
Optional Arguments in Abstract Categorial
Grammar

Chris Blom

MSc. Thesis, 30 ECTS

Master in Cognitive Artificial Intelligence,

Utrecht University

May 2012

First supervisor : dr. Yoad Winter

Second supervisor : prof. dr. Michael Moortgat

Abstract

In this thesis I investigate semantic and syntactic properties of im-
plicit arguments in a formal grammatical framework. Many verbs are
flexible in the number of syntactic arguments they take, for example
eat and read can be used as intransitive verbs (1 argument) and as
transitive verbs (2 arguments). Although the number of realized ar-
guments may differ, the number of semantic arguments can be the
same, which is exhibited in the entailments such verbs show when we
vary the number of arguments. For example eat and read exhibit ex-
istential entailments when used with only the subject argument. To
give a formal account of optionality I show how the Abstract Cat-
egorial Grammer framework can be extended with option types to
accommodate optionality, and use this extension to analyze various
constructions involving optional arguments.

i

Preface

This thesis has been written between the spring of 2011 and 2012 as
part of my masters in Cognitive Artificial Intelligence. For this thesis
I was looking for a interesting subject in formal linguistics, a topic
that I’ve first encountered during my bachelor degree, and that has
been of great interest ever since.

As I had a very good experience writing my bachelor thesis under
Yoad’s supervision, I decided to ask him I he knew a good subject for
a master’s thesis. After a false start investigating the relation between
ambiguity and prosody, he suggested writing it about implicit argu-
ments in the ACG framework, which proved to be a very interesting
subject.

I would like to thank some people who have helped me making this
thesis into what it is: Yoad Winter, for being a great supervisor and all
the advice, discussions and suggestions that made this work possible.
Phillipe de Groote and Joost Zwarts for all their contributions and
ideas. Michael Moortgat, for the introduction to categorial grammar
and reviewing this thesis. My friends, for providing the much needed
distractions. My family, for their support, who were always interested
in my progress, even though they had much more serious things on
their minds. Finally, I want to thank Miriam, for her advice, patience
and neverending support.
Two visits to Prof. De Groote’s lab (INRIA, Nancy) were subsidized
by a Van Gogh grant of the French-Dutch Academy. This financial
support is gratefully acknowledged.

ii

Contents

1 Introduction 1
1.1 Research Questions . 4
1.2 Research Methods . 5
1.3 The Position of the topic in the broader field of Artifi-

cial Intelligence . 5
1.4 Current Status of the Topic 5
1.5 An outline of the structure of the thesis 6

2 Background to Optional Arguments 7
2.1 Arguments vs. Adjuncts 7
2.2 Previous Accounts . 8
2.3 Types of Optional Arguments 13
2.4 Issues with earlier accounts 18

3 ACG with Option Types 20
3.1 Components . 20
3.2 Types . 20
3.3 Type Mappings . 22
3.4 Terms . 23
3.5 Signs . 25
3.6 Sign grammars . 26
3.7 Linearity . 26
3.8 Optionality and Compositionality 27
3.9 Understanding Option Types 27
3.10 How to deal with optional values 29
3.11 Events in ACG . 31

4 Signs for Verbs With and Without Optional Argu-
ments 35
4.1 Verbs with Obligatory Arguments 35
4.2 Abstract Types and Argument Structure 36
4.3 Verbs with Optional Arguments 38
4.4 Optionalizing Operators 49
4.5 Reflexive Optional Arguments 53

5 General Optionalization 55
5.1 Optionalizing a Sign Grammar 56
5.2 Marking . 56
5.3 Basic Optionalization Procedures 57
5.4 Optionalization . 59
5.5 The Optionalization Procedure vs Operators 61
5.6 Optionalization and Optional Verb Classes 62

iii

6 Mixing Optional and Non-optional Signs 63
6.1 Coordination . 63
6.2 Getting rid of optional arguments 65
6.3 Transforming Optional Grammars to Non-Optional Gram-

mars . 67
6.4 Basic Deoptionalization Procedure 68
6.5 Enumeration as a Grammar Transformation 69
6.6 From Non-Optional Grammars to Optional Grammars

and back . 70

7 Conclusions 73
7.1 Further Research . 76

A The SIGNS interpreter 80
A.1 Instructions . 80
A.2 Implementation . 82

B Option Types in ACG 83
B.1 Signatures . 83
B.2 Types . 83
B.3 Terms . 83
B.4 Typing Rules . 84
B.5 Interpretation Functions 84

iv

1 Introduction

Many verbs are flexible in the number of syntactic arguments they
take. For example, verbs like eat and read can be used as intransitive
verbs (with 1 argument), and also as transitive verbs (with 2 argu-
ments). The number of syntactic arguments required by certain verbs
may vary, but the number of required semantic arguments can remain
the same. When there are fewer syntactic arguments than semantic
arguments, the unfilled semantic arguments are implicitly saturated.
This implicit saturation affects the meaning of a verb. For example,
for verbs like eat and read, their intransitive and transitive forms are
related by an existential entailment. Intransitive eat is equivalent to
transitive eat with an existential indefinite object:

(1) a. Miriam eats dessert.

b. Miriam eats.

c. Miriam eats something.

The entailments between these sentences are :

1a⇒ 1b⇔ 1c

In (1a) the transitive form of eat is used, and is provided with a sub-
ject (Miriam) and an object (dessert) as its arguments. The verb eats
can also be used intransitively, as in (1b), in which case it only re-
quires a subject. It seems that eats does not require an object, when
the object of (1a) is left out we get (1b), which is also a well-formed
sentence. If an argument is not required, we say it is an optional ar-
gument. In the case of eat, the object is optional, and we say that eat
has an optional object. The number of arguments that a verb with
optional arguments takes may vary. In (1a) eat takes two arguments,
and in (1b) only one : the verb eat requires 1 or 2 arguments, so eat
has both intransitive and transitive forms. Verbs which do not take a
fixed number of arguments are called ambitransitive verbs. Verbs with
optional arguments, like eat and read, are by definition ambitransitive
verbs.

If the optional arguments of an ambitransitive verb are not present
in the surface form, they can still be present in the semantic inter-
pretation. Such semantic arguments without a corresponding element
in the surface representation are called implicit arguments or under-
stood arguments, because there is some covert argument that implic-
itly saturates the unfilled semantic slots, which affects the meaning of
the sentence. The fact that implicit arguments have an effect on the
meaning of a sentence is demonstrated by the equivalence of (1b) and

1

(1c). In (1b) there is no overt object for eat, yet (1b) is equivalent
to (1c). In (1b) eat is seemingly supplied with an implicit argument
which has the same meaning as something1. So an implicit argument,
even though not visible on the surface, can still compose with the
meaning of the verb, and an explicit argument can do so as well. How
can an argument of a verb be missing and still affect the meaning of
the verb, and how can a verb with an optional argument compose with
its argument when it is present?
A naive solution might be replacing the implicit argument with a
covert quantifier equivalent to something. This solution is not satisfac-
tory however, as it gives wrong predictions when there is a quantifier
in subject position:

(2) a. Everyone eats.

b. Everyone eats something

Sentence (2a) is unambiguous, while sentence (2b) is ambiguous. In
(2a) the quantifier of the implicit argument always has narrow scope,
while in (2b) the quantifier in object position can have both narrow
and wide scope. This raises a question: how can the narrow scope
behavior of quantifiers introduced by implicit arguments be explained?
The naive solution of adding someone is wrong for another reason:
not all verbs with an optional argument carry an existential import
when the argument is missing. Verbs may have different ways of han-
dling missing objects, for example ‘verbs of caring for the body’ show
reflexive entailments rather that existential entailments [Levin, 1993,
p. 35]. An example is the verb dress. When dress has no object, it
would be more appropriate to insert herself or himself than someone:

(3) a. Mary dresses Bob.

b. Mary dresses someone.

c. Mary dresses herself.

d. Mary dresses.

1 However, others might disagree [Mittwoch, 1982], and claim that intransitive eat
is equivalent to transitive eat with some indefinite edible object. According to them, the
equivalence would be Miriam eats⇔ Miriam eats something edible. I do not argree, consider
the following sentence: John ate a brick. Most people would not consider a brick to be
something edible, yet the fact that John ate it implies that John ate, and hence that John
ate something. There is a difference between the transitive and intransitive forms of eat
with respect to telicity, but this does not affect the existential entailment. Similarly, if
John danced then we do not think of him as dancing on the roof, but if he did dance on
the roof, then he danced. This has nothing to do with argumenthood.

2

The entailments between these sentences are:

3a⇒ 3b⇐ 3c⇔ 3d

In (3d) it is understood that Mary is not dressing just anyone, she is
dressing herself. Here the implicit object causes a reflexive entailment,
which is more restrictive than an existential entailment. An optional
argument does not always lead to existential import, reflexivization is
also a possibility. In 2.3 I will discuss some verb classes with different
types of implicit arguments.

Ambitransitive verbs with an unaccusative form2 and verbs in passive
voice can also be analyzed as verbs with optional arguments. Tran-
sitive verbs with an unaccusative intransitive form and passives both
have optional arguments: verbs with a transitive and unaccusative
form have an optional agent3, and passive forms have an optional by
phrase. While similar, there are some important differences between
unaccusatives and passives, which I will explain using these examples:

(4) a. The storm sunk the ship.

b. The ship was sunk by the storm.

c. Something sunk the ship.

d. The ship was sunk by something.

e. The ship was sunk.

f. The ship sunk.

The entailments between the sentences in 4 are:

4a⇔ 4b⇒ 4c⇔ 4d⇔ 4e⇒ 4f

The verk sink has an unaccusative intransitive form (4f), as well as a
transitive form (4a). In (4f) no agent is implied: it is therefore appro-
priate to view sink as an ambitransitive verb [Dixon, 2000], where the
syntactic argument providing the agent (the subject) is optional.

Something similar is seen with the passive form of sink. With the
passive form it is allowed to provide an agent with a by-phrase (4e),

2an unaccusative verb is an intransitive verb whose only argument is not associated
with an agent role.

3 For verbs that have a transitive and an unaccusative intransitive form, one could say
that the theta-role associated with subject of the intransitive, the patient, is the same as
the theta role associated with the object of the transitive.

3

but this is not required (4f), so here the syntactic argument provid-
ing the agent is optional as well. However, despite these similarities,
the interpretations of the unaccusative and passive without the syn-
tactic argument providing the agent are different, as exemplified by
the equivalence of (4e) with (4d) and lack of equivalence with (4f).
In (4e) it is implied that there was something or someone that did
or caused the sinking of the ship. There must have been an agent
that caused the sinking. The by phrase of a passive is similar to an
Unspecified Object 4) (UO). an agent is existentially assumed. Pas-
sives and UO verbs both use existential quantification to fill missing
argument slots. This is in contrast with the unaccusative use of sink
in (4f), where there is no such assumption. Unaccusative verbs that
have a related transitive verb can be treated as verbs with an optional
argument. When the optional argument is missing, the relation be-
tween the syntactic arguments and semantic arguments changes. The
subject is then associated with the patient, similar to passive verbs.
To explain the similarities and differences between passive and unac-
cusative verbs I ask: how can passives and unaccusatives be treated
using optional arguments?

To answer all these questions a suitable framework is needed. As no
framework I know of adequately deals with optionality, first the ques-
tion of how optionality can be added to a formal semantic-syntactic
framework needs to be answered.

1.1 Research Questions

The questions I introduced in the introduction, which are summarized
below, are the research questions of this thesis:

Q1: How can optionality be added to a formal semantic-syntactic
framework in a general way?

Q2: How can an argument of a verb be missing and still affect the
interpretation of the verb?

Q3: How can a verb with an optional argument compose with its
argument when it is present?

Q4: How can the narrow scope behavior of quantifiers introduced by
implicit arguments be explained?

Q5: How should passives and unaccusatives be formalized using op-
tional arguments?

4An Unspecified Object (UO) is a object that is not realized in the surface form and
is interpreted existentially

4

1.2 Research Methods

I will attempt to answers these questions by giving a fragment of En-
glish featuring optional arguments. The fragment should cover exam-
ples found in the literature that are relevant to the research questions,
and predict the correct entailments between such sentences. Espe-
cially [Levin, 1993] is used a source of examples.

As no framework that I know of adequately deals with optional argu-
ments, I will explain how the Abstract Categorial Grammar (ACG)
framework can be extended to do this. I also give a partial imple-
mentation in Haskell, which can be used to define and type-check
fragments, and to automate calculations and pretty printing.

1.3 The Position of the topic in the broader
field of Artificial Intelligence

The topic concerns syntax and semantics of natural language, which
are subfields of linguistics intersecting with many subfields of Artificial
Intelligence, amongst which logic, computer science and philosophy.
The grammatical framework used for the fragment is based on type
logic and lambda calculus, and the extensions to treat optional argu-
ments in ACG are based on ideas from functional programming. The
implementation of the fragment in Haskell also demonstrates the over-
lap of semantics of natural language and functional programming lan-
guages. Functional programming languages, type theory, and lambda
calculus are all topics in computer science with application in AI.

1.4 Current Status of the Topic

There are many works on optional arguments of verbs. A comprehen-
sive study of verb classes and their alternations by Levin [Levin, 1993]
contains information about many examples of verbs with optional ar-
guments. Some, [Fodor and Fodor, 1980, Bresnan, 1978], treat op-
tional arguments of verbs by listing all possible forms in the lexicon,
and use meaning postulates to establish the relation between the differ-
ent rules. In other works, [Carlson, 1984, Landman, 2000], arguments
are treated as adjuncts, and syntax is held responsible for determing
the argument structure. And in [Dowty, 1982], optional arguments
treated using relation changing rules, that derive the different forms
from a single lexical entry. In recent syntactic works, [Landau, 2010],
it has been argued that implicit arguments, while not visible in the
surface form, are present in syntax.

5

1.5 An outline of the structure of the thesis

In section 2 I will explain what optional arguments are and discuss
some previous accounts.
In section 3 the formal framework for optionality is defined, and some
examples and explanations are given.
In section 4 I will explain how verbs with and without optional argu-
ments can be treated in this framework.
In section 5 I will describe how to add optionality to grammars with-
out optionality.
In section 6 I explain how optional parts can interact with ordinary
components, and how to obtain equivalent non-optional grammars
from optional grammars.
In section 7 I will describe the Haskell implementation and how it can
be used to define grammars with optionality, type-check these gram-
mars, and pretty print them as LaTeX files. In the conclusion I give
an overview of the answers to the research questions, their relevance
related to the current state of affairs, and state some ideas for further
research.

6

2 Background to Optional Arguments

In this section I review previous treatments of implicit arguments,
discuss their shortcomings and advantages, and summarize which facts
an account of optional arguments should cover.

2.1 Arguments vs. Adjuncts

Some works [Landman, 2000, Carlson, 1984] have argued that implicit
arguments can be analyzed as adjuncts. In this section I argue that
implicit arguments should be treated as optional arguments, not ad-
juncts. I use the following terminology for arguments and adjuncts:

Terminology: Arguments : constituents adjacent to the head:
an argument completes a head : a head without its arguments is ‘in-
complete’.

Terminology: Adjuncts : adjuncts modify a head, changing the
meaning of the head, but are not required, a head without any ad-
junct is well-formed.

The following examples can be used to see if the optional object of a
verb behaves as an adjunct or as an argument:

(5) a. John ate.

b. John ate a cake.

c. *John ate a cake two hamburgers.

d. Mary ordered and John ate a cake.

It is clear that the object of ate is not an adjunct because it cannot
be iterated, but it also does not seem to be an argument, because it
may be omitted. 5d shows that Mary ordered can be coordinated with
John ate. The fact that these phrases can be coordinated and because
a cake is definitely an argument of ordered implies that they have the
same category and hence that ate also takes a cake as its argument.

2.1.1 Sub-categorized prepositional phrases of passives

Some interesting similarities between sub-categorized prepositional
phrases of passives and optional object can be observed when investi-
gating sentences with by phrases of passives instead of optional objects.

(6) a. A cake was eaten.

b. A cake was eaten by John.

7

c. *A cake was eaten by John by Mary.

Similar to optional objects it is clear that a by phrase of a passive is
not an adjunct because it is not iterable. Seemingly it is also not an
argument because it not required.
So far these examples suggest that optional objects and by phrases of
passives do not behave as adjuncts. but more like arguments, with the
exception that they are not required. Treating implicit arguments as
optional arguments is my approach to deal with this exception. From
a semantic perspective, there is also a difference between arguments
and adjuncts. In the introduction I have shown that a missing optional
argument affects the interpretation of a verb. For example:

(7) John read ⇔ John read something.

This is in contrast with adjuncts, were such entailments are less clear.

(8) John baked the cake ; John baked the cake for someone.

Taking these considerations into account, we define an optional argu-
ment as a complement that is not required:

Terminology: Optional arguments

An optional argument is a constituent adjacent to the verb that
cannot be iterated, and is not required.

(in other words: it is like an ordinary argument of a verb, but
not required)

2.2 Previous Accounts

2.2.1 Chomsky: Object Deletion

In [Chomsky, 1965], Chomsky treats implicit objects using a transfor-
mational rule called object deletion. In this treatment verbs have a
lexical parameter which specifies that certain objects may be deleted.
For example, for the verb eat it is specified in the lexicon that if is it
has something as an object, then something may be deleted. A prob-
lem with this approach is that it gives wrong predictions when there
is a quantifier in subject position. According to Chomsky’s account,
a sentence like Everyone eats must have two readings: one where the
quantifier introduced by everyone has wide scope and one where the
quantifier introduced by the deleted something has narrow scope. As
observed in [Fodor and Fodor, 1980], a quantifier introduced by an
implicit argument always has narrow scope. The object wide scope
reading is unavailable for (9b):

8

(9) a. Everyone eats something
∀x.∃x.eats(x)(y) For every person, there is something he or
she eats.
∃x.∀x.eats(x)(y) There is a thing such that everyone eats it.

b. Everyone eats
∀x.∃x.eats(x)(y) For every person, there is something he or

she eats.
*∃x.∀x.eats(x)(y)

A purely syntactic account such as Chomsky’s Object Deletion rule
cannot predict this narrow scope behavior, because it poses no restric-
tions on how the understood existential can take scope.

2.2.2 Bresnan: with a Lexical Rule

In [Bresnan, 1978], Bresnan analyses verbs that can be used intran-
sitively as well as transitively using lexical rules. She proposes that
there are separate lexical entries relating transitive and intransitive
case to different meanings, where the meaning of the intransitive is
the same as the meaning of the transitive with the object argument
bound by an existential quantifier. The interpretation of both the in-
transitive and the transitive form is a binary relation between entities.
In her treatment, the lexical entries for eat would be something like
this:

entry: form: meaning:

eativ X eats (∃y).eateet(X, y)
eattv X eats Y eateet(X,Y)

With these entries, these meanings are assigned to the following sen-
tences:

(10) a. John eatstv something.
∃x.eat(john, x)

b. John eatsiv.
∃x.eat(john, x)

c. John eatstv cake.
eat(john, cake)

d. Everyone eatsiv.
∃y.∀x.eat(x, y)

One problem with this analysis is that it does not generalize well to
verbs with multiple optional arguments because a verb with n optional

9

arguments would require 2n lexical entries. While it does not seem
that the number of optional arguments is ever high enough for this
to be a problem, a large number of lexical entries that are largely the
same seems very redundant. A more foundational problem, pointed
out in [Fodor and Fodor, 1980], is that while Bresnan’s treatment cor-
rectly predicts the equivalence between (10b) and (10a), it fails to
predict the narrow scope of the existential quantifier when there is a
quantifier in subject position, because there are no restrictions in how
the covert quantifier might take scope.

2.2.3 Fodor & Fodor: using Meaning Postulates

In [Fodor and Fodor, 1980] Fodor & Fodor discuss Bresnan’s treat-
ment of implicit arguments of verbs that can be used transitively or
intransitively and propose a new account. Rather than employing a
lexical rule, they rely on meaning postulates to explain the entail-
ments between the transitive and intransitive form. Like Bresnan,
F&F assume there is a separate lexical entry for each specific instance
of a verb, but instead of assuming two entries containing the same
predicate they use two entries with different one entry with a 2-place
predicate for the transitive form. For example, in F&F’s treatment,
eat would have two lexical entries, each using a different predicate
with a different arity:

entry: form: meaning:

eativ X eats eativ(X)
eattv X eats Y eattv(X,Y)

Using these entries the following LF’s would be assigned to these sen-
tences:

1. John eats.
eativ(johne)

2. John eats pizza.
eattv(johne,pizzae)

Since F&F use different predicates, some mechanism is needed to ex-
plain the existential entailment between these sentences. F&F use
meaning postulates to relate the predicates of the transitive and in-
transitive forms. For eat, the meaning postulate is defined as:

for all x : eativ(x)⇔ ∃y.eattv(x, y)

10

Using this approach the existential entailments and narrow scope be-
havior of the existential quantifier introduced by the implicit argument
are explained. While adequate, the use of multiple entries and mean-
ing postulates makes this treatment of implicit arguments inelegant, as
it also does not generalize well to constructions with multiple optional
arguments, such as ditransitive verbs in passive voice. The passive
of introduce for example would require four entries to cover all the
combinations of missing and present arguments:

(11) a. John was introduced to Mary by Bob.
introducedtv(john,bob,mary)

b. John was introduced by Bob.
introducetv1(john,bob)

c. John was introduced to Mary.
introducetv2(john,mary)

d. John was introduced to Mary by Bob.
introduceiv(john)

To relate the meanings of the entries four meaning postulates would
be required. Using this approach it, n2 entries and MP’s are needed
for each n optional arguments.

F&F mention another problem: not all ambitransitive verbs feature
existential entailments. With certain verbs, such as notice, the im-
plicit arguments are not interpreted as existentials, but rather as an
anaphora and other verb classes feature reflexive entailments. Unac-
cusatives show even different entailments, here the implicit argument
seems to be simply not present at all:

for all x, y : sinkiv(x)⇐ sinktv(x, y)

To account for the relevant phenomena using meaning postulates each
verb class would require its own set of meaning postulates, for differ-
ent numbers of optional arguments. Since many combinations and
variations are possible, many closely related entries in the lexicon and
many meaning postulates are required. While empirically adequate,
the use of multiple entries for verbs with closely related forms and
meanings seems inelegant.

2.2.4 Carlson: optional arguments as adjuncts

Carlson uses event semantics to give an account of Unspecified Objects
and by phrases of passives [Carlson, 1984], treating both as role adding
event modifiers. According to Carlson in a sentence like John ate pizza,

11

the object pizza would denote a modifier that adds a patient to an
event.
In a sentence like Lolita was read by John, the by phrase by John would
denote a modifier that adds a patient to an event. Carlson assumes
that it is an implied property of reading events that there must be an
agent who did the reading and a patient that whas read. This implied
propery of events accounts for the existential import over missing ar-
gument slots.

This assumption avoids the complications of F&F when there are mul-
tiple optional arguments, as the interpretation of missing arguments
is determined by a single meaning postulate. The entailments for a
verb with two optional arguments, like passive introduce, would be
covered by a single meaning postulate instead of four as in F&F:

∀e.introduce(e)→ ∃x∃y.AG(e, x) ∧ GOAL(e, x)

While Carlson’s approach improves upon F&F’s approach when deal-
ing with multiple optional arguments, it has some problems. Treating
by phrases as role adding modifiers is too general when considering
unaccusatives.

(12) a. The ship sank

b. *The ship sank by John

Adding an agent role to an unaccusative verb with a by phrase should
not be allowed (12b), but there is nothing that prevents the use of
by phrases in combination with unaccusatives in Carlson’s theory. So
while Carlson’s solution can deal with multiple optional arguments,
it is not restrictive enough. The reason for this is that UO’s and
by phrases of passives are not adjuncts, a point which I discussed in
section 2.1. Any attempt to treat optional arguments as adjuncts must
require some ad hoc restrictions to avoid overgeneralisations.

2.2.5 Dowty: Relation-Reducing rules

In [Dowty, 1982], Dowty uses relation-reducing rules to explain en-
tailments between related transitive and intransitive verbs, and active
verbs and their passive counterparts.
To account for UO’s and passives without a by phrase, Dowty uses
rules that transform a transitive verb into an intransitive verb by ex-
istentially quantifying over the object argument slot of the verb pred-
icate and adding by for the passive. The specific instance of rules for
transitive eat can be paraphrased as follows:

12

(X eat Y , eateet) object− deletion
−−−−−−−−−−−→

(X eat , λx.∃y.eateet)

(X eat Y , eateet) agentless− passive
−−−−−−−−−−−−−→

(X be eat , λx.∃y.eateet)

Such rules explain the narrow scope existential entailments in an el-
egant way, but this approach suffer from the same disadvantage as
the other approaches. When the number of optional arguments in-
creases, so do the number of rules required to cover all the cases.
Each specific form of an ambitransitive verb will require a different
rule. Another disadvantage is that while the optional arguments of
passives and transitive verbs with UO’s are handled the same way
(using existential saturation), two different rules are required. The
idea of using rules that change both the form and meaning of word is
very elegant. The rules discussed in section 5 and Dowty’s rules are
similar in many ways. In fact the object deletion rule Dowty gives is
a specific instance of the general optionalization procedure in section
5.

2.2.6 Landman: By phrases as adverbials

In [Landman, 2000], Landman uses a neo-Davidsonian framework in
which he treats by phrases of passive verbs as event modifying adver-
bial adjuncts. In this book, he assumes that passive verbs are derived
from active verbs by existentially quantifying over the agent argument,
similar to Dowty’s relation reducing rules. Where Dowty uses multiple
rules that map an active verb to agentless or agentive passive, Land-
man uses only one rule for passivisation. This rule maps a transitive
verb to an agentless passive verb, by existentially quantifying over the
agent argument. An agentive passive is then formed by an adjunction
of a by phrase to an agentless passive, much like in Carlson’s account.
Landman treats the by phrase as an adjunct, which behaves as de-
notes a function from an entity x to a modifier of verb phrases, which
sets x as the agent of the VP. This approach gives correct results with
respect to the existential entailments between a transitive verb and
its passive counter part, and the narrow scope of the implicit agent
of an agentles passive. However, as with Carlson’s account, treating
a by phrase as an adjunct gives wrong predictions when considering
unaccusatives.

2.3 Types of Optional Arguments

For certain verbs that allow optional arguments, like eat and read,
the absence of the optional argument triggers an existential interpre-
tation. With a broader conception of optional arguments, we can also

13

consider other phenomena as optional arguments. Sub-categorized
prepositional phrases of passive verbs can also be analyzed as optional
arguments, whose absence also triggers an existential interpretation.
Different types of verbs can have different kinds of understood argu-
ments, which are characterized by how the absence of an overt argu-
ment affects the interpretation of the verb. Verbs like wash or shave,
for example, have understood reflexive objects when the optional ob-
ject is missing: if X shaves then X shaves himself. This section explains
how certain verb classes, taken from [Levin, 1993], can be analyzed as
verbs with optional arguments.

2.3.1 Understood Existential Arguments: Unspecified
Objects and Passives

This class of optional arguments is characterized by its existential
behavior: when the optional argument is omitted, it is interpreted
similar to an existential quantifier, like someone or something. A
missing optional argument in this class behaves like an understood
existential argument.

(13) a. John ate ⇔ John ate something.

b. John ate < John ate nothing.

c. Everyone ate ⇔ For everyone there was some X such that he
or she ate X.

d. Everyone ate < There was some X, such that everyone ate
X.

As discussed in section 2.2.3 the quantifier introduced by an un-
derstood object has always takes narrow scope. I believe that sub-
categorized prepositional phrases of passive forms (by phrases) can be
seen as optional arguments of the passive verb. The main argument
for this is that when a by phrase of a passive verb is missing, their un-
filled semantic slots are filled by an understood existential (14), much
like how the slots unfilled by a missing object of a transitive verb are
filled.

(14) a. The cake was eaten⇔ The cake was eaten by someone

b. Every dish was eaten⇔ For each dish, there was someone
who ate it.

An account of optional arguments in unspecified objects and passives
should correctly predict these narrow scope existential entailments.
Existential optional arguments are special for two reasons: by phrases
of passives behave like understood existential arguments, and certain

14

verbs have multiple understood existential arguments. Other types of
optionality are restricted to a single argument.

2.3.2 Understood Reflexive Object

This class of optional arguments is characterized by reflexive behavior.
In this class we see verbs of caring for the whole body.

(15) a. John shaves ⇔ John shaves himself.

b. Mary dresses ⇔ Mary dresses herself.

When the optional argument is omitted it is interpreted similar to a
reflexive, like itself or himself. In many languages these verbs do not
have true intransitive form, but allow reflexive clitics in object posi-
tion. When such a clitic is supplied, the meaning of this is similar to
the intransitive reflexive verb in English.

An account of reflexive optional arguments in English should predict
this reflexive interpretation when the argument is missing. For lan-
guages that use reflexive clitics instead, it is debatable if these are the
result of missing optional arguments, or that some other mechanism
is responsible. Nevertheless, a treatment involving option types that
introduces reflexive clitics can be given.

2.3.3 Understood Reciprocal Object

Another class of optional arguments is characterized by its reciprocal
behavior: when the optional object is omitted it is interpreted much
like a covert reciprocal5. For example:

(16) a. John and Mary kissed. ∼ John and Mary kissed each other.

b. Terrence and Phillip battled. ∼ Terrence and Phillip battled
each other.

5 The meaning of an implicit reciprocal object is not exactly the same as that of
an overt reciprocal, hence the use of ∼ instead of ⇔. The reason for this is that an
implicit reciprocal, as in (1b), requires that the participants are aware of the mutual
action. Consider the following sentences:

(1) a. John kissed Mary in his sleep and Mary kissed John in her sleep

b. John and Mary kissed.

c. John and Mary kissed each other.

(1a) entails (1c), even though the participants are not aware of the mutual action, but
(1a) does not entail (1b). This difference shows that an overt reciprocal, while similar in
meaning, is not equivalent to an overt reciprocal.

15

(17) a. John kissed. 6∼ *John kissed each other.

b. Terrence battled. 6∼ *Terrence battled each other.

When such verbs are used intransitively, the subject must be a collec-
tive NP.

2.3.4 Understood Object

This class of optional arguments is characterized by the introduction
of some understood object when the argument is missing.

(18) a. John nods ⇔ John nods his head.

b. Mary blinks ⇔ Mary blinks her eye.

c. Bob claps ⇔ Bob claps his hand.

It seems that verbs that allow a highly restricted set of words as argu-
ments allow the omission of that argument, and when the argument
is omitted, it is implicitly interpreted as a word in this restricted set.
For example, a verb like blink is highly restricted in its object argu-
ment: when the subject is a person, very few phrases can be used
as the object. I believe this is why such objects may be omitted:
since there are few possible phrases (maybe even one) that are al-
lowed there, it is not necessary to explicitly mention the object to get
the message across. An account of this kind of optional arguments in
English should predict these understood argument entailments, but
since these understood arguments refer to some very specific object,
interesting generalizations are not likely.

2.3.5 Understood Anaphoric Object

Another class of optional arguments is characterized by anaphora-like
behavior, where a missing object is interpreted like a covert discourse
referent [Fodor and Fodor, 1980]:

(19) John noticed ⇔ John noticed it.

Because the semantic framework I will use to analyze optional argu-
ments is static, I will not discuss this class of implicit arguments. I
foresee no issue in treating understood anaphora in a dynamic seman-
tics that also supports optional arguments.

2.3.6 Unaccusatives

Under this broader conception of optional arguments, even unaccusative
verbs can be analyzed using optional arguments. Some unaccusatives

16

have a related transitive form, that is similar in meaning to the in-
transitive form where the extra argument specifies an agent or ‘causer’
of the verb event that is not specified in the unaccusative form. The
transitive use of a verb V -transitive is similar in meaning to cause to
V -unaccusative [Levin, 1993]. The agent argument can be understood
as an argument that is optionally added to an unaccusative verb. For
example, in (20a), John could be considered optional agent argument
of sank, and Mary an optional agent argument of opened.

(20) a. John sank the ship. ⇒ The ship sank.

b. Mary opened the door. ⇒ The door opened.

c. The ship was sunk. ⇒ The ship sank.

d. The bullet shattered the window. ⇒ The window shattered.

When the agent argument is missing in an unaccusative form, there is
no implicit saturation of an unfilled semantic slot. This is what sets
unaccusatives apart from the other discussed verbs classes that al-
low optional arguments. For verbs like eat, an understood existential
object is introduced when the optional object is missing. For verbs
like wash it is an understood reflexive object. Other understood ar-
guments are introduced for other types of verbs that have optional
arguments, but for unaccusatives no understood argument is needed.
This is demonstrated by the fact that there is no simple way to give
an equivalent formulation of the ship sank using the transitive form
of sink. Something sank the ship is not equivalent, as it implies that
somebody or something did the sinking. No one sank the ship is also
not equivalent, as it denies the existence of some agent or cause of
the sinking. A reflexive interpretation is also not appropriate, as The
ship sank itself entails Something sank the ship. This shows that while
unaccusatives and passives may seem similar, there is an important
difference. In both these constructionss the subject argument does not
correspond with an agent, but with passives an agent is implicitly in-
troduced if none is provided by a by phrase, while with unaccusatives
there is no understood agent.

It is clear that the optionality that relates unaccusatives and their
causative transitive counterparts is of a different nature than the op-
tionality of the other verbs classes that allow optional arguments. The
other verbs classes are transitive verbs, with an optional argument that
is replaced with a covert understood argument when missing. Whether
a syntactic argument fills the optional argument slot or not, the se-
mantics must receive the same number of arguments. For these verb
classes the optionality is subtractive: an overt argument can optionally

17

be removed, and is then replaced with some covert understood argu-
ment. For unaccusative-causative verbs, the optionality is additive:
an argument providing an agent can optionally be added, but when it
is not provided, there are no unfilled slot in the semantic component
of the verb.

The optionality of verbs with unaccusative and causatives forms is
similar to the optionality of passives, as can been seen in example (20).
In English, the optional addition of an argument providing the agent,
which transforms the unaccusative into a causative transitive verb,
also triggers a change in word order. The subject of the unaccusative
form takes the place of the object in the transitive form, and the added
argument becomes the subject. This change in word order resembles
the change in word order of passives verbs compared to their active
transive counterparts. An important diffence between the optionality
of unaccusatives and passives is that an unfilled semantic slot of an
unaccusatives is not existentially saturated, while an unfilled slot of a
passive verb is.

2.4 Issues with earlier accounts

I have discussed some issues with existing approaches to implicit ar-
guments. To summarize, any treatment of implicit arguments should
attempt to avoid these issues:

• A treatment of implicit arguments should predict the narrow
scope of implicit quantifiers.
Quantifiers introduced by implicit arguments always have narrow
scope.

• A treatment of implicit arguments should scale well to multiple
optional arguments.
Accounts based on multiple meaning postulates, multiple entries
or multiple rules do not scale well when considering verbs with
multiple optional arguments.

Optionality is an important feature of language, and given the issues
stated above, I believe it is more appropriate to add a way of dealing
with optional arguments to the compositional system than to add an
extremely large number of entries to the lexicon.

Under a broader conception of optional arguments, other phenomena
than unspecified objects can be treated as optional arguments. From
a conceptual point of view, the following is a desirable feature:

18

• A treatment of implicit arguments should scale well to different
types of entailments for different verb classes.
Beside interpretation as existential quantifiers, implicit argu-
ments may also be interpreted as: anaphora (notice), reflexives
(wash), understood objects (blink)

19

3 ACG with Option Types

To give a formal account of the syntactic and semantic properties of
implicit arguments I use Abstract Categorial Grammar (ACG). Ab-
stract Categorial Grammar [de Groote, 2001] is a categorial grammar
formalism. Categorial grammars are highly lexicalized (the behavior
of words is defined in the lexicon as much as possible), emphasize com-
positionality (meanings of constituents are systemeatically combined
to form meanings of more complex constituents). ACG makes a dis-
tinction between tecto-grammar from pheno-grammar, an idea that
originates from [Curry, 1961].

In standard ACG, verbs, like all other functions, can only take a fixed
number of arguments, To treat optional arguments I show how ACG
can be extended with option types. Because of its type-theoretical
foundations it is easy to extend ACG with concepts from functional
programming and type theory, which is where option types were used
first. For compatibility with [Winter and Zwarts, 2011], and for pre-
sentational purposes, I will use a formulation of ACG which shows the
different components of a grammar in parallel as tuples, called signs.
This presentation is similar in appearance to Muskens’ Lambda Gram-
mars [Muskens, 2001], but since these frameworks are all very similar,
modulo some technical details, it does not really matter which presen-
tation is used, as the underlying ideas are the same.

3.1 Components

In ACG, a grammar consists of different components6. There is a
single abstract component, which is mapped to multiple concrete com-
ponents. In my treatment I will use three components: abs for the
abstract component, pheno for the morpho-syntactic component and
sem for the semantic component. abs models the tecto-grammar: the
general argument structure. pheno models the pheno-gramar: phono-
logical manifestations of word order, case, agreements, etc. sem is
used to model the meaning.

3.2 Types

Let Bx be a finite set of basic types for component x. The component
is omitted when it is clear which component is used. Throughout this
thesis I will use the following basic types for the abstract, morpho-

6Components are called signatures in [de Groote, 2001]

20

abstract
terms

abstract component
abs

semantic
terms

sem

semantic component

phonological
terms

pheno

morpho-syntactic component

denotede
no

te

Figure 1: The architecture of the framework: a
semantic and a morpho-syntactic component that
share a single abstract component

syntactic and semantic components:

Babs = {np, n, vp, s}
Bpheno = {f}
Bsem = {e, t}

For the abstract component, which describes the tecto-grammar, we
have the basic type np for noun phrases, n for nouns, vp for verb
phrases and s for sentences. There is only one basic type available
in the pheno-component: f , which is the type of strings. For the se-
mantic component we have the standard types e for entities and t for
truth-values.

The set of types is defined by combining basic types. The set of types
T Bc over the set of basic types Bc of component c is defined as the
smallest set such that:

if x ∈ Bc then x ∈ T Bc basic types
if x ∈ T Bc and y ∈ T Bc then (x→ y) ∈ T Bc function types
if x ∈ T Bc then x? ∈ T Bc option types

I call the types over the abstract component abstract types, the types
over the morpho-syntactic component morpho-syntactic types and the

21

types over the semantic component semantic types.

Abstract types are typeset like this, and morpho-syntactic and seman-
tic types like this. To keep things on a single page, → is omitted in
morpho-syntactic and semantic types.

3.3 Type Mappings

The types of terms of concrete components all depend on the type
of the abstract term. This dependency is described by the basic type
interpretation function, which maps the basic types of one component
x to types of another component y.

Ix⇒y : Bx → T By

Mapping types from one component to the other is done by taking
the unique homomorphic extension (Îx⇒y of a basic interpretation
function Ix⇒y. The unique homomorphic extension of I is defined as:

Î(x) = I(x) if x is a basic type

Î(x→ y) = Î(x)→ Î(y)

Î(x?) = Î(x)?

The interpretation function maps types of component x to types of
component y:

Îx⇒y : T Bx → T By

Throughout this thesis I will use the basic mappings from basic ab-
stract types to concrete morpho-syntactic and semantic types defined
in Figure 3 and Figure 2.

Iabs⇒syn =

np → f
n → f
s → f
vp → f

Figure 2: Mapping from basic
abstract types to morpho-syntactic
types: noun phrases, nouns, sen-
tences and verb phrases all have
strings as phonological denotations.

Iabs⇒sem =

np → e
n → et
s → t
vp → et

Figure 3: Mapping from basic ab-
stract types to semantic types: noun
phrases denote entities, nouns denote
sets of entities, verb phrases denote
sets of events and sentences denote
truth values.

22

3.4 Terms

Let Tc be the set of types over basic types B of component c.
Let Cc be the set of constants typed with a type in T c.
Let Vc be an infinite countable set of typed λ-variables with types in
T c
The set of typed λ-terms over typed constants Cc with types in Tc, Λc
is defined inductively as:

if c : α ∈ Cc then c : α ∈ Λc constants

if v : α ∈ V then v : α ∈ Λc variables

if x : β ∈ Λc and v : α ∈ V
then λv.x : α→ β ∈ Λc lambda abstraction

if m : α→ β ∈ Λc
and n : α ∈ Λc
then m(n) : β ∈ Λc function application

∗ : α? ∈ Λc universal filler

if x : α ∈ Λc then x : α? ∈ Λc option injection

if x : α?, y : α→ β
and z : β ∈ Λc
then option(x, y, z) : β ∈ Λc option analysis

In addition to the standard reduction rules of the lambda calculus,
there are two additional reduction rules for the option type extensions:

option(∗ : α?, f : α→ β, d : β) ; d : β
option(x : α?, f : α→ β, d : β) ; f(x) : β

For presentational purposes, I use different fonts for terms of differ-
ent components: abstract term are typeset using Sans Serif, semantic
constants using boldface and strings using the typewriter font.

The semantic component has the connectives of first-order logic as
constants, which all have their usual interpretations.

23

∧ : ttt conjunction
∨ : ttt disjunction
→ : ttt rightarrow
¬ : tt negation
> : t true
⊥ : t false
∀ : (et)t universal quantification
∃ : (et)t existential quantification

The notation rules for the logical constants are as follows: ∧, ∨,→ are
written as infix operators, ¬ is written as a prefix operator. The quan-
tifiers are normally written as prefix operators, unless their argument
starts with a lambda. In that case, we use the following notation
convention: if the argument of a existential quantifier has the form
λx.M then the application of the quantifier to such a term, ∃(λx.M),
is written as ∃x.M . Likewise for the universal quantifier: ∀(λy.N)
is written as ∀y.N . This notation convention is used to emulate the
standard notation of predicate logic.

Non-logical constants are introduced when needed. Any constant with
a type built out of e’s and t’s can be used in the semantic component:

john : e the entity that john denotes
run : et predicate for run
man : et predicate for man

In the morpho-syntactic domain there are two basic constants:

ε : f null string
• : f(ff) string concatenation

Other constants are introduced when needed, usually these are strings:

john : f the string for john
runs : f the string for runs

Strings form an associative monoid under concatenation, that is, for
all x : f , y : f and z : f :

x • ε = x
ε • x = x
x • (y • z) = (x • y) • z

For example, with the constants the following term can be constructed:

john • (runs • ε)

24

Because • is associative the parentheses may be omitted, and because
ε may always be omitted, the term can be reduced to:

john • runs

3.5 Signs

Signs are tuples of typed lambda-terms, where each entry of the tuple
holds a term of some component. One entry is special: this the entry
of the abstract component, which we call the abstract entry. The
other entries are called concrete entries. Signs are written using the
following convention:

abs. term : type = 〈concr. term1 : type1, . . . , concr. termn : typen〉

Signs can be combined using function application, abstraction etc.,
just like terms, by interpreting each operation point-wise over each
entry. To ensure that when rules are applied they are compatible
with each component, the type of each concrete entry must be com-
patible with the abstract type and the type interpretation function.
In this setup the only two concrete components of signs are pheno and
sem, but additional components could easily be added.

Let V be a countably finite set of variables, and A a set of typed ab-
stract constants. The set of signs S is defined as:

• if c : α ∈ Cabs, x : β ∈ Λpheno and y : γ ∈ Λsem

and Ipheno(α) = β and Isem(α) = γ
then c : α = 〈x, y〉 ∈ S constants

• if v : α ∈ V then vabs = 〈vpheno, vsem〉 ∈ S variables

• if Mabs : a = 〈Mpheno,Msem〉 ∈ S
and x : b ∈ V,
and x is free in all components,
then λx.Mabs : b→ a = 〈λx.Mpheno, λx.Msem〉 ∈ S abstraction

• if Mabs : a→ b = 〈Mpheno,Msem〉 ∈ S
and N : a = 〈Npheno, Nsem〉 ∈ S
then Mabs(Nabs) : b = 〈Mpheno(Npheno),Msem(Nsem)〉 ∈ S application

• for all α, ∗ : α? = 〈∗, ∗〉 ∈ S null option

• if Mabs : a = 〈Mpheno,Msem〉 ∈ S
then Mabs : a? = 〈Mpheno,Msem〉 ∈ S option injection

25

3.6 Sign grammars

A sign grammar G is a tuple of a type interpretation function, a list
of signs and a distinguished abstract type d.

G = 〈I ′, d, S〉 where
I : a tuple of type interpretation functions
d : a distinguished basic abstract type
S : a finite set of basic signs

A sign grammar generates a single abstract language, which is the
set of well-typed abstract terms of type d. It also generates concrete
languages which are defined as the set of concrete terms of which the
abstract term is part the abstract language and is of the distinguished
abstract type.

3.7 Linearity

The system presented here is actually a simplified version of ACG:
the type logic and term system are based on intuitionistic logic, while
ACG is based on linear logic7. In a linear type system, the use of
assumptions is more restricted: the rules of weakening and contrac-
tion cannot be used freely. At the level of terms, the use of variables
is also more constrained: in a linear term, every lambda abstraction
must bind exactly one variable. The linearity of the types and terms
plays a critical role in placing bounds on the expressivity of the gram-
mar, and in the tractability of parsing with ACG’s. However, linearity
is too strict a requirement for when modelling certain linguist phenom-
ena. The semantics of reflexives, for example, cannot be modelled in a
linear system. The denotation of a reflexive has the form λx.f(x)(x):
single variable is used twice: once in agent position and once in pa-
tient position, which is not allowed in a linear system. It is clear that
at least for the semantic component, linearity is clearly too strict a
requirement.
The reason for using an intuitionistic system rather than a linear sys-
tem is that I wanted to analyse unspecified reflexive objects while
keeping the grammatical system as simple as possible. I believe that
this simplification is justified by the fact that the linearity restrictions
ACG can be relaxed to some extend, while preserving the desirable
features of the linear system. [Salvati, 2010, Kanazawa, 2007].

7I want to thank prof. Moortgat for pointing out the importance of linearity in ACG.

26

3.8 Optionality and Compositionality

Informally speaking, signs describe pieces of language. The morpho-
syntactic component of a sign of a word describes how that word
is written or spoken, the semantic component describes its meaning.
Other components could be added to describe the prosody, distribu-
tion, and other aspects of a word. Signs can be combine using rules
to form compound signs8, and the ways in which signs combine model
the way pieces of language can combine.

run(John)
s

run
np→ s

John
np

like(Mary)(John)
s

like(Mary)
np→ s

like
np→ np→ s

Mary
np

John
np

Figure 4: Application

In addition to the standard ways to combine words in categorial gram-
mar and Montague grammar of application and abstraction, there is
one new way to combine pieces of language: option injection, and a
special piece of language the null option that make a compositional
treatment of optionality possible. The null option and option injec-
tion are always available in the grammar, similar to application and
abstraction. Using option types implicit arguments can be modeled.

Any term can have its optional arguments saturated with an option
injected term of the appropriate type, if such a term is available. If
no suitable term is available to serve as the argument, it can also be
saturated with the null option:

3.9 Understanding Option Types

Since option types play such an important role in the proposed treate-
ment of optionality, it is important that it is clear how option types
work and how they can be used. In this section I will show how option
types are used and provide some background information.

8 Saussure calls a compound sign a syntagm

27

eat(cake)(Miriam)
s

eat(cake)
np→ s

eat
np? → np→ s

cake
np?

cake
np

Miriam
np

Figure 5: Application and option injection
eat(∗)(Miriam)

s

eat(Miriam)
np→ s

eat
np? → np→ s

∗
np?

Miriam
np

Figure 6: Application and ∗

To understand option types, one has to know what the values of an
optional type can be. Suppose there is some term of type a?: all we
know is that it is optional. This term can have two kinds of content:
either it is ordinary value with a marker that indicates it is provided,
or a special term signifying the content is missing. An encapsulated
provided term containing x is written as x (option injection), and the
special ‘missing content’ term is written as ∗ (null option).

Option types are used in functional programming to emulate partial
functions: functions that do not have a well-defined output for some
inputs. As a proper function must always return something, some
way of signalling that there is no real output is needed. This is done
by making the result optional. If there is a result, the result is sim-
ply returned, encapsulated with an overline to signify that it is of an
optional type. If there is no result, ∗ is returned instead. Functions
with optional arguments allow one to emulate partial functions of type
a → b as total functions of type a → b?. To exemplify this, suppose
there is function named lookup, that takes a key of type x : k and a
collection of key-value pairs k × v and returns the value y with the

28

given key. If there is such a key in the collection, the corresponding
value v is returned, but if no such key is present ∗ is returned instead.
The function lookup therefore has type k → (k × v) → v?. By using
option types for return types, functions that do not have proper out-
puts for all inputs can be defined.

In the treatment of optional arguments, option types are used in a
different way. Here they are not used to model functions with pos-
sibly missing results (optionality of output) but to define functions
with possibly missing arguments (optionality of input) 9. Instead of
thinking of ∗ as a ’missing’ output, think of ∗ as a ’provided’ input.
Since ∗ is always available in the grammar, any function with optional
argument slots can have them saturated with ∗. ∗ has no internal con-
tent, the only information it carries is that no real content is available,
which is why it is called the null option

To safely use the values contained in an optional value, a form of case
analysis is needed. There are two cases, a value of optional type can
be either ‘present’ (x) or ‘missing’ (∗). Any function that takes an
optional value must deal with the missing case, as ∗ cannot provide
any meaningful information. Accessing the content of an option type
therefore requires that we specify how both cases are handled, this is
done with the option operator.

The option operator is used to safely inspect the information of op-
tional values, by applying a function if the argument is provided or
providing a default value if it is missing. It takes an optional value
o : A?, which can be either a ‘provided’ value x or a ‘missing’ value
∗, a function f : A → B and a default value d : B. This implies that
option is of type (A? × (A→ B)×B)→ B.
If o is a provided value (i.e. of form x), then f is applied to x, resulting
in f(x) : B.
If o is ∗, the function f can not be applied, so instead the default d : B
is returned instead. In both cases, a value of type B is returned.

3.10 How to deal with optional values

To get a better feel for how option types can be used I will give some
examples. Suppose we have a function eats that models the morpho-
syntactic behavior of the verb eat. eat which takes an optional string
o, a string s and returns the concatenation of s to the string eats o if

9This is just a difference in how option types are used, the definitions will also work
for optional results

29

present.

eat : f?ff = λof? .λsf .s • eats • option(of? , (λx.x)f→f , εf)

Since o is an optional argument, it is necessary to specify how the
optional argument is handled. This is done using option, of which
the resulting value depends on whether the argument is provided or
omitted. If the argument is ∗ it returns the default argument, which
is ε, the empty string. If the argument is x, the extraction function is
applied to x, which is the identity function in this case.

The function eats can not directly take ordinary values as arguments
as the types do not match. However, any ordinary value can be ‘op-
tionalized’ into a ’provided’ optional value using the option injection
rule, so that it can serve as an argument to eats
Since option injection is a rule of the ACG system it is always avail-
able for any term. With option injection it is possible to encapsulate
an ordinary term so that it can be used as an argument to a function
with an optional argument.

When there is no argument available to fill the optional argument slot
of f : a? → b, it is still possible to get the result of f . In this case f
is applied to the ‘universal slot filler’ : the null option ∗. The special
∗ : a? term can always be introduced for any type a with the univer-
sal filler rule. This means that ∗ can be used as an argument to any
function that requires an optional argument.

Below is an example of applying ∗ and an ordinary argument to eats :

eat(∗)(Miriam) =
(λo.λsf .s • eats • option(o, λx.x, ε))(∗)(Miriam) =

beta reduction, substitute ∗ for o and substitute Miriam for s

Miriam • eats • option(∗, λx.x, ε) =
option elimination, the case is ∗, the default value ε is returned

Miriam • eats • ε =
ε is the empty string, so it can be omitted

Miriam • eats

eats can also be supplied with a provided optional argument, like
cake. Here cake is encapsulated by option injection to cake, so that
it can serve as an argument to eats. The identity function is then
applied to it with the option operator, to extract the content (cake),
which is then concatenated.

30

eat(cake)(Miriam) =
(λo.λsf .s • eats • option(o, λx.x, ε))(cake)(Miriam) =

beta reduction, substitute cake for o and substitute Miriam for s

Miriam • eats • option(cake, λx.x, ε) =
option elimination, the case is cake, so cake is applied to λx.x

Miriam • eats • (λx.x)(cake) =
beta reduction, replace x by cake

Miriam • eats • cake

As will become clear in the following chapters, option types are an
essential extension to treat optional arguments in ACG: they allows
us to specify arguments that may be omitted, and how to deal with
omitted values. Note that the definition of the option types is very
general, and can be used for things other than optional arguments.
The definition used here is the result of taking the standard defini-
tions of unit and sum types, using these to define option types and
simplifying these as much as possible. Because of this there are many
ways to use option types in ways that do not make sense from a lin-
guistic point of view, or have nothing do with optional arguments.

For example, it is possible to use option types to define functions with
optional results. This capability is not relevant for the treatment of
optional arguments. The definition of option types is much more gen-
eral than what is really needed to treat implicit arguments. However,
I do not want +extend ACG with a highly constrained definition of
option types because ACG is a very general framework and constrain-
ing the definition of options type to treat a single kind of optional
argument would prevent the analysis of other phenomena related to
optional arguments. The bottom line is that option types provide a
general way of working with optional values, but say very little about
what optional argument are or are not. In the following chapter I will
show how option types can be used in a more restrictive manner, based
on the procedure in [Blom et al., 2012], that only allow optionality in
ways that can be motivated from a linguistic perspective.

3.11 Events in ACG

For the semantic component of the grammar a neo-Davidsonian event
semantics is used. This particular flavor of model-theoretic seman-
tics is used because of the greater flexibility it provides over stan-
dard Montagovian frameworks. In standard Montagovian frameworks
the coupling between the argument structure of the syntactic and se-

31

mantic components is very tight. A word that requires syntactic n
arguments must have a denotation that takes n arguments, and the
order of the arguments determines the role in the semantics. In neo-
Davidsonian semantics this coupling between argument structure and
semantic roles is much looser: it is possible to vary the semantic roles
involved, independently of the provided syntactic arguments. This
loose coupling of syntactic and semantic argument structure is exactly
what is needed to treat certain types of implicit arguments where the
semantic component may require more or fewer arguments than the
syntactic component. A second reason to use event semantics is for
comparison with [Winter and Zwarts, 2011], since this paper on event
semantics in ACG introduces some of the problems I try to solve here.

3.11.1 Theta Roles

In a neo-Davidsonian framework a verb provided with all its arguments
denotes a set of events. In the abstract component its type is vp, which
surfaces as a string f and denotes a set of events et. In order to define
the relation between entities and events, each argument of a verb is
associated with a θ-role. A θ-role specifies in what way an entity was
involved in an event. The most important roles are the agent (who
performed the event) the patient (who undergoes the event) and goal
(who is the recipient of the event). In a normal active sentence, the
subject of a verb denotes the agent, the direct object denotes the
patient and the second object denotes the goal. To use θ-roles in
the semantic component, special θ-role predicates are used, which are
simply 2-place predicates that denote a relation between events and
entities :

Table 1: Thematic role predicates

Role: Predicate : Truth conditions: true iff
agent AG(e,a) a is the agent of event e
patient PAT(e,p) p is the patient of event e
goal GOAL(e,g) g is the goal of event e

A verb saturated with all its argument (vp) denotes a set of events
(et). Because sentences denote truth-values, a verb saturated with all
its arguments must have its event variable existentially closed. This
closure operation is defined as the sign:

32

EC : vp→ s =
〈 λx.x : f f
, λg.∃e.g(e) : (et)t 〉

In the semantic component EC takes a set of events f and applies ex-
istential quantification to f . EC surfaces as the identity function over
strings, in other words: EC does not affect the pheno grammar.

In neo-Davidsonian event semantics it is possible to add or remove
roles, which is very useful for the treatment of implicit arguments, as
demonstrated in the sentences below:

(21) a. John sinks the ship
∃e.sinket(e) ∧ PAT(e, johne) ∧ AG(e, the shipe)

b. The ship sinks
∃e.sinket(e) ∧ PAT(e, the shipe)

In this example there are two uses of sink, a transitive and an intran-
sitive use. In the transitive case, there is an event predicate sinket, an
agent and a patient, while in the intransitive case there is no agent.
In both cases, the same event predicate is used, which explains the
relations between (21a) and (21b), without resorting to meaning pos-
tulates.

The advantage of using a neo-Davidsonian semantics is that we do
not need to resort to meaning postulates to define the relations be-
tween the different forms of a verb. Consider the verb sink, which
has a transitive form with 2 syntactic argument (object and subject)
and 2 semantic arguments (agent and patient), and an intransitive
form with 1 syntactic (subject) and 1 semantic argument (patient).
In a Montagovian framework we would require 2 distinct predicates
for each form. It would certainly be possible to select the appropriate
entry based on the presence of the optional argument using the option
operator, but even so, meaning postulates would be required to relate
the denotations of each verb form. In a neo-Davidsonian framework,
only one predicate is required for all the forms of a single verb (the
event predicate), other arguments be added trough theta-roles. In this
framework of ACG and neo-Davidsonian semantics, the presence of an
optional argument may only affect the semantic role associated with
the optional argument. As the semantic roles are added by conjunc-
tion, the meanings of the verb forms are based on the verb predicate,
plus the semantic roles involved. The relations between the different
verb forms follow from the fact that the event predicate is shared by
the different forms of a verb. MP’s are not required to relate the

33

different forms of a verb, however, they are still needed to describe
relation between different verbs.

34

4 Signs for Verbs With and Without

Optional Arguments

In this section I will explain how signs for ordinary verbs and verbs
with optional argument such as UO’s are specified in ACG with option
types. First I will explain how the signs for verbs without optional
arguments are defined, and how the abstract type and argument struc-
ture are related. Once this is clear, I will show how option types can be
used to define signs of verbs that allow optional arguments, and give
examples for the verb classes discussed in 2.3. Finally I will show how
to derive verbs with option arguments from verbs without optional
arguments.

4.1 Verbs with Obligatory Arguments

Below are definitions and explanations of how verbs with only oblig-
atory arguments are defined in ACG. The signs for transitive and
intransitive verbs are based on the usual treatments of verbs in Mon-
tague grammar and categorial grammar. An important observation is
that the type of a sign determines the number or arguments it takes.
Intransitive verbs take one, transitive verbs take two, and ditransitive
take three. The number of arguments are reflected in the number of
arguments in the abstract type of the sign.

4.1.1 Transitive Verbs

Where intransitive verbs only take a subject argument, transitive
verbs also require an object argument. Often these two arguments
are both noun phrases, but other types are possible as well. A typical
transitive verb has abstract type np→ np→ vp, semantic type eeet
and syntactic type fff . Thus, a transitive verb requires two noun
phrases to form a vp, it denotes a relation between two entities and
events and surfaces as a function from two strings to a string. Below
is an example of the sign of the transitive verb build:

LIKES : np→ np→ vp =
〈 λo.λs.s • likes • o : f f f
, λp.λa.λe.likeset(e) ∧ AG(e, a) ∧ PAT(e, p) : eeet 〉

The morpho-syntactic component of LIKE is a function which takes a
string s, corresponding to the subject, and a string o corresponding to
the object, and returns the concatenation of s to the string likes and
then to o. The semantic component is a function that takes an entity
p, an entity a and an event e, and asserts that e must be a building

35

event, that a must be the agent of e and that p must be the patient
of e in order for the sentence to be true.

EC(LIKES(MARY)(JOHN)) : s =
〈 John • likes • Mary : f
, ∃e.likeset(e) ∧ AG(e, johne) ∧ PAT(e,marye) : t 〉

4.1.2 Ditransitive Verbs

Compared to transitive verb, ditransitive verbs like give, take an ad-
ditional np argument. Because a ditransitive verb takes three np ar-
guments, its abstract type is np→ np→ np→ vp, which implies that
these surface as functions taking 3 strings, one from the direct object,
one from the indirect object and one from the subject, to a string. A
ditransitive verbs denotes a 4-place relation between 3 entities and an
event. Below is an example of the sign of the transitive verb give:

GIVE : np→ np→ np→ vp =
〈 λo.λi.λs.s • give • i • o : f f f f
, λp.λg.λa.λe.giveet(e) ∧ AG(e, a) ∧ PAT(e, p) ∧GOAL(e, g): eeeet 〉

The semantic and morpho-syntactic components are similar to those
of signs for transitive verbs, with the addition of an extra np argu-
ment. This extra argument is concatenated at the end in the morpho-
syntactic component, and denotes the goal of the event. Below is the
step-by-step construction of a sentence with a ditransitive verb:

GIVE(MARY) : np→ np→ vp =
〈 λi.λs.s • give • Mary • i : f f f
, λg.λa.λe.giveet(e) ∧ PAT(e,marye) ∧ AG(e, a) ∧ GOAL(e, g) : eeet 〉

GIVE(MARY)(THESHIP) : np→ vp =
〈 λs.s • give • Mary • the ship : f f
, λa.λe.giveet(e) ∧ PAT(e,marye) ∧ AG(e, a) ∧ GOAL(e, shipe) : eet 〉

GIVE(MARY)(THESHIP)(JOHN) : vp =
〈 John • give • Mary • the ship : f
, λe.giveet(e) ∧ PAT(e,marye) ∧ AG(e, johne) ∧ GOAL(e, shipe) : et 〉

4.2 Abstract Types and Argument Structure

In the signs for intransitive, transitive and ditransitive verbs there is
a clear relation between the number of arguments (its valency), the

36

kind of arguments the verb takes and the abstract type. Listing all the
relevant information in one place makes this relation really obvious:

Verb class Valency Abstract type: Examples:

intransitive 1 np→ vp run,fall
transitive 2 np→ np→ vp build, hit
ditransitive 4 np→ np→ np→ vp give
transitive/ditransitive 2 or 3 ? introduce
intransitive/transitive 1 or 2 ? read, eat

Table 2: Verb classes with a fixed number of arguments and their abstract
types

In this table we can see that if a verb takes n arguments, then the
abstract type of its sign also takes n arguments.

So far I have only described signs of verbs that take a fixed number
of arguments, but some verbs are flexible in the number of arguments
they take. Verbs like read or eat can be used as intransitive (1 argu-
ment) and as transitive verbs (2 arguments). This behavior cannot be
described using only constants, functions and variables. To describe
this flexibility in the argument structure, we need to specify which of
the arguments are optional. This specification is done using option
types, and is done by decorating the type of the optional argument
with a question mark.

To model signs with varying numbers of arguments, option types are
used to indicate that an argument is optional. Similar to how the
number and types of arguments a verb takes determines the abstract
type of its sign, the optionality of arguments determines which argu-
ment is optional. An optional argument can always be filled with ∗
when no suitable argument is present, or filled with a provided argu-
ment when it is. The fact that an optional argument (type a?) is of a
different type than the argument that is available for application (type
a) is not an issue: any non-optional term x : a can always be made
into a provided optional term x : a? using option injection. Thus, a
sign with optional arguments can behave as if it requires the optional
argument, or does not have the argument at all. For example: a sign
for a transitive verb with an optional object (type np? → np→ vp)
can behave both as an intransitive verb (type np→ vp) or a transitive
verb (type np→ np→ vp).

37

There are multiple advantages to using optional arguments to define
signs of verbs allowing UO or other types of optional arguments. The
first is that since the specific forms of an ambitransitive verb are de-
rived from a single lexical entry, the specific forms can be semantically
related, without resorting to meaning postulates to establish the re-
lations between the semantic components of the different forms. The
second advantage is that deriving the specific forms requires no extra
additions to the grammatical system, other than option types. The
forms of verbs with a fixed number of arguments can be derived from
a single ambitransitive form, using only the ACG system extended
with option types. In chapter 6 I will explain this in detail.

In ACG the abstract type determines the concrete semantic and morpho-
syntactic types. If the abstract type specifies that an argument is
optional at the abstract level, these arguments are optional at the
concrete levels. When such a concrete optional argument is provided,
composition could go on as usual, but when it is missing some way
of dealing with the missing information is required: it is the option
operator. Using the option operator it can be specified how a missing
argument should be handled. Each component can handle a missing
argument in its own way. Because of this, it is possible to define op-
tional arguments that when missing are not realized (they surface as
the null string ε) but may still affect the semantics of the verb. In
the next sections I will demonstrate how this can be used to define
different kind of verbs that allow optional arguments.

4.3 Verbs with Optional Arguments

Now that I have explained how optionality is used to specify which
arguments of verbs are optional (by marking the types of arguments
with ·?), I will explain how optional argument are dealt with in the
concrete components, and how this can be used to model the verbs of
the classes discussed in 2.3.

4.3.1 Verbs with Unspecified Objects

To demonstrate how signs for verbs with unspecified objects can be
defined in ACG extended with option types, I give an example of the
sign for the ambitransitive verb read. read has an intransitive and a
transitive form, where the intransitive form has an existentially quan-
tified patient. The transitive and intransitive forms can be thought of
as specific instantiations of a single verb with one obligatory and one
optional argument. We can use this insight to define a sign for read,

38

READ, which takes one optional np? (the optional object), an np (the
subject) and returns a vp.

READ : np? → np→ vp =

〈 λo.λs.s • read • option(o, λo′.o′, ε) : f ?f f
, λp.λa.λe. readet(e) ∧ AG(e, a)∧

option(p ,λp′.PAT(e, p′)
,∃p′.PAT(e, p′)) : e?eet 〉

Because the object is optional, it is necessary to specify how to deal
with a missing or provided argument in the semantic and morph-
syntactic components. In the morpho-syntactic, when the object is
provided, the object string is placed after the verb. If the object is
missing, a null string is placed after the verb. In the semantic com-
ponent, if the object is provided, the entity it denotes is used as the
patient. If the object is missing, a patient is existentially introduced.
By using this case analysis, all semantic arguments will be saturated,
even if an argument is missing: there may be two semantic arguments
for only one syntactic argument, or two semantic arguments for two
syntactic arguments.

The sign READ can now compose with either two np arguments (an
object and a subject) or a single np (an object). These two signs can
serve as arguments to READ :

JOHN : np =
〈 John : f
, johne : e 〉

DUNE : np =
〈 Dune : f
, dunee : e 〉

Suppose that we know that these two signs provided as arguments to
READ: JOHN as the subject, and DUNE as the object. If we want
to use DUNE (type np) as the object of READ (type np?) by means
of application, there is a problem, as np and np? are not of the same
type. Because of this mismatch of the types, function application can-
not be used directly to set DUNE as the object. First DUNE must be
made into a value of type np?. This is done using the option injection
rule, which is always available. The option injection rule basically
takes any ordinary value, and makes it into a provided optional argu-
ment. Applying option injection is notated by placing an overline over
the injected value. The result of applying option injection to DUNE is:

DUNE : np? =

〈 Dune : f ?

, dunee : e? 〉

39

Now that there is a value of type np?, it can be combined with READ
using function application:
In the morpho-syntactic component, Dune is the object argument to
the morpho-syntactic component of READ. In the semantic compo-
nent, dunee is the patient argument to the semantic component of
READ.

(READ : np? → np→ vp)(DUNE : np?) =

〈 (λo
f ? .λsf .s • read • option(o, λo′.o′, ε))(DUNE : f ?)

, (λpe? .λae.λee.readet(e) ∧ AG(e, a)∧
option(p ,λp′.PAT(e, p′),∃p′.PAT(e, p′)))(dunee : e?)〉

After beta-reduction, we see that the Dune and dunee are analyzed
by the option operator:

READ(DUNE) : np→ vp =
〈 λsf .s • read • option(DUNE, λo′.o′, ε)

, (λpe? .λae.λee.readet(e) ∧ AG(e, a)∧
option(dunee ,λp

′.PAT(e, p′),∃p′.PAT(e, p′)))〉
After option reduction, Dune and dunee are passed to the extraction
functions. In the morpho-syntactic component, this is just the iden-
tity functions, and in the semantic component it is a function that
assigns the patient role to its argument:

READ(DUNE) : np→ vp =
〈 λsf .s • read • (λo′.o′)(DUNE)

, (λpe? .λae.λee.readet(e) ∧ AG(e, a)∧
(λp′.PAT(e, p′))(dunee)〉

A final beta-reduction gives us the result of the application of the
extraction functions:

READ(DUNE) : np→ vp =
〈 λs.s • read • Dune : f f
, λa.λe.readet(e) ∧ AG(e, a) ∧ PAT(e,dunee) : eet 〉

Then, the subject can be provided, by applying this to JOHN

READ(DUNE)(JOHN) : vp =
〈 John • read • Dune : f
, λe.readet(e) ∧ AG(e, johne) ∧ PAT(e,dunee) : et 〉

Now that all arguments are provided, the event variable can be closed,
yielding the sign for the sentence John read Dune:

40

EC(READ(DUNE)(JOHN)) : s =
〈 John • read • Dune : f
, ∃e.readet(e) ∧ AG(e, johne) ∧ PAT(e,dunee) : t 〉

If there is only one np argument available to READ, the optional ar-
gument slot is filled with the universal filler ∗ (type np?). In effect,
this cause READ to behave as an intransitive verb:

READ(∗) : np→ vp =
〈 λs.s • read • ε : f f
, λa.λe.readet(e) ∧ AG(e, a) ∧ ∃p′.PAT(e, p′) : eet 〉

Now JOHN can be used as the subject of the intransitive form of read
:

READ(∗)(JOHN) : vp =
〈 John • read • ε : f
, λe.readet(e) ∧ AG(e, johne) ∧ ∃p′.PAT(e, p′) : et 〉

In this sentence, all the arguments are provided. The missing object
is replaced with ∗. Since the verb is saturated with all its arguments,
the event variable can be closed, yielding the sign for the sentence
John read:

EC(READ(∗)(JOHN)) : s =
〈 John • read • ε : f
, ∃e.readet(e) ∧ AG(e, johne) ∧ ∃p′.PAT(e, p′) : t 〉

It is clear by inspecting the semantic components that the entailment
from the transitive to the intransitive form of the verb is accounted
for. To show that existential entailments between the transitive and
intransitive form holds, an existential quantifier is needed in the object
position of the transitive form. For this we need a sign for something:

SOMETHING : (np→ s)→ s =
〈 λf.f(something) : (f f)f
, λf.∃x.f(x) : (et)t 〉

Using abstraction and option injection, something is placed in object
position. Note that the quantifier of someone is outside the scope of
the quantifier that closes the event variable:

SOMETHING((λx.EC(READ(x)(JOHN)))) : s =
〈 John • read • something : f
, ∃x.∃e.readet(e) ∧ AG(e, johne) ∧ PAT(e, x) : t 〉

Inspection of the semantic components of the signs for these sentences
confirms that the equivalence is accounted for. In fact the semantic

41

components of the signs for John read and John read something are
equivalent. The only difference is the exact position of the existential
quantifier, but under the standard rules of predicate logic these terms
are equivalent.

The quantifier introduced by a missing argument of a UO has narrow
scope. In the previous examples there was no quantifier in subject
position, so there were no scope effects. To show that a UO quanti-
fier always has narrow scope we need to verify that (22a) is treated
as equivalent to the object narrow scope (ONS) of (22b), but not to
the object wide scope (OWS) reading of (22b). For this, we need an
additional quantifier:

EVERYONE : (np→ s)→ s =
〈 λf.f(everyone) : (f f)f
, λg.∀y.g(y) : (et)t 〉

(22) a. Everyone eats

b. Everyone eats something

1. Sign for (22a) :
EVERYONE((λx.EC(EAT(∗)(x)))) : s =
〈 everyone • eat • ε : f
, ∀y.∃e.eatet(e) ∧ AG(e, y) ∧ ∃x.PAT(e, x) : t 〉

2. Sign for the ONS reading of (22b) :
EVERYONE((λs.SOMETHING((λo.EC(EAT(o)(s)))))) : s =
〈 everyone • eat • something : f
, ∀y.∃x.∃e.eatet(e) ∧ AG(e, y) ∧ PAT(e, x) : t 〉

3. Sign for the OWS reading of (22b) :
SOMETHING((λo.EVERYONE((λs.EC(EAT(o)(s)))))) : s =
〈 everyone • eat • something : f
, ∃x.∀y.∃e.eatet(e) ∧ AG(e, y) ∧ PAT(e, x) : t 〉

Inspection of the semantic components of (2.) and (3.) confirms
that (22a) is indeed treated as equivalent to the object narrow scope
reading of (22b), but not to the object widescope reading.

4.3.2 Passives

Subcategorized prepositional phrases of passives, like by phrases, can
be treated much like the object of a verb with UO’s. Just like with
unspecified objects, by phrases are optional arguments. When these
optional arguments are missing, their unfilled slots are also saturated

42

existentially. A difference is that passives do not take optional np
signs, but optional npby signs instead. These signs are formed by
modifying an np sign, by prepending the appropriate preposition:

BY : np→ npby =
〈 λx.by • x : f f
, λx.x : ee 〉

By phrases are formed using the BY sign: BY takes a np and returns a
npby (a by phrase). Its morpho-syntactic denotation is a function that
takes a string x and returns the string formed by the concatenation
of by to x. BY denotes the identity function, it does not affect the
meaning. The motivation for defining by phrases this way is that they
should function as arguments to verbs, but should only be licensed to
serve as arguments of passives.10

BUILDpass : np?
by → np→ vp =

〈 λb.λs.s • was-build • option(b, λx.x, ε) : f ?f f
, λp.λa.λe. buildet(e) ∧ AG(e, a)∧

option(p ,PAT(e),∃p′.PAT(e, p′)) : e?eet 〉

This sign takes an optional npby (the by phrase) and an obligatory np
(the subject), and returns a vp. In the morpho-syntactic component,
the string of the subject, was, the verb string, the string of the by
phrase are concatenated. If the by phrase is missing, an empty string
takes its place. In the semantic component, the denotation of the sub-
ject is the patient. If the by phrase is provided, the entity it denotes
is used as the agent, and if it is missing, an agent is existentially in-
troduced.

The list of signs below demonstrate the existential implicit argument
of passive build, these are the signs used for John and the ship:

JOHN : np =
〈 John : f
, johne : e 〉

THESHIP : np =
〈 the ship : f
, shipe : e 〉

For comparison with an active sentences, this is the sign used for the
active from of the verb build :

10Note that this restriction only pertains to by as arguments to passives, no claims are
made about using by as an adjective, as in ”The book by Frank Herbert”.

43

BUILD : np→ np→ vp =
〈 λo.λs.s • build • o : f f f
, λp.λa.λe.buildet(e) ∧ AG(e, a) ∧ PAT(e, p) : eeet 〉

I haven’t closed the event variable to emphasize the scope of the
existential quantifier that saturates the missing argument slot in (2),
note that is has the narrowest possible scope.

1. BUILD(THESHIP)(JOHN) : vp =
〈 John • build • the ship : f
, λe.buildet(e) ∧ AG(e, johne) ∧ PAT(e, shipe) : et 〉

2. BUILDpass(∗)(THESHIP) : vp =
〈 the ship • was-build • ε : f
, λe.buildet(e) ∧ AG(e, shipe) ∧ ∃p′.PAT(e, p′) : et 〉

3. BUILDpass(BY(JOHN))(THESHIP) : vp =
〈 the ship • was-build • by • John : f
, λe.buildet(e) ∧ AG(e, shipe) ∧ PAT(e, johne) : et 〉

4.3.3 Understood Reflexive Objects

Signs for verbs that have a reflexive interpretation when the object
is missing can also be defined using optional arguments. When the
optional object argument is missing, the missing slot is resolved using
an empty string and by asserting that the agent is also the patient.
When the optional argument is provided, this type of verb functions
as a transitive verb. An example of such a sign is shave.

SHAVE : np? → np→ vp =

〈 λo.λs.s • shaves • option(o, λo′.o′, ε) : f ?f f
, λp.λa.λe. shaveet(e) ∧ AG(e, a)∧

option(p ,λp′.PAT(e, p′),PAT(e, a)) : e?eet 〉
SHAVE denotes a function that takes an optional entity p, an entity
a, and an event e, and returns true if e is a shaving event, a is the
agent of the shaving, and if p is provided then p is the patient of the
shaving, but if p is missing then a is the patient (in addition to being
the agent). SHAVE surfaces as a function that takes an object string
o, a subject string s, and returns the concatenation of s to shave to
o if it is provided and to ε if missing.

To show the equivalence between verbs with overt reflexives and covert
reflexives introduced by missing arguments a sign for reflexives is
needed, which models words like himself, herself and itself. As the

44

framework has no support for gender agreement, I will just assume it
surfaces as himself.

SELF : (np→ np→ vp)→ np→ vp =
〈 λv.λs.v(himself)(s) : (f f f)f f
, λv.λa.λe.v(a)(a)(e) : (eeet)eet 〉

The semantic component of SELF is very similar to the standard Mon-
tagovian treatment of reflexivization, with the addition that the event
variable is passed on. It takes a 2-place predicate, and two arguments.
The first is an entity, which normally comes from the subject phrase,
the second is an event argument. The entity is then applied twice to
the verb (as agent and as patient), and the event argument is passed
on.
The morpho-syntactic component SELF is a function that takes a
string function vfff of a transitive verb and a subject string. It returns
the application of v to the subject and the string himself 11

To show that the sentence John shaves and John shaves himself are
equivalent, we compare the semantic component of the signs for these
sentences. In order to build a sign for the second sentence, we need
to apply himself to shave. As himself takes an argument of is of type
np→ np→ vp, while shave is of type np? → np→ vp, application is
not directly possible. First we need to make the optional argument of
shave obligatory using option injection and abstraction:

(λx.SHAVE(x)) : np→ np→ vp =
〈 λx.λs.s • shaves • x : f f f
, λx.λa.λe.shaveet(e) ∧ AG(e, a) ∧ PAT(e, x) : eeet 〉

The result of this has the appropriate type, that of a transitive verb,
so now self can be applied:

SELF((λx.SHAVE(x))) : np→ vp =
〈 λs.s • shaves • himself : f f
, λa.λe.shaveet(e) ∧ AG(e, a) ∧ option(p ,λp′.PAT(e, p′),PAT(e, a)) : eet 〉

Comparing the signs for the sentences, it is obvious that their deno-
tations are the same:

11 In a more realistic grammar the inserted string would depend on the features of s.
For example, if s would have the features singular and female, then herself would be
inserted instead of itself See [de Groote and Maarek, 2007] for a treatment of inflection
in ACG.

45

1. EC(SHAVE(∗)(JOHN)) : s =
〈 John • shaves • ε : f
, ∃e.shaveet(e) ∧ AG(e, johne) ∧ PAT(e, johne) : t 〉

2. EC(SELF((λx.SHAVE(x)))(JOHN)) : s =
〈 John • shaves • himself : f
, ∃e.shaveet(e) ∧ AG(e, johne) ∧ PAT(e, johne) : t 〉

The ambitransitive sign for shave can of course also take an object
when an object is provided, in which case the patient is the object.

EC(SHAVE(BOB)(JOHN)) : s =
〈 John • shaves • Bob : f
, ∃e.shaveet(e) ∧ AG(e, johne) ∧ PAT(e,bobe) : t 〉

4.3.4 Verbs with Understood Objects

Verbs with understood objects are somewhat similar to verbs with re-
flexive objects: when the object is missing, the entity associated with
the subject is used twice. In reflexive verbs, the subject entity is also
used as the object entity if there is no object provided. In verbs with
understood objects, some part or property of the subject entity is used
as the object entity when no external object is provided. For example,
if blink does not receive an object argument to use as patient, the eyes
of the subject are used as the patient instead:

BLINK : np? → np→ vp =

〈 λo.λs.s • blinks • option(o, λo′.o′, ε) : f ?f f
, λp.λa.λe. blinket(e)

∧AG(e, a)
∧ option(p ,λp′.PAT(e, p′)

,PAT(e,of(et)ee(eyeset)(a))) : e?eet 〉

1. EC(BLINK(∗)(JOHN)) : s =
〈 John • blinks • ε : f
, ∃e.blinket(e) ∧ AG(e, johne) ∧ PAT(e,of(et)ee(eyeset)(johne)) : t 〉

2. EC(BLINK(OF(EYES)(JOHN))(JOHN)) : s =
〈 John • blinks • eyes • of • John : f
, ∃e.blinket(e) ∧ AG(e, johne) ∧ PAT(e,of(et)ee(eyeset)(johne)) : t 〉

4.3.5 Unaccusatives: Optional Agent Arguments

Many unaccusative verbs are related to a causative transitive form.
Since there are two forms, an unaccusative (intransitive) form and a

46

transitive form, with related meanings, it is possible to postulate a
single form with an ordinary and an optional argument from which
both forms can be derived.
For unaccusatives that have a transitive counter-part, a similar ap-
proach is taken as to UO’s, but instead of saturating an unfilled ar-
gument slot using existential import, it is saturated with a neutral
element.

When the argument is missing, it simply does not contribute any-
thing to the meaning, and when the extra argument is provided, it is
used as the agent. The presence also triggers a change in word order,
the extra object takes the subject position, and the other argument,
which would otherwise be the subject, takes the object position. The
abstract type for these type of verbs is np→ np? → s, because usu-
ally the agent argument corresponds with the subject argument (the
second np), which is optional for unaccusatives that have a transitive
counterpart. An example of an unaccusative that also has a transitive
form is break. A sign for this verb that relates these forms is defined as:

BREAK : np→ np? → vp =

〈 λo.λs.option(s, λs′.s′ • broke • o, o • broke) : f f ?f
, λp.λa.λe.breaket(e) ∧ option(a ,λa′.AG(e, a′),>) ∧ PAT(e, p) : ee?et 〉

In the morpho-syntactic component BREAK takes an object string and
an optional subject string. When the subject is present, the concate-
nation of the subject string, the verb string and the object string is
returned, but when it is missing the concatenation of the object string
and verb string is returned12. In the semantic component, the vari-
able p supplies the patient. The optional variable s supplies the agent
when present, but when absent, no agent is set.

Using this sign, entailments between unaccusatives and their transi-
tive counterparts can be modeled: With this sign for break, we can
give an analysis of the following entailments:

(1.) John broke the window.
⇓

(2.) Someone broke the window.
⇓

(3.) The window broke.

12 Note that the so-called object string takes the position of the subject when the
argument that supplies the agent is missing.

47

The signs for these sentences are:

EC(BREAK(THEWINDOW)(JOHN)) : s =
〈 John • broke • the window : f
, ∃e.breaket(e) ∧ AG(e, johne) ∧ PAT(e,windowe) : t 〉

SOMEONE((λx.EC(BREAK(THEWINDOW)(x)))) : s =
〈 someone • broke • the window : f
, ∃x.∃e.breaket(e) ∧ AG(e, x) ∧ PAT(e,windowe) : t 〉

EC(BREAK(THEWINDOW)(∗)) : s =
〈 the window • broke : f
, ∃e.breaket(e) ∧ > ∧ PAT(e,windowe) : t 〉

The semantic components show the desired entailments.

4.3.6 Overview

Now that we know what the types of the verb with optional arguments
are, table 2 can be extended with verb classes with optional arguments:

Verb class Valency Abstract type Examples

intransitive 1 np→ vp run,fall
transitive 2 np→ np→ vp build, hit
transitive with
optional object

1 or 2 np? → np→ vp eat, sings

unaccusative with
optional agent

1 or 2 np→ np? → vp sink, break

passive transitive 1 or 2 np?
by → np→ vp was build

ditransitive with
opt. indirect obj.

2 or 3 np→ np? → np→ vp give, tell

ditransitive with
opt to phrase

2 or 3 np→ np?
to → np→ vp give to, introduce

passive ditransi-
tive

1,2 or 3 np?
by → np?

to → np→ vp was given

Table 3: Verb classes and their types

Note that the position of the option type marker already tells us a lot
about how the optionality will affect the interpretation of the verb. For
transitives with an optional object, something happens to the patient
when missing, because the entity that saturates the patient argument
normally comes from the object, which corresponds to the first np
argument. The same applies to the indirect object of ditransitives.
For unaccusatives, something related to the agent must happen, as the
second np is marked optional, which normally supplies the agent. For

48

the various passive constructions, it clear that the optionality affects
the by phrases, as the arguments corresponding to these phrases are
marked as optional.

4.4 Optionalizing Operators

Option types can be regarded too general for treating optional argu-
ments: they can be used to define signs with optionality that have no
obvious linguistic relevance. For example, nothing prevents the defi-
nition of a sign strange with type np→ s?. This strange sign is much
like an intransitive verb, but its result may be missing: it might be
realized as ∗ and denote ∗. This is clearly undesirable13. Another use
of option types that is undesirable is letting the form and meaning
depend too much on the presence of an argument. A reason to use
optional arguments is to give concise descriptions of the relation be-
tween certain related verbs with different number of arguments. With
the definition of option types as presented here, one can take things
too far, and postulate verbs with optional arguments that have com-
pletely different meanings when provided with different numbers of
arguments. For example, using option types we can define a sign run-
build, which is the same as run if provided with one argument and the
same as build if provided with two arguments.

RUNBUILD : np? → np→ vp =

〈 λo.λs.option(o, λo′.s • build • o′, s • run) : f ?f f
, λp.option(p ,buildeeet,runeet) : e?eet 〉

To my knowledge there is no linguistic justification for signs, where
the meaning and form of an ambitransitive verb are not related when
the optional arguments are missing. Surely, such absurdities should
be avoided. To avoid such absurdities, a structured method to intro-
duce optional arguments is required. One way of doing this is to only
allow the introduction of option types using operators that take ordi-
nary signs and add optionality in a specific manner. These operators
conveniently formalize rules that describe how a verb with optional
arguments is derived from a verb with only obligatory arguments.

13In semantics, functions with optional results can be used to model partial functions,
and optional results make sense in topics like partial logics. In syntax however, I can not
really think of any reason to allow optional results.

49

4.4.1 Existential Optional Arguments

One such operator would be useful to introduce optionality to tran-
sitive verbs that allow existential optional arguments. The operator
would simply take a transitive verb and return a verb with an optional
object, which is interpreted as an understood existential argument
when the object is missing. This operator can be defined as a sign:

UO : (np→ np→ vp)→ np? → np→ vp =

〈 λv.λo.λs.v(option(o, λo′.o′, ε))(s) : (f f f)f ?f f
, λv.λo.λs.λe.option(o ,λo′.v(o′)(s)(e),∃o′.v(o′)(s)(e)) : (eeet)e?eet 〉

UO takes a transitive verb, and returns a verb with an optional object
and an obligatory subject. In the resulting ambitransitive verb, the
missing argument slot is saturated with the empty string and exis-
tential quantification when the object is missing, and functions like
transitive verb if the object is present

Suppose we have a sign for the transitive form of read:

READtv : np→ np→ vp =
〈 λo.λs.s • read • o : f f f
, λp.λa.λe.readet(e) ∧ AG(e, a) ∧ PAT(e, p) : eeet 〉

The object of READtv should be optional, interpreted as an under-
stood existential object when missing, so UO must be applied to
READtv. The result of this is equal to the optional version of READ:

UO(READtv) : np? → np→ vp =

〈 λo.λs.s • read • option(o, λo′.o′, ε) : f ?f f
, λo.λs.λe.option(o ,λo′.readet(e) ∧ AG(e, s) ∧ PAT(e, o′)

,∃o′.readet(e) ∧ AG(e, s) ∧ PAT(e, o′)) : e?eet 〉

Using the operator UO, it is possible to analyze the same sentences as
in 4.3.1 using an optionalized transitive verb:

1. EC(UO(READtv)(DUNE)(JOHN)) : s =
〈 John • read • Dune : f
, ∃e.readet(e) ∧ AG(e, johne) ∧ PAT(e,dunee) : t 〉

2. EC(UO(READtv)(∗)(JOHN)) : s =
〈 John • read • ε : f
, ∃e.∃o′.readet(e) ∧ AG(e, johne) ∧ PAT(e, o′) : t 〉

50

3. SOMETHING((λx.EC(UO(READtv)(x)(JOHN)))) : s =
〈 John • read • something : f
, ∃x.∃e.readet(e) ∧ AG(e, johne) ∧ PAT(e, x) : t 〉

The UO operator is very similar to the Unspecified Object Deletion
rule of Dowty [Dowty, 1982], but with a crucial difference: instead of
removing the object argument, it optionalizes the object argument.
So instead of a rule that deletes the object argument slot from a verb,
we have a rule that makes the object slot optional, allowing removal
at a later stage by the compositional system if needed.
Dowty uses a different framework, so it is impossible to directly com-
pare his rule with mine, but it is possible to give a sign (UOD) that is
very similar to his Unspecified Object Deletion rule:

UOD : (np→ np→ vp)→ np→ vp =
〈 λv.λs.v(ε)(s) : (f f f)f f
, λv.λs.λe.∃o′.v(o′)(s)(e) : (eeet)eet 〉

UOD can be compared with UO: UOD is a specific instance of UO.
When there is no suitable argument to fill the result of UO, it is filled
with ∗ and the result is exactly the same as UOD. This is easy to
verify, by checking that:

λvnp→np→vp.UO(v)(∗) = UOD

These two are indeed equivalent:

(λv.UO(v)(∗)) : (np→ np→ vp)→ np→ vp =
〈 λv.λs.v(ε)(s) : (f f f)f f
, λv.λs.λe.∃o′.v(o′)(s)(e) : (eeet)eet 〉

This equivalence shows that Dowty’s rule is a specific instance of the
option type approach to implicit arguments.

4.4.2 Passivization

Given the strict relation between the forms and meanings transitive
verbs and their passive forms, it is not surprising that it is possible to
define an operator that describes this relation. Below is the rule that
maps a transitive verb to its passive form:

PASStv : (np→ np→ vp)→ np?
by → np→ vp =

〈 λv.λo.λs.v(option(o, λo′.o′, ε))(s • was) : (f f f)f ?f f
, λv.λo.λs.λe.option(o ,λo′.v(s)(o′)(e),∃o′.v(s)(o′)(e)) : (eeet)e?eet 〉

51

The PASS operator takes a transitive verb, an optional by phrase and
a subject np. In the morpho-syntactic component it concatenates the
subject with an auxiliary verb, the verb string, and the by phrase if it
is present. In the semantic component it takes a 2-place predicate, an
entity coming from the by phrase, an entity coming from the subject,
and an event variable. The entities are all applied to the predicate
in almost the same order, but the by phrase entity and subject entity
switch places. When the entity coming from the by phrase is missing,
the empty slot is existentially quantified over.

Note that PASStv and UO are very similar: compared to UO, PASS
takes an optional by phrase instead of an optional noun phrase, switches
the order of the arguments coming from the object and subject around
in the semantic component, and adds an auxiliary verb, but its effect
on optionality is almost similar.
For the passivization of ditransitive verbs a similar operator can be
given:

PASSdtv : (np→ np?
to → np→ vp)→ np?

by → np?
to → np→ vp =

〈 λv.λb.λt.λs.v(option(b, λb′.b′, ε))(t)(s • was) : (f f ?f f)f ?f ?f f
, λv.λb.λt.λs.λe.option(b ,λb′.v(s)(t)(b′)(e)

,∃b′.v(s)(t)(b′)(e)) : (ee?eet)e?e?eet 〉

The PASSdtv operator simply takes an additional optional argument
compared to the PASStv operator. Because there are now two op-
tional arguments, both optional arguments need to be inspected. The
morpho-syntactic component does not become much more complex:
the extra optional argument is filled using ε when missing, but in the
semantic component a nested use of option is required to properly
introduce the existential quantifiers for the two optional arguments.
Assume that we have this sign for the ditransitive verb introduce :

INTRODUCE : np→ np?
to → np→ vp =

〈 λo.λi.λs.s • introduced • o • option(i, λi′.i, ε) : f f ?f f
, λp.λg.λa.λe. introduceet(e) ∧ AG(e, a) ∧ PAT(e, p)

∧option(g ,λg′.GOAL(e, g′),∃g′.GOAL(e, g′)) : ee?eet 〉
Application of the passivization operator for ditransitive verbs to this
sign gives the sign for passive introduce:

52

PASSdtv(INTRODUCE) : np?
by → np?

to → np→ vp =

〈 λb.λt.λs.s • was • introduced • option(t, λi′.i′, ε) • option(b, λb′.b′, ε) : f ?f ?f f
, λb.λt.λs.λe. introduceet(e) ∧ PAT(e, s)∧

option(b ,λb′.AG(e, b′) ∧ option(t ,λg′.GOAL(e, g′)
,∃g′.GOAL(e, g′))

,∃b′.AG(e, b′) ∧ option(t ,λg′.GOAL(e, g′)
,∃g′.GOAL(e, g′))) : e?e?eet 〉

Using this passivization operator, sentences with passive verbs can be
analyzed without extra passive entries for each combination of missing
and present optional arguments. All four possibilities can be derived
from a single entry for introduce:

1. EC(PASSdtv(INTRODUCE)(BY(JOHN))(TO(MARY))(BOB)) : s =
〈 Bob • was • introduced • to • Mary • by • John : f
, ∃e.introduce’et(e) ∧ AG(e, johne) ∧ PAT(e,bobe) ∧ GOAL(e,marye) : t 〉

2. EC(PASSdtv(INTRODUCE)(∗)(TO(MARY))(BOB)) : s =
〈 Bob • was • introduced • to • Mary • ε : f
, ∃e.∃b′.introduce’et(e) ∧ AG(e, b′) ∧ PAT(e,bobe) ∧ GOAL(e,marye) : t 〉

3. EC(PASSdtv(INTRODUCE)(BY(JOHN))(∗)(BOB)) : s =
〈 Bob • was • introduced • ε • by • John : f
, ∃e.introduce’et(e) ∧ AG(e, johne) ∧ PAT(e,bobe) ∧ ∃g′.GOAL(e, g′) : t 〉

4. EC(PASSdtv(INTRODUCE)(∗)(∗)(BOB)) : s =
〈 Bob • was • introduced • ε • ε : f
, ∃e.∃b′.introduce’et(e) ∧ AG(e, b′) ∧ PAT(e,bobe) ∧ ∃g′.GOAL(e, g′) : t 〉

4.5 Reflexive Optional Arguments

The operator to derive verbs with reflexive optional objects from tran-
sitive verbs is defined as:

REFL : (np→ np→ vp)→ np? → np→ vp =

〈 λv.λo.λs.v(option(o, λo′.o′, ε))(s) : (f f f)f ?f f
, λv.λo.λs.λe.option(o ,λo′.v(o′),v(s))(s)(e) : (eeet)e?eet 〉

REFL takes a transitive verb and makes its first argument optional
in a way that when the argument is missing, the unfilled semantic
slot is filled with the entity coming from the subject. Application of
REFL to a transitive verb gives a verb with an reflexive optional object.

53

REFL(SHAVEtv) : np? → np→ vp =

〈 λo.λs.s • shaves • option(o, λo′.o′, ε) : f ?f f
, λo.λs.λe.option(o ,λo′.λa.λe.shaveet(e) ∧ AG(e, a) ∧ PAT(e, o′)

,λa.λe.shaveet(e) ∧ AG(e, a) ∧ PAT(e, s))(s)(e))
: e?eet 〉

Simple examples show that the missing arguments cause the subject
to fill the object’s unfilled semantic slot :

EC(REFL(SHAVEtv)(BOB)(JOHN)) : s =
〈 John • shaves • Bob : f
, ∃e.shaveet(e) ∧ AG(e, johne) ∧ PAT(e,bobe) : t 〉

EC(REFL(SHAVEtv)(∗)(JOHN)) : s =
〈 John • shaves • ε : f
, ∃e.shaveet(e) ∧ AG(e, johne) ∧ PAT(e, johne) : t 〉

EC(SELF((λx.SHAVE(x)))(JOHN)) : s =
〈 John • shaves • himself : f
, ∃e.shaveet(e) ∧ AG(e, johne) ∧ PAT(e, johne) : t 〉

54

5 General Optionalization

In the previous sections I have demonstrated how option types can
be used to treat verbs that allow optional arguments. To restrict the
way option types can be used I have suggested the use of optionaliza-
tion operators. Such an operator can only operate on a single type
of verbs. It is of course possible to define such combinations to cover
all the cases, but this would require a very large set of operators. A
general optionalization procedure is required to introduce optionality
in a restricted, but still general way.

A better way to introduce optionality would be to start with a sign
without optional arguments, mark the arguments that should be op-
tional and their type of optionality (existential, reflexive, reciprocal,
etc), and use a general optionalization procedure to obtain a sign
where the marked arguments are optional, and where missing argu-
ments are interpreted the desired way. In this section I will adapt
the optionalization procedure given in [Blom et al., 2012] to handle
different types of optional arguments.
For example, take the sign for the verb eat, defined as an ordinary
transitive verb. It takes two obligatory np’s, and denotes a ternary
relation between two entities and an event.

EATtv : np→ np→ vp =
〈 λo.λs.s • eat • o : f f f
, λp.λa.λe.eatet(e) ∧ AG(e, a) ∧ PAT(e, p) : eeet 〉

The verb eat actually allows its object to be omitted, in which case
it is interpreted as an UO. To obtain an optionalized version of eat,
the object is marked for optionalization using the exi marker, which
specifies that an unfilled slot should be existentially saturated.

EATtv′ : npexi → np→ vp =
〈 λo.λs.s • eat • o : f f f
, λp.λa.λe.eatet(e) ∧ AG(e, a) ∧ PAT(e, p) : eeet 〉

We need to define how a single UO optional argument is handled in
the simplest case. This basic operation is then generalized to a general
operation, which can handle more arguments, of which any number
can be optional. Application of the general procedure will then results
in a sign for eat with UO-optionality:

55

EAT : np? → np→ vp =

〈 λo.λs.s • eat • option(o, λo′.o′, ε) : f ?f f
, λp.λa.λe. eatet(e) ∧ AG(e, a)∧

option(p ,λp′.PAT(e, p′),∃x.PAT(e, x)) : e?eet 〉
Optionalization is a general procedure to add optionality to non-
optional fragments. In the lexicon it is specified which arguments
are optional and what type of optionality we are dealing with (exis-
tential, reflexive, reciprocal). Saturation operations define how each
kind of optional argument deals with missing arguments. An example
of a saturation procedure might be to existentially quantify over the
missing argument slot of the denotation and fill the missing morpho-
syntactic slot with an empty string.

The optionalization procedure given here is only general for existential
optional arguments: any argument can be made optional by saturat-
ing unfilled slots existentially. For other types of optional arguments
I have only given specific cases. Using the operators discussed in sec-
tion 4.4, specific cases can be treated, such as understood reflexive
and reciprocal objects of transitive verbs. Further research is needed
to see if and how a general procedure can be given for different types
of optional arguments. The procedure is harder to generalize for other
kinds of optional arguments, such as understood reflexives and recip-
rocals, because for these involve other arguments, where existential
optional arguments do not.

5.1 Optionalizing a Sign Grammar

The grammar transformation works in two steps: marking and option-
alization. The marking step consists of decorating the arguments that
should be optional with the appropriate markers. The assumption is
that a marker is part of the lexicon, or is added to a lexicon. The
optionalization procedure takes a sign decorated with optionalization
markers, and returns a sign where the decorated arguments are op-
tional, where the specific marker determines how missing cases are
handled.

5.2 Marking

The first step in optionalizing is to specify which arguments should
be optional, and how these should be interpreted when missing. A
specification is given by decorating types of signs corresponding to
the arguments that should be optional. Such a decoration is called a

56

marker, and the application of markers to a lexicon is called a marking.

We have already seen that the exi marker is used for existentially filled
optional arguments, like the object of eat. The exi marker would also
be used for the optional prepositional phrases of passives. For verbs
that feature a different kind of optionality we use different markers.
A causative-unaccusative verb like sink has an optional object, that,
when missing, causes the deletion of the agent role. To specify this,
the refl marker is used:

SHAVE : nprefl → np→ s

For each type of optionality there is a different marker, these are
{exi, relf, recip} which are for existential, reflexive and reciprocal op-
tional arguments respectively.

5.3 Basic Optionalization Procedures

To define how the missing arguments should be handled, basic option-
alization procedures must be defined. A basic optionalization proce-
dure describes how a missing argument is handled in the simplest case.
For each kind of optionality a different basic optionalization procedure
is used.

5.3.1 exi: optionality marker for UO’s and Passives

exi is the marker used for arguments that should be optional, and that
when missing are interpreted as covert existentials.

The corresponding basic optionalization procedure, optexi, takes a sign
with one argument decorated with a exi optionality marker, and re-
turns a sign where the decorated arguments are optional. optexi is very
similar to the UO rule described in section 2. In fact UO has the same
effect as marking the object argument of a transitive verb with exi and
applying optionalization. Since optexi might be applied multiple times,
possibly in combination with other basic optionalization procedures,
we need to ensure that the existential closure of the missing argument
slot does not get in the way. To do this, the existential closure op-
erator CLOS is used instead of simple existential quantification. The
closure operator CLOS existentially saturates the first argument of a
function with the narrowest possible scope.

The CLOS operator is defined recursively over the Boolean types.
There are two cases:

57

(1.) If f is of type α→ t, CLOS is simply application of the existential
quantifier.
(2.) f is of type α → β, where β is Boolean, CLOS is recursively
applied so that the first variable is quantified over, while keeping the
remaining variables out of the scope of the existential quantifier.

CLOS is defined as:

(1.) CLOS(f : α→ t) = ∃zα.f(z) : t

(2.) CLOS(f : α→ β → γ) = λyβ.CLOS(λxα. f(x)(y))
(where γ is a Boolean type)

The CLOS operator is best understood by the effect it has: it exis-
tentially closes the first argument without obstructing the remaining
arguments.

The following example demonstrates the application of CLOS to the
2-place function like : eet. The first step is to apply the appropriate
case of CLOS, as its argument is of type eet, the case 2. applies. Fol-
lowing the definition of case 2. of CLOS introduces another instance
of CLOS, this time applied to the sub-term (λxe.like(x)(y)) : et. As
this term is of type et, case 1. of CLOS applies. Application of CLOS
introduces the existential quantifier that saturates the first argument.
After β-reduction we see that in the resulting term, the first argument
to like is existentially saturated, and the remaining argument is ab-
stracted over, and bound outside the scope of the quantifier.

CLOS(like : eet) = λye.CLOS(λxe.like(x)(y))
(CLOS, case 1.)

= λye.∃ze.(λx.like(x)(y))(z)
(β-reduction) : x is substituted by z

= λye.∃ze.like(z)(y)

The following example demonstrates the application of CLOS to the
3-place function give : eeet, which procedes similar to the previous
example, but with an extra application of CLOSto deal with the extra
argument. Once again, in the resulting term, the first argument is
existentially saturated, and the remaining arguments are abstracted
over and bound outside the scope of the quantifier.

58

CLOS(give : eeet) = λye.CLOS(λxe.give(x)(y))
(CLOS, case 2.)

= λye.λqe.CLOS(λpe.(λxe.give(x)(y))(p)(q))
(β-reduction : x is substituted by p)

= λye.λqe.CLOS(λpe.give(p)(y)(q))
(CLOS, case 1.)

= λye.λqe.∃z.(λpβ.give(p)(y)(q))(z)
(β-reduction : p is substituted by z)

= λye.λqe.∃z.give(z)(y)(q)

The existential optionalization procedure opt : (aexi → b)→ (a? → b)
is defined as:

opt

(
〈 P : fγ
, Q : αβ 〉 : aexi → b

)
=
〈 λx.option(x, P, P (ε)) : f?γ
, λx.option(x,Q,CLOS(Q)) : α?β 〉 : a? → b

(where β is a boolean type.)

The operator opt takes a sign of type aexi → b, of which the morpho-
syntactic component is a function from f to γ and the semantic com-
ponent is a function from α to β, where β is Boolean type, and returns
a sign of type a? → b. The morpho-syntactic component of the result
is a function from an optional string to γ. When the argument is
missing, it is resolved with an empty string. The semantic component
of the result is a function from an optional α to β. When the argu-
ment is missing, it is resolved with the CLOS operator, existentially
saturating the first argument.

5.4 Optionalization

5.4.1 The OPT operator

Using a recursive definition, the simple saturation procedure for the
different optionality markers can be extended to the general case when
possible, by using the appropriate optionalizing operator.

If β is a basic type, and α is not marked for optionalization, f is
returned unchanged:

OPT(f : α→ β) = f

If β is a basic type, and α marked with refl or recip, the corresponding
optionalizing operator is applied:

OPT(f : nprefl → np→ vp) = REFL(f)

59

OPT(f : nprecip → np→ vp) = RECIP(f)

If β is a basic type, and α is marked for optionalization with exi, the
basic optionalization procedure is applied:

OPT(f : αexi → β) = opt(f)

If β is a compound type, OPT is recursively applied:

OPT∗(f : αexi → β) = opt(λx.OPT ∗(f(x)))
OPT∗(f : α→ β) = λx.OPT ∗(f(x))

Below is an example of the application of OPT to a marked sign. We
start with a non-optional sign for the verb read:

READtv : np→ np→ vp =
〈 λo.λs.s • read • o : f f f
, λp.λa.λe.readet(e) ∧ AG(e, a) ∧ PAT(e, p) : eeet 〉

The first argument should be optional, and when the argument is
missing it should be interpreted existentially. We therefore mark the
first argument with the exi marker:

READtv : npexi → np→ vp =
〈 λo.λs.s • read • o : f f f
, λp.λa.λe.readet(e) ∧ AG(e, a) ∧ PAT(e, p) : eeet 〉

Next, we apply OPT*, which modifies the sign depending on the op-
tionality markers:

OPT(READtv) : npexi → np→ vp =
〈 λo.λs.s • read • o : f f f
, λp.λa.λe.readet(e) ∧ AG(e, a) ∧ PAT(e, p) : eeet 〉

As the first argument is marked with exi, the opt operator is applied.
After this, no optionality markers remain, so the rest of sign is not
affected by OPT∗

opt(READtv) : npexi → np→ vp =
〈 λo.λs.s • read • o : f f f
, λp.λa.λe.readet(e) ∧ AG(e, a) ∧ PAT(e, p) : eeet 〉

Application of opt makes the first argument optional. When the ar-
gument is missing, it is resolved using an empty string (ε) and CLOS.

60

opt(READtv) : npexi → np→ vp =

〈 λx.option(x, λo.λs.s • read • o, (λo.λs.s • read • o)(ε)) : f ?f f
, λx.option(x , λp.λa.λe.readet(e) ∧ AG(e, a) ∧ PAT(e, p)

,CLOS(λp.λa.λe.readet(e) ∧ AG(e, a) ∧ PAT(e, p))) : e?eet 〉
After application of CLOS we obtain the sign for read that allows un-
specified objects:

opt(READtv) : npexi → np→ vp =

〈 λx.option(x, λo.λs.s • read • o, λs.s • read • ε) : f ?f f
, λx.option(x , λp.λa.λe.readet(e) ∧ AG(e, a) ∧ PAT(e, p)

, λa.λe.∃p.readet(e) ∧ AG(e, a) ∧ PAT(e, p)) : e?eet 〉

5.5 The Optionalization Procedure vs Opera-
tors

Suppose PASStv’ is a rule that maps transitive verbs to their non-
optional passive form. It rearranges the word order, adds the auxiliary
verb was, and changes an np argument into a npby argument, but does
not yet optionalize any arguments.

PASStv′ : (np→ np→ vp)→ npby → np→ vp =
〈 λv.λo.λs.v(o)(s • was) : (f f f)f f f
, λv.λo.λs.λe.v(s)(o)(e) : (eeet)eeet 〉

So far this sign is fairly simple, but the by phrase argument is not op-
tional yet. Optionality can be added to this rule using the exi marker:

PASStv′exi : (np→ np→ vp)→ npexi
by → np→ vp =

〈 λv.λo.λs.v(o)(s • was) : (f f f)f f f
, λv.λo.λs.λe.v(s)(o)(e) : (eeet)eeet 〉

Application of OPT results in a sign equivalent to the PASStv operator
defined in the previous chapter:

PASStv : (np→ np→ vp)→ np?
by → np→ vp =

〈 λv.λo.λs.v(option(o, λo′.o′, ε))(s • was) : (f f f)f ?f f
, λv.λo.λs.λe.option(o ,λo′.v(s)(o′)(e),∃o′.v(s)(o′)(e)) : (eeet)e?eet 〉

The advantage of the optionalization procedure is that multiple op-
tional arguments are much easier to define. To define a passivization
operator for a ditransitive verb, which has two optional arguments, all
we need to do is add two exi markers to the abstract type:

61

PASSdtv′exi : (np→ np→ np→ vp)→ npexi
by → npexi

to → np→ vp =

〈 λv.λb.λt.λs.v(b)(t)(s • was) : (f f f f)f f f f
, λv.λb.λt.λs.λe.v(s)(t)(b)(e) : (eeeet)eeeet 〉

Application of OPT to this marked sign gives us the sign for passiviza-
tion of ditransitive verb:

PASSdtv : (np→ np? → np→ vp)→ np?
by → np?

to → np→ vp =

〈 λv.λb.λt.λs.v(option(b, λb′.b′, ε))(t)(s • was) : (f f ?f f)f ?f ?f f
, λv.λb.λt.λs.λe.option(b ,λb′.v(s)(t)(b′)(e)

,∃b′.v(s)(t)(b′)(e))
: (ee?eet)e?e?eet 〉

This complex sign is equivalent to the passivization operator given
in section 4.4.2, but is derived from a much simpler sign and a few
markers. The optionalization procedure introduces the nested option
operators that are needed to deal with the optional arguments.

The optionalization procedure provides a general way to add existen-
tial optionality to any sign. Extending this operation to a sign gram-
mar is trivial. A sign grammer is just a list of signs and a target type,
so optionalizing a sign grammar is done by marking and optionalizing
each of the signs in that list. The optionalization of grammars gives us
a modular way to deal with optionality, deriving complex grammars
with optionality from simple grammars without optionality, simply by
placing markers on the types.

5.6 Optionalization and Optional Verb Classes

Using these markers, we can refine table 3. The previous version
showed us the number and type of arguments required by each verb
class, and which of these arguments are optional. Using the optionality
markers, we can also specify for each verb class how these optional
arguments are interpreted when omitted.

62

Verb class Valence Abstract type Examples

intransitive 1 np→ vp run,fall
transitive 2 np→ np→ vp build, hit
transitive with
unspecified object

1 or 2 npexi → np→ vp eat, read

transitive with re-
flexive o. object

1 or 2 nprefl → np→ vp shave, dress

transitive with re-
ciprocal o. object

1 or 2 nprecip → np→ vp kiss, meet

passive transitive 1 or 2 npexi
by → np→ vp was build

ditransitive with
opt. indirect obj.

2 or 3 np→ npexi → np→ vp give

ditransitive with
opt to phrase

2 or 3 np→ npexi
to → np→ vp introduce

passive ditransi-
tive

1,2 or 3 npexi
by → npexi

to → np→ vp was given

Table 4: Types for verb classes with optionality markers.

6 Mixing Optional and Non-optional

Signs

In the last two chapters I have explained how option types can be used
to treat verbs with optional arguments and how to introduce optional-
ity with a general procedure. This optionalization procedure provides
a structured method to obtain a grammar with optional arguments
from a grammar with only obligatory arguments. Many constructions
in language do not feature optional arguments, and many of these con-
struction may need to interact with verbs with optional arguments.
In this section I will show that such interactions are possible, and that
their possibility follows from the rules of ACG with option types.

6.1 Coordination

Suppose we want to write a lexicon that allows us to derive the fol-
lowing sentences.

1. John works and sleeps.

2. John built and sold the car.

3. John worked and read.

4. John read and read a book.

63

In sentence (3.) and (4.) intransitive and transitive verbs are coordi-
nated with ambitransitive verbs. Assume that we have the following
types for the signs needed to analyze the sentences:

JOHN,CAR np
WORK, SLEEP np→ vp
SELL,BUILD np→ np→ vp

In general, and coordinates expressions with the same category. In cat-
egorial grammar, coordinating conjunctions have type X → X → X,
where X can be any suitable category. For intransitive (np → s) and
transitive verbs (np→ np→ s), the following lexical entries would be
sufficient to deal with coordination, and derive the sentences.

ANDiv (np→ vp)→ (np→ vp)→ (np→ vp)
ANDtv (np→ np→ vp)→ (np→ np→ vp)→ (np→ np→ vp)

Let iv be an abbreviation for np→ vp, tv for np→ np→ vp and av
for np? → np→ vp. Using the following types for and, we can analyze
sentence d1. and d2.:

d1 (ANDiv→iv→iv(WORKiv)(SLEEPiv))(JOHN)

d2 (ANDtv→tv→tv(BUYtv)(SELLtv))(CAR)(JOHN)

But what about coordinating a verb of type np→ np→ vp and verb
of type np? → np→ vp, such as READ and WORK? Because coordi-
nating conjunctions require that their arguments have the same type,
transitive verbs can be coordinated with transitive verbs, intransitives
with intransitives, but transitive or intransitive verbs cannot directly
be coordinated with ambitransitive verbs. Combining them would
lead to a type mismatch:

d3 (ANDiv→iv→iv(WORKiv)(WROTEav))︸ ︷︷ ︸
type mismatch iv 6=av

(JOHN)

d4 (ANDtv→tv→tv(BUYtv)(WROTEav))︸ ︷︷ ︸
type mismatch tv 6=av

(JOHN)

Another example of such a mismatch occurs with reflexivisation. In
Montagovian treatments and categorial grammars, reflexivisation is
modeled as a function from transitive verbs to intransitive verbs, where
the agent and patient refer to the same entity.14

14see section 4.3.3 for an explanation of SELF

64

SELF : (np→ np→ vp)→ np→ vp =
〈 λv.λs.v(himself)(s) : (f f f)f f
, λv.λa.λe.v(a)(a)(e) : (eeet)eet 〉

Using the definition above it is not possible to use a reflexive object in
combination with a transitive verb, like sink, with optional arguments,
because their types do not match. SELF expects an argument of type
np→ np→ vp, but SINK is of type np? → np→ vp.

• The car sold itself.
(SELFtv→iv(SELLtv))(CAR)

• The ship sunk itself.

(SELFtv→iv(SINKav))︸ ︷︷ ︸
type mismatch tv 6=av

(SHIP)

Many other constructions, like adverbs, reciprocals, passivization, and
many more, require similar interactions between signs with and with-
out optional arguments. It is of course possible to add extra entries
to cover all possible combinations of optional and non-optional argu-
ments, but again the number of combinations is vast. A general way
of letting signs with optional arguments interact with non-optional
components of the grammar is required, so that these components
can interact with the signs with optional arguments.
Luckily, in ACG with option types, any optional argument can be
omitted or made obligatory. A transitive with an optional argument
like READ : np? → np → vp can behave as an intransitive np → vp
or a transitive verb np → np → vp where needed. This casting of an
optional argument to its specific non-optional variants is a feature of
the ACG with option types system.

6.2 Getting rid of optional arguments

Changing an optional argument of some verb into an obligatory ar-
gument is conceptually very simple: we need to remove the question
mark from the type. This can always be done by hypothetical reason-
ing: assume some value, apply option injection to the assumed value,
use the injected value as the argument of the verb, and then discharge
the hypothesis by abstracting over the assumed value.

If we have a sign A : p? → q, making the optional argument obligatory
results in a sign A′ : p→ q
First, we assume a value (x : p), make it optional using option injec-
tion (x : p?), apply it to (A(x) : q), and finally discharge the assumed

65

value by binding it using a lambda (λx.A(x) : p→ q)).

This process is part of the grammatical system: application, option
injection and hypothetical reasoning are all part of the ACG system.
In some cases it is clearer to abbreviate the steps as a sign. Below is
an example of such a sign, that when applied to a transitive verb with
an optional object, returns a transitive verb.

RequireObjtv = RequireObj : (np? → np→ vp)→ np→ np→ vp =

〈 λv.λx.λy.v(x)(y) : (f ?f f)f f f
, λv.λx.λy.v(x)(y) : (e?eet)eeet 〉

RequireObj takes an ambitransitive verb sign with an optional first
argument, and returns a sign where that argument is no longer op-
tional. Below is a demonstration of RequireObj applied to the sign of
the ambitransitive verb eat. Note that the result of this has the form
of an ordinary transitive verb.

READ : np? → np→ vp =

〈 λo.λs.s • read • option(o, λo′.o′, ε) : f ?f f
, λp.λa.λe. readet(e) ∧ AG(e, a)∧

option(p ,λp′.PAT(e, p′)
,∃p′.PAT(e, p′)) : e?eet 〉

RequireObj(READ) : np→ np→ vp =
〈 λx.λy.y • read • x : f f f
, λx.λy.λe.readet(e) ∧ AG(e, y) ∧ PAT(e, x) : eeet 〉

Dropping an optional argument is even simpler. Here we only have to
fill the optional slot with ∗. If the optional argument is not the first
argument, we can introduce variables to saturate the other arguments,
then fill the optional argument with ∗, and then bind these variables
with lambda’s. This is again part of ACG’s general Hypothetical Rea-
soning.

If we have a sign A : p? → q, dropping the argument results in a A∗ : q
All that is needed is to fill the optional argument with the universal
filler A(∗) = q.
Similar to the RequireObj combinator that makes an optional object
required, there is a combinator that drops optional objects:

DropObj : (np? → np→ vp)→ np→ vp =

〈 λv.λy.v(∗)(y) : (f ?f f)f f
, λv.λy.v(∗)(y) : (e?eet)eet 〉

66

Application of DropObj to READ gives the intransitive form of read:

DropObj(READ) : np→ vp =
〈 λy.y • read • ε : f f
, λy.λe.readet(e) ∧ AG(e, y) ∧ ∃p′.PAT(e, p′) : eet 〉

Since such argument-requiring and argument-dropping combinators
are only composed of lambda abstraction, function application and
option injection such signs are combinators. A combinator is a lambda
term in which all variables are bound and that does not contain any
constants, and is therefore derivable. Because of this, there is no need
to define these combinators in the lexicon. These combinators are
simply abbreviations for common patterns used when working signs,
which are derivable from the rules of ACG with option types.

Any optional argument can be made obligatory or can be dropped at
any time, using a combination of hypothetical reasoning and option
injection, or by application of the universal filler ∗. The examples
above feature the simplest case, when there is only a single argument.
To extend the procedure to multiple arguments, we simply use hypo-
thetical reasoning to temporarily saturate the other arguments, and
discharge the hypothesis when the optional argument has been dealt
with.

6.3 Transforming Optional Grammars to Non-
Optional Grammars

Any sign grammar that has optional arguments can be transformed
into a grammar without optional arguments that generates the same
language. This transformation can easily be defined by dropping and
requiring each optional argument of each sign, in effect enumerating all
the combinations of provided and missing arguments. This deoption-
alization procedure shows that we can eliminate optional arguments
in a grammar, at the cost of more lexical entries. There are three
reasons for giving this de-optionalization procedure: The first reason
is that sometimes we need to eliminate the optional arguments in a
sign so can it can serve as an argument to a sign that expects a non-
optional sign as its arugment. We have seen some examples of this in
section 6. While this is already possible in ACG with option types, us-
ing Hypothetical Reasoning an option injection, the deoptionalization
procedure abbreviates the intermediate steps, which simplifies dealing
with optional arguments. The second reason is that it allows us to
compare signs with optional arguments or grammars with optionality
to other formalisms that do not accomodate optionality. The third

67

reason is to show the efficiency that can be achieved using option
types: a de-optionalized grammar will generate the same language
as a grammar with optional entries, but requires much more lexical
entries.

6.4 Basic Deoptionalization Procedure

To enumerate all possibilities, the implicit process of making optional
argument required (using Hyp. Reasoning an option injection) or get-
ting rid (using the null option as argument) of them, must be made
explicit. This is done using markers and basic procedures, much like
the optionalization procedure. Note that the deoptionalization proce-
dure is of a different nature than the optionalization procedure, as the
enumeration is already part of the grammatical system, as we have
seen in the previous section.

There are 3 things we can do with an optional argument: we can leave
it as it is, it can be made obligatory, or it can be dropped. The first op-
tion is trivial, for the other two there are two markers: ↓ which marks
an optional argument for removal, and ↑ which marks that an optional
argument should be made obligatory. These two de-optionalization
markers, D = {↓, ↑}, can only mark optional arguments. Similar to
how for each optionalization marker M there is a basic optionalization
procedure optM , there is a basic de-optionalization procedure deoptD
for each de-optionalization marker D. The basic de-optionalization
procedures are very simple:

deopt↓ = λf.f(∗) : (a? → b)→ b

fill the slot with ∗
deopt↑ = λf.λx.f(x) : (a? → b)→ a→ b

make the argument obligatory,
using option injection and hyp. reasoning

The general de-optionalization procedure is defined as:

DEOPT(f : α) = f
(if α is a basic type or contains no D markers)

DEOPT(f : α→ b) = λx.DEOPT(f(x))
DEOPT(f : α? → b) = λx.DEOPT(f(x))
DEOPT(f : α?D → b) = deoptD(λx.DEOPT(f(x)))

The effect of DEOPT to a marked function is that all marked optional
arguments will be either removed or made obligatory, depending on
the markings. If f is of a basic type, or contains no marked optional
arguments (no D markers), then DEOPT will return f unchanged. If

68

f ’s first argument is not marked, that argument will not be modified,
and DEOPT will recursively apply to the next argument. If f ’s first
argument is marked with a de-optionalization marker D, that argu-
ment will not be modified using deoptD, and DEOPT will recursively
apply to the next argument.

In the following example, DEOPT is applied to the sign for passive
introduce, which is marked such that the optional by phrase argument
will be removed, and the to phrase argument will be made required.

DEOPT(INTROpass : np?↓
by → np?↑

to → np→ vp)

= deopt↓(λx.DEOPT(INTROpass(x) : np↑?to → np→ vp)))

= deopt↓(λx.deopt↑(λy.INTROpass(x)(y) : np→ vp))

= deopt↓(λx.λy.INTROpass(x)(y) : npto → np→ vp)

= λy.INTROpass(∗)(y) : npto → np→ vp

Using DEOPT, ↑ and ↓ can be used as abbreviations for dropping
and requiring optional arguments. In fact, using de-optionalization
markers, combinators like DropObj can be derived from a trivial sign
with the appropriate markers. Suppose we have a sign DropObj’, of
which all components denote the identity function. Now we add the
↓ marker to the optional argument:

DropObj′ : (np?→ np→ vp)→ np↓? → np→ vp = 〈id, id〉

Application of DEOPT to this sign results in the optional object drop-
ping combinator DropObj

DEOPT(DropObj′) = DropObj

This demonstrates that adding de-optionalization markers and ap-
plying DEOPT can achieve the same as explicitly removing optional
arguments, but in a much more concise way.

6.5 Enumeration as a Grammar Transforma-
tion

Using DEOPT we can define a grammar transformation that gets rid
of all the optional arguments in the source grammar, while preserving
the language it generates.

Let allMarkings(f : t) function that takes a sign f of type t and
returns the set of signs with all possible markings of the optional ar-

69

guments of f .

There is a simple relation between the number of optional arguments
and the number of de-optionalization markings: if f has n optional
arguments, |allMarkings(f)| will be 2n

Example:
allMarkings(INTROpass : np?

by → np?
to → np→ vp)

= { INTROpass : np↓?by → np↓?to → np→ vp

, INTROpass : np↓?by → np↑?to → np→ vp

, INTROpass : np↑?by → np↓?to → np→ vp

, INTROpass : np↑?by → np↑?to → np→ vp

}
By applying DEOPT to all the marked versions of a sign s, all possi-
ble de-optionalized versions of s are obtained. This procedure is called
non-optionals, and is defined as:

non-optionals(s) = {DEOPT (s′) | s′ ∈ allMarkings(s)}

Let S = 〈I, S, d〉 be a sign grammar, and let S be the signs of G. The
de-optionalized signs of S, D(S), are given by the following procedure:

D(〈I, S, d〉) = 〈I, {s′ | s ∈ S, s′ ∈ non-optionals(s)}, D〉

For each sign s of the signs S of grammar G, enumerate all possible
de-optionalization markings s′. Apply DEOPT to these marked signs,
and collect all the results. The resulting grammar no longer contains
optional arguments, but may be much larger. For each sign with n
optional arguments in the source grammar, there will be 2n signs in
the de-optionalized grammar.

6.6 From Non-Optional Grammars to Optional
Grammars and back

To demonstrate the optionalization an enumeration procedure, I will
show a simple grammar without optionality can be extended with op-
tional arguments, and how to transform this extended grammar back
to a grammar without optional arguments:

The first step is marking: certain arguments that should be optional
are annotated using the optionalization markers which determine in

70

Table 5: Non-optional lexicon
Signs Abstract type Concrete components
shavetv np→ np→ vp 〈 λo.λs.s • shaves • o

, λp.λa.λe.shaveet(e) ∧ AG(e, a) ∧ PAT(e, p) 〉
eattv np→ np→ vp 〈 λo.λs.s • eat • o

, λp.λa.λe.eatet(e) ∧ AG(e, a) ∧ PAT(e, p) 〉
intropass npby → npto → np→ vp 〈 λb.λt.λs.s • was-introduced • b • t

, λa.λg.λp.λe. introduceet(e) ∧ PAT(e, p)
∧AG(e, a) ∧ GOAL(e, g) 〉

what way the argument will be optional. A marked lexicon contains
information about which arguments are optional and how they should
be interpreted when missing.

Table 6: Marked lexicon:
Signs Abstract type Concrete components
shavetv nprefl → np→ vp 〈 λo.λs.s • shaves • o

, λp.λa.λe.shaveet(e) ∧ AG(e, a) ∧ PAT(e, p) 〉
eattv npexi → np→ vp 〈 λo.λs.s • eat • o

, λp.λa.λe.eatet(e) ∧ AG(e, a) ∧ PAT(e, p) 〉
intropass npexi

by → npexi
to → np→ vp 〈 λb.λt.λs.s • was-introduced • b • t

, λa.λg.λp.λe. introduceet(e) ∧ PAT(e, p)∧
AG(e, a) ∧ GOAL(e, g) 〉

By using the optionalization procedure, the information about the op-
tionality of the arguments is taken from the level of types to the level
of terms, by making argument optional and inserting option operators
to deal with these optional arguments.

The optionalized entries can now deal with optional arguments, and
missing arguments will be resolved according to the basic optional-
ization procedure used to make the argument optional. ACG with
option types can account for interactions between signs with and with-
out optional arguments: argument dropping and argument requiring
are baked in the grammatical system, but for comparison with non-
optional frameworks, the enumeration transformations can be applied
to give an equivalent non-optional grammar.

The enumeration transformation is performed by decorating the op-
tional entries with all possible deoptionalization markers, and then

71

Table 7: The lexicon after optionalization:
Signs Abstract type Concrete components

shave np? → np→ vp 〈 λo.λs.s • shaves • option(o, λo′.o′, ε)
, λp.λa.λe.shaveet(e) ∧ AG(e, a)
∧option(p, λp′.PAT(e, p′),PAT(e, a))〉

eat np? → np→ vp 〈 λo.λs.s • eat • option(o, λo′.o′, ε)
, λp.λa.λe.eatet(e) ∧ AG(e, a)
∧option(p, λp′.PAT(e, p′),∃p′.PAT(e, p′))〉

intropass np?
by → np?

to → np→ vp 〈 λb.λt.λs.s •was-introduced
•option(b, λb′.b′, ε)
•option(t, λt′.t′, ε)

, λa.λg.λp.λe.introduceet(e) ∧ PAT(e, p)
∧option(a, λa′.AG(e, a′), ∃a′.AG(e, a′))
∧option(g, λg′.GOAL(e, g′), ∃g′.GOAL(e, g′))〉

applying the DEOPT procedure to each marked sign. The effect of
the transformation is that each possible combination of providing an
optional argument with an argument is enumerated explicitly in the
lexicon. The enumeration transformation demonstrates that a lexicon
with optional arguments can be ‘compiled’ to a lexicon without op-
tional arguments, eliminating the need for option types, at the cost of
multiple lexical entries.

72

Table 8: Deoptionalized lexicon
Signs Abstract type Concrete components

shaveiv np→ vp 〈 λo.λs.s • shaves
, λa.λe.shaveet(e) ∧ AG(e, a) ∧ PAT(e, a) 〉

shavetv np→ np→ vp 〈 λo.λs.s • shaves • o
, λp.λa.λe.shaveet(e) ∧ AG(e, a) ∧ PAT(e, p) 〉

eativ np→ vp 〈 λs.s • eat
, λa.λe.eatet(e) ∧ AG(e, a) ∧ ∃p.PAT(e, p) 〉

eattv np→ np→ vp 〈 λo.λs.s • eat • o
, λp.λa.λe.eatet(e) ∧ AG(e, a) ∧ PAT(e, p) 〉

intro np→ vp 〈 λb.λs.s • was-introduced
, λp.λe. introduceet(e) ∧ PAT(e, p)

∧∃a.AG(e, a)
∧∃g.GOAL(e, g) 〉

introby npby → np→ vp 〈 λb.λs.s • was-introduced • b
, λa.λp.λe. introduceet(e) ∧ PAT(e, p)

∧AG(e, a)∧
∃g.GOAL(e, g) 〉

introto npto → np→ vp 〈 λt.λs.s • was-introduced • t
, λg.λp.λe. introduceet(e) ∧ PAT(e, p)

∧∃a.AG(e, a)
∧GOAL(e, g) 〉

introby,to npby → npto → np→ vp 〈 λb.λt.λs.s • was-introduced • b • t
, λa.λg.λp.λe. introduceet(e) ∧ PAT(e, p)

∧AG(e, a)
∧GOAL(e, g) 〉

7 Conclusions

Q1: How can optionality be incorporated to a formal semantic-
syntactic framework?

Optionality can be added to a grammatical framework by adding
option types to the grammatical system. This addition consists
of three basic rules: option injection, universal filler introduc-

73

tion, and option analysis. Using these extension, it is possible to
mark arguments as optional.

Optional arguments can always be saturated with a special null
argument (the universal filler) which carries no information or
any appropriate ordinary argument (option injection). When a
function has an optional type as its argument, the value coming
from this optional argument might not carry any meaningful in-
formation. There are two cases: it might be the universal filler,
or an ordinary value which is promoted to an optional value
using option injection. To distinguish null values or option in-
jected ordinary values, a type of case analysis is needed. The
option operator takes an optional argument, a function to apply
to provided arguments, and a default argument in case the op-
tional argument is null. Depending on the case (filler or injected
value), the option analysis rule selects the appropriate case.

How an optional value is dealt with is defined lexically, separate
for each concrete component. In the morpho-syntactic compo-
nent, missing optional values are usually resolved using a null
string, and provided optional values are simply inserted at the
appropriate position. In some cases, a missing value may trigger
insertion of clitics, a change of morphology, or a change in word
order. In the semantic component, an unfilled optional value can
be resolved using a variety of methods: existential quantification,
reflexivization, omission, which explain the entailments between
a verb provided with different numbers of arguments.

This method of option types is in a sense too general: any-
thing can be optional, and unfilled optional arguments can be
resolved in any way. To impose restrictions on which compo-
nents can be optional, and how missing optional arguments are
resolved, we use optionality markers and basic optionalization
procedures. Optionality markers are type annotations that spec-
ify that an argument should be optional in a certain way. Each
marker has an associated basic optionalization procedure that
specifies how an unfilled optional argument should be filled, for
each concrete component. Using a recursive procedure, these
basic optionalization procedures are generalized to a general op-
tionalization procedure. The general optionalization procedure
maps non-optional entries with optionality markers to optional
entries, such that unfilled optional arguments will be resolved as
determined by their markers.

74

For understood existential arguments this optionalization pro-
cedure is general : any number of arguments may be marked as
optional. This elegantly covers cases such as passives of ditran-
sitive verbs, which have multiple optional argument that when
missing are interpreted as understood existentials. For other
types of optional arguments, the procedure we proposed is only
applicable for specific types of signs. Further research is needed
to determine which of the other optionalization strategies we
considered should and can be generalized.

Q2: How can a verb with an optional argument compose with
its argument when it is present?

The option type extension includes the option injection rule.
In combination with Hypothetical Reasoning any non-optional
value can be made into a provided optional value, so that any
allowing any suitable argument can be used as an optional argu-
ment.
These steps of composing a sign with an optional injected rule
can be abbreviated, by placing a ↑ or ↓ marker on the optional
argument and applying deoptionalization.

Q3: How can an argument of a verb be missing and affect
the interpretation of the verb?

When an argument is missing it is filled using the universal filler
∗ which ensures that the default value of the option operator is
returned. This default value can be anything, including an op-
eration that saturates the unfilled slot of the optional argument
using a variety of saturation procedures, like existential import,
reflexivisation, reciprocalization. These saturation procedures
give rise to the entailments between verbs supplied with differ-
ent numbers of arguments.

Q4: How can the narrow scope behavior of quantifiers intro-
duced by implicit arguments be explained?

Quantifiers introduced by missing arguments are introduced lex-
ically, within the denotation of the verb, and hence have narrow
scope with respect to quantifiers introduced elsewhere in the sen-
tence.

Q5: How should the syntactic and semantic differences be-
tween passives and unaccusatives be formalized?

75

Both verbs in passive voice and unaccusatives with a transitive
counterpart can be analyzed as having optional arguments. The
behaviors of the optional arguments of these two constructions
show some similarities. A passive verb takes an optional by
phrase as an argument, and an unaccusative takes an optional
agent argument. In both cases the agent argument is not oblig-
atory but optional. The difference is that when the optional
argument of a passive is missing the unfilled semantic slot is ex-
istentially saturated, whereas a missing agent of an unaccusative
is saturated by a neutral element. With passives the absence
of an optional argument will not reduce the number of roles in-
volved with the event, with unaccusatives the agent role is omit-
ted. The result of this is that missing arguments of passives give
rise to existential equivalences while missing arguments of unac-
cusatives only lead to a one way entailment. Another difference
is that a missing subject argument of an unaccusative causes a
change in word order: the obligatory object takes the place of
the missing subject. Finally, passive verbs can be derived from
active verbs by a grammatical process, passivisation, while, at
least in English, the derivation of the transitive counterpart of
an unaccusative is a lexical process.

7.1 Further Research

• The framework presented here does not accommodate inflection.
To keep the emphasis on arguments structure and optionality,
the system is kept as simple as possible. Inflection is of course
essential to a realistic grammatical framework. There are ex-
tensions to ACG and related systems to treat inflection (see
[de Groote and Maarek, 2007, Ranta, 2004]). Modifications to
the argument structure of verbs can affect case marking. It would
be interesting to see if it is possible to accommodate these case
markings in a such an extended framework with option types.

• Anaphoric implicit arguments cannot be analyzed in the given
framework, because the semantics I used is static: the mean-
ing of each sentence is analyzed in isolation. To accommodate
anaphoric optional arguments, the semantics for the semantic
component needs to be generalized to a dynamic semantics so
that an analysis of verbs with anaphoric optional arguments can
be given.

• I have not yet investigated the affects of adding option types and
optional arguments to the complexity of a grammar, it would be

76

very interesting to know to what the effects of adding option
types are on the difficulty of parsing and processing. I have
demonstrated how an optional grammar can be mapped to a
grammar without optionality, at the cost of lexical ambiguity.
Which would be easier to parse?

77

References

[Blom et al., 2012] Blom, C., de Groote, P., Winter, Y., and Zwarts,
J. (2012). Implicit arguments: Event modification or option type
categories? In Aloni, M. et al., editors, Proceedings of the Ams-
terdam Colloquium 2011, AC2011, volume 7218 of Lecture Notes
in Computer Science, LNCS, pages 240–250, Berlin/Heidelberg.
Springer.

[Bresnan, 1978] Bresnan, J. (1978). A realistic transformational
grammar. Linguistic theory and psychological reality, pages 1–59.

[Carlson, 1984] Carlson, G. (1984). Thematic roles and their role in
semantic interpretation. Linguistics, 22:259–279.

[Chomsky, 1965] Chomsky, N. (1965). Aspects of the Theory of Syn-
tax. The MIT press.

[Curry, 1961] Curry, H. (1961). Some logical aspects of grammati-
cal structure. In Structure of Language and its Mathematical As-
pects: Proceedings of the Twelfth Symposium in Applied Mathemat-
ics, pages 56–68.

[de Groote, 2001] de Groote, P. (2001). Towards abstract categorial
grammars. In Association for Computational Linguistics, 39th An-
nual Meeting and 10th Conference of the European Chapter, Pro-
ceedings of the Conference, pages 148–155.

[de Groote and Maarek, 2007] de Groote, P. and Maarek, S. (2007).
Type-theoretic extensions of Abstract Categorial Grammars. Un-
published ms.

[Dixon, 2000] Dixon, R. (2000). Changing valency: Case studies in
transitivity. Cambridge Univ Pr.

[Dowty, 1982] Dowty, D. (1982). Grammatical Relations and Mon-
tague Grammar. The nature of syntactic representation, pages 79–
130.

[Fodor and Fodor, 1980] Fodor, J. and Fodor, J. (1980). Functional
structure, quantifiers, and meaning postulates. Linguistic Inquiry,
11(4):759–770.

[Kanazawa, 2007] Kanazawa, M. (2007). Parsing and generation as
datalog queries. In ANNUAL MEETING-ASSOCIATION FOR
COMPUTATIONAL LINGUISTICS, volume 45, page 176.

[Landau, 2010] Landau, I. (2010). The explicit syntax of implicit ar-
guments. Linguistic Inquiry, 41(3):357–388.

[Landman, 2000] Landman, F. (2000). Events and plurality: The
Jerusalem lectures, volume 76. Kluwer Academic Pub.

78

[Levin, 1993] Levin, B. (1993). English verb classes and alternations:
A preliminary investigation, volume 348. University of Chicago
press Chicago, IL.

[Mittwoch, 1982] Mittwoch, A. (1982). On the difference between eat-
ing and eating something: Activities versus accomplishments. Lin-
guistic Inquiry, 13(1):pp. 113–122.

[Muskens, 2001] Muskens, R. (2001). Lambda grammars and the
syntax-semantics interface. In Proceedings of the Thirteenth Am-
sterdam Colloquium, pages 150–155. Universiteit van Amsterdam.

[Ranta, 2004] Ranta, A. (2004). Grammatical framework. J. Funct.
Program., 14:145–189.

[Salvati, 2010] Salvati, S. (2010). On the membership problem for
non-linear abstract categorial grammars. Journal of Logic, Lan-
guage and Information, 19(2):163–183.

[Winter and Zwarts, 2011] Winter, Y. and Zwarts, J. (2011). Event
semantics and Abstract Categorial Grammar. In Kanazawa, M.
et al., editors, Proceedings of Mathematics of Language, MOL12,
volume 6878 of Lecture Notes in Artificial Intelligence, LNAI, pages
174–191, Berlin. Springer-Verlag.

79

A The SIGNS interpreter

To learn more about ACG, to check the correctness of complex signs
and fragments, and to typeset signs, I have developed a simple inter-
preter for ACG with option types, named SIGNS. This section will
give a brief overview of the functionality of this tool and guide on
how to define a fragment, type check it, and how to export signs to
LaTex. A sign grammar is an ACG presented with the notation used
in this thesis, as a list of signs: abstract constants together with their
concrete terms.

A.1 Instructions

Defining a sign grammar

A sign grammar can be defined in a text file. It is defined by first
giving the names of the abstract component and the concrete com-
ponenent, which is done as follows:

component Abstract = <Syntax,Semantic>

Next we define the basic type interpretation function, which defines
how the abstract types are interpreted is given. This is simply a list
associating each basic abstract type with its concrete types:

type_interpretations =

[n = <f , e -> t >

, np = <f , e >

, s = <f , t >

, vp = <f , e -> t>

]

Next we can give a list of signs. The type of each constant has to
be defined usign ::, with the exception of strings (between double
quotes), and the predefined constants AG,PAT,GOAL, and the logical
operators. The syntax for lambda terms is standard, except that \ is
used instead of λ.

JOHN :: np =

< "John"

, (John :: e)

>

80

LIKES :: np -> np -> vp =

< \o.\s.s + "likes" + o

, \p.\a.\e.((Likes :: e -> t)(e)) /\ (AG e a) /\ (PAT e p)

>

SOMEONE :: (np -> s) -> s =

< \f.f("someone")

, \f.exists x.f(x)

>

READ :: np? -> np -> vp =

< \o.\s.s + "read" + option(o,\o’.o’,"")

, \p.\a.\e.((Read :: e -> t)(e)) /\ (AG e a)

/\ option(p,\p’.(PAT e p’),exists p’.PAT e p’)

>

Running SIGNS

The interpreter is started with the following commmand (provided
that Haskell is installed):

runhaskell Signs.hs

Entering :help displays the available commands, with instructions
on how to use them. Loading a grammar is done with the :load

command, for example, to load the grammar used in this theses, enter:

>:load opt

Now we can enter terms built out of the signs defined in opt.signs,
which are then typed and interpreted. For example, the sign for the
sentence Mary likes John:

>LIKES JOHN MARY

This displays the typed sign for the sentence if it is well-typed, or
gives an error message otherwise:

LIKES(JOHN)(MARY) :: vp =

< "Mary" + "likes" + "John" :: f

, \e.Likes(e) /\ AG(e,Mary) /\ PAT(e,John) :: et

>

Signs can be pretty printed as Latex files using the :savetex com-
mand. The following command saves the Latex representation of the
sign for the sentence Mary likes John to the file sent1.tex.

>:savetex sent1.tex LIKES JOHN MARY

81

This file can be included in a Latex file, it will be displayed as:

LIKES(JOHN)(MARY) : vp =
〈 Mary • likes • John : f
, λe.likeset(e) ∧ AG(e,marye) ∧ PAT(e, johne) : et 〉

A.2 Implementation

Internally, the interpreter uses different formulation of ACG, based
on the definitions given in [de Groote, 2001], as it is more suited for
implementation. In that flavor of ACG, application, abstraction, re-
duction are defined over lambda terms instead of tuples of lambda
terms. This makes it easier to use existing algorithms for reduction of
λ-terms and type inference.
Below is the definition of ACG used for the implementation in the
more traditional notation. There are some differences: the set of
terms over a signature are non-linear λ-terms rather than linear and
the addition of option types. I used non-linear lambda terms be-
cause certain linguistic phenomena which are relevant for the ques-
tions I wanted to answer, such as reflexivization, cannot be mod-
eled using linear λ-terms. For the purposes of this thesis, I ignored
some technical difficulties introduced by using non-linear λ-terms. See
[de Groote and Maarek, 2007] for discussion and solutions to these is-
sues.

82

B Option Types in ACG

Option types for traditional ACG’s.

B.1 Signatures

A signature is a triple of a finite set of basic types A, a finite set
of constants C and a typing function τ which assigns a type to each
constant in C.

Σ = 〈A,C, τ〉

B.2 Types

Let A be the set of basic types of a signature Σ. The set of types over
signature Σ, TΣ is defined inductively as:

if α ∈ A then α ∈ TΣ basic types
if α, β ∈ A then (α→ β) ∈ TΣ function types
if a ∈ TΣ then a? ∈ TΣ option types

The only addition to the definition of the types is the unary ·? type
constructor.

B.3 Terms

Let C be the set of constants of a signature Σ and V an infinite
countable set of λ-variables. The set of λ-terms over C, ΛΣ is defined
inductively as:

if c ∈ C then c ∈ ΛΣ constants
if v ∈ V then v ∈ ΛΣ variables
if x ∈ ΛΣ and v ∈ V then λv.x ∈ ΛΣ lambda abstraction
if m,n ∈ ΛΣ then m(n) ∈ ΛΣ function application
∗ ∈ ΛΣ null option
if x ∈ ΛΣ then x ∈ ΛΣ option injection
if x, y, z ∈ ΛΣ then option(x, y, z) ∈ ΛΣ option analysis

Note that there are three additions compared to the standard def-
inition of lambda terms: null option, option injection, and option
analysis. Beside the usual reduction rules for lambda calculus, these
additional reduction rules to handle option types:

option(x, f, d) ; f(x)

option(∗, f, d) ; d

83

B.4 Typing Rules

For each signature Σ, each term of that signature is associated with a
type of that signature by these typing rules:

Γ `Σ c : τ(c) (constant)

Γ, v : α `Σ v : α (variable)

Γ `Σ f : α→ β ∆ `Σ x : α
(application)

Γ,∆ `Σ f(x) : β

Γ, v : α `Σ m : β
(abstraction)

Γ `Σ λv.m : α→ β

Γ `Σ x : α
(option injection)

Γ `Σ x : α?

(universal filler)
Γ `Σ ∗ : α?

Γ `Σ x : α? Γ `Σ f : α→ β Γ `Σ d : β
(option elimination)

Γ, `Σ option(x, f, d) : β

B.5 Interpretation Functions

An interpretation function is defined as a pair 〈F,G〉, where

F : basic-types(A)→ TB
G : constants(A)→ ΛB

An interpretation function defines how to map constants and atomic
types from signature A to terms and types of signature B.
By taking the unique homomorphic extensions of F and G, we get a
map from terms and types of signature a to terms and types of signa-
ture B.

The unique homomorphic extension of F , F̂ is defined as:

F̂ (c) = F (c)

F̂ (v) = v

F̂ (m(n)) = (F̂ (m))(F̂ (n))

F̂ (∗) = ∗
F̂ (x) = F̂ (x)

F̂ (option(x, f, d) = option(F̂ (x), F̂ (f), F̂ (d))

84

The unique homomorphic extension of G, Ĝ is defined as :

Ĝ(a) = G(a)

Ĝ(α→ β) = Ĝ(α)→ Ĝ(β)

Ĝ(α?) = Ĝ(α)?

85

	Introduction
	Research Questions
	Research Methods
	The Position of the topic in the broader field of Artificial Intelligence
	Current Status of the Topic
	An outline of the structure of the thesis

	Background to Optional Arguments
	Arguments vs. Adjuncts
	Previous Accounts
	Types of Optional Arguments
	Issues with earlier accounts

	ACG with Option Types
	Components
	Types
	Type Mappings
	Terms
	Signs
	Sign grammars
	Linearity
	Optionality and Compositionality
	Understanding Option Types
	How to deal with optional values
	Events in ACG

	Signs for Verbs With and Without Optional Arguments
	Verbs with Obligatory Arguments
	Abstract Types and Argument Structure
	Verbs with Optional Arguments
	Optionalizing Operators
	Reflexive Optional Arguments

	General Optionalization
	Optionalizing a Sign Grammar
	Marking
	Basic Optionalization Procedures
	Optionalization
	The Optionalization Procedure vs Operators
	Optionalization and Optional Verb Classes

	Mixing Optional and Non-optional Signs
	Coordination
	Getting rid of optional arguments
	Transforming Optional Grammars to Non-Optional Grammars
	Basic Deoptionalization Procedure
	Enumeration as a Grammar Transformation
	From Non-Optional Grammars to Optional Grammars and back

	Conclusions
	Further Research

	The SIGNS interpreter
	Instructions
	Implementation

	Option Types in ACG
	Signatures
	Types
	Terms
	Typing Rules
	Interpretation Functions

