dimension 1

In this section we will present topological quantum field theories in dimension 1, or 1D-TQFTs. We will
again use the definition of TQFTs by Kock and present the category of 1D-TQFTs.

Main definition. A 1D-TQFT, over some ground field k, is a symmetric monoidal functor A from the
symmetric monoidal category 1Cob to the symmetric monoidal category Vectk:

A : (1Cob,q,∅, τ) → (Vectk,⊗,k, τ).

In Chapter 9 we discussed that the positively oriented point p+ (and of course also the negatively oriented
point p−) can be interpreted as a dualizable object in 1Cob′, subcategory of 1Cob, and in 1cob, skeleton
of 1Cob. These two objects p+ and p− generate all other objects in 1Cob′ and in 1cob. If X is an object
in 1cob, then it can always be written as X = pk+ q pl−, for some integers k and l. Any such X is again
dualizable, thus 1Cob′ and 1cob are free symmetric monoidal categories on a dualizable object.

Any object X in 1Cob′ will be a dualizable object, thus its image VX := A0(X) will also be a dualizable
object in Vectk, or a dualizable vector space. We can also say that VX is a finite-dimensional vector space.
We know that for any pair of finite-dimensional vector spaces V and W also V ⊗W is a finite-dimensional
vector space.

Especially the dualizable object (p+, p−, β, γ̄) will be mapped to a dualizable vector space

(V,W, κ, λ) := (A0(p+),A0(p−),A1(β),A1(γ̄)), (10.8)

and (again) we can say that this object completely describes the TQFT A : 1Cob′ → Vectk. The other
generators Id+, Id−, τ+, τ−, τ+− and τ−+ of 1Cob′ will be mapped to standard arrows in Vectk. Their
image will be the same for any TQFT. To conclude, we can say there is a one-to-one correspondence between
the collection of TQFTs A : 1Cob′ → Vectk and the collection of dualizable vector spaces.
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We know that 1Cob′ is still a symmetric monoidal subcategory of 1Cob, but 1cob is not. The source
category of any 1D-TQFT can be restricted to 1Cob′, but not precisely to 1cob. It is possible to restrict
any TQFT A : 1Cob → Vectk to 1cob, but then it will not precisely be a symmetric monoidal functor.
We need to find another category C such that A : 1cob → C becomes a symmetric monoidal functor. Using
arguments related to the extended version of Kock’s main conclusion, we can then say that this A is a TQFT.

The category of signed vector spaces. Thus we need to find another target category C to replace
Vectk. Let (C,2, 1, τ) be an arbitrary symmetric monoidal category. Then we can introduce the signed
symmetric monoidal category (or just the signed version of the symmetric monoidal category C)

SC = (SC,2′, 1′, τ ′).

We can say that SC itself is also a symmetric monoidal category. The collection of objects SC0 of this
category will satisfy SC0 = C0 × C0, thus any pair of objects A and B in C gives us an object (A,B) in SC.
Then we define (A,B)2′(C,D) := (A2C,B2D) for any pair of objects (A,B) and (C,D) in SC. The unit
object will be written as 1′ = (1, 1). For any object A in C we can say that A+ = (A, 1) and A− = (1, A) are
(different) objects in SC. Thus we can say that now we can attach a sign to any object in C so that we have
an object in SC. There are also mixed objects: we can say that there is a one-to-one correspondence between
(A,B) and A+2B−. For example, 1′ = (1, 1) ' 1+21− ' 1. Thus from now on we will write 1′ = 1. Note
that we can always write

(A,B) = (A, 1)2′(1, B) = (1, B)2′(A, 1). (10.9)

Every pair of arrows g : A → C and h : B → D in C induces an arrow f := (g, h) : (A,B) → (C,D)
in SC. For example the twist arrow will be written as τ(A,B),(C,D) = (τA,C , τB,D), but not every arrow
f : (A,B) → (C,D) in SC can be written as such a decomposition. However, if f : A → B is an arrow
in C, and if A and B can be written as A = A12A2 and B = B12B2, then we will assume this uniquely
induces an arrow f̃ : (A1, A2) → (B1, B2). We assume that every arrow in SC can at least be written this
way. Now if f = g2h = g′2h′, for some arrows g, g′ : A → C and h, h′ : B → D, then we assume that also
f̃ = (g, h) = (g′, h′). (This means that we are dealing with an equivalence class.) As a consequence, if we
have for example f̃ : (A, 1) → (B, 1), then we can uniquely represent f̃ by (f, Id1).

For every pair of arrows f : A12A2 → B12B2 and g : C12C2 → D12D2 we can say that f̃2′g̃ is an
arrow in SC from (A12C1, A22C2) to (B12D1, B22D2). Then f̃2′g̃ can be represented by an arrow

h : (A12C1)+2(A22C2)− → (B12D1)+2(B22D2)−

between signed objects, which can also be interpreted as an ordinary arrow in C:

h : A12C12A22C2 → B12D12B22D2,

h = (IdB1 2τB2,D12 IdD2)(f2g)(IdA1 2τC1,A22 IdC2).

This should of course remind us of the relation between q and q′, applied to arrows in 1cob, see (9.7).
(Note that 1cob itself should not exactly be regarded as a signed version of another symmetric monoidal
category.)

Now we could for example say that C = (Vectk,⊗,k, τ). Then SC will be written as (SVectk,⊗′,k, τ ′).
We will call this the category of signed vector spaces. For any pair of objects (A,B) ' A+ ⊗ B− and
(C,D) ' C+ ⊗D− in SVectk we will indeed write

(A,B)⊗′ (C,D) ' (A+ ⊗B−)⊗′ (C+ ⊗D−) = A+ ⊗ C+ ⊗B− ⊗D−

= (A⊗ C)+ ⊗ (B ⊗D)− ' (A⊗ C,B ⊗D).

Now we can assume that symmetric monoidal functors A′ : (1cob,q′,∅, τ ′) → (SVectk,⊗′,k, τ ′) are
possible. Our convention will be that any A′ will map p+ to some (V,k) and p− to some (k,W ). Any
arbitrary object pk+qpl− in 1cob will then be mapped to (V k,W l) = (V ⊗· · ·⊗V,W ⊗· · ·⊗W ) ' V k+⊗W l

−.
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Any TQFT A : 1Cob′ → Vectk can be rewritten as a TQFT A′ : 1cob → SVectk. Then (10.8) can be
rewritten as

((V,k), (k,W ), κ′, λ′) := (A′0(p+),A′0(p−),A′1(β),A′1(γ)).

This can be regarded as an object in

DSVSk := DO(SVectk,⊗′,k, τ ′),

which is the category of dualizable signed vector spaces. (See Section 2.4 for the definition of DO(C), the
category of dualizable objects in an arbitrary symmetric monoidal category C.)

Note that here κ′ is an arrow from (V,W ) to k and λ′ is an arrow from k to (V,W ). As discussed in
Section 9.3 we can write p+ q′ p− = p− q′ p+. Then the same relation applies to their image:

(V,W ) = (V,k)⊗′ (k,W ) = A′0(p+)⊗′ A′0(p−) = A′0(p+ q′ p−) = A′0(p− q′ p+)
= A′0(p−)⊗′ A′0(p+) = (k,W )⊗′ (V,k) = (V,W ).

This is in harmony with (10.9) and (9.14). Just like we mentioned in Section 9.3 that (p+, p−, β, γ) induces
another dualizable object (p−, p+, β, γ) in 1cob, we can say that ((V,k), (k,W ), κ′, λ′) induces another
dualizable object ((k,W ), (V,k), κ′, λ′) in SVectk, which can also be regarded as an object in DSVSk.

In general there are also objects in DSVSk which cannot be written as ((A,k), (k, B), · · · ). We will define
DSVS+

k as the subcategory of DSVSk, only containing objects that can be written like that. In general we
should write DSVSk = (DSVSk,⊗′,k), but we can rewrite DSVS+

k = (DSVS+
k ,⊗′,k) as (DSVS+

k ,⊗,k).
There is a relation between this category DSVS+

k and the category

DVSk := DO(Vectk,⊗,k, τ)

of dualizable vector spaces, as introduced in (2.23). We can propose that there is an isomorphism

(DVSk,⊗,k)'(iso)(DSVS+
k ,⊗,k) = (DSVS+

k ,⊗
′,k) ⊂ (DSVSk,⊗′,k). (10.10)

We can replace Vectk with an arbitrary symmetric monoidal category (C,2, 1, ξ). Then we can also replace
SVectk with (SC,2′, 1, ξ′) and DVSk with DO(C) = DO(C,2, 1, ξ). Then (10.10) can be rewritten as

(DO(C),2, 1)'(iso)(DO+(SC),2, 1) = (DO+(SC),2′, 1) ⊂ (DO(SC),2′, 1). (10.11)

Reduced symmetric monoidal functor categories. If (C,2, 1, ξ) is an arbitrary symmetric monoidal
category, and if D is a symmetric monoidal functor category defined by

D := SymmMonCat(1Cob′, C),

then we will define
D′ := SymmMonCat+(1cob, SC),

as a reduced symmetric monoidal functor category. The collection of objects in this category D′ will only
contain functors A′ sending p+ to A′0(p+) = (A, 1) and p− to A′0(p−) = (1, B), for some objects A and B in
C.

The category of 1-dimensional topological quantum field theories. We define

1D-TQFTk := SymmMonCat(1Cob,Vectk),
1D’-TQFTk := SymmMonCat(1Cob′,Vectk),
1d-TQFTk := SymmMonCat+(1cob,SVectk)
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as the symmetric monoidal functor categories of linear representations of 1Cob, 1Cob′ and 1cob. Any
1D-TQFT, first regarded as a functor from 1Cob to Vectk, will be regarded as an object in 1D-TQFTk.
The arrows are (again) monoidal natural transformations between them.

There are relations between these categories 1D-TQFTk, 1D’-TQFTk and 1d-TQFTk, and the cate-
gory DVSk. Again we can have a look at the arrows. Let for example α be a monoidal natural transformation
between TQFTs A and A′, depicted by

1Cob′
A

**

A′
44⇓ α Vectk

Then p+ and p− (together with the two generators β and γ̄) will be mapped to V := A0(p+), W := A0(p−),
V ′ := A′0(p+) and W ′ := A′0(p−), and we define α+ : V → V ′ and α− : W → W ′ as the natural arrows
corresponding to p+ and p−. We can propose that it suffices to check the natural properties of these α+ and
α− with respect to the generators, to be sure that they indeed generate a monoidal natural transformation,
an arrow in 1D’-TQFTk. Any pair of arrows α+ and α− will satisfy naturality with respect to the generators
Id+, Id−, τ+, τ−, τ+− and τ−+ of 1Cob′. We already know that (V,W, · · · ) and (V ′,W ′, · · · ) are dualizable
vector spaces. Then (α+, α−) precisely corresponds to a dualizable homomorphism, an arrow in DVSk.
Again we can say there is a one-to-one correspondence between the collection of arrows in 1D’-TQFTk and
the collection of arrows in DVSk.

A rewrite of Kock’s main conclusion. Now we can introduce the following relations, and we can say
that they are similar to Kock’s main conclusion. We can say that

• the category 1D’-TQFTk is isomorphic to the category DVSk.

A similar statement can be found in [8]. There we can read that 1D-TQFTs are in one-to-one correspondence
with finite-dimensional vector spaces. Of course any finite-dimensional vector space V is dualizable, but this
one-to-one correspondence only holds if the TQFTs map from 1Cob′ instead of 1Cob, and if we also specify
the information (V,W, κ, λ) for each V . Note that there are many possibilities for specifying the rest of the
information. For example if W ′ 6= W , then (V,W, · · · ) and (V,W ′, · · · ) should be associated to different
TQFTs.

Similarly we can say that

• the category 1D-TQFTk is equivalent to the category DVSk.

Saying that 1D’-TQFTk and DVSk are isomorphic should mean that for any dualizable vector space V
there exists a unique A in 1D’-TQFTk such that V = (V,W, κ, λ) = (A0(p+),A0(p−),A1(β),A1(γ̄)), and
that for any dualizable homomorphism

(fV , fW ) : (A0(p+),A0(p−),A1(β),A1(γ̄)) → (A′0(p+),A′0(p−),A′1(β),A′1(γ̄))

there exists a unique monoidal natural transformation α : A → A′.
Now knowing that any TQFT A : 1Cob′ → Vectk induces a TQFT A′ : 1cob → SVectk, we can say

that any object A in 1D’-TQFTk (or in 1D-TQFTk) induces an object A′ in 1d-TQFTk, defined by

1d-TQFTk := SymmMonCat+(1cob,SVectk)'(iso) DSVS+
k ⊂ DSVSk .

Assuming that also DSVS+
k '(iso) DVSk, as (10.10) implies, we can say this is in harmony with the relation

1D’-TQFTk'(iso) 1d-TQFTk. Thus we can say that

• also the category 1d-TQFTk is isomorphic to the category DVSk.
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The monoidal category of 1-dimensional topological quantum field theories. In Section 2.4 we
also discussed that DVSk itself can again be regarded as a monoidal category, say (DVSk,⊗,k). This
implies that at least also 1D’-TQFTk can be regarded as a monoidal category. This is in harmony with the
idea that a pair of 1D-TQFTs A and A′ can be used to construct a new one, say A′′:

(A′′0(p+),A′′0(p−),A′′1(β),A′′1(γ̄)) := (A0(p+),A0(p−),A1(β),A1(γ̄))2(A′0(p+),A′0(p−),A′1(β),A′1(γ̄)).

See (2.22) for the definition of a 2-product of two dualizable objects.

A rewrite of the extended version of Kock’s main conclusion. As we did in the previous section
about 2D-TQFTs, we assume that, instead of mapping from 1Cob to Vectk, we can map to another arbitrary
symmetric monoidal category C. For example, we can again define supersymmetric topological quantum field
theories A : 1Cob → grVectk. A rewrite of the extended version of Kock’s main conclusion tells us that
any symmetric monoidal functor

A : (1Cob,q,∅, τ) → (C,2, 1, ξ)

can be interpreted as a 1-dimensional topological quantum field theory. Then we will suggest that the
category of 1D-TQFTs over this C will be equivalent to the category of dualizable objects in C:

1D-TQFTC := SymmMonCat(1Cob, C)'(equiv) DO(C).

A similar statement can be found in [9]. There we can read that 1D-TQFTC is equivalent to the groupoid
of dualizable objects in C and isomorphisms between them. However, there was no explanation of what
isomorphisms are involved here exactly, and there was no mention of dualizable homomorphisms.

We will also suggest that the category of 1D-TQFTs from 1Cob′ to C will be isomorphic to the category
of dualizable objects in C:

1D’-TQFTC := SymmMonCat(1Cob′, C)'(iso) DO(C).

Now knowing that any TQFT A : 1Cob′ → C induces a TQFT A′ : 1cob → SC, we can say that any object
A in 1D’-TQFTC (or in 1D-TQFTC) induces an object A′ in 1d-TQFTC , defined by

1d-TQFTC := SymmMonCat+(1cob, SC)'(iso) DO+(SC) ⊂ DO(SC).

Assuming that also DO+(SC)'(iso) DO(C), as (10.11) implies, we can say this is in harmony with the
relation 1D’-TQFTC '(iso) 1d-TQFTC .
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11 Conclusion

Now we can look back on the central questions of this thesis and on the answers.

• In Section 10.1, 10.2 and 10.3 we discussed how the three different definitions of topological quantum
field theories, as mentioned in [7] (Kock), [4] (Atiyah) and [8] (Blanchet & Turaev), are related. We
can enumerate a list of key points:

• In [4] there is no explicit mention of cobordisms and their in- and out-boundaries. However, a
translation is possible by redefining the orientation of the boundary (and its connected compo-
nents).

• Only in [7] the concept of cobordism classes (and categories of them) is presented. However, we
can explain how TQFTs only depend on these cobordism classes in the context of [4] and [8].

• Only in [4] there is a restriction to TQFTs mapping X to the canonical dual V ∗, if X is mapped
to V . In this context we can still say that a TQFT can also be described as a symmetric monoidal
functor from nCob to Vectk, but we cannot say that the category of these TQFTs in, for example,
dimension two is equivalent to the category of commutative Frobenius algebras. In the context of
[7] and [8] there is more freedom.

• The axioms of [8] fit best in the context of nonstrict symmetric monoidal categories and strong
monoidal functors, whereas the axioms of [7] are written in the context of strict symmetric
monoidal categories.

We can say that the axioms and definition of TQFTs in the context of [7] look rather trivial and
straightforward, but of course it takes some effort to define the abstract notions (like nCob and
Vectk) and to test whether it really coincides with the original definitions.

• In Section 10.5 we discussed how a topological quantum field theory A : 1Cob → Vectk induces a
topological quantum field theory A′ : 1cob → SVectk. The category SVectk of signed vector spaces
was introduced, which is the signed version of Vectk. In general a TQFT A : 1Cob → C induces a
TQFT A′ : 1cob → SC, where C is an arbitrary symmetric monoidal category and SC is the signed
version of C.

• In Section 10.5 we also discussed the category of 1-dimensional topological quantum field theories. To
be more precise, we discussed three different ones, each of which has a different source category. These
categories are 1D-TQFTk, 1D’-TQFTk and 1d-TQFTk. The source categories are 1Cob (the full
category of 1-cobordisms), 1Cob′ (the minimal full symmetric monoidal subcategory of 1Cob) and
1cob (skeleton of both 1Cob and 1Cob′), respectively. We can say that 1D-TQFTk is equivalent to
DVSk, the category of dualizable vector spaces, and that 1D’-TQFTk and 1d-TQFTk are isomorphic
to DVSk. The destination category Vectk (and SVectk) can be replaced by an arbitrary symmetric
monoidal category C (and SC). Then we can say that 1D-TQFTC is equivalent to DO(C), the category
of dualizable objects in C, and that 1D’-TQFTC and 1d-TQFTC are isomorphic to DO(C).

• In Chapter 9 we discussed how to port over the symmetric monoidal structure from 1Cob to its
skeleton 1cob. The explicit checks show that the graded disjoint union q′ (together with the modified
twist τ ′) can be used as a symmetric monoidal structure on 1cob, and that this structure is already
strict.

• In Chapter 3 we discussed the general techniques for porting over the monoidal structure from an
arbitrary monoidal category to one of its skeletons. If (C, µ, η, α, β, γ) is a nonstrict monoidal category,
if C′ is a skeleton of C, and if P : C → C′ is an arbitrary projection functor, then P will help us porting
over the monoidal structure from C to C′ so that we can construct another nonstrict monoidal category
(C′, µ′, η′, α′, β′, γ′). For example, we define µ′ := Pµ(I × I) and η′ := Pη. An explicit definition of P
is not needed for checking out whether porting over all the structure will work out correctly.
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A retrospective view of the restriction of 1D-TQFTs to 1cob, the skeleton of 1Cob. The original
reason for restricting to 1cob, skeleton of 1Cob, as the source category of a 1D-TQFT, was for finding out
how the theory of 1D-TQFTs (and the category of them) would simplify. As we can read in [7] we can
certainly say that restricting to 2cob, skeleton of 2Cob, simplified the description of 2D-TQFTs, and the
essential information is still there.

However, there is no law telling us that we must restrict to a skeleton for simplifying the theory. To
keep it simple in general, we can as well restrict ourselves to nCob′, a minimal full symmetric monoidal
subcategory of nCob. Of course we see that, for example, 2cob is also a minimal full symmetric monoidal
subcategory of 2Cob, so we can directly write 2Cob′ := 2cob. In case of 1Cob, 1Cob′ and 1cob this is
not possible.

We know that there are six generators for 1cob: Id+, Id−, τ+, τ−, β and γ. We know that 1cob is a free
symmetric monoidal category on a dualizable object, and that only β and γ carry the essential structure.
The same applies to 1Cob′, which has only two extra generators: τ+− and τ−+. No new information will
be involved if we study TQFTs from 1Cob′ to Vectk. This explains why 1D’-TQFTk and 1d-TQFTk,
the categories of TQFTs with source category 1Cob′ and 1cob respectively, are isomorphic.
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