
.

Master’s Thesis

Combinatory algebras of functions
and their modest sets

Cas Velzel (3220877)

June 8, 2012

Utrecht University
Department of Mathematics
Mathematical Sciences
Supervisor : Jaap van Oosten

.

Abstract

We consider a general notion of computation on arbitrary sets, where every ele-
ment of the set acts as “program”, but also as “input”. We have a partial function,
“the application”, that sends a pair (x, y) to an element x · y. Think of this ele-
ment as the result of applying program x to input y. The axioms this application
has to satisfy, define the notion of partial combinatory algebra (PCA).
In this thesis we consider the set of all functions from A to A, for some infinite set
A. Define an application on this set by using the idea of interrogation: a function
asks questions of the form “what is your value at this element?” to a second
function. Use the so called sequential functions to investigate this application.
When A is the set of natural numbers, we can use topological properties. We also
consider the notion of modest sets on our partial combinatory algebra, with “com-
putable functions” between them. This notion can be related to the category of
equilogical spaces.

Contents

Introduction 3

1 Partial Combinatory Algebras 6
1.1 Basic definitions . 6
1.2 Useful elements and recursion . 9
1.3 Some examples of PCAs . 12
1.4 Assemblies and modest sets . 14

2 The PCA of functions 16
2.1 Interrogation . 16
2.2 Bisequential trees . 19
2.3 The elements k and s . 22
2.4 Functions on the natural numbers . 25

3 Modest sets 30
3.1 The category of modest sets . 30
3.2 Equivalence of Mod(K2(N)) . 32
3.3 Investigate Mod(K2(A)) . 34

Bibliography 39

1

.

2

Introduction
.

In parts of mathematics and theoretical computer science one considers “models of com-
putation”. When thinking about computation, one often thinks about Turing Machines.
A Turing Machine T , also called a program, is given by a finite number of instructions.
Say that program T is defined on input b if and only if the program computes in a finite
number of steps an output c, write T (b) = c. In any other case the program is not
defined on that input.

In recursion theory one considers programs that have as both input and output a nat-
ural number. An important concept is to code those programs by numbers themselves.
First define a coding of finite sequences of natural numbers. Assuming such a coding,
say that e ∈ N is a code for a program if and only if e is a code of a finite sequence of
instructions. This defines a partial function N × N ⇀ N denoted by (e, n) 7→ e · n as
follows: e ·n is defined if and only if the program with code e computes a value on input
n, in that case e · n is that value.

In this thesis we focus on the set AA, the set of all functions from A to A, for some
infinite set A. We would like to introduce a “model of computation” on this set.

Start by formalizing abstract notions of computability by considering partial combi-
natory algebras (or PCAs). The concept of a PCA was defined by S. Feferman [5] in
1975, it generalizes the notion of a total combinatory algebra introduced around 1920 by
M. Schönkfinkel [9]. In this thesis we think of a particular PCA as a particular model of
computation. The general idea is to consider a set D and define for every pair of elements
a, b ∈ D an application a · b, satisfying certain properties. The application is allowed to
be partial. A good intuition is to think of a as a “program” and b as the “input”. Then
a · b is the result of applying program a to input b. We give a proper definition and
find important elements in Chapter 1. We also take a look at some examples. Kleene’s
second model (example 1.13) is of particular interest.

As mentioned above, our goal is to define and investigate a PCA on the set AA.
This PCA was introduced by J. van Oosten [14]. For functions α, β : A → A we would
like to find an application α · β. We do this by introducing the notion of interrogation
(section 2.1). In such an interrogation the function α asks questions of the form “what
is your value at a ∈ A?” to the function β. After α has gathered enough information
about β, it gives a result (output). We stick to the idea that α may ask only a finite
number of questions, otherwise there is no result. The definition of the application is
strongly related to these interrogations. We introduce the notion of bisequential trees
and partial bisequential functions to learn more about the application. Using these
notions, it will follow that the application does indeed define a PCA on AA, denote this
PCA by K2(A). In the special case that A = N, we can describe the application using
topological properties. Of course, we should start by defining a topology on NN. In
section 2.4 we discuss this in some detail.

3

We consider a different point of view. Given the PCA K2(A) on set AA, we can
define “computable functions” between other sets X, Y . This is done by defining for
every value x ∈ X a subset E(x) ⊆ AA, say that the elements of E(x) “represent” x.
This idea is made precise by introducing the notion of modest sets on a PCA. We call
a function f : X → Y computable if and only if there is a program α ∈ AA that sends
each element representing x to an elements representing f(x). The modest sets together
with these functions form a category. In Chapter 3 we investigate this category, and
prove some properties. In this context it is interesting to consider the category Equ of
equilogical spaces. This category was first defined by D.S. Scott, take a look at [3] for
some historical background. It turns out that the category of modest sets on K2(N) (so
for the special case A = N) is equivalent to a full subcategory of Equ. In section 3.3 we
try to generalize the result to learn more about the modest sets on K2(A), for general
infinite sets A. Some results remain true, however we discover that for uncountable sets
A, a key result fails.

Prerequisites and Notation
This thesis is aimed primarily at master students mathematics. Below a short overview
of preliminaries.

1. Recursion Theory: recommended (but not mandatory). Some concepts, like se-
quence coding, are similar to concepts in recursion theory. If the reader is not
familiar with this field, the second part of section 1.2 and example 1.12 may be
difficult to understand. For an introduction consider the first chapter of [11].

2. Topology: experience with topology is assumed. Especially in section 2.4 and
moving forward. Some notes and a reference can be found at the start of that
section.

3. Category Theory: in Chapter 3 we use basic notions. The first two chapters,
skipping section 1.4, can be understood without any knowledge of category theory.
A text like [6] offers a good introduction.

About notation: Write N to indicate the set of natural numbers including zero, so
N = {0, 1, . . . }. In this thesis we often work with partial functions. Write f : A ⇀ B
to indicate that f is a partial function, meaning that dom(f) ⊆ A (equality is allowed).
When writing f : A → B we implicitly assume that f is total, so dom(f) = A. More
notation will be established in the thesis itself.

Acknowledgement
First of all I would like to thank my supervisor Jaap van Oosten for introducing me to
this subject and related articles, for helping me with problems and for his trust in my
abilities.

4

More general I would like to thank the staff at the Department of Mathematics in
Utrecht. In the past five years I have followed a lot of courses, that introduced me to all
kinds of subjects. Most of those subjects are very interesting, some I really like, and a
few I do not understand even in the slightest. Luckily the teachers are always open for
questions. Just as important: thanks to my fellow students for their help en friendship.
Working together with you was great fun, good luck to all of you.

Finally, I would like to thank my parents for their continued support.

5

1 Partial Combinatory Algebras
.

This chapter is an introduction to the notion of a partial combinatory algebra (PCA). We
will show basic properties and find important elements such as the fixed point operator.
The last section defines assemblies and modest sets which will be used later on.

1.1 Basic definitions
To give a definition of partial combinatory algebras, we consider partial maps.

Definition 1.1 A partial applicative structure is a pair (D, ·) consisting of a nonempty
set D and a partial map D ×D ⇀ D denoted by (a, b) 7→ a · b. This map is called the
application on D.

Often we just write a · b or ab to indicate the application of a to b. Note that the
application does not have to be associative. To reduce brackets, we adopt the conven-
tion of ’association to the left’: we write a ·b ·c ·d, or shorter abcd, instead of ((a ·b) ·c) ·d.

For partial applicative structure (D, ·) define the collection C(D, ·) of closed terms over
(D, ·) as the least collection satisfying:

· D ⊆ C(D, ·)
· if t ∈ C(D, ·) and r ∈ C(D, ·) then (tr) ∈ C(D, ·)

So a closed term is just a string of elements with some brackets in between. Again we
reduce brackets by the convention of association to the left. For example write tru to
indicate the term ((tr)u). Define a relation ↓ between closed terms and elements of D
as the least relation satisfying:

· a ↓ a for every a ∈ D
· tr ↓ a if and only if there are b, c ∈ D such that t ↓ b, r ↓ c and b · c = a

We write t ↓ a instead of the more formal notation (t, a) ∈↓. Say that a closed term
t denotes, write t ↓, if and only if there is a ∈ D such that t ↓ a. In the case that a
closed term denotes we make no distinction between this term and the unique element
it denotes. Given closed terms t, r, define t = r if and only if there is a ∈ D such that
t ↓ a and r ↓ a. Define t ' r if and only if either t = r or both t and r do not denote.
Using this notation we are ready to define the notion of a PCA.

Definition 1.2 Let (D, ·) be a partial applicative structure. Call (D, ·) a partial com-
binatory algebra (or PCA) if there are k, s ∈ D such that for all a, b, c ∈ D:

(i) kab = a

(ii) sab ↓
(iii) sabc ' ac(bc)

6

Note that the elements k, s do not have to be unique. We sometimes write (D, ·, k, s)
after we have chosen certain s, k ∈ D satisfying the definition.

To work with PCA’s we require some more tools. We use a similar approach as in [13].
First generalize the definition of closed terms. Let (D, ·) be a PCA and consider some
infinite set V of variables disjoint from D. Define the collection T (D, ·) of terms over
(D, ·) as the least collection satisfying:

· D ∪ V ⊆ T (D, ·)
· if t ∈ T (D, ·) and r ∈ T (D, ·) then (tr) ∈ T (D, ·)

Again, we reduce brackets by the same convention as before. Let t be a term and
x1, . . . , xn be variables. When writing t(x1, . . . , xn) we assume that all variables oc-
curring in t are among x1, . . . , xn. For a1, . . . , an ∈ D, the closed term t(a1, . . . , an) is
defined as the term where all variables xi are substituted by elements ai (use induction
on the construction of t to define this properly).

It is worth mentioning that the relation ↓ and ' can be extended to all terms. Say
that t ↓ and t ' s are true iff they are true for all possible substitutions of the variables
in t. Using terms and variables we can construct new terms with useful properties:

Definition 1.3 For each variable x and term t define a term 〈x〉t, the pre-substitution
of x in t, by induction on t as follows:

〈x〉t := kt if t is an element b ∈ D or a variable y different from x

〈x〉x := skk

〈x〉t1t2 := s(〈x〉t1)(〈x〉t2) if t is of the form t1t2 for some terms t1, t2

Using induction on t one can proof that the variables in 〈x〉t are exactly those of t
minus x, and that every substitution of the variables in 〈x〉t does denote. We will write
〈x1,, xn〉t to indicate 〈x1〉(〈x2〉(. . . (〈xn〉t) . . .)). On first sight terms of this form are
quite unwieldy, for example:

〈x, y〉xy = 〈x〉(〈y〉xy) = 〈x〉(s(〈y〉x)(〈y〉y)) = 〈x〉s(kx)(skk)

= s(〈x〉s(kx))(〈x〉skk) = s(s(〈x〉s)(〈x〉kx))(s(〈x〉sk)(〈x〉k)) = . . .

· · · = s(s(ks)(s(kk)(skk))(s(s(ks)(kk))(kk))

However the following results justifies the definition of these terms.

Proposition 1.4 Let (D, ·) be a PCA and t = t(x, x1, . . . , xn) be a term with x, x1, . . . , xn
variables. Then for all a, a1, . . . , an ∈ D we have:

(〈x〉t)a(a1, . . . , an) ' t(a, a1, . . . , an)

7

Proof: To clarify left-hand side notation, 〈x〉t is a term and so is (〈x〉t)a, in this last
term we substitute variables x1, . . . , xn by elements a1, . . . , an. The proof is by induc-
tion on t. We have that (〈x〉b)a = kba = b and (〈x〉xi)a(a1, . . . , an) = kaia = ai.
Also (〈x〉x)a = skka = ka(ka) = a. In the last case we obtain (〈x〉t1t2)a(a1 . . . , an) '
s(〈x〉t1)(〈x〉t2)a(a1, . . . , an) ' (〈x〉t1a(a1, . . . , an))(〈x〉t2a(a1, . . . , an)) on which to apply
the induction hypothesis. �

So we can think of (〈x〉t)a as the term t where every occurrence of variable x is replaced
by the element a. If x is the only variable in t, we really have (〈x〉t)a ' t(a).

The next theorem gives an alternative definition for the notion of PCA. It also
explains the word ’combinatory’, referring to combinatory completeness, used in the
name. This means that every definable term can be represented by an element, made
more precise below.

Theorem 1.5 Let (D, ·) be a partial applicative structure. Then (D, ·) is a PCA if and
only if for every n ∈ N and term t(x1, . . . , xn+1) there is an element a ∈ D such that for
all a1, . . . , an+1 ∈ D the following holds:

(i) aa1 · · · an ↓
(ii) aa1 · · · an+1 ' t(a1, . . . , an)

Proof: “⇒” Assume k and s satisfy definition 1.2. The term 〈x1, . . . , xn+1〉t is closed and
denotes, find the unique element a ∈ D such that a = 〈x1, . . . , xn+1〉t. Using proposition
1.4 it follows that (〈xj , . . . , xn+1〉t)(a1, . . . , aj−1)aj ' (〈xj+1, . . . , xn+1〉t)(a1, . . . , aj) for
all 1 ≤ j ≤ n + 1. This shows that aa1, . . . , an ' 〈xn+1〉t(a1, . . . , an) denotes and that
aa1, . . . , an+1 ' t(a1, . . . , an+1).

“⇐” Consider term t(x1, x2) := x1, find element k satisfying (i) and (ii) of the the-
orem above, then kab = a for all a, b ∈ D. Also define term r(x1, x2, x3) := x1x3(x2x3)
and find element s satisfying (i) and (ii) above, check that s satisfies definition 1.2 �

Before continuing, let us make some general remarks.

Remarks. (a) In abuse of notation, when there is no confusion about the application,
we often write D instead of (D, ·) to indicate the PCA.

(b) The PCA with just one element is denoted by 1. If D is non-trivial (contains more
than one element), then k 6= s. For suppose k = s, then skk = skk(skk) = kkk(skk) =
k(skk), the first equality follows since skka = a for all a ∈ D, the second equality uses
the assumption. It follows that a = skka = k(skk)a = skk for all a ∈ D, so all elements
are equal, contradiction.

(c) One can investigate structures not satisfying (i) of theorem 1.5. Define a conditional
partial combinatory algebra (c-PCA) as a partial applicative structure where, in theorem
1.5, we only require (ii) to be true. We can show this is equivalent with a partial
applicative structure satisfying (i) and (iii) of definition 1.2. Given a c-PCA we can find
a “corresponding” PCA that has properties is common with the c-PCA. Take a look at
[13] to learn more about this.

8

1.2 Useful elements and recursion
In this section consider a PCA D with a certain choice for k and s. Let us write i to
indicate skk and k̄ for ki. Then we have ia = a and k̄ab = b for all a, b ∈ D. Using
definition 1.3 one can find other closed terms with nice properties.

Proposition 1.6 Let D be a PCA, then there are closed terms p, p0, p1 such that for
all a, b ∈ D:

pab ↓ p0(pab) = a p1(pab) = b

Also, there is a closed term C, such that for all closed terms u, v:

Cuvk ' u Cuvk̄ ' v

Proof: Let p be the term 〈xyz〉zxy, define p0 as 〈x〉xk and let p1 be 〈x〉xk̄. Then for
all a, b ∈ D it is true that pab = 〈z〉zab denotes, and

p0(pab) = (pab)k = (〈z〉zab)k = kab = a

p1(pab) = (pab)k̄ = (〈z〉zab)k̄ = k̄ab = b

We have written equality since the right hand side always denotes. For the second part
let u, v be closed terms and consider C := 〈x1x2y〉y(〈z〉x1)(〈z〉x2)k. Note that 〈z〉u and
〈z〉v denote, even when u or v do not. This gives:

Cuvk ' k(〈z〉u)(〈z〉v)k ' (〈z〉u)k ' u

In similar way we obtain Cuvk̄ ' v, the desired result. �

The first terms in the proposition are used for pairing. In the second part k and k̄ are
used as the ’Booleans’ true and false respectively. If u, v, w are closed terms, we often
write: “if w then u, else v” to indicate the closed term Cuvw.

Remark. In general one can consider other Booleans >,⊥ ∈ D, given that there is a
term E such that E>ab = a and E⊥ab = b for all a, b ∈ D . Using these elements it is
possible to find an element C such that Cuv> ' u and Cuv⊥ ' v as in proposition 1.6.
However we stick with the standard choice: > = k, ⊥ = k̄ and E = i.

Our next goal is to define a ’primitive recursion operator’ in a PCA. First we show that
it is possible to represent the natural numbers inside a PCA.

Definition 1.7 The Curry numerals are defined in the following way, for each n ∈ N
define n ∈ D as follows:

0 = i

n+ 1 = pk̄n

9

Note that p00 = k and p0n = k̄ for all n ∈ N. Let D be non-trivial. Suppose k = k̄,
then k = kks = k̄ks = s, in contradiction to remark (b) from the previous section. This
shows that 0 6= n for all n ∈ N. Using induction on n we can show n 6= m for all m < n
(apply p1 on both terms). So in a non-trivial PCA all Curry numerals are distinct.

The following elements allow basic operations on the numerals.

Proposition 1.8 There are elements S,Z, P ∈ D with the property that for each n ∈ N

Sn = n+ 1, Z0 = k, Zn+ 1 = k̄, P0 = 0, Pn+ 1 = n

Proof: Define S as the closed term 〈x〉pk̄x, let Z be the element p0 and let P be
〈x〉p0x0(p1x). Check for yourself these elements have stated properties. �

Also consider the so called fixed point operator.

Proposition 1.9 There is an element z ∈ D such that for every f ∈ A:

zf ↓ and for all x ∈ D, zfx ' f(zf)x

Proof: Let u := 〈vwx〉w(vvw)x and define z := uu. Then zf ' uuf ' 〈x〉f(uuf)x, so
zf denotes, and zfx ' f(uuf)x ' f(zf)x. �

Using this operator and the Curry numerals we find the primitive recursion operator.

Theorem 1.10 There is an element R ∈ D such that for all g, h ∈ D and all n ∈ N :

Rgh0 ' g
Rghn+ 1 ' hn(Rghn)

Proof: Define element

R := 〈rghm〉Zm(kg)(〈x〉h(Pm)(rgh(Pm)i))

Note that Rrghm ' if Zm then kg else 〈x〉h(Pm)(rgh(Pm)i). Now define R as the
element:

R := 〈ghm〉zRghmi
Applying R on n+ 1 shows that:

Rghn+ 1 ' zRghn+ 1i

' R(zR)ghn+ 1i

' Zn+ 1(kg)(〈x〉h(Pn+ 1)(zRgh(Pn+ 1)i))i

' (〈x〉h(Pn+ 1)(zRgh(Pn+ 1)i))i ' hn(zRghni) ' hn(Rghn)

as desired. It is a good exercise to check that the first property stated in the theorem is
also true. �

The following proof uses the primitive recursion operator and gives some motivation
for the name. Some knowledge about recursion theory is required to understand the
proposition and the proof.

10

Proposition 1.11 Let D be a non-trivial PCA and F : Nk ⇀ N be a partial recursive
function. There is an element aF ∈ D such that for all n1, . . . , nk ∈ N the following is
true: if F (n1, . . . , nk) is defined, then aFn1 · · ·nk denotes and is equal to F (n1, . . . , nk).
Say that aF (weakly) represents F .

Proof sketch: Use induction on the recursive definition of F . We only mention the
two more difficult cases. Assume F is defined by primitive recursion from the functions
G : Nk → N and H : Nk+2 → N, so:

F (0, n1, . . . , nk) = G(n1, . . . , nk)

F (n+ 1, n1, . . . , nk) = H(n, F (n, n1, . . . , nk), n1, . . . , nk)

By induction hypothesis we find elements aG and aH representing G and H. Define
h := 〈m, r, x1, . . . , xk〉aHm(rx1 · · · xk)x1 · · · xk. Using theorem 1.10 we find an element
aF := RaGh, that represents F .

For the minimization case one can find elements M and M, like R and R from pre-
vious theorem, that allow minimization. We will not define those here. In this case it is
possible that aFn1 · · · nk denotes while F (n1, . . . , nk) is not defined. �

A complete proof of the proposition can be found in [4], however the approach of this
book is somewhat different from ours.

We end this section by defining a coding of finite sequence in D together with ba-
sic operations on these sequences. This is also mentioned in [13]. Start by defining,
inductively, maps Jn : Dn → D for n > 0 by:

J1(a) := pak

Jn+1(a1, . . . , an+1) := pa1J
n(a2, . . . , an+1)

Now for a finite sequence (a0, . . . , an−1) of elements in D, define its code [(a0, . . . , an−1)]D
as follows:

[()]D := p00 (n = 0)

[(a0, . . . , an−1)]D := pnJn(a0, . . . , an−1) (n > 0)

We often write [a0, . . . , an−1]D instead. With the help of theorem 1.10 we can find, for
example, elements lh, c, d ∈ D such that:

lh[a0, . . . , an−1]D = n

cm[a0, . . . , an−1]D = am (m < n)

d[a0, . . . , an−1]D[b0, . . . , bm−1]D = [a0, . . . , an−1, b0, . . . , bm−1]D

These elements represent basic operations on codes of sequences in D. Note that we can
take lh:= p0. For c first define g := 〈x〉p0(p1x) and h := 〈mru〉r(p1u), check for yourself
that c := Rgh satisfies the equation. Finding element d is left to the reader.

11

1.3 Some examples of PCAs
To familiarize oneself with the notion of PCA, it can be helpful to consider examples. Be-
low we take a look at three well-known examples. Our goal is to give a short introduction
of the PCA, we will not go in detail.

Example 1.12 Kleene’s first model
Let PR(1) be the set of partial recursive functions N ⇀ N and define ϕ : N → PR(1)

as the standard enumeration of those functions. So ϕn := ϕ(n) is the partial recursive
function of one variable with code n. Define application on N as n ·m := ϕn(m).

To show that there are elements satisfying definition 1.2 we make use the S-m-n
theorem. Consider function N × N → N defined by (a, b) 7→ a, let f as the code of this
recursive function. Let k be the code of a 7→ S1

1(f, a). Then k · a · b ' S1
1(f, a) · b ' a,

this is always defined. For element s considering a code of the partial recursive function
(a, b, c) 7→ a · c · (b · c) and apply the S-m-n theorem multiple times.

So N together with the application defines a PCA called Kleene’s first model, often
denoted by K1.

Example 1.13 Kleene’s second model
Let NN denote the set of all functions form N to N. We will define an application
on this set. First consider N∗, the set of all finite sequences of natural numbers. For
u = (n0, . . . , nk−1) ∈ N∗ a finite sequence, define the code of u as follows:

[(n0, . . . , nk−1)] :=
k−1∏
i=0

p1+ni
i

where pi is the (i + 1)-th prime number. Use the convention that the empty product
equals 1. Some other injective coding of finite sequences is also allowed. For α ∈ NN let
α �n := (α(0), . . . , α(n − 1)). In particular α � 0 = (). Every α ∈ NN defines a partial
function Iα : NN ⇀ N in the following way:

Iα(β) = n ⇐⇒ there is an m ∈ N such that α([β �m]) = n+ 1

and for all j < m it is true that α([β �j]) = 0

where β ∈ NN and n,m ∈ N. If such m,n do not exist, then Iα(β) is undefined.
For n ∈ N and α ∈ NN write (n) ∗ α to indicate the function f ∈ NN defined as

f(0) = n and f(n+ 1) = α(n). Thinking of α as an infinite sequence, then (n) ∗α is the
concatenation of sequences (n) and α. Now define the application on NN as follows: for
α, β ∈ NN define α · β as the function

α · β(n) := Iα((n) ∗ β)

given that Iα((n) ∗ β) is defined for all n ∈ N. Otherwise α · β is not defined.
The space NN together with this application is a PCA, denoted by K2. This can be

proven by finding elements k and s satisfying definition 1.2. We will not do this for the
moment.

12

In Chapter 2 we define an application on AA, the set of functions from A to A, for an
arbitrary infinite set A. In section 2.3 we show this application defines an PCA (by
finding elements k and s), which we denote by K2(A).

The PCA K2(N) for the case A = N will be very similar to K2. In fact they are
isomorphic in some sense, made more precise in the remark ending section 2.4. In that
section we also define a topology on NN and relate it to the application. It is for exam-
ple true that a function F : NN ⇀ N is of the form Iα for some α if and only if it is
continuous with open domain (see proposition 2.12 for a similar result in K2(A)).

Example 1.14 Scott’s Graph Model
Scott’s graph model is constructed on P(N), the power set of N. We define the appli-
cation, but will not study it any further. The properties mentioned below, written out
in detail, can be found in [10]. To understand the details, knowledge about topology is
required. We just mention the (topological) properties without proof.

Start with an enumeration {en |n ∈ N} of all finite subsets of N. Assuming that
m0 < · · · < mk−1, take for example:

en = {m0, . . . ,mk−1} ⇐⇒ n =
∑
i<k

2mi

So we have e0 = ∅, e1 = {0}, e2 = {1}, e3 = {0, 1} etc. Define a topology on P(N) by
taking as basic opens the sets:

Un := {x ∈ P(N) | en ⊆ x}

for n ∈ N. One should check that these sets indeed define a basis. Given this topology,
a function f : P(N)→ P(N) is continuous if and only if f(x) =

⋃
{f(en) | en ⊆ x} for all

x ∈ P(N). Write cont(P(N)) to indicate the set of all continuous functions. Also define
a coding [. , .] of pairs of natural numbers, for example:

[n,m] :=
1

2
(n+m)(n+m+ 1) +m

Consider the functions graph : cont(P(N)) → P(N) and fun : P(N) → cont(P(N)) de-
fined by

graph(f) := {[n,m] | m ∈ f(en)}
fun(u)(x) := {m | ∃n(en ⊆ x ∧ [n,m] ∈ u)}

Using properties of continuity it follows that fun(graph(f)) = f for every f ∈ cont(P(N)).
Furthermore the function x 7→ fun(u)(x) is continuous for every u ∈ P(N) and it has the
property that u ⊆ graph(fun(u)).

We now define the application map P(N)→ P(N) as follows:

u · x := fun(u)(x)

Note that the application is always defined.

13

A function f : (P(N))k → P(N) of k-variables is continuous if and only if it is
continuous in each of its variables separately. It is possible to show that (u, x) 7→ u ·x is
continuous in both of its variables. This shows that any closed term is continuous. With
some work it is possible to show that for any continuous function f : (P(N))k → P(N)
there is an u ∈ P(N) such that:

ux1 · · · xk = f(x1, . . . , xk)

for all x1, . . . , xk ∈ P(N). Combining the two results shows that the set P(N) together
with the application satisfies (ii) of theorem 1.5, so it defines a PCA. Of course we did
not prove the (non-trivial) properties mentioned above, it is just a sketch.

1.4 Assemblies and modest sets
In this section we introduce the notion of assemblies and modest sets on a PCA. We will
use those again (in particular the modest sets) in Chapter 3. Use notation P∗(D) :=
P(D) \ {∅}, the power set of D minus the empty set.

Definition 1.15 Let D be a PCA. An assembly X on D consists of a set |X| and a map
EX : |X| → P∗(D), write X = (|X|, EX). Call |X| the underlying set of X. If x ∈ |X|
and b ∈ EX(x) say that b represents x.
Let X,Y be two assemblies. A morphism f : X → Y is a function f : |X| → |Y | with
the property that there is an element r ∈ D such that for all x ∈ |X| and a ∈ EX(x), ra
denotes and is an element of EY (f(x)). Say that the element r tracks the function f .

To give some intuition about assemblies think of the set |X| as “values”. Every value
x ∈ |X| is represented by a set EX(x) of “machine level representations” of that value.
A certain PCA D can be seen as a model of computation. For b ∈ EX(x) and a ∈ D
we understand a · b as applying program a on some representation of x. So a morphism
f tracked by r is a function that can be computed in the PCA by program r. It sends
representations of x to representations of f(x).

Note that the identity function on an assembly X is tracked by i. When r tracks
f : X → Y and t tracks g : Y → Z, then the composition g ◦ f : X → Z is tracked
by the element 〈x〉t(rx). So the assemblies on D together with their morphisms form a
category, denoted by Ass(D).

Define the subcategory of modest sets by requiring an extra property.

Definition 1.16 Let D be a PCA, an assembly X on D is called a modest set if for all
x, x′ ∈ |X| the following is true:

if x 6= x′ then EX(x) ∩ EX(x′) = ∅

Write Mod(D) for the category of modest sets on D

14

In a modest set every element of D represents at most one value. When thinking of the
PCA as a model of computation, this is a nice property to have.

It is interesting to investigate the categorical properties of Ass(D) and Mod(D). For
example, it can be shown that both categories are catersian-closed, contain all finite
limits and are regular. These properties can be found in the thesis by J.R. Longley [7].
We will prove some of those properties in section 3.1 and we find a category that is
equivalent to Mod(D). In section 3.2 and 3.3 we investigate the category of modest sets
on the PCA of functions defined in Chapter 2.

Remark. In his thesis, Longley introduced a definition of morphisms between PCAs.
We define this for future reference, however it plays only a minor role in this thesis.

Definition 1.17 Let (D, ·) and (E, ?) be PCAs. An applicative morphism from D to
E is a function γ : D → P∗(E) with the property that there is an element r ∈ E such
that for all a, a′ ∈ D and b ∈ γ(a), b′ ∈ γ(a′):

if a · a′ denotes, then r ? b ? b′ denotes and r ? b ? b′ ∈ γ(a · a′)

Say that r realizes the applicative morphism γ.

In terms of computation: an applicative morphism γ realized by r means that any
program a ∈ D gives rise to programs r ? b ∈ E, for b ∈ γ(a). These programs send
representations of a′ to representations of a · a′ (if this is defined in D). We can think of
γ as an “implementation” of D on E.

It can be shown that the PCAs together with the applicative morphisms define a
category. We will not prove this.

15

2 The PCA of functions
.

The first sections define a PCA on the set AA (the set of function from A to A) for some
infinite set A. This PCA is thanks to J. van Oosten [14]. The application of this PCA is
studied in some detail. After that, we explore the special properties of the case A = N.

2.1 Interrogation
Let A be an infinite set. The first goal is to define an application (α, β) 7→ α · β on the
set AA. To do this, let A∗ be the set of all finite sequences of elements of A. Choose an
injective function f : A∗ → A.1 Use notation:

[a0, . . . , an−1] := f(a0, . . . , an−1) for a0, . . . , an−1 ∈ A

We call [a0, . . . , an−1] the code of finite sequence (a0, . . . , an−1). In some cases we write
[(a0, . . . , an−1)] to indicate the code. Let q̂ and r̂ be fixed and distinct elements of A,
called the ’query’ and ’result’. Define the following interaction between elements of AA.

Definition 2.1 For α, β ∈ AA, a ∈ A and u = (a0, . . . , an−1) a finite sequence, call u
an a-interrogation of β by α, if for each j ≤ n − 1 there is an element b ∈ A such that
α([a, a0, . . . , aj−1]) = [q̂, b] and β(b) = aj .

For fixed a ∈ A, any pair of functions α, β ∈ AA determine an unique sequence of a-
interrogations of β by α (also called the interrogation process), which can be finite or
infinite. Note that any such sequence starts with u = () for the case n = 0.

Let α, β ∈ AA and a ∈ A, we say that that ϕa(α, β) is defined with value c if and only
if there is a a-interrogation u = (a0, ..., an−1) of β by α such that α([a, a0, ..., an−1]) =
[r̂, c]. We call c the result of the interrogation u.

Using this we can define a partial function AA×AA ⇀ AA denoted by (α, β) 7→ α ·β
in the following way: α · β is defined if and only if for every a ∈ A, ϕa(α, β) is defined.
In that case, α · β is the function a 7→ ϕa(α, β).

To understand the definitions it is helpful to consider an example.

Example 2.2 Let A be an infinite set and assume N ⊆ A (otherwise find injective
function g : N → A). We define a function α ∈ AA as follows: for any sequence
(a, a0, ..., an−1) ∈ A∗ let:

α([a]) := [q̂, a] (n = 0)

α([a, a0, ..., an−1]) := [q̂, an−1] if n ≥ 1 and a 6= an−1

α([a, a0, ..., an−1]) := [r̂, n] if n ≥ 1 and a = an−1

1Such a function exists since A∗ and A are of equal cardinality.

16

To make α total define α(b) := [q̂, q̂] for all elements b ∈ A not yet in the domain. The
sequence coding is injective, so α is well-defined. Then α gives rise to a partial function
AA ⇀ AA defined by β 7→ α · β. Check for yourself that ϕa(α, β) is defined if and only
if there is n ∈ N such that βn(a) = a, (where βn := β ◦ ... ◦ β, composition n-times). So
α · β is defined if and only if for every a ∈ A there is n ∈ N such that βn(a) = a. In that
case α · β(a) = n, where n is the least number satisfying βn(a) = a.

Closely related to interrogations is the notion of partial sequential functions. Those
functions are defined using sequential trees. We call a function finite iff it has a finite
domain. For functions p, q : A ⇀ A we write p ⊆ q iff dom(p) ⊆ dom(q) and p(a) = q(a)
for all a ∈ dom(p).

Definition 2.3 Let A be an infinite set. Consider a set T of finite functions p : A ⇀ A
that contains the empty function and is ordered by inclusion. Call T a tree if for every
element p ∈ T the set {q ∈ T | q ⊆ p} is linearly ordered. The empty function is the root
of the tree. Element q is called an immediate successor of p, if p is the greatest element
below q. A path through the tree is a maximal linearly ordered subset and a leaf is a
maximal element.

A tree T is called a sequential tree if it has the property that for every p ∈ T which
is not a leaf, there is an element a /∈dom(p) such that if q is an immediate successors of
p in T , then dom(q) = dom(p)∪{a}. Call a sequential tree T total if for each non-leaf p,
with corresponding element a, the set of immediate successors is the set of all functions
satisfying dom(q) = dom(p)∪{a}.

If T is a total sequential tree, then any α ∈ AA determines an unique path through T :
the set {p ∈ T | p ⊆ α}. We use this in the following definition.

Definition 2.4 Call a partial function F : AA ⇀ A partial sequential if there is a total
sequential tree T and a function K from the set of leaves of T to A such that:

. · For any α ∈ AA, F (α) is defined if and only if the path through T determined by

. α ends in a leaf q.

. · In that case F (α) = K(q).

Sometimes we write ΦT,K to indicate the function F .

In a moment we show the relation between interrogations and partial sequential func-
tions. We first return to our example.

Example 2.2’ Let A be an infinite set such that N ⊆ A and let a ∈ A. We are going
to define a sequential function and compare it with β 7→ α · β(a) from example 2.2. The
sequential function is defined by constructing a sequence T0 ⊆ T1 ⊆ ... of sequential trees
and taking the union over this sequence.

Start by defining tree T0 consisting of the empty function, together with all finite
functions p satisfying dom(p) ={a}, and all p satisfying dom(p) ={a, a0} s.t. p(a) = a0.
Suppose Tk is defined, we construct Tk+1. Denote the set of leaves of Tk by L(Tk). For

17

p ∈ L(Tk), the tree induces a linear order on dom(p), write dom(p) = {a, a0, ..., an−1}.
Define sets Ep as follows: If an−1 = a, then Ep := ∅. Otherwise define:

Ep := {q : A ⇀ A | p ⊂ q ∧ dom(q)=dom(p) ∪ {p(an−1)} }

This allows us to construct the sequential tree:

Tk+1 := Tk ∪ (
⋃

p∈L(Tk)

Ep)

Note that Tk ⊆ Tk+1, let T be the union of the sequence T0 ⊆ T1 ⊆ For any leaf
p ∈ T we can again write dom(p) = {a, a0, ..., an−1}, define K(p) := n. This defines a
partial sequential function ΦT,K . Consider the element α ∈ AA defined in the previous
example. Check that ΦT,K(β) is defined if and only if there is n ∈ N such that βn(a) = a.
In that case we have ΦT,K(β) = ϕa(α, β). If for every b ∈ A there is n ∈ N such that
βn(b) = b, then ΦT,K(β) = α · β(a). Otherwise the right-hand side is not defined.

The example makes us believe there is indeed a relation between interrogations and
partial sequential functions. This is made precise in the following results.

Proposition 2.5 Let Fa : AA ⇀ A, a ∈ A, be a collection of partial sequential func-
tions. Then there is an α ∈ AA such that for all β ∈ AA and all a ∈ A, ϕa(α, β) is
defined if and only if Fa(β) is defined. In that case ϕa(α, β) = Fa(β).

Proof: Assume the functions Fa are sequential. For each a ∈ A find sequential tree
Ta and function Ka such that Fa is the function ΦTa,Ka . If p ∈ Ta, then any path
through p in Ta induces a linear order on dom(p), write dom(p) = {b0, ..., bn−1}. Also
write ai := p(bi) for i ≤ n − 1. Now define function α ∈ AA as follows: for any p ∈ Ta,
with notation as above, define:

α([a, a0, ..., an−1]) := [r̂, Ka(p)] if p is a leaf of Ta

α([a, a0, ..., an−1]) := [q̂, bn] otherwise

Where bn is the unique element of dom(q)−dom(p) for each immediate successor q of
p in the tree. Do this for all partial sequential functions Fa. Define α(c) := [q̂, q̂] for all
c ∈ A not yet in the domain of α, to make sure α is total. The reader should check that
α is well-defined and that it satisfies the proposition. �

Corollary 2.6 Let Fa : AA ⇀ A, a ∈ A, be a collection of partial sequential functions.
Then there is an α ∈ AA such that for all β ∈ AA:

α · β is defined if and only if Fa(β) is defined for all a ∈ A

And if α · β is defined, then α · β(a) = Fa(β) for all a ∈ A.

Proof: Apply proposition 2.5 to the functions Fa, the result follows by the definition of
the application (α, β) 7→ α · β. �

The following result is a converse of proposition 2.5.

18

Proposition 2.7 Let α ∈ AA and a ∈ A. Then the function Fa : AA ⇀ A defined by
β 7→ ϕa(α, β) is partial sequential.

Proof: Note that the definition of interrogation still makes sense when considering
finite functions p : A ⇀ A. Let (a0, . . . an−1) be an a-interrogation of p by α. We
find corresponding sequence (b0, . . . , bn−1) such that α([a, a0, . . . , ai−1]) = [q̂, bi] for all
i ≤ n−1. Define T0 as the set of all finite functions p such that there is an a-interrogation
(a0, . . . an−1) of p by α with the property that dom(p) = {b0, . . . , bn−1}. In other words:
all elements of dom(p) are used in the interrogation.

Claim: T0 is a total sequential tree. To show that for p ∈ T0 the set {q ∈ T0 | q ⊆ p}
is linearly ordered, let q, q′ ∈ T0 with q, q′ ⊆ p. Find a corresponding a-interrogation
(a0, . . . , an−1) of p by α in which all elements of dom(p) are used. The a-interrogations
of q and q′ by α, using all domain elements, are initial sequences of (a0, . . . , an−1). It
follows that q ⊆ q′ or q′ ⊆ q. The other properties are left to the reader to check.

Let p be a leaf of T0. Consider the following two cases: 1) the a-interrogation process
of p by α is infinite, so α keeps asking for information it already knows. Or 2) there
is some a-interrogation u of p by α such that α([u]) is neither a query nor a result. In
both cases find a set {e0, e1, . . . } ⊆ A− dom(p). Extend p by adding all finite functions
of the form p∪ r, where dom(r) = {e0, . . . , ei} for some i ∈ N. In any other case, do not
extend p. Doing this for all p ∈ T0 defines a sequential tree T .

For any leaf p of T there is an a-interrogation u of p by α such that α([u]) = [r̂, b] for
some b. Other cases are excluded by the previous step. Define K(p) := b. Check that
ΦT,K is the function Fa, so this function is partial sequential. �

Note that for α ∈ AA and a ∈ A the partial function β 7→ α · β(a) is in general not
partial sequential. The tree is (in general) not able to check if α · β is defined, we can
use example 2.2 to find a counter example.

2.2 Bisequential trees
It is still not proven that the application α · β defined in the previous section satisfies
the definition of a PCA. However, before showing that, we need to learn more about the
application. This is done by considering the notion of bisequential trees.

Definition 2.8 Let T be a set of pairs of finite functions (p, q), with p, q : A ⇀ A,
ordered by pairwise inclusion. Assume that T contains (∅, ∅), the pair of empty functions.
Call T a tree if for every pair (p, q) the set {(p′, q′) | p′ ⊆ p, q′ ⊆ q)} is linearly ordered.
Further definitions involving this type of tree, like immediate successors, are similar to
definition 2.3.

Call tree T a bisequential tree if for any non-leaf (p, q) either there is an element
a /∈dom(p) such that the set of immediate successors of (p, q) is the set of all pairs (p′, q)
satisfying dom(p′) = dom(p)∪{a}, or there is b /∈dom(q) such that the set of immediate
successors is the set of all pairs (p, q′) satisfying dom(q′) = dom(q)∪{b}. In the first case
call (p, q) a (0, a)-point. In the second case call (p, q) a (1, b)-point.

19

If T is a bisequential tree, then any pair α, β ∈ AA determines a unique path through T ,
the set {(p, q) ∈ T | p ⊆ α, q ⊆ β}. Similar to definition 2.4 a function G : AA×AA ⇀ A
is called partial bisequential if there is a bisequential tree T and function K, such that
G(α, β) is defined if and only of the path determined by α, β ends in a leaf (p, q). And
in that case K(p, q) = G(α, β). We will again write ΦT,K to indicate this function.

Bisequential trees are used primarily for finding elements γ ∈ AA with certain properties,
made more precise in the following lemma. We use this lemma in the next section to
show that (AA, ·) is indeed a PCA.

Lemma 2.9 Let Ga : AA×AA → A, a ∈ A, be a collection of total biseqential functions.
Then there is an element δ ∈ AA such that for all α, β ∈ AA and a ∈ A, δ ·α is defined,
(δ · α) · β is defined and ((δ · α) · β)(a) = Ga(α, β).

Proof: For every a ∈ A we find a bisequential tree Ta and function Ka such that Ga
equals ΦTa,Ka . Since Ga is total, every path in Ta is finite.

Let (p, q) ∈ Ta. Define P(p,q) := {(r, s) ∈ Ta : r ⊆ p, s ⊆ q} to indicate to path
through Ta up to (p, q). This path induces a linear ordering on the domains, write
dom(p) = {b0, ..., bn−1} and dom(q) = {d0, ..., dm−1}. Also define elements ai := p(bi)
and cj := q(dj) for all i ≤ n− 1 and j ≤ m− 1.

Find the least number l ≤ n−1 with the property that there is an (0, bl)-point (r, s) ∈
P(p,q) \ {(p, q)} such that every (r′, s′) ∈ P(p,q) \ {(p, q)} with r ⊆ r′ and s ⊆ s′ is also a
(0, x)-point, for some x. If such an l exists, consider u := ([a, c0, . . . , cm−1], al, . . . , an−1).
If there is no such number, let u := ([a, c0, . . . , cm−1]). We define the value of δ ∈ AA on
the element [u]. There are two cases, if (p, q) is not a leaf define:

δ([u]) := [q̂, b] if (p, q) is a (0, b)-point

δ([u]) := [r̂, [q̂, d]] if (p, q) is a (1, d)-point

for the unique b ∈ A or d ∈ A. In the case that (p, q) is a leaf, define:

δ([u]) := [r̂, [r̂, Ka(p, q)]]

Do this for all a ∈ A and (p, q) ∈ Ta. Check this is well-defined. Complete the definition
of δ by defining δ(c) := [r̂, r̂] for all c ∈ A not yet in the domain.

Now consider α, β ∈ AA and a ∈ A. By definition of δ and since every path through
Ta is finite, it follows that δ · α is defined. For (p, q) ∈ Ta on the path determined by
α, β we have that (δ · α)([a, c0, . . . , cj−1]) = [q̂, bj] for all j ≤ m− 1, using notation from
above. If (p, q) is a leaf, then also (δ · α)([a, c0, . . . , cm−1]) = [r̂, Ga(α, β)]. This shows
that ((δ · α) · β)(a) = Ga(α, β), convince yourself this is true. �

We can think of the following result as a ‘strong converse’ of lemma 2.9. The proof uses
similar ideas as the proof of proposition 2.7.

20

Proposition 2.10 Let δ ∈ AA such that δ ·α is defined for all α ∈ AA, let a ∈ A. Then
the partial function (α, β) 7→ ϕa((δ · α), β) is partial bisequential.

Proof: Let δ ∈ AA as above and let a ∈ A. Note that any two (finite) functions
p, q : A ⇀ A determine an unique, possible infinite, sequence:

(a0
0, . . . , a

n0−1
0 , c0, . . . , a

0
j , . . . , a

nj−1
j , cj , . . .) (2.1)

Such that for every j we find an element d and for each i ≤ nj − 1 we find b satisfying:

δ([[a, c0, . . . , cj−1], a0
j , . . . , a

i−1
j]) = [q̂, b] and p(b) = aij

δ([[a, c0, . . . , cj−1], a0
j , . . . , a

nj−1
j]) = [r̂, [q̂, d]] and q(d) = cj

So we have that (a0
j , . . . , a

nj−1
j) is an [a, c0, . . . , cj−1]-interrogation of p by δ.2 Note that

the sequence stops if δ does not give a query or result, or if the output is [r̂[r̂, y]] for
some y. It also stops if the information asked is not in the domain of q or p.

Build a sequence of bisequential trees T0 ⊆ T1 ⊆ Define T0 as the set of pairs
(p, ∅) such that there is an [a]-interrogation of p by δ in which all elements of dom(p)
are used, similar as in proposition 2.7. Suppose Tn is defined. Let (p, q) ∈ Tn be a leaf,
if the corresponding sequence defined in (2.1) is finite, consider two cases:

1. The sequence ends in (. . . , ai−1
j) and there is a d such that

δ([[a, c0, . . . , cj−1], a0
j , . . . , a

i−1
j]) = [r̂, [q̂, d]]

then add all pairs (p, q′) such that dom(q′) = dom(q)∪{d}.

2. The sequence ends in (. . . , cj−1) and there is a b such that

δ([[a, c0, . . . , cj−1]]) = [q̂, b]

then add all pairs (p′, q) extending (p, q) such that there is an [a, c0, .., cj−1]-
interrogation of p′ by δ in which all elements of dom(p′)−dom(p) are used.

In all other cases do not extend the leaf. Doing this for all leaves of Tn defines a extended
tree denoted by Tn+1. Define T̃ as the union of the sequence T0 ⊆ T1 ⊆ Let (p, q)
be a leaf of T̃ . Consider the cases where the sequence defined in (2.1) is infinite or the
next value asked by δ is neither a query nor a result. In those cases let {e0, e1, . . . } ⊆
A−dom(p) and add all pairs (p′, q) where p′ = p∪r with dom(r) = {e0, . . . , ei} for some
i ≥ 0. This defines a tree T .

For any leaf (p, q) ∈ T the sequence defined in (2.1) ends in (. . . , ai−1
j) for some

i ≥ 0 and j ≥ 0 and δ([[a, c0, . . . , cj−1], a0
j , . . . , a

i−1
j]) = [r̂, [r̂, y]] for some y. Define

K(p, q) := y, then ΦT,K is the function (α, β) 7→ ϕa((δ · α), β). �

2Also, one can think of (c0, . . . , cm) as an a-interrogation of q by δ · p. However δ · p is in general not
defined, so this is just for intuition.

21

2.3 The elements k and s
We are almost ready to show that AA with application (α, β) 7→ α · β defined in section
2.1, is indeed a PCA. This is done by showing the existence of elements k and s satisfying
definition 1.2. After we have established this fact, we write K2(A) := (AA, ·) to indicate
the PCA. The theorem below is also proven in [14]. Our proof has a similar outline.

We introduce some more terminology: Let T be a bisequential tree. For (p, q) ∈ T ,
the length of the path up to (p, q) is the number of elements in {(p′, q′) | p′ ⊆ p, q′ ⊆ q}.
Say that T is of height n if every path is of length≤ n and there is a path of exactly length
n. Recall that A∗ is the set of all finite sequences of elements of A. For u = (a0, . . . , an−1),
v = (b0, . . . , bm−1) finite sequences, define u ∗ v := (a0, . . . , an−1, b0, . . . , bm−1).

Theorem 2.11 Let A be an infinite set. The set AA together with the application
(α, β) 7→ α · β defines a partial combinatory algebra.

Proof: Define element k ∈ AA in the following way: k([[a]]) = [q̂, a] for all a ∈ A and
k([[a], a0]) = [r̂, [r̂, a0]] for all coded sequences of length two. Let k be the identity on all
other elements. It is straightforward to show that kαβ = α for all α, β ∈ AA (note that
kαβ is just short notation for k · α · β).

For s we want to find total bisequential functions Ga : AA × AA ⇀ A such that if δ
is as in lemma 2.9, then δαβγ ' (αγ)(βγ). Note that in this case δαβ receives as input
coded sequences of the form [(a) ∗ u], so we actually need to define functions G[(a)∗u] for
a ∈ A and u ∈ A∗.

First consider fixed α, β ∈ AA, let a ∈ A, and take a look at (αγ)(βγ)(a) for some
γ ∈ AA. Any finite function t (think t ⊆ γ) determines a, possible infinite, sequence:

(a0
0, . . . , a

n0−1
0 , e0, c

0
0, . . . , c

m0−1
0 , f0 . . . , a

0
j , . . . , a

nj−1
j , ej , c

0
j , . . . , c

mj−1
j , fj , . . .) (2.2)

such that for each j and i ≤ nj − 1 there is a bij satisfying:

α([[a, f0, . . . , fj−1], a0
j , . . . , a

i−1
j]) = [q̂, bij] and t(bij) = aij

α([[a, f0, . . . , fj−1], a0
j , . . . , a

nj−1
j]) = [r̂, [q̂, ej]]

and for each j and i ≤ mj − 1 there is a dij satisfying:

β([ej , c
0
j , . . . , c

i−1
j]) = [q̂, dij] and t(dij) = cij

β([ej , c
0
j , . . . , c

mj−1
j]) = [r̂, fj]

With this in mind we are ready to define bisequential trees T(a)∗u together with
function K(a)∗u, for a ∈ A and u finite sequences. This is done by induction on the
length of sequence u.

Start with a ∈ A and u = (). Define T(a) as {(∅, ∅)} together with the set of all
pairs (p, ∅) satisfying dom(p) = {[[a]]}. Let (p, ∅) be a leaf, if there is b ∈ A such that
p([[a]]) = [q̂, b], then define K(a)(p, ∅) = [q̂, b]. If there is y ∈ A such that p([[a]]) =
[r̂, [r̂, y]], define K(a)(p, ∅) = [r̂, y]. Otherwise let K(a)(p, ∅) = [q̂, q̂].

Now consider sequence u = (u0, . . . , un) of length n + 1. Let ũ = (u0, . . . un−1) and
assume tree T(a)∗ũ of height at most n + 2 has been defined. Let (p, q) be a leaf of

22

this tree. The unique path to (p, q) in T(a)∗ũ determines a finite function t: Consider
(p′, q′) ((p, q) and let i be the length of the path up to (p′, q′). If (p′, q′) is a (0, x)-point
and p(x) = [q̂, b], define t(b) = ui−1. If (p′, q′) is a (1, x)-point and q(x) = [q̂, d], define
t(d) = ui−1. Do nothing in any other case. The fact that t is well-defined follows from
the inductive construction of the tree (done below).

So for leaf (p, q) we have found a finite t. For this t we can find a maximal sequence
of length ≤ n + 1 satisfying (2.2), where p and q have the role of α and β respectively.
Extend tree T(a)∗ũ in the following cases:

1. The sequence ends in (a0
j , . . . , a

i−1
j) for some i ∈ N

(a) and p([[a, f0, . . . , fj−1], a0
j , . . . , a

i−1
j]) = [q̂, b], then add all pairs (p′, q) with:

dom(p′) = dom(p) ∪ {[[a, f0, . . . , fj−1], a0
j , . . . , a

i−1
j , un]}

(b) and p([[a, f0, . . . , fj−1], a0
j , . . . , a

i−1
j]) = [r̂, [q̂, ej]], add pairs (p, q′) satisfying:

dom(q′) = dom(q) ∪ {[ej]}

2. The sequence ends in (c0
j , . . . , c

i−1
j) for some i ∈ N

(a) and q([ej , c
0
j , . . . , c

i−1
j]) = [q̂, d], then add all pairs (p, q′) such that:

dom(q′) = dom(q) ∪ {[ej , c0
j , . . . , c

i−1
j , un]}

(b) and q([ej , c
0
j , . . . , c

i−1
j]) = [r̂, fj], add pairs (p′, q) satisfying:

dom(p′) = dom(p) ∪ {[[a, f0, . . . , fj]]}

In all other cases, do not extend the leaf. This defines a tree T(a)∗u. Let (p, q) be a leaf of
this tree. If (p, q) is defined by cases 1(a) or 2(a), define K(a)∗u(p, q) equal to [q̂, b] or [q̂, d]
respectively. If (p, q) is defined by case 1(b) or 2(b) define K(a)∗u(p, q) = [q̂, q̂]. Otherwise
(p, q) is already a leaf of T(a)∗ũ. In that case just define K(a)∗u(p, q) = K(a)∗ũ(p, q)
with one exception: if the maximal corresponding sequence (2.2) is of length n, ends in
(a0
j , . . . , a

i−1
j) and p([[a, f0, . . . , fj−1], a0

j , . . . , a
i−1
j]) = [r̂, [r̂, y]], then define K(a)∗u(p, q) =

[r̂, y]. This concludes the definition.
Tree T(a)∗u with function K(a)∗u define a total bisequential function, write G[(a)∗u]

to indicate this function. By adding some dummy functions we obtain functions Gb for
every b ∈ A. Applying lemma 2.9 we find an element δ ∈ AA such that δαβ([(a) ∗ u]) =
G[(a)∗u](α, β) for all a ∈ A, u ∈ A∗ and α, β,∈ AA. For γ ∈ AA, check that the following
is true: if αγ and βγ are defined, then δαβγ ' (αγ)(βγ). To offer some help: think of
u as a sequence of the form (a0

0, . . . , a
n0−1
0 , q̂, c00, . . . , c

m0−1
0 , q̂, . . .).

The most important work is done. However it is still possible that δαβγ is defined, but
αγ or βγ is not. To remedy this we define trees R(a)∗u extending T(a)∗u that also checks
if αγ (and later also if βγ) is defined.

23

Let a ∈ A. Any α ∈ AA and finite function t determine a, possible infinite, sequence
(v0, v1, . . .) such that any initial part is an a-interrogations of t by α. We adjust the
definition of T(a)∗u somewhat. Define R(a) equal to T(a). Assume R(a)∗ũ is defined.
Let (p, q) ∈ R(a)∗ũ be a leaf. If (p, q) ∈ T(a)∗ũ and K(a)∗ũ(p, q) = [r̂, y], let l := 0. If
(p, q) /∈ T(a)∗ũ and there is an i ≥ 1 such that L(a)∗ũ(p, q) = [q̂, vi−1], let l := i. In those
cases extend leaf (p, q) by adding pairs (p′, q) with:

dom(p′) = dom(p) ∪ {[a, v0, . . . , vl−1]} 3

Extend other leaves that are also in T(a)∗u using the construction of T(a)∗u. This defines
tree R(a)∗u. The function L(a)∗u is equal to K(a)∗u, except for leaves (p′, q) constructed
in the first two cases. If p′([a, v0, . . . , vl−1]) = [q̂, z], then define L(a)∗u(p′, q) = [q̂, vl]. If
p′([a, v0, . . . , vl−1]) = [r̂, z], define L(a)∗u(p′, q) = [r̂, y], where [r̂, y] is the result in tree
T(a)∗u on the path determined by (p′, q). Otherwise define L(a)∗u(p′, q) = [q̂, q̂].

For α, β, γ ∈ AA we now have: The path determined by α, β in R(a)∗u∗v ends in result
[r̂, y] if and only if the path in T(a)∗u ends in [r̂, y], and v is an a-interrogation of γ by α
with result. Applying lemma 2.9 to the total bisequential function determined by R(a)∗u
we find an element r ∈ AA. The intuition is that rαβγ(a) first determines the value that
(αγ)(βγ)(a) would take and then checks if (αγ)(a) is defined.

We again extend R(a)∗u to trees S(a)∗u such that S(a)∗u∗v∗w also checks if w is an
a-interrogation of γ by α with a result. Applying lemma 2.9 to functions determined by
S(a)∗u we find an element s ∈ AA, with the property that sαβγ ' (αγ)(βγ). �

As mentioned before, we write K2(A) to indicate the PCA.
We close this section with two remarks about interrogations and the corresponding

PCA application. Results that are related to both remarks can be found in [14].

Remarks. (a) The definition of K2(A) depends on a coding [·, . . . , ·] of finite sequences
and on a choice for the elements q̂ and r̂. In the case that A itself is a partial combinatory
algebra (A, ?), consider the coding [·, . . . , ·]A defined in the last part of section 2.2. Say
that K2(A) is based on (A, ?) iff in the definition of an interrogation we use [·, . . . , ·]A for
the coding and q̂ = k̄A, r̂ = kA (the elements k̄ and k in A) for the query and result.

Assuming that K2(A) is based on A, we can relate elements of A to functions in
AA. For example find an element r ∈ A such that r ? [[a]] = [k̄A, a] and r ? [[a], a0] =
[kA, [kA, a0]] for all a, a0 ∈ A. This is done by using basic operators from section 2.2.
Then a 7→ r ? a defines a partial function A ⇀ A. Any element of AA extending this
function satisfies the property of k in definition 1.2.

(b) The definitions and results from previous sections can be generalized to the set
part(A,A) of all partial functions A ⇀ A. We give a short overview.

The definition of interrogation and, subsequently, of the application on part(A,A) is
similar to that on AA. Only now α · β is defined for all α, β ∈part(A,A). Modify the

3It is possible that p is already defined on this element. In that case do not extend the tree, but do
adjust the value of L(a)∗u(p, q). From now on regard (p, q) as a leaf not occurring in T(a)∗u.

24

definition of partial sequential functions by also considering non-total trees or, equiva-
lently, by considering function K from the set of leaves to A that are partial. The notion
of bisequential functions is modified in a similar fashion.

After some adjustments, the results from previous sections still hold up. An ad-
vantage of part(A,A) with its application is that there are less restrictions to take in
account. For example proposition 2.7 now states:

Let α ∈ part(A,A) and a ∈ A. Then the function Fa : part(A,A) ⇀ A defined by
β 7→ α · β(a) is partial sequential.

Another example: after adjustment lemma 2.9 reads:

Let Ga : part(A,A)× part(A,A) ⇀ A, a ∈ A, be a collection of partial biseqential func-
tions. Then there is an element δ ∈ part(A,A) such that for all α, β ∈ part(A,A) and
a ∈ A, ((δ · α) · β)(a) is defined if and only if Ga(α, β) is defined, in that case they are
equal.

The proof of the lemma needs only slight modifications: the tree Ta can be non-total
and δ is allowed to be partial.

So it can be shown that part(A,A) together with its application is a PCA. Note
that if it is based on (A, ?), then every element of A really represents an element of
part(A,A). For example the partial function a 7→ r ? a form previous remark is an
element of part(A,A) that satisfies the property of k.

More results are in the article mentioned above. Take a look at [12] to learn more
about the PCA for the special case A = N and its connection to domain theory. We will
not study it any further.

2.4 Functions on the natural numbers
In this section we investigate the PCA K2(A) for the special case A = N. This is done
by defining a topology on NN and expressing the application of K2(N) in terms of con-
tinuous functions. Some familiarity with the basic notions of topology is assumed, those
notions can be found in any introduction book on topology, for example [8]. We keep
notation general, so we can compare our results with the general case.

Let ON be the discrete topology on N. Using the fact that NN =
∏
n∈NN, define the

product topology ONN on NN. The basic opens of this topology are sets of the form:

Op := {β ∈ NN | ∀n ∈ dom(p) . β(n) = p(n)}

for finite functions p. From now on we assume NN is induced with the topology ONN . In
abuse of notation we write NN instead of (NN,ONN) to indicate the topological space.

We extend notation “'” used in PCA K2(N) to partial functions. If g, h are partial
functions write g(x) ' h(x) iff either both g and h are defined and equal in x, or both
are not defined in x. Let us first take a look at partial functions F : NN ⇀ N. We use
the notation ϕa(α, β) defined in section 2.1.

25

Proposition 2.12 Let F : NN ⇀ N a partial function and let n ∈ N be arbitrary, but
fixed. The following are equivalent:

(i) there is an α ∈ NN such that F (β) ' ϕn(α, β), for all β ∈ NN

(ii) F is a continuous function with open domain

Proof: “(i)⇒ (ii)” Assume α ∈ NN satisfies (i). We want to show that for every m ∈ N,
the set F−1({m}) = {β ∈ NN |ϕn(α, β) = m} is open. Let β ∈ F−1({m}), then there is
an n-interrogation (n0, . . . , nk−1) of β by α such that α([n, n0, . . . , nk−1]) = [r̂,m]. Find
the corresponding vi ∈ N satisfying α([n, n0, . . . , ni−1]) = [q̂, vi] for i ≤ k − 1. Define
finite function p : {v0, . . . , vk−1} → A, by p(vi) := ni. Then β ∈ Op ⊆ F−1({m}), so F
is continuous. This also shows that dom(F) =

⋃
m∈N F

−1({m}) is open.
“(ii) ⇒ (i)” Assume F is continuous with open domain. So for every β ∈dom(F)

there is m ∈ N and finite function p such that:

β ∈ Op ⊆ dom(F) ∧ ∀γ ∈ Op . F (γ) = m (2.3)

Define α([n]) := [q̂, 0]. Let u = (n0, . . . , nk−1) ∈ N∗. If there is m ∈ N and finite p
satisfying (2.3) such that dom(p) ⊆ {0, . . . , k−1} and p(i) = ni for all i ∈dom(p), define
α([n, n0, . . . , nk−1]) := [r̂,m]. If not let α([n, n0, . . . , nk−1]) := [q̂, k]. For c ∈ N not yet
in the domain, define α(c) := [q̂, q̂]. Check that ϕn(α, β) ' F (β) for all β ∈ NN. �

Note that the direction (ii)⇒ (i) uses the countability of N, but the other direction does
not. Another remark is that using proposition 2.7 and proposition 2.5, with Fa = F for
all a ∈ N, the conditions are equivalent with F being partial sequential.

We turn our attention to partial functions of the form F : NN ⇀ NN. The results
below, proven for the PCA of example 1.13, can be found in the PhD thesis of A. Bauer
[2]. We have modified the proofs to fit our (more general) approach. See also the remark
at ending this section.

For partial functions f, g : A ⇀ B call g an extension of f iff dom(f)⊆dom(g) and
f(a) = g(a) for all a ∈dom(f). Some extra notation: For u = (n0, . . . , nk−1) ∈ N∗,
define the finite function ū : {0, . . . , k − 1} → N, by ū(i) := ni for all i ≤ k − 1. Also
define lh(u):= k, in particular lh(()) = 0.

Theorem 2.13 (Extension Theorem) Every partial continuous function F : NN ⇀
NN can be extended to a partial function of the form β 7→ α · β.

Proof: Let F : NN ⇀ NN be partial continuous. Consider for each n ∈ N the set

Bn := {(u,m) ∈ N∗ × N |Oū ∩ dom(F) 6= ∅ ∧ ∀β ∈ Oū ∩ dom(F) . F (β)(n) = m}

Define α ∈ NN in the following way:

α([(n) ∗ u]) = [q̂, lh(u)] if n ∈ N, u ∈ N∗ and there is no m ∈ N s.t. (u,m) ∈ Bn
α([(n) ∗ u]) = [r̂,m] if n ∈ N, u ∈ N∗, m ∈ N and (u,m) ∈ Bn
α(c) = [q̂, q̂] in all other cases

26

Note that any n-interrogation of some β by α is of the form (β(0), . . . , β(k − 1)). Now
let β ∈dom(F), n ∈ N and define m := F (β)(n). Since F is continuous, the set
{γ ∈ NN |F (γ)(n) = m} is open in dom(F), so there is a finite function p ⊂ β such that
Op ∩dom(F) is contained in that set. Let v := (β(0), . . . , β(l)) where l is the largest
element of dom(p), we have that (v,m) ∈ Bn. This shows that ϕn(α, β) is defined and
equal to m. This is true for all n ∈ N, so αβ is defined and αβ(n) = F (β)(n). It follows
that αβ = F (β) for all β ∈ dom(F). �

A set U is called Gδ if it is a countable intersection of open sets. The following lemma
will be of help:

Lemma 2.14 Let U ⊆ NN be a Gδ set, then there is ν ∈ NN with the property:

ν · α is defined if and only if α ∈ U

Proof: Let U be Gδ. Find open sets Ci such that U =
⋂
i∈NCi. Using the fact that

the base of NN is countable and that Ci is open, we find finite functions pi,j such that
Ci =

⋃
j∈NOpi,j , this shows:

U =
⋂
i∈N

⋃
j∈N

Opi,j

Define element ν ∈ NN as follows:

ν([(i) ∗ u]) = [q̂, lh(u)] if i ∈ N, u ∈ N∗ and there is no j ∈ N s.t. pi,j ⊂ ū
ν([(i) ∗ u]) = [r̂, r̂] if i ∈ N, u ∈ N∗, and pi,j ⊂ ū for some j ∈ N

And let ν(n) = [q̂, q̂] for all other elements to make it total. Now consider α ∈ NN such
that να is defined. Let i ∈ N, by inspecting the definition of ν we find an k ∈ N with
the property that ν([i, α(0), . . . , α(k − 1)]) = [r̂, r̂]. So there is j ∈ N such that pi,j ⊆ α,
which implies that α ∈ Opi,j . Doing this for every i ∈ N shows that α ∈ U .

For the converse assume α ∈ U . Let i ∈ N, we find j ∈ N such that α ∈ Opi,j . This is
equivalent with pi,j ⊆ α, so we find k ∈ N large enough s.t. for u = (α(0), . . . , α(k − 1))
we have pi,j ⊆ ū. It follows that ν([(i, α(0), . . . , α(k − 1))]) = [r̂, r̂], implying that
να(i) = r̂. Doing this for all i ∈ N shows that να is defined. �

Using this lemma in combination with the other results we can describe the application
in terms of continuity.

Theorem 2.15 Let F : NN ⇀ NN be a partial function. The following are equivalent:

(i) there is an α ∈ NN such that F (β) ' α · β, for all β ∈ NN

(ii) F is a partial continuous function with Gδ−domain

Proof: “(i)⇒ (ii)” Assume that F is the function β 7→ α ·β. Let p be a finite function,
note that: F−1(Op) = (

⋂
n∈ dom(p){β ∈ NN |ϕn(α, β) = p(n)})∩dom(F). By proposition

27

2.12 every set in the finite intersection (with index set dom(p)) is open, so F−1(Op) is
open in dom(F), this shows that F is continuous. The domain of F is given by:

dom(F) = {β ∈ NN |αβ is defined}

=
⋂
n∈N
{β ∈ NN |ϕn(α, β) is defined} =

⋂
n∈N

⋃
m∈N
{β ∈ NN |ϕn(α, β) = m}

The right-hand side set is open. So dom(F) is a countable intersection of open sets.
“(ii) ⇒ (i)” Let F be a partial continuous function with Gδ-domain. By theorem

2.13 we find an γ ∈ NN such that γβ = F (β) for all β ∈ dom(F). By lemma 2.14 we
find element ν ∈ NN such that νβ is defined if and only if β ∈ dom(F). Now consider
element α := 〈x〉k̄(νx)(γx) of NN, with k̄ as in section 1.2. Then αβ ' k̄(νβ)(γβ) is
defined if and only if β ∈ dom(F). In that case αβ = F (β). �

We promised to investigate the relation between Kleene’s second model (example 1.13)
and our PCA. We do this in the following remark.

Remark. As mentioned before, the last three results in this section are based on [2].
However in that thesis, as in most literature, the application on NN is defined as we
have done in example 1.13. Let us write ? for the application and b·, . . . , ·c for sequences
coding defined in that example. Just write · and [·, . . . , ·] for the application and coding
of K2(N).

The PCAs defined by these applications are isomorphic in the following sense: There
are elements γ, δ ∈ NN such that for all α, β ∈ NN we have γ · α · β ' α ? β and
δ ? α ? β ' α · β. In terms of definition 1.17: the function α 7→ {α} is an applicative
morphism from (NN, ?) to (NN, ·) and is an applicative in the other direction, realized
by elements γ and δ respectively. We define elements γ and δ below. The definitions are
quite technical, my advice is to focus on the general idea.

We would like γ to “simulate” the application α ? β for every α, β ∈ NN. Start by
defining γ([[n]]) := [q̂, b c] and γ([[n, n0, . . . , nk−1]]) := [q̂, bn, n0, . . . , nk−2c]. Consider
sequences of the form u = ([n, n0, . . . , nk−1], a), we define γ on the code of these sequences
as follows: If a = 0, then γ([u]) := [r̂, [q̂, k]], if a > 0, then γ([u]) := [r̂, [r̂, a − 1]]. Also
define γ([a0, a1, a2]) := [r̂, q̂] and let γ(m) := [q̂, q̂] on all other elements. Check that
γ ·α always denotes and that γ has the desired property. Hint: think of ni as the values
β(i) and a as the values α(b((n) ∗ β)� kc).

Finding element δ is less straightforward. The idea is that δ gathers information
about α and β, until it knows enough. Start with δ(b c) := 0 and δ(bb cc) := 1. We
define δ on sequences v = (bn, n0, . . . , nk−1c,m0, . . . ,ml−1). Consider finite functions
p : {0, . . . , l − 1} → N and q : {0, . . . , k − 1} → N defined by p(i) := mi and q(i) := ni.
Find a maximal n-interrogation u = (a0, . . . , aj−1) of q by p. If the interrogation is finite,
define δ as follows:

δ(bvc) := 0 if [(n) ∗ u] /∈ dom(p)

δ(bvc) := 1 if p[(n) ∗ u] = [q̂, b] for some b

δ(bvc) := y + 2 if p[(n) ∗ u] = [r̂, y]

28

In the second case it is true that b /∈ dom(q), otherwise the interrogation u is not
maximal. In any other case define δ(bvc) := 1. Think of p and q as initial parts of α
and β respectively. Then δ is defined on sequences of the form b((b((n) ∗ β) �k c) ∗ α) �
l c = bbn, β(0), . . . , β(k − 2)c, α(0), . . . , α(l − 2)c. Define δ(m) := 1 on all the elements
not yet in the domain. On should check that δ is well-defined and that δ ? α denotes for
every α ∈ NN. Inspecting the definition shows that δ ? α ? β ' α · β for all α, β ∈ NN.

29

3 Modest sets
.

In the first section the category of modest sets, as defined in section 1.4, is studied. After
that we introduce a subcategory of Top, the category of topological spaces. This allows
us to investigate the modest sets on K2(A), for both A = N and A arbitrary.

3.1 The category of modest sets
To learn more about the category of modest sets on a PCA, see definition 1.16, we con-
sider the category of partial equivalence relations on that PCA. We show these categories
are equivalent.

Definition 3.1 Consider a PCA (D, ·). A partial equivalence relation, denoted by ≡X ,
is a symmetric and transitive relation on D. We sometimes write X instead of ≡X to
indicate the relation.

Let X and Y be two partial equivalence relations on D. Call r ∈ D equivalence
preserving when for all a, b ∈ D the following is true: if a ≡X b, then r · a ↓, r · b ↓ and
r · a ≡Y r · b. Two equivalence preserving elements r, t ∈ D are considered equivalent
when for all a, b ∈ D: if a ≡X b, then r · a ≡Y t · b. A morphism JrK : X → Y is an
equivalence class of equivalence preserving elements of D.

The partial equivalence relations, regarded as objects, together with their morphisms
form a category which is denoted by Per(D). The equivalence class of element i fulfils
the role of identity morphism. The composition of JrK : X → Y and JtK : Y → Z is the
morphism J〈x〉t(rx)K : X → Z.

We use notation J.K for equivalence classes, instead of the usual notation [.], to avoid
confusion with the sequence coding of Chapter 2.

Remember that two categories C, D are equivalent iff there is a full and faithful
functor G : C → D that is essentially surjective on objects. This last property means
that for every object Y of D we can find an object X of C such that Y is isomorphic to
G(X) in D.

Proposition 3.2 Let D be a PCA. The categories Mod(D) and Per(D) are equivalent.

Proof: Define a functor G : Mod(D)→ Per(D) and show this is an equivalence between
categories. Let X = (|X|, EX) be a modest set on D. Define a partial equivalence
relation≡G(X), also denoted byG(X), onD as follows: a ≡G(X) b if and only if there is an
x ∈ |X| such that a ∈ EX(x) and b ∈ EX(x). Note that the collection {EX(x) : x ∈ |X|}
of non-empty pairwise disjoint subsets of D, are the equivalence classes of this relation.
Let f : X → Y be a morphism in Mod(D), tracked by r ∈ D. Then JrK : G(X)→ G(Y)
is a morphism in Per(D), define G(f) = JrK.

30

This defines a full and faithful functor between the categories. To show that G is
also essentially surjective, let Z be an object of Per(D). For a ∈ D, write JaKZ := {b ∈
D : a ≡Z b} to denote the equivalence class of a. Define an object Z̃ of Mod(D) by
|Z̃| = {JaKZ : a ∈ D ∧ a ≡Z a} and EZ̃(JaKZ) = JaKZ . Check that G(Z̃) = Z, so G is
(essentially) surjective on objects. �

We use the category Per(D) instead of Mod(D) when that is convenient. To familiarize
ourself with these categories, let us proof some properties.

Proposition 3.3 The category Mod(D) has binary products, equalizers and is cartesian
closed.

Proof: First note that the object 1 defined by |1| = {∗} and E1(∗) = D is a terminal
object. If X and Y are objects of Mod(D), then the product X × Y is given by:

|X × Y | = |X| × |Y |
EX×Y (x, y) = {pab : a ∈ EX(x) ∧ b ∈ EY (y)}

for (x, y) ∈ |X × Y |. The projections are tracked by p0 and p1 respectively. Consider
morphisms f, g : X → Y , the equalizer of this pair consist of the object Z defined by:

|Z| = {x ∈ |X| : f(x) = g(x)} and EZ(x) = EX(x) for x ∈ |Z|

together with the inclusion |Z| → |X| tracked by i. Finally, to show that Mod(D) is
cartesian closed, find for any pair of objects X, Y an exponential object. Define Y X as
follows:

|Y X | = {f : |X| → |Y | : f is a morphism X → Y }
EY X (f) = {r ∈ D : r tracks f}

for f ∈ |Y X |. The evaluation map eval : |Y X × X| → |Y | is tracked by the element
〈w〉p0w(p1w). To show that Y X together with eval is indeed an exponential object, let
W be an object and g : W ×X → Y be a morphism tracked by t. Then the correspond-
ing morphism g̃ : W → Y X is tracked by 〈wx〉t(pwx). �

Note that the first three results of the proposition show that Mod(D) has all finite limits.
The category has more properties, many of those are proven in [7]. Before moving on,
we point out such a property.

Proposition 3.4 The category Mod(D) is regular.

One would need to show that Mod(D) has coequalizers of kernel-pairs and that regular
epis are stable under pullback. Proofs of these properties can be found in the reference
mentioned above. �

31

3.2 Equivalence of Mod(K2(N))
Our goal is to learn more about Mod(K2(A)) using topology. This is especially useful
when considering the case A = N. In a moment we introduce the notion of equilogical
spaces, first defined by D.S. Scott. The results proven in this section can be found in [2]
by A. Bauer.

Let (T,OT) be a topological space, as before we just write T to indicate the space.
Recall that the space is called T0 iff for every distinct x, y ∈ T there is an open set U
such that x ∈ U and y /∈ U , or y ∈ U and x /∈ U .

Definition 3.5 An equilogical space X consists of a T0 topological space ‖X‖ together
with an equivalence relation ≈X on ‖X‖, write X = (‖X‖,≈X).

Let X, Y be equilogical spaces. A continuous map f : ‖X‖ → ‖Y ‖ is equivariant
when for all x, y ∈ ‖X‖ the following is true: if x ≈X y, then f(x) ≈Y f(y). Two
equivariant maps f, g : ‖X‖ → ‖Y ‖ are considered equivalent when for all x, y ∈ ‖X‖:
if x ≈X y, then f(x) ≈Y g(y). A morphism JfK : X → Y is an equivalence class of
equivariant maps.

The identity morphism on X is the equivalence class of the identity on ‖X‖. If
JfK, JgK : X → Y are two morphisms, the composition JgK ◦ JfK is given by Jg ◦ fK. So
the equilogical spaces together with their morphisms form a category, denoted by Equ.

A topological space is called 0-dimensional iff it has a base consisting of clopen (closed
and open) sets. To investigate Mod(K2(N)) we consider a full subcategory of Equ.

Definition 3.6 A countable 0-equilogical space is an equilogical space whose underlying
topological space has a countable clopen base. In similar way as above this defines a
category denoted by 0-Equω.

More general, let κ ≥ ω be a cardinal. A κ-based 0-equilogical space is an equilogical
space whose underlying topological space has a clopen base of cardinality at most κ.
This gives rise to a category denoted by 0-Equκ.

We assume NN is induced with the topology defined in section 2.4, this topology is T0,
and has a countable clopen base. For α ∈ NN write ηα to indicate the partial function
defined by ηα(β) := α · β for all β ∈ NN.

Theorem 3.7 There s a full and faithful functor G : Per(K2(N))→ 0-Equω.

Proof: Let X be a partial equivalence relation on NN. Define ‖G(X)‖ as the domain of
≡X equipped with the subspace topology inherent from NN, note that the subspace is
T0 and has a countable clopen base. Define ≈G(X) as the equivalence relation ≡X . This
defines a countable 0-equilogical space G(X) = (‖G(X)‖,≈G(X)). Let JrK : X → Y be a

morphism in Per(K2(N)). Consider the partial function ηr : NN ⇀ NN, using the forward
direction of theorem 2.15 this function is continuous. Define G(JrK) as ηr restricted to
‖G(X)‖.

Check that G preserves identity and composition, so it is a functor. Every morphism
in Per(K2(N)) defines an unique equivalence class of equivariant maps, so G is faithful.

32

To show that G is full let JfK : G(X) → G(Y) be a morphism in 0-Equω. By theorem
2.13 we can find α such that ηα is an extension of f , it follows that α is equivalence
preserving between X and Y . Also G(JαK) = JfK, so G is full. �

Using the following lemma, the functor defined above actually shows equivalence between
the categories.

Lemma 3.8 (Embedding Lemma) Let (T,OT) be a topological space. This space
is T0 with a countable clopen base if and only if there is an embedding from the space
into NN

Proof: “⇐” Let e : T → NN be an embedding. Then e(T), the range of e, is a subspace
of NN. So e(T) is a T0 space with a countable clopen base. Using the embedding, these
properties are also true for T .

“⇒” Let {Un |n ∈ N} be a countable base of T consisting of clopen sets. Define
function e : T → NN by:

e(a)(n) =

{
1 if a ∈ Un,
0 otherwise.

This function is injective since T is a T0 space. To show that e is continuous, let p : N⇀ N
be a finite function such that ran(p) ⊆ {0, 1}, note that:

e−1(Op) =
⋂

({Un |n ∈ dom(p) ∧ p(n) = 1} ∪ {U cn |n ∈ dom(p) ∧ p(n) = 0})

If ran(p) * {0, 1}, then e−1(Op) = ∅. For every n ∈ N the sets Un and U cn are both
open. So e−1(Op) is a finite intersection of open sets, which is open. To show that e is
an open map, note that e(Un) = {β ∈ NN |β(n) = 1} is open. This proves that e is an
embedding. �

Corollary 3.9 The categories Per(K2(N)) and 0-Equω are equivalent.

Proof: We show that the functor defined in theorem 3.7 is essentially surjective on
objects. Let Z = (‖Z‖,≈Z) be a countable 0-equilogical space. Using lemma 3.8 we find
an embedding e : ‖Z‖ → NN. Define a partial equivalence relation ≡Z̃ on NN by:

e(x) ≡Z̃ e(y) ⇔ x ≈Z y

The domain of this relation equals e(‖Z‖), the range of e. This defines an object Z̃
of Per(K2(N)). Consider G(Z̃), we have that ‖G(Z̃)‖ = e(‖Z‖), and ≈G(Z̃) is just the

relation ≡Z̃ . Using the fact that e : ‖Z‖ → e(‖Z‖) is a homeomorphism, it follows that

JeK : Z → G(Z̃) is an isomorphism in 0-Equω. This shows that G is essentially surjective
on objects. �

The theorem and corollary are still true if we replace Per(K2(N)) by Mod(K2(N)), using
the equivalence between those categories.

33

Remarks. (a) One can think of Equ as a non-full subcategory C of Top, the category
of topological spaces and continuous maps. For object (‖X‖,≈X), consider the quotient
topology ‖X‖/≈X , with quotient map πX . The objects of C are exactly those quotient
topologies. For morphism JfK : X → Y , define function f̃ : ‖X‖/≈X→ ‖Y ‖/≈Y by
f̃(JxK) := πY (f(x)). Check this is well-defined and continuous. This defines the collec-
tion of morphisms in C. Equivalence between Equ and C is clear.

(b) For a moment, we consider a different point of view. The following ideas are from
the theory of “Type Two Effectivity” (TTE).

Let (|X|, EX) be a modest set on K2(N) and R :=
⋃
{EX(x) : x ∈ |X|}. We consider

the function r : R → |X| defined by r(α) = x ⇔ α ∈ EX(x). Using the topology on
R ⊆ NN, this induces a topology on |X| as follows:

U ⊆ |X| is open ⇐⇒ r−1(U) is open in R

Note that r : R→ |X| is a topological quotient (i.e. r is a quotient map).
Now letX be a topological space. Way say that a set R ⊆ NN together with a function

r : R→ X is a representation of X iff r is a surjective continuous function. In particular
a representation r is called a quotient representation iff r is a topological quotient. We
call a representation r : R→ X admissible iff for every other a representation s : S → X
there is a continuous function f : S → R such that s(α) = r(f(α)) for all α ∈ S.

Consider the category with as objects the admissible quotient representations, and
as morphisms continuous functions between the co-domains of the representations. It
can be shown this is equivalent to Mod(K2(N)).

The questions one would like to answer is what topological spaces have an admissible
(quotient) representation. This is done by considering sequential space. Take a look in
[1] and also in [2] for more information about this and the theory of TTE.

3.3 Investigate Mod(K2(A))
During this section we assume A is some infinite set. Similar to the case of natural
numbers we define a topology on AA. Start with the discrete topology on A and consider
the product topology on AA. The basic open sets are again of the form:

Op := {β ∈ AA | ∀a ∈ dom(p) . β(a) = p(a)}

for finite functions p : A ⇀ A. We would like to use a similar approach as in previous
section. However most of the proofs in section 2.4 use the countability of N, so can be
false for the general case. Let’s first find out what results are still true.

Proposition 3.10 Let α ∈ AA, the partial function F : AA ⇀ AA defined by F (β) :=
α · β is continuous.

Proof: Inspect the proofs of direction (i) ⇒ (ii) from proposition 2.12 and (i) ⇒ (ii)
from theorem 2.15. Using the exact same proofs (module some notation) shows that

34

β 7→ ϕa(α, β) is continuous for all a ∈ A and subsequently that F is continuous. �

This allows us to define a similar functor as in the case A = N.

Proposition 3.11 Let A be an infinite set of cardinality κ. There is a faithful functor
G : Per(K2(A))→ 0-Equκ.

Proof: One can show that the set of all finite functions p : A ⇀ A has cardinality κ
(there are κ many functions with domain {a0, . . . , an−1} and κ many of those domains).
It follows that AA is a T0 topological space with a clopen base of cardinality κ. The
definition of G is analogous to the definition of G in proposition 3.7. Any subspace of
AA is T0 with clopen base of cardinality at most κ. The proof proceeds in similar fashion
as before, using proposition 3.10 instead of theorem 2.15. �

We mention another result that does still hold:

Lemma 3.12 (Embedding Lemma) Let (T,OT) be a topological space and A an in-
finite set of cardinality κ. Then T is T0 with a clopen base of cardinality at most κ if
and only if there is an embedding from T into AA

Proof: For the “⇒” direction find a clopen base {Ua | a ∈ A} of T , the proof is similar
as the proof of lemma 3.8. �

If the extension theorem (thm. 2.13) is true for a particular set A, then the functor
defined in proposition 3.11 is full. In that case equivalence between categories would
follow. However the theorem is not true for uncountable sets A. Consider the following
counter example:

Proposition 3.13 Let A be an uncountable set, there is a partial continuous function
F : AA ⇀ AA that cannot be extended to a function of the form β 7→ α · β

Proof: Let c ∈ A be fixed. Define a partial function F : AA ⇀ AA with domain:

dom(F) := {β ∈ AA | ∃! d ∈ A s.t. β(d) = c}

Introduce notation Vd := {β ∈ AA |β(d) = c}∩dom(F), and write constd to indicate the
constant function in AA with value d. Note that for every β ∈ dom(F) there is an unique
element d ∈ A such that β ∈ Vd, define F (β) := constd. Check that F is continuous on
its domain.

Suppose, towards contradiction, that there is an α ∈ AA such that α · β = F (β) for
all β ∈dom(F). Let a ∈ A, define for each n ∈ N sequences un, vn ∈ A∗ and a function
βn ∈ AA by induction. Start by defining u0 = () and v0 = (b0), where b0 is such that
α([a]) = [q̂, b0] (note that F is not constant on its domain, so by assumptions on α, this
has to be a query). Let β0 ∈dom(F) be arbitrary but fixed.

35

Now assume un = (a0, . . . , akn−1), vn = (b0, . . . , bkn) and βn are defined and satisfy
the following three properties:

· un is an a-interrogation of βn by α

· α([a, a0, . . . ai−1]) = [q̂, bi] for all i ≤ kn
· ai 6= c for all i ≤ kn − 1

We define sequences un+1, vn+1 and find a function βn+1. To do this, let d ∈ A such that
d 6= bi for all i ≤ kn. Define βn+1 ∈ Vd as a function satisfying βn+1(bi) = ai for all i ≤
kn − 1. Check that such a functions exists. Use the fact that βn+1 ∈ dom(F) to find an
a-interrogation (a0, . . . , al−1) of βn+1 by α with the property that α([a, a0, . . . , al−1]) =
[r̂, d]. Find sequence (b0, . . . , bl−1) such that α([a, a0, . . . ai−1]) = [q̂, bi] for all i ≤ l − 1.
As the notation suggests, these sequences extend un and vn respectively.

We claim that d ∈ {b0, . . . , bl−1}. Proof of our claim: suppose this is not the case,
then find a function γ that agrees on {b0, . . . , bl−1} with βn+1, but such that γ ∈ Ve for
some e 6= d. Then e = conste(a) = αγ(a) = αβn+1(a) = d, contradiction.

Define kn+1 as the smallest number such that bkn+1 = d. This defines sequences
un+1 := (a0, . . . , akn+1−1) and vn+1 := (b0, . . . , bkn+1). These sequences, together with
function βn+1, satisfy the three properties listed above. Also note that un (un+1 and
vn (vn+1, they are proper extensions. This concludes the induction.

Consider the sequences u = (a0, a1, . . .) and v = (b0, b1, . . .) extending all the finite
sequences un and vn. Since A is uncountable there is an element e ∈ A not in the
sequence v and there is β ∈ AA such that β ∈ Ve and β(bi) = ai for all i ∈ N. It follows
that αβ is not defined, however F (β) = conste . �

Corollary 3.14 Let A be uncountable. The functor G : Per(K2(A))→ 0-Equκ defined
in proposition 3.11 is not full.

Proof: Let partial function F : AA ⇀ AA, sets Vd and functions constd be defined as
in the proof of proposition 3.13. Assume, towards contradiction, that G is full. Define
objects X and Y in Per(K2(A)) by: α ≡X β if and only if there is an d ∈ A such that
α, β ∈ Vd. And define α ≡Y β if and only if α = β = constd for some d ∈ A. Then
JF K : G(X)→ G(Y) is a morphism in 0-Equκ. Since G is full we find δ ∈ AA such that
G(JδK) = JF K, this shows that β 7→ δβ extends F . �

This result leads to the following question I am not (yet) able to answer.

Unanswered question. Is there a full subcategory of 0-Equκ, or a full subcategory
of Top, that is equivalent to Mod(K2(A))? In other words, is it possible to describe
Mod(K2(A)) in a “topological way”?

I’m inclined to think the answer is “no”. To show this we would like to find a categorical
property of Top that is not true in Mod(K2(A)), or vice versa. One could think of a
property of continuous functions that is not true for functions of the form β 7→ αβ.

36

The requirement “full” in the question is important. We can find a non-full subcat-
egory C of Top that is equivalent to Per(K2(A)). This is done in a similar way as in
remark (a) from previous section. Only in this case consider quotient spaces constructed
on subspaces of AA, instead of general T0 spaces. And equivalence preserving continuous
maps between those subspaces that have an extension of the form β 7→ αβ, instead of
the more general equivariant maps.

The final result of this thesis is a weaker version of the extension theorem. I don’t think
it can be used to answer the question above. However the proof is non-trivial and can
give some insight. The result generalizes the theorem: every total continuous function
AA → A is sequential, found in [14]. The proof is similar to the one in that article. Call
finite functions p, q : A ⇀ A compatible iff p(a) = q(a) for all a ∈dom(p)∩dom(q).

Proposition 3.15 Every partial continuous function F : AA ⇀ AA with open domain
can be extended to a partial function of the form β 7→ α · β.

Proof: Let F : AA ⇀ AA be a partial continuous function with open domain. Define
partial functions Fa : AA ⇀ A, by Fa(β) := F (β)(a). Let a ∈ A, notice that dom(Fa) =
dom(F) and F−1

a ({b}) is open in dom(F) for all b ∈ A. So for β ∈ dom(F) there is finite
function p such that β ∈ Op and Fa constant on Op ∩dom(F). Since dom(F) is open we
also find q such that β ∈ Oq ⊆ dom(F). Define finite r by dom(r) := dom(p) ∪ dom(q),
compatible with both p and q, then Fa is constant on Or.

Doing this for all β ∈ dom(F) we find a set B of finite functions, such that for all
r ∈ B, Fa is constant on Or and for every β ∈ dom(F) there is r ∈ B such that β ∈ Or.
Let p be some finite function. Write Bp to indicate the set of those q ∈ B that are
compatible with p.

Consider finite p such that Fa is not constant on Op ∩ dom(F). So there are β, γ ∈
Op ∩ dom(F) with Fa(β) 6= Fa(γ). Find q, r ∈ Bp satisfying q ⊂ β and r ⊂ γ. Suppose
that there is t ∈ Bp such that (dom(q) ∪ dom(r)) − dom(p) is disjunct from dom(t) −
dom(p), we want to find contradiction. Then t is compatible with both q and r, so both
Oq ∩ Ot and Or ∩ Ot are not empty. Since Fa is constant on the sets Oq, Or and Ot, it
follows that Fa is constant on Oq ∪ Or ∪ Ot, this implies Fa(β) = Fa(γ), contradiction.
So for all t ∈ Bp the intersection of the set Cp := ((dom(q) ∪ dom(r)) − dom(p)) with
dom(t) is not empty.

Define trees T 0
a ⊆ T 1

a ⊆ . . . as follows. Let T 0
a := {∅}, the tree with only the empty

function. Suppose Tna has been defined, we construct tree Tn+1
a . Let p be a leaf of Tna ,

extend this leaf by considering cases. If Fa is constant on Op ∩ dom(F), or in the case
this set is empty, do not extend p. In any other case Fa is not constant on Op∩dom(F),
find a set Cp as defined above and write Cp = {c0, . . . , cm}. Add for each 0 ≤ k ≤ m
all functions p′ with dom(p′) = dom(p) ∪ {c0, . . . , ck}. Doing this for all leaves p defines
tree Tn+1

a . Define Ta :=
⋃
n∈N T

n
a as the union of those trees.

Now let β ∈ dom(F) and find q ∈ B such that β ∈ Oq. Let p be a leaf of Tna that
is compatible with q. By induction it is true that Fa is constant on Op (so it is also a
leaf of Ta) or the cardinality of dom(q)∩ dom(p) is at least n. This shows there is a leaf
r ∈ Ta such that r ⊂ β, define Ka(r) := Fa(β). Do this for all β ∈ dom(F). If there are
still leaves r ∈ T for which Ka(r) is not defined, give it an arbitrary value.

37

This construction defines a partial sequential function ΦTa,Ka . It follows that if
β ∈ dom(F), then ΦTa,Ka(β) = Fa(β). Of course we can find such partial sequential
functions for every a ∈ A. Applying corollary 2.6 on those functions gives an element
α ∈ AA with the property that if β ∈ dom(F), then αβ is defined and in that case
αβ(a) = Fa(β) for all a ∈ A. So the function β 7→ αβ is an extension of F . �

38

Bibliography

[1] I. Battenfield, M. Schröder, and A. Simpson. A convenient category of domains.
Electronic Notes in Theoretical Computer Science, 172:69–99, 2007.

[2] A. Bauer. The Realizability Approach to Computable Analysis and Topology. PhD
thesis, Carnegie Mellon University, 2000.

[3] A. Bauer, L. Birkedal, and D.S. Scott. Equilogical spaces. Theoretical Computer
Science, 315(1):35–59, 2004.

[4] M.J. Beeson. Foundations of Constructive Mathematics: metamathematical studies,
chapter VI, pages 97–107. Springer-Verlag, 1985.

[5] S. Feferman. A language and axioms for explicit mathematics. In J.N. Crossley,
editor, Algebra and Logic, pages 87–139. Springer-Verlag, 1975.

[6] S.M. Lane. Categories for the Working Mathematician. Graduate Texts in Mathe-
matics. Springer, 1998.

[7] J.R. Longley. Realizability Toposes and Language Semantics. PhD thesis, Edinburgh
University, 1995.

[8] J.R. Munkres. Topology (2nd edition). Prentice Hall, 2000.

[9] M. Schönkfinkel. Über die bausteine der mathematischen logik. Mathematische
Annalen, 92:305–316, 1924. Translated in J. van Heijenoort. From Frege to Gödel:
A Source Book in Mathematical Logic, 1879-1931, pages 355-366. Harvard University
Press, 1967.

[10] D.S. Scott. Lambda calculus and recursion theory. In S. Kanger, editor, Proceedings
of the 3rd Scandinavian Symposium, volume 82 of Studies in Logic, pages 154–193.
North Holland, 1975.

[11] R.I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic. Springer, 1987.

[12] J. van Oosten. A combinatory algebra for sequential functionals of finite type. In
S.B. Cooper and J.K. Truss, editors, Models and Computability, pages 389–406.
Cambridge University Press, 1999.

[13] J. van Oosten. Realizabilty: an Introduction to its Categorical Side, volume 152 of
Studies in Logic. Elsevier, 2008.

[14] J. van Oosten. Partial combinatory algebras of functions. Notre Dame Journal of
Formal Logic, 52(4):431–448, 2011.

39

.

