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Preface

You are about to read the Master’s thesis of Tomas Molenaars. This thesis
was written as the final part of the Master’s programme Stochastics and Fi-
nancial Mathematics of Utrecht University (UU), VU University Amsterdam
(VU) and University of Amsterdam (UvA).

I carried out my research at RiskCo B.V. in Utrecht. RiskCo’s main ac-
tivity is bridging the gap between financial product design and information
technology. I was involved in the research and development group Forecast-
ing Methodologies that develops approaches for the generation of financial
and economic scenarios. These scenarios are used within Asset Liability
Management and Solvency II calculations.

During my work on economic scenarios at RiskCo’s prior to my Master’s
research, I encountered that interest rate is one of the most important, but
also one of the most difficult aspects of generating economic scenarios. The
interest rates do not only depend on the market (through the demand for
capital), but are also highly correlated to governments’ monetary policies.
On the other hand, those same governments would like to be able to forecast
the interest rates to construct their debt strategies. With interest rates being
such an important, but difficult aspect of economic forecasting, this was the
first main research subject of the research group.

After exploring several models and theories about interest rate forecast-
ing with RiskCo’s research group, I decided to use a topic we had encoun-
tered as a starting point for my work: jump processes in the Nelson-Siegel
framework. From a business point of view my research may be of limited
importance (for RiskCo), because I went for a purely theoretical mathemat-
ical approach. Nevertheless it was possible to do my research project at
RiskCo’s, of which this thesis is the result.
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place to work. Besides Bert, I would like to thank my friend, classmate and
colleague Nick Reinerink and colleague Marcus Hemminga for sharing ideas
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Notation

In this section we give some definitions and notations we will use in the
rest of this thesis. Those definitions are widely used, so this section is more
about our notation. A more detailed explanation can be found in Chapter
8 of ‘Stochastic Processes for Finance: Risk Management Tools’ [3].

Definition 1. A zero-coupon bond (or discount bond) is a contract which
guarantees a pay-off of 1 euro at time T . The price of such a bond at time
t ≤ T is denoted by P (t, T ). It is the amount we are willing to pay at time
t to receive 1 euro at time T . Time T is called the maturity.

By definition, P (t, t) equals 1 for all t. The collection of all bond prices at
time t = 0, {P (0, T )|T > 0}, is called the term structure of interest rates.

Definition 2. The yield to maturity, Y (t, T ), is defined as the continu-
ously compounded interest rate between times t and T such that P (t, T ) =

e−Y (t,T )(T−t), i.e. Y (t, T ) := − logP (t,T )
T−t

.

When we know the bond prices at given maturities, we can compute the
yields to those maturities and vice versa.

Definition 3. The forward rate for time T determined at time t is defined
as f(t, T ) := − ∂

∂T
log P (t, T ).

By integrating the forward rates and using that P (t, t) = 1, we get
∫ T

t

f(t, s) ds = − logP (t, T ) + log P (t, t) = − logP (t, T ),

hence P (t, T ) = e−
∫ T

t
f(t,s) ds and Y (t, T ) =

∫ T

t
f(t,s) ds

T−t
. The bond prices and

yields can be computed from the forward rates and vice versa. It is obvious
that those three definitions contain the same information. If we know one
of these, we can compute the other two.

Using the forward rate, we define the short rate as follows:

Definition 4 (Short rate). The short rate at time t is defined as rt :=
limT↓t f(t, T ).

Definition 5 (Savings account). The savings account-process is defined as

B(t) := exp
(

∫ t

0 rs ds
)

, 0 ≤ t < ∞.

Let f be a function from R×Rd to R. Denote by Dxf(x, z) the partial
derivative of function f(x, z) to its first argument x and let ∇zf(x, z) be the
gradient of f(x, z) where z is d-dimensional:

∇zf(x, z) :=









df(x,z)
dz1
...

df(x,z)
dzd









.

v





Chapter 1

Introduction

In 1987 Charles Nelson and Andrew Siegel published an article in the Journal
of Business about the modeling of yield curves: ‘Parsimonious Modeling of
Yield Curves’ [18]. Their aim was to construct a model of the yield curve
that uses only a few parameters to describe the yield curve, while at the
same time it had to be able to represent the various shapes a yield curve can
have. The shapes generally associated with the yield curve are monotonic-,
humped- and S-shaped. The Nelson-Siegel yield curve covers those shapes.

In 1994 Lars Svensson introduced an extended and more flexible version
of the Nelson- Siegel yield curve by adding a second curvature term [22].
Nowadays, the Nelson-Siegel model either with or without the Svensson
extension is widely used by central banks to estimate the yield curve (see
ref. [15]).

Yield curve (or interest rate in general) forecasting is very important in
bond portfolio management, for pricing derivatives and in risk management.
D. Bolder stated that one central question in a government’s debt strategy
analysis is “how much of the federal government’s annual borrowing needs
should be financed with long-term coupon bonds versus short-term trea-
sury bills?”[2]. One way to answer this question is to consider how various
strategies perform under different interest rate outcomes. In order to do
such an analysis, we need to have a model for the interest rates, to be able
to generate interest rate scenarios.

In their article of 2006, Diebold and Li [9] proposed a very practical
way to model the yield curve. They used neither the no-arbitrage approach
(models like Hull-White [17]), nor the equilibrium approach (models like
Vasicek [23], Cox et al. [7] and Duffie and Kan [10]). Instead, they fitted
the yield curve using a Nelson-Siegel curve and interpreted the parameters
as factors. By doing time-series analysis on the factors, they forecasted the
yield curve. They called their method the Dynamic Nelson-Siegel (DNS).
De Pooter examined this kind of forecasting by the Nelson-Siegel class with
additional extensions [8].

Whereas the article of Diebold and Li was mainly written to propose a
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Chapter 1. Introduction 2

very practical way to forecast the yield curve, the theoretical background
of the Nelson-Siegel dynamics had already been investigated by Filipović
back in 1999 [13] and 2000 [14] and by Björk and Christensen in 1999 [1].
Filipović showed there exist no nontrivial interest rate model in the Nelson-
Siegel framework when the parameters in the Nelson-Siegel framework are
driven by a state space process, which provides an arbitrage-free interest
rate model.

Where on the one hand people doubted whether the absence of arbitrage
would give better forecasts (like Coroneo [6]), other people tried to make
a theoretically rigid method, which still offers the flexibility of the Nelson-
Siegel framework. Christensen, Diebold and Rudebusch [4, 5] derived a class
of “affine arbitrage-free dynamic term structure models that approximate
the widely used Nelson-Siegel yield curve specification”. They introduced a
yield-adjustment term to make the Nelson-Siegel term structure arbitrage-
free. They called their models arbitrage-free Nelson-Siegel (AFNS) models.

In all the articles mentioned above continuous processes are used to fit
and forecast the parameters. Continuous processes, by definition, do not
allow the presence of jumps. However, the occurrence of a sudden change
in interest rate, a jump, cannot be excluded.

At the end of April 2012, during the political conflict between the Dutch
government and Geert Wilders, Fitch Ratings warned that the Netherlands
faced losing the aaa-rating, because of the failing housing market and the
lack of political action [12]. The consequences of such a devaluation cannot
be predicted. Some people think interest rates on Dutch government bonds
will increase with 50% if the Dutch government loses the aaa-rating, because
traders will be less eager to lend money. This shows it makes sense to
consider jumps in interest rates when we try to forecast them and use them
to generate scenarios.

In 1996 Duffie and Kan already mentioned the possible perception of
including jumps, see Chapter 11 of ref. [10]. Bolder confirmed that incorpo-
ration of jumps is an increase in reality. Moreover, he mentioned that this
incorporation increases the complexity as well, by reducing the existence of
closed form solutions for bond price functions [2]. Filipović mentioned the
possibility to involve jumps to expand his results too [13].

The main line in this thesis is as follows. In Chapter 2 we introduce
the Nelson-Siegel model and explore some of its properties. In Chapter 3 we
define the consistent state space process and prove, following Filipović, there
exists no nontrivial interest rate model driven by a consistent state space Itô
process. In Chapter 4, we introduce a certain class of stochastic processes
with independent jumps, which we called Independent jump processes, and
stochastic calculus for jump processes. Furthermore we prove there exists no
nontrivial interest rate model driven by a consistent state space Independent
jump process (what has not been done before).



Chapter 2

Nelson-Siegel framework

In this chapter we introduce the Nelson-Siegel curves as constructed by
Nelson and Siegel in 1987 [18]. We also introduce some notation to simplify
expressions involving the Nelson-Siegel curves and we show some properties
of the curves. Furthermore, we mention the way to estimate the parameters
following DNS and possible issues with it.

2.1 The original Nelson-Siegel model

The model Nelson and Siegel constructed was parameterized by only four
parameters, denoted by β0, β1, β2 and λ. The (instantaneous) forward rate
in the Nelson-Siegel model is given by:

ft(τ) := f(t, t+ τ) = β0 + β1 · exp(−λτ) + β2 · [λτ exp(−λτ)], (2.1)

where λ equals 1/τ and τ equals m in the article of Nelson and Siegel.
Integrating from 0 to τ and dividing by τ gives the yield as function to
maturity τ (see page v):

yt(τ) := Y (t, t+ τ) = β0 + β1 ·
1− e−λτ

λτ
+ β2 ·

[

1− e−λτ

λτ
− e−λτ

]

. (2.2)

This is the formula for the yield to maturity in the Nelson-Siegel framework,
which is used in this thesis. Some people, including Filipović [13], replace
β2 · λ by one single parameter in (2.1).

In figure 2.1 we see a few examples of the different shapes the Nelson-
Siegel curve can represent. The estimated curves for two values for λ as well
as real yield data is plotted. The Nelson-Siegel fits the inverted yield curve
(first and last figure) as good as the normal (second figure) and humped
(third figure) yield curve. In section 2.2 we will talk about the estimation
and the data used in more detail.
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Figure 2.1: Yield curve data and Nelson-Siegel (NS) fits for two different
λ’s for four different dates.

2.1.1 Vector notation

To abbreviate the preceding formulas, we can rewrite them using vector
notation. Write the inner product of two column vectors a and b in R

n as
a∗b, where a∗ is the transpose of a. Define

β :=







β0
β1
β2






, wt :=







1
e−λt

λte−λt






.

The dependence of wt on the time is denoted by the subscript t. Note that
β does not depend on t. Equation (2.1) can now be written as ft(τ) = w∗

τβ

and (2.2) can be written as yt(τ) = W∗
τβ, where Wt is defined as

Wt :=







1
1−e−λt

λt
1−e−λt

λt
− e−λt






.

Because β does not depend on t, the following holds: By definition (see page
v) yt(τ) =

1
τ

∫ τ

0 ft(s) ds, and using ft(τ) = w∗
τβ we can write

yt(τ) =
1

τ

∫ τ

0
w∗

sβ ds =

(

1

τ

∫ τ

0
ws ds

)∗

β.
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The second equality is valid because of the fact that β does not depend on
t and the integral

∫ t

0 ws ds is defined componentwise:

1

τ

∫ τ

0
ws ds =

1

τ

∫ τ

0







1
e−λs

λse−λs






ds :=







1
τ

∫ τ

0 1 ds
1
τ

∫ τ

0 e−λs ds
1
τ

∫ τ

0 λse−λs ds






.

This equals Wτ (as expected).

2.1.2 Weight factor characterization

All parameters have different influences. If two parameters would have had
the same influence, we would not need both. Because the parameters are
constant in τ (time to maturity), their influence in the forward rates and
yields depends on the weight factors. With weight factors, we mean the
components of wτ and Wτ respectively. The fact that the parameters β0, β1
and β2 do not depend on t is already mentioned above; they were denoted
by the time-independent vector β. Remark that λ influences wτ and Wτ .
(Later on we will write wτ (λ) and Wτ (λ).)

The influence of βi on ft(τ) (respectively yt(τ)) is measured by the
weight wi

τ (respectively Wi
τ ). Let us investigate the weight functions. First,

we can examine their limiting behavior, t ↓ 0 and t → ∞:

limt↓0 wt =







1
1
0






, limt↓0 Wt =







1
1
0






,

limt→∞wt =







1
0
0






, limt→∞Wt =







1
0
0






.

We see limt↓0 wt = limt↓0 Wt and limt→∞wt = limt→∞Wt; the limiting
behavior of the weight functions is the same.

For the forward rate and yield at time t = 0, only β0 and β1 contribute,
whereas in the long run only β0 contributes. In figure 2.2 the weights for
β0, β1 and β2 are plotted. The shapes of the weightfunctions are the same
in both cases (forward rates and yields). The properties as described above
are recognizable in the picture: the weight of β1 is 1 for t ↓ 0 and 0 for
t → ∞, whereas the weight of β0 is 1 for both limits and the weight of β2 is
0 in both limits.

From figure 2.2 we can understand the following characterization of the
weights (as explained for example also in ref. [8]). The weight for β0 is
constant and it is the only weight that does not decay to zero in the limit.
Therefore the component of β0 is characterized as the long-term. The weight
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Figure 2.2: Left: components of wt, right: components of Wt.

of β1 is one in t = 0 but decreases to zero; therefore the component on β1 is
characterized as the short-term. λ determines the rate of decay. The weight
of β2 is the only term that starts at zero (and is therefore not short-term)
and which decays to zero (and is therefore not long-term). The component
on β2 is therefore called medium-term. λ determines the maturity on which
this weight reaches is maximum.

Diebold and Li give [9] a second interpretation of the factors. The long-
term factor β0 governs the yield curve level. To see this, note that changing
β0 moves the whole yield curve up or down: the loading of this factor is
identical for all t. For the short-term factor β1, note that a change of β1
influences the short yields more than the long yields, therefore changing the
slope of the curve. Finally, the medium-term factor β2 does not influence the
very short yields or very long yields, but will have effect on the medium-term
yields, therefore influencing the yield curve curvature.

The slope of the yield curve is often defined as the difference between
the long term yields and the short term yields. If one defines the yield curve
slope (like Frankel and Lown [16]) as limt→∞ y(t)−y(0), we get limt→∞ y(t)−
y(0) = β0 − (β0 + β1) = −β1, so β1 is indeed directly related to the slope.

2.2 Dynamic Nelson-Siegel

In their article ‘Forecasting the term structure of government bond yields’
[9], Diebold and Li introduce a dynamic model using the Nelson-Siegel curve.
Their main idea is to interpret the parameters “as a three-dimensional pa-
rameter evolving dynamically”. They consider the parameters as being some
time series and this idea is reflected in the following notation:

yt(τ) = β0t + β1t ·
1− exp(−λτ)

λτ
+ β2t ·

[

1− exp(−λτ)

λτ
− exp(−λτ)

]

.

(2.3)
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For a fixed t, this expression gives the yield curve; for fixed τ this expression
gives the evolution of the yield of maturity τ over time.

In figure 2.4 we plotted the values for β0, β1 and β2 for the data provided
by Diebold and Li. The data set contains unsmoothed Fama-Bliss zero
yields from U.S. Treasuries from January 1970 through December 2000.1

By analyzing those time series, they try to predict the yield curve. Diebold
and Li use the (fixed) value 0.0609 for λ. Recall that λ determines where
the maximum of the medium-term weight factor is situated. Diebold and Li
argue that this maximum is commonly situated between the two- and three-
year maturity. They simply pick the average, 30 months, and state that
λ = 0.0609 maximizes the medium-term weight factor at exactly 30 months.
This is not true: the maximum of the function f(x) = 1−exp(−x)

x
− exp(−x)

is reached in x = 1.79328 which implies λ = x/τ = 1.79328/30 = 0.059776.
As is shown in figure 2.1, the difference between the fits with both λ’s is
very small.
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Figure 2.3: Data used by Diebold and Li, see page 7.

2.2.1 Estimation of the parameters

In this section, we explain the way Diebold and Li estimate the parameters in
their article. Suppose we are given some yield curve data: a list of maturities
{τ1, . . . , τN} and yields to those maturities {y1, . . . , yN}. Our aim is to fit a
yield curve with the Nelson-Siegel form to this data. The system we want

1The data set can be downloaded from
http://www.ssc.upenn.edu/~fdiebold/papers/paper49/FBFITTED.txt

http://www.ssc.upenn.edu/~fdiebold/papers/paper49/FBFITTED.txt
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to solve is given by:









y1
...
yN









=









W ∗
τ1
...

W ∗
τN









β + ǫ. (2.4)

To simplify this expression, we denote the matrix with rows W ∗
τ1
, . . . ,W ∗

τN

by W and y is the column vector of yields y1, . . . , yN . The system (2.4) can
now be written as:

y = Wβ + ǫ.

The vector ǫ ∈ R
N denotes the error made by estimating the data y by Wβ.

Remark that the matrix W depends on λ, hence this is not a linear system
in β0, β1, β2 and λ! We should estimate the parameters using nonlinear least
squares. By fixing λ in advance however, we make it a linear system. For
N > 3 this is an overdetermined system and we can use Ordinary Least
Squares to find an (approximate) solution. The Ordinary Least Squares
solution is given by β̂ = (W ∗W )−1W ∗y.

19700130 19750131 19800131 19850131 19900131 19950131 20000131
4

6

8

10

12

14

β 0
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−5

0

5

β 1

19700130 19750131 19800131 19850131 19900131 19950131 20000131
−5

0

5

10

β 2

Figure 2.4: Estimated values for β0, β1 and β2 from zero yields obtained
from U.S. Treasury price quotes, data used by Diebold and Li.
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2.2.2 Decay parameter

The decay parameter λ is, just like the β’s, a parameter used to fit the curve
as good as possible to the data. Fixing the λ during your whole analysis
and during your forecast, like Diebold and Li do, is not be preferable from a
‘best fit’ point of view. Fixing λ simplifies the analysis because we can use
Ordinary Least Squares as explained before. De Pooter however shows that
it is not impossible to use estimation techniques to find the best (or better)
λ during forecasting [8].

In our theoretical analysis in the following chapters we do not impose
any restriction on λ: it will be treated in the same way as β0, β1 and β2.





Chapter 3

Consistency: Itô process

After introducing the Nelson-Siegel framework, we are now going to intro-
duce some math. In this chapter we introduce the class of consistent state
space processes as used by Filipović. These processes provide an arbitrage-
free interest rate model, in this case for the Nelson-Siegel forward rate fam-
ily, when representing the parameters β0, β1, β2 and λ of the Nelson-Siegel
family. The consistent state space processes will be characterized by their
parameters which will become clear later on.

We use the following version of the expression for the forward rates
given by (2.1): We replace the parameters β0, β1, β2 and λ by z1, z2, z3 and
z4. Furthermore, we make in this notation the dependence of the forward
rates on the parameters z = (z1, z2, z3, z4) clear:

F (x, z) = z1 + z2e
−z4x + z3z4xe

−z4x. (3.1)

The notation we use coincides with the notation Nelson and Siegel originally
used in ref. [9]. Remark that the notation of Filipović [13] slightly differs
from the definition of Nelson and Siegel; Filipović replaced z3z4 by z3.

A good choice of the parameter z ∈ R
4 gives today’s term structure of

interest rates, where x ≥ 0 denotes the time to maturity. After choosing z4,
this is easily done by Ordinary Least Squares as explained in Section 2.2.1.
Remark that the yield curve flattens for longer maturities, hence we restrict
z to what we call the state space Z = {z = (z1, . . . , z4) ∈ R

4|z4 > 0}. Using
page v we have y(x, z) = 1

x

∫ x

0 F (η, z) dη and hence the (structure of) bond
prices are given by

G(x, z) = exp(−y(x, z)x) = exp

(

−

∫ x

0
F (η, z) dη

)

. (3.2)

This is a function from [0,∞)×Z to R+. Remark that it is C∞ in x because
both the exponential function and F (x, z) are C∞.

When we view the parameters as time dependent and try to forecast
them, we indirectly forecast a yield curve. The question rises, however,
whether this prediction, assuming some dynamics of the parameters, is

11
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arbitrage-free. The next step is to assume the parameters z follow some state
space process Z := (Zt)0≤t<∞ with values in Z, and investigate whether
F (., Z) provides an arbitrage- free interest rate model.

The bond prices are functions of the yields (or forward rates) (see Defi-
nition 1). If we make the yield curve (or forward rate) dependent on some
dynamic process, the bond prices will depend on this dynamic process too.
Suppose we have an expression for the forward rate F (x, z). The corre-
sponding bond prices are then (see equation (3.2)) denoted by G(x, z) and
using this, the price at time t of a zero coupon bond with maturity T is
given by

P (t, T ) := G(T − t, Zt),

where Zt denotes the value of the process Z at time t.
We will discount the bond price with the process for the savings account,

see page v: B(t) := exp
(

∫ t

0 rs ds
)

, where rt is the short rate.

Furthermore we know that the discounted bond prices have to be mar-
tingales with respect to the risk free (martingale-)measure P. This is the
idea behind the following definition by Filipović:

Definition 3.1 (Consistency). The state space process Z is called consistent
with the Nelson-Siegel family, if the discounted bond price is a P-martingale,
for all T < ∞, i.e. if

(

P (t, T )

B(t)

)

0≤t≤T

(3.3)

is a P-martingale, for all T < ∞.

Now we have defined the consistent state space process, we take for the
state space process Z an Itô process (as defined in the next section) and
formulate conditions on the parameters of the process to make it consistent.
We prove that the interest rate models driven by a consistent Itô process
are trivial, in line with Filipović in his paper [13].

3.1 Stochastic process without jumps

3.1.1 Multidimensional Itô process

The state space process we will use for this first part is defined below in
Definition 3.4. It is a so called Itô process. Almost all stochastic processes
without jumps are Itô processes ([20], p. 143).

Let (Ω,F ,P) be a complete probability space and (Ft)0≤t<∞ a filtration
satisfying the usual conditions (see ref. [21]), and letW = (W 1

t , . . . ,W
d
t )0≤t<∞

be standard d-dimensional (Ft)-Brownian motion, 1 ≤ d.
First, let d = 1 to get the following definition of an Itô process which

can be found in ref. [20], page 143.
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Definition 3.2. An Itô process Xt is a stochastic process of the form

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs, (3.4)

where W is 1-dimensional Brownian motion, X0 is nonrandom (i.e. F0-
measurable) and with b and σ progressively measurable1 processes with values
in R, respectively R, such that

∫ t

0
|bs|ds < ∞ and

∫ t

0
|σs|

2 ds < ∞, P-a.s., for all t > 0.

We can also define the Itô process with a stochastic integral driven by a
multidimensional Brownian motion:

Definition 3.3. An Itô process Xt driven by a multidimensional Brownian
motion is a stochastic process of the form

Xt = X0 +

∫ t

0
bs ds+

d
∑

j=1

∫ t

0
σj
s dW

j
s , (3.5)

where W is d-dimensional Brownian motion, X0 is nonrandom (i.e. F0-
measurable) and with b and σ progressively measurable processes with values
in R, respectively R

d, such that, for j = 1, . . . , d,
∫ t

0
|bs|ds < ∞ and

∫ t

0
|σj

s|
2 ds < ∞, P-a.s., for all t > 0.

This definition can be extended to a definition for a multidimensional Itô
process:

Definition 3.4 (Multidimensional Itô process). The multidimensional Itô
process Z = (Zt)0≤t<∞, Zt = (Z1

t , . . . , Z
4
t ) is given by

Zi
t = Zi

0 +

∫ t

0
bis ds+

d
∑

j=1

∫ t

0
σij
s dW j

s , i = 1, . . . , 4, (3.6)

where W is d-dimensional Brownian motion, Zi
0 is nonrandom (i.e. F0-

measurable) and with b and σ progressively measurable processes with values
in R

4, respectively R
4×d, such that, for i = 1, . . . , 4, j = 1, . . . , d,

∫ t

0
|bis|ds < ∞ and

∫ t

0
|σij

s |
2 ds < ∞, P-a.s., for all t > 0.

The conditions on b and σ are to be sure that the integrals in the right hand
sides of (3.4), (3.5) and (3.6) are defined and the integral with respect to
the Brownian motion is a martingale.

1A process Xt is called progressively measurable with respect to the filtration F if
∀T ≥ 0, (ω, t) 7→ Xt(ω) considered as a map between Ω × [0, T ] → R is measurable with
respect to FT ⊗B([0, T ]) → B(R). Progressively measurableness implies adaptedness. See
page 2 of Stochastic Integration [21].
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3.1.2 Stochastic Calculus for Multidimensional Itô processes

Equation (3.6) for the multidimensional Itô process of Definition 3.4 can
also be stated in its differential notation as

dZi
t = bit dt+

d
∑

j=1

σij
t dW j

t . (3.7)

From this definition is it easy to see what the quadratic (co)variation [Zi, Zj ]t
is (background information and more details about the quadratic (co)variation
can be found in Appendix B):

d[Zi, Zj ]t = dZt
t dZ

j
t = bitb

j
t dt dt+ bit

d
∑

k=1

σjk
t dt dW k

t

+ bjt

d
∑

k=1

σik
t dt dW k

t +
d
∑

k=1

σik
t

d
∑

l=1

σjl
t dW k

t dW l
t .

Because dt dt = 0, dt dW k
t = 0, for all k and dW i

t dW
j
t = 1ij dt, this equals

dZi
t dZ

j
t =

d
∑

k=1

σik
t

d
∑

l=1

σjl
t dW k

t dW l
t =

d
∑

k=1

σik
t σjk

t dt.

Hence the quadratic (co)variation of the multidimensional Itô process is
given by

[Zi, Zj]t =

∫ t

0

d
∑

k=1

σik
s σjk

s ds.

For a function f(t, z) with z ∈ R
d for which the partial derivatives df(t,z)

dt ,
df(t,z)
dzi

and ∂2f(t,z)
∂zi∂zj

for 1 ≤ i, j ≤ 4 are defined and continuous, we can
formulate an expression for the multidimensional Itô formula:

df(t, Zt) =
df(t, Zt)

dt
dt+

4
∑

i=1

df(t, Zt)

dzi
dZi

t +

4
∑

i,j=1

1

2

∂2f(t, Zt)

∂zi∂zj
d[Zi, Zj ]t.

When we substitute the equation for dZt (3.7) and use the fact that d[Zi, Zj ]t =
∑d

k=1 σ
ik
t σjk

t dt, we get:

df =
df

dt
dt+

4
∑

i=1

df

dzi
(bit dt+

d
∑

j=1

σij
t dW j

t ) +

4
∑

i,j=1

1

2

∂2f

∂zi∂zj

d
∑

k=1

σik
t σjk

t dt

=
df

dt
dt+





4
∑

i=1

df

dzi
bit +

4
∑

i,j=1

1

2

∂2f

∂zi∂zj

d
∑

k=1

σik
t σjk

t



 dt

+
4
∑

i=1

df

dzi

d
∑

j=1

σij
t dW j

t , (3.8)
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where f := f(t, Zt) for simplicity.

Defining at := σtσ
∗
t , such that

∑d
k=1 σ

ik
t σjk

t = aijt , and defining

At(ω)f(t, z) = bt(ω)·∇zf(t, z)+
1

2

4
∑

i,j=1

aijt (ω)
∂2f(t, z)

∂zi∂zj
, 0 ≤ t < ∞, z ∈ Z,

we can write (3.8) as (again with f := f(t, Zt)):

df =
df

dt
dt+Atf dt+

4
∑

i=1

df

dzi

d
∑

j=1

σij
t dW j

t , 0 ≤ t < ∞. (3.9)

This formula will be used in the proof of the theorem in the following section
to simplify the expressions.

3.2 Consistency of the Itô process

In the following theorem, we state a condition using the forward rate curve
for the Itô process Z := (Zt)0≤t<∞ to be consistent, following Definition
3.1. In this theorem we use the terminology forward curve family F : this is
nothing else than the set of forward rate curves with expression F (x, z) for
x ∈ R+ and z ∈ Z: F = {F (x, z)|x ∈ R+, z ∈ Z}. This does not have to be
the Nelson-Siegel forward curve.

Theorem 3.1. Suppose Z = (Zt)0≤t<∞ follows the Itô process of Definition
3.4 with values in Z. Then Z is consistent, following Definition 3.1, with
the forward curve family F only if

DxF (x,Zt) = b · ∇zF (x,Zt) +
1

2

4
∑

i,j=1

aij
∂2

∂zi∂zj
F (x,Zt)

−
4
∑

i,j=1

aij
(

∂

∂zi
F (x,Zt)

∫ x

0

∂

∂zj
F (η, Zt) dη

)

for all x ≥ 0, dt⊗ dP-a.s., where a = σσ∗.

Proof. In our new framework, the bond price depends on the parameter-
vector Zt, hence we will use the expression for the multi-dimensional Itô
formula for the bond price.

Suppose we have an expression for the forward rate F (x, z) (remark
that this notation relates to the definition of the forward rate (2.1) as
ft(x) = F (x,Zt)). The corresponding bond prices are then (see equation
(3.2)) denoted by G(x, z) and using this, the price at time t of a zero coupon
bond with maturity T is given by

P (t, T ) := G(T − t, Zt).
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Combining this with (3.9) gives the following Itô formula in differential form:

dP (t, T ) =
(

−DxG(T − t, Zt) +AtG(T − t, Zt)
)

dt+
4
∑

i=1

dG

dzi

d
∑

j=1

σij
t dW j

t ,

where we write G := G(T − t, Zt) for simplicity. To simplify this equation
further, write dWt = (dW 1

t , . . . ,dW
d
t )

∗ such that
∑d

j=1 σ
ij
t dW j

t = (σt dWt)i

and
∑4

i=1
dG(T−t,Zt)

dzi
(σt dWt)i = (∇zG(T − t, Zt))

∗σt dWt. In integral form,
above equation can be written as:

P (t, T ) = P (0, T ) +

∫ t

0
(AsG(T − s, Zs)−DxG(T − s, Zs)) ds

+

∫ t

0
∇zG(T − s, Zs)

∗σs dWs, 0 ≤ t ≤ T, P-a.s.. (3.10)

Now the short rate rt = r(t, 0) is, by Definition 4:

r(t, 0) := lim
x→0

F (x,Zt) = F (0, Zt) = −DxG(0, Zt), 0 ≤ t < ∞.

Furthermore, we have the definition of the process for the savings account:

B(t) := exp

(

∫ t

0
r(s, 0) ds

)

, 0 ≤ t < ∞.

Remark that

d(1/B(t))

dt
=

d

dt
exp

(

−

∫ t

0
r(s, 0) ds

)

= exp

(

−

∫ t

0
r(s, 0) ds

)

d

dt

(

−

∫ t

0
r(s, 0) ds

)

= −
r(t, 0)

B(t)
.

Using this we derive the following expression for 1
B(t) :

1

B(t)
=

1

B(t)
− 1 + 1 =

1

B(t)
−

1

B(0)
+ 1 =

∫ t

0

d(1/B(s))

ds
ds+ 1

= −

∫ t

0

r(s, 0)

B(s)
ds+ 1 =

∫ t

0

1

B(s)
DxG(0, Zs) ds+ 1.
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Now we are able to investigate d
(

P (t,T )
B(t)

)

:

d

(

P (t, T )

B(t)

)

=
1

B(t)
dP (t, T ) + P (t, T ) d

(

1

B(t)

)

+ d

(

1

B(t)

)

dP (t, T )

=
1

B(t)

(

(

AtG(T − t, Zt)−DxG(T − t, Zt)
)

dt+∇zG(T − t, Zt)
∗σt dWt

)

+G(T − t, Zt)
1

B(t)
DxG(0, Zt) dt+

1

B(t)
DxG(0, Zt) dt

(

(

AtG(T − t, Zt)−DxG(T − t, Zt)
)

dt+∇zG(T − t, Zt)
∗σt dWt

)

.

(3.11)

Using the fact that dt dt = 0 and dt dWt = 0, we see that the last term
equals zero. Define

H(t, T ) :=
1

B(t)

(

AtG(T − t, Zt)−DxG(T − t, Zt) +DxG(0, Zt)G(T − t, Zt)
)

and

M(t, T ) :=

∫ t

0

1

B(s)
∇zG(T − s, Zs)

∗σs dWs,

which is is a local P-martingale because it is an integral with respect to a
(local) P-martingale. Using the definition of H(t, T ) we can rewrite (3.11)
as

d

(

P (t, T )

B(t)

)

= H(t, T ) dt+
1

B(t)
∇zG(T − t, Zt)

∗σt dWt.

Using this we arrive at the following identity:

P (t, T )

B(t)
− P (0, T ) =

∫ t

0
d

(

P (s, T )

B(s)

)

=

∫ t

0
H(s, T ) ds+

∫ t

0

1

B(s)
∇zG(T − s, Zs)

∗σs dWs

=

∫ t

0
H(s, T ) ds+M(t, T ). (3.12)

Let’s suppose Z is consistent with the Nelson-Siegel family, i.e.
(

P (t,T )
B(t)

)

0≤t≤T

is a P-martingale, for all T < ∞. Then we know that
∫ t

0 H(s, T ) ds is a lo-
cal martingale (because it is the difference of two local martingales) which
is continuous (because H(s, T ) is continuous) and of bounded variation.
Therefore we know for T < ∞

∫ t

0
H(s, T ) ds = 0, ∀t ∈ [0, T ], P− a.s.. (3.13)

Because H(t, T ) depends on the stochastic process Zt we write H(t, T )(ω)
if we want to line out the dependence of H(t, T ) via Zt(ω) on ω ∈ Ω.
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Claim 3.2. Equation (3.13) yields H(t, T )(ω) = 0 for (t, ω) ∈ [0, T ) × Ω,
dt⊗ dP− a.s..

Proof. Denote by λ the lebesgue measure on [0, T ) and by by N the col-
lection of points (t, ω) ∈ [0, T ) × Ω where H(t, T )(ω) > 0: N := {(t, ω) ∈
[0, T )×Ω|H(t, T )(ω) > 0}. We will show that the measure of N equals zero:
(λ× P)(N) = 0.

Let’s have a look at
∫

N

H(t, T )(ω) dt⊗ dP.

Because H(s, T )(ω) is positive on N , we can use Tonelli:

∫

N

H(t, T )(ω) dt⊗ dP =

∫

Ω

(

∫

Nω

H(t, T )(ω) dt

)

dP,

whereNω = {t|(t, ω) ∈ N}. Because by assumption
∫ t

0 H(s, T ) ds = 0, ∀t ∈

[0, T ], P−a.s., we know
∫

Nω
H(t, T )(ω) dt

P−a.s.
= 0, hence

∫

N
H(t, T )(ω) dt⊗

dP = 0. Because H(t, T )(ω) > 0 on N , it must hold that N has 0 dt⊗ dP-
measure. To prove that also N− := {(t, ω) ∈ [0, T )×Ω|H(t, T )(ω) < 0} has
measure 0, we follow the same argumentation applied to −H(t, T )(ω). We
conclude H(t, T )(ω) = 0 for (t, ω) ∈ [0, T )× Ω, dt⊗ dP− a.s..

Claim 3.2 holds for every T < ∞. Because H(t, T ) is continuous in T ,
we know that

H(t, t+ x)(ω) = 0, ∀x ≥ 0, for dt⊗ dP-a.e. (t, ω). (3.14)

Because B(t) > 0 for all t, (3.14) yields

AG(x,Z)−DxG(x,Z) +DxG(0, Z)G(x,Z) = 0, ∀x ≥ 0, dt⊗ dP-a.s..
(3.15)

Using the definition of the bond price G(x, z), z ∈ Z, equation (3.2), we see:

dG(x, z)

dzi
= −

∫ x

0

d

dzi
F (η, z) dηG(x, z),

∂2G(x, z)

∂zj∂zi
=

(∫ x

0

∂

∂zi
F (η, z) dη

∫ x

0

∂

∂zj
F (η, z) dη

−

∫ x

0

∂2

∂zj∂zi

)

G(x, z)

and

DxG(x, z) = −F (x, z)G(x, z).
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Details can be found in Appendix A.1, equations (A.1), (A.2) and (A.3).
Equation (3.15) can now be written as

0 = AG(x,Z)−DxG(x,Z) +DxG(0, Z)G(x,Z)

= b · ∇zG(x,Z) +
1

2

d
∑

i,j=1

aij
∂2G(x,Z)

∂zi∂zj
−DxG(x,Z) +DxG(0, Z)G(x,Z)

= −

∫ x

0
b · ∇zF (η, Z) dηG(x,Z)

+
1

2

d
∑

i,j=1

aij

(

∫ x

0

∂

∂zi
F (η, Z) dη

∫ x

0

∂

∂zj
F (η, Z) dη −

∫ x

0

∂2

∂zj∂zi
F (η, Z) dη

)

G(x,Z) + F (x,Z)G(x,Z) − F (0, Z)G(x,Z)

= −

∫ x

0
AF (η, Z) dηG(x,Z)

+
1

2

d
∑

i,j=1

aij
(
∫ x

0

∂

∂zi
F (η, Z) dη

∫ x

0

∂

∂zj
F (η, Z) dη

)

G(x,Z)

+ F (x,Z)G(x,Z) − F (0, Z)G(x,Z), ∀x ≥ 0, dt⊗ dP-a.s..

Dividing by −G(x,Z) gives:

∫ x

0
AF (η, z) dη −

1

2

4
∑

i,j=1

aij
(
∫ x

0

∂

∂zi
F (η, Z) dη

∫ x

0

∂

∂zj
F (η, Z) dη

)

−F (x,Z) + F (0, Z) = 0, ∀x ≥ 0, dt⊗ dP-a.s..

Differentiating this to x gives

−
1

2

4
∑

i,j=1

aij
(

∂

∂zi
F (x,Z)

∫ x

0

∂

∂zj
F (η, Z) dη +

∫ x

0

∂

∂zi
F (η, Z) dη

∂

∂zj
F (x,Z)

)

+AF (η, Z) dη −DxF (x,Z) = 0, ∀x ≥ 0, dt⊗ dP-a.s., (3.16)

which can be rewritten to the expression of Theorem 3.1.

This theorem was derived using an arbitrary forward rate curve F (x, z)
depending on a process Z. We are going to apply this theorem to the Nelson-
Siegel forward rate. The following corollary gives the explicit condition given
by Theorem 3.1 in the Nelson-Siegel forward curve case.

Corollary 3.3 (Nelson-Siegel). Suppose Z = (Zt)0≤t<∞ follows the Itô
process of Definition 3.4 with values in Z. Then Z is consistent with the
Nelson-Siegel family only if for dt⊗ dP-a.e. (t, ω) in [0,∞) × Ω,

0 = p0(x) + p1(x)e
−z4x + p2(x)e

−2z4x (3.17)
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for all x ≥ 0, where p0(x), p1(x) and p2(x) are polynomials in x with coeffi-
cients containing bi := bit(ω), a

ij := aijt (ω) and zi := Zi
t(ω) for 1 ≤ i, j ≤ 4

which are given by

p0(x) =− xa11 + b1 −
1

z4
(a12 + a13) +

z2 + z3
z24

a14, (3.18)

p1(x) =(z2 − z3)z4 + z3z
2
4x+ b2 + z4xb

3 +
[

(z3 − z2) x− z3z4x
2
]

b4

+

[

1

z4
− x

]

a12 +

[

1

z4
+ x− z4x

2

]

a13

+

[

−
z2 + z3

z24
−

z2 + z3
z4

x+ (z2 − 2z3) x
2 + z3z4x

3

]

a14 −
1

z4
a22

−

[

1

z4
+ x

]

a23 +

[

z2 + z3
z24

+

(

z2 − z3
z4

− 1

)

x+ z3x
2

]

a24 − xa33

+

[

(

1 + 2
z2
z4

)

x+ (z3 − z4)x
2

]

a34 +

[

(z3 − z2)(z3 + z2)

z24
x

+

(

−
(z2 + z3) z3

z4
+

z2
2

− z3

)

x2 +
z3z4
2

x3

]

a44, (3.19)

p2(x) =
1

z4

(

a22 + [1 + 2z4x] a
23 +

[

−
z2 + z3

z4
− 2z2x− 2z3z4x

2

]

a24

+
[

z4x+ z24x
2
]

a33 +
[

−2z2x− 2z2z4x
2 − z3z4x

2 − 2z3z
2
4x

3
]

a34

+

[

z22 − z23
z4

x+
(

z22 + z2z3

)

x2 + 2z2z3z4x
3 + z23z

2
4x

4

]

a44



 .

(3.20)

Proof. The proof is nothing more than expanding what the condition of The-
orem 3.1 means when we take for F the Nelson-Siegel family. The Nelson-
Siegel forward rates F (x, z) are given by equation (3.1):

F (x, z) = z1 + z2e
−z4x + z3z4xe

−z4x.

The (partial) derivatives of F are written out in Appendix A.2. Using that
a = a∗ and combining all the terms, one shows the condition in Corollary
3.3.

Equation (3.17) can only be satisfied for all x ≥ 0 if each of the polyno-
mials p0(x), p1(x) and p2(x) are equal to 0 for all x ≥ 0. This is proved in
Appendix C. This gives conditions on the bi and aij and hence it determines
the dynamics of Z. Before we state a new theorem, we prove the following
lemmas which we will use in the proof:
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Lemma 3.4. Let f : R→ R be given by f(x) = ax+ b, a ∈ R, b ∈ R. The
solution for f(x) = 0 for all x ≥ 0 is given by a = 0, b = 0.

Proof. b = f(0) = 0 gives b = 0 and then a + b = a = f(1) = 0 gives
a = 0.

This lemma is a special case of the following lemma:

Lemma 3.5. Let f : R → R be given by a polynomial of degree p > 0:
f(x) =

∑p
k=0 ckx

k with ck ∈ R. If f(x) = 0 for all x ≥ 0, we know ck = 0
for 0 ≤ k ≤ p.

Proof. First note that if f(x) = 0 for all x ≥ 0, also f (q)(x) := dq

dxq f(x) =

0 for q ≥ 0 and for all x ≥ 0. Secondly, f (q)(x) =
∑p

k=q ck
dq

dxq (xk) =
∑p

k=q ck
k!

(k−q)!x
k−q, hence f (q)(0) = q!cq, for q ≥ 0. Because f (q)(x) = 0

for q ≥ 0 and for all x ≥ 0, we know q!cq = 0 for q ≥ 0, hence ck = 0 for
0 ≤ k ≤ p.

Lemma 3.6. Let M be an n×m matrix with M ij ∈ R. Define B = MM∗.
Suppose Bll = 0 for some 1 ≤ l ≤ n. Then Blj = Bjl = 0 for all 1 ≤ j ≤ n.

Proof. Remark that Bij can be written as Bij =
∑m

k=1M
ikM jk. Now Bll =

0 yields 0 =
∑m

k=1M
lkM lk =

∑m
k=1(M

lk)2. BecauseM ij ∈ R, we know that
(M ij)2 ≥ 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. From this it follows that M lk = 0
for 1 ≤ k ≤ m. Obviously then Blj =

∑m
k=1M

lkM jk =
∑m

k=1 0M
jk = 0.

Because B∗ = (MM∗)∗ = M∗∗M∗ = MM∗ = B, we know Bij = Bji, hence
Blj = Bjl = 0 for all 1 ≤ j ≤ n.

This is it for the preparation for the following theorem, which is a con-
sequence of Corollary 3.3.

Theorem 3.7. Suppose Z = (Zt)0≤t<∞ follows the Itô process of Definition
3.4 with values in Z. Let Z be consistent with the Nelson-Siegel family. Then
Zt is of the form

Z1
t = Z1

0 ,

Z2
t = Z2

0e
−Z4

0
t + Z3

0Z
4
0 te

−Z4

0
t,

Z3
t = Z3

0e
−Z4

0
t,

Z4
t = Z4

0 +

∫ t∧τ

0
c1s1{Z2

0
=Z3

0
=0} ds+

d
∑

j=1

∫ t∧τ

0
σ4j
s 1{Z2

0
=Z3

0
=0} dW

j
s ,

with c1 ∈ R and the stopping time τ := inf{s > 0|Z2
s = Z3

s = 0}.
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Proof. Z is consistent if equation (3.17) from Corollary 3.3 holds. As proven
in Appendix C, equation (3.17) can only hold if p0(x), p1(x) and p2(x) equal
zero for all x. Let’s start with the first polynomial, p0(x).

The polynomial p0(x) is of the form of f in Lemma 3.4 (and 3.5), with
a = −a11 and b = b1− 1

z4
(a12+a13)+ z2+z3

z2
4

a14. From the lemma(s) we know

a11 = 0.
Because we have a = σσ∗, σ ∈ R4×d and a11 = 0, we know by Lemma

3.6, a1j = aj1 = 0 for 1 ≤ j ≤ 4. What remains of the polynomial p0(x) is
p0(x) = b1. Obviously b1 = 0. These observations simplify p1(x) somewhat.

Remark that the degree of p2(x) depends on whether z3 = 0 or not.
Suppose z3 6= 0 and z2 6= 0. Then the degree in p2(x) is four and the
coefficient of x4 is given by z23z4a

44. Because p2(x) = 0 for all x ≥ 0, we
know z23z4a

44 = 0 and hence a44 = 0. By using Lemma 3.6 again, we know
a4j = aj4 = 0 for 1 ≤ j ≤ 4.

The polynomial reduces to

p2(x) =
1

z4

(

a22 + [1 + 2z4x] a
23 +

[

z4x+ z24x
2
]

a33
)

.

The second order coefficient is z4a
33, hence for the polynomial to be zero,

a33 = 0. The order reduces to 1 with coefficient 2a23, hence also a23 and a32

equal zero. Now only a22

z4
is left, which means that a22 = 0. This implies

a = 0 and hence σij = 0. The polynomial p1(x) reduces to:

p1(x) =(z2 − z3)z4 + z3z
2
4x+ b2 + z4xb

3 +
[

(z3 − z2) x− z3z4x
2
]

b4.

(3.21)

A similar argument as above gives that b4 = 0 and we are left with

b3 = −z3z4, (3.22)

b2 = (z3 − z2)z4. (3.23)

Until now we only assumed z3 6= 0 and z2 6= 0. It is worth considering what
happens when z3 6= 0 and z2 = 0. The following lemma will make things
easier:

Lemma 3.8. For 1 ≤ i ≤ 4, it holds that aii1{Zi=0} = bi1{Zi=0} = 0,
dt⊗ dP-a.s..

Proof. The Occupation times formula (Corollary 1.6, Chapter VI of Revuz
and Yor [19]) gives the following: There is a P-negligible set outside of which

∫ t

0
Φ(Xs) d[X,X]s =

∫ ∞

−∞
Φ(a)La

t da,
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for every t and every positive Borel function Φ and La
t a local time. Take

X = Zi for i = 1, . . . , 4, then [X,X]s = [Zi, Zi]s =
∫ s

0 aiit dt and take the
positive Borel function Φ(z) = 10(z). Then by the formula

∫ t

0
10(Z

i
s)a

ii
s ds =

∫ ∞

−∞
10(a)L

a
t da =

∫

{0}
La
t da = 0,

because the lebesgue measure of 0 is zero. Because this holds for every t,
we know aii1{Zi=0} = 0,dt⊗ dP-a.s., for i = 1, . . . , 4.

Now let dYt = 1Zi
t=0 dZ

i
t . Then [Y, Y ]t =

∫

1Zi
s=0[Z

i, Zi]s =
∫

1Zi
s=0a

ii
s ds =

0. This implies that Yt
a.s.
= Y0, or

0
a.s.
= Yt − Y0 =

∫ t

0
1{Zi

s=0} dZs

=

∫ t

0
1{Zi

s=0}b
i
s ds+

d
∑

j=1

∫ t

0
1{Zi

s=0}σ
ij
s dW j

s

=

∫ t

0
1{Zi

s=0}b
i
s ds+ 0.

Again this holds for every t, so we know bi1{Zi=0} = 0,dt ⊗ dP-a.s., for
i = 1, . . . , 4.

The lemma tells us that when z2 = 0, also b2 = 0. The condition (3.23)
gives z3 = 0, which contradicts the assumption z3 6= 0 in the derivations of
(3.23). Hence this cannot occur.

Let’s consider the case that z3 = 0. As above we have that a11 = 0.
Now given that z3 = 0, we immediately know b3 and a33 are zero and hence
(using Lemma 3.6) a3j = aj3 = 0 for 1 ≤ j ≤ 4. This reduces p2(x) to:

p2(x) =
1

z4
a22 −

[

z2
z24

+ 2
z2
z4

x

]

a24 +

[

z22
z24

x+
z22
z4

x2

]

a44.

The highest order coefficient to be zero holds that a44 = 0 (if z2 6= 0)
and hence a4j = aj4 = 0 for 1 ≤ j ≤ 4. This gives p2(x) = 1

z4
a22 hence

a22 = 0. The matrix aij is zero again. We know immediately that p1(x) =
z2z4 + b2 − z2xb

4, hence b4 = 0 and b2 = −z2z4.
If z3 and z2 equal zero, we know that aij = 0 and bk = 0 for all 1 ≤

i, j ≤ 4, except for i = j = 4, and 1 ≤ k ≤ 3. In this case the polynomials
are equal to zero, p1(x) = p2(x) = 0, regardless the choice for b4 and a44.
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Summarizing:

b1 = 0,

b2 = (z3 − z2)z4,

b3 = −z3z4,

b4 = c11{z2=z3=0},

aij = 0, for (i, j) 6= (4, 4),

a44 = c21{z2=z3=0},

where c1 ∈ R and c2 ∈ R≥0 are arbitrary numbers.
Because Corollary 3.3 holds dt ⊗ dP-a.e. (t, ω), the process Z (3.6) is

now, up to indistinguishability, given by











Z1
t

Z2
t

Z3
t

Z4
t











=











Z1
0

Z2
0

Z3
0

Z4
0











+

∫ t

0











0
(

Z3
s − Z2

s

)

Z4
s

−Z3
sZ

4
s

c1s1{Z2
s=Z3

s=0}











ds

+

∫ t

0











0 . . . 0
0 . . . 0
0 . . . 0

σ41
s 1{Z2

s=Z3
s=0} . . . σ4d

s 1{Z2
s=Z3

s=0}



















dW 1
s

...
dW d

s









(3.24)

or

Z1
t = Z1

0 ,

Z2
t = Z2

0 +

∫ t

0

(

Z3
s − Z2

s

)

Z4
s ds,

Z3
t = Z3

0 −

∫ t

0
Z3
sZ

4
s ds,

Z4
t = Z4

0 +

∫ t

0
c1s1{Z2

s=Z3
s=0} ds+

d
∑

j=1

∫ t

0
σ4j
s 1{Z2

s=Z3
s=0} dW

j
s .

On Ω0 := {Z2
0 = Z3

0 = 0}, Z2
t and Z3

t remain zero (a.s.). It remains to show
it on Ω1 := Ω\Ω0. Introduce the stopping time τ := inf{s > 0|Z2

s = Z3
s =

0}. Obviously Ω0 = {τ = 0}. As soon as Z2
s and Z3

s are zero, they remain
zero. Hence 1{Z2

s=Z3
s=0} = 1[τ,∞). Define the stopped process Yt = Zt∧τ ,
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then:

Y 1
t = Z1

0 ,

Y 2
t = Z2

0 +

∫ t∧τ

0

(

Y 3
s − Y 2

s

)

Y 4
s ds,

Y 3
t = Z3

0 −

∫ t∧τ

0
Y 3
s Y

4
s ds,

Y 4
t = Z4

0 +

∫ t∧τ

0
c1s1{Y 2

s =Y 3
s =0} ds+

d
∑

j=1

∫ t∧τ

0
σ4j
s 1{Y 2

s =Y 3
s =0} dW

j
s . (3.25)

Remark that for t < τ , c1t1{Y 2
s =Y 3

s =0} and σ4j
s 1{Y 2

s =Y 3
s =0} are zero. Further-

more

∫ t∧τ

0
c1s1{Y 2

s =Y 3
s =0} ds+

d
∑

j=1

∫ t∧τ

0
σ4j
s 1{Y 2

s =Y 3
s =0} dW

j
s

=

∫ t

0
c1s1[τ,∞]1[0,τ ] ds+

d
∑

j=1

∫ t

0
σ4j
s 1[τ,∞]1[0,τ ] dW

j
s

=

∫ t

0
c1s1[τ ] ds+

d
∑

j=1

∫ t

0
σ4j
s 1[τ ] dW

j
s = 0.

Hence Y 4
t becomes Y 4

t = Z4
0 , so Yt of (3.25) becomes

Y 1
t = Z1

0 ,

Y 2
t = Z2

0 +

∫ t∧τ

0

(

Y 3
s − Y 2

s

)

Z4
0 ds,

Y 3
t = Z3

0 −

∫ t∧τ

0
Y 3
s Z

4
0 ds,

Y 4
t = Z4

0 .

The solution of the equation for Y 3
t is given by

Y 3
t = Z3

0e
−Z4

0
(t∧τ),

which can easily been checked:

Z3
0 −

∫ t∧τ

0
Y 3
s Z

4
0 ds = Z3

0 −

∫ t∧τ

0
Z3
0e

−Z4

0
(s∧τ)Z4

0 ds

= Z3
0 − Z3

0

∫ t∧τ

0
e−Z4

0
sZ4

0 ds

= Z3
0 − Z3

0

[

−e−Z4

0
s
]s=t∧τ

s=0

= Z3
0e

−Z4

0
(t∧τ) = Y 3

t .
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Furthermore it is easy to check that

Y 2
t = Z2

0e
−Z4

0
(t∧τ) + Z3

0Z
4
0 (t ∧ τ)e−Z4

0
(t∧τ) :

Z2
0+

∫ t∧τ

0

(

Y 3
s − Y 2

s

)

Z4
0 ds

= Z2
0 +

∫ t∧τ

0

(

Z3
0e

−Z4

0
(s∧τ) − Z2

0e
−Z4

0
(s∧τ) − Z3

0Z
4
0 (s ∧ τ)e−Z4

0
(s∧τ)

)

Z4
0 ds

= Z2
0 +

(

Z3
0 − Z2

0

)

Z4
0

∫ t∧τ

0
e−Z4

0
(s∧τ) ds

− Z3
0 (Z

4
0 )

2

∫ t∧τ

0
(s ∧ τ)e−Z4

0
(s∧τ) ds

= Z2
0 +

(

Z3
0 − Z2

0

)(

1− e−Z4

0
(t∧τ)

)

− Z3
0

(

−Z4
0 (t ∧ τ)e−Z4

0
(t∧τ) + 1− e−Z4

0
(t∧τ)

)

= Z2
0e

−Z4

0
(t∧τ) + Z3

0Z
4
0 (t ∧ τ)e−Z4

0
(t∧τ) = Y 2

t .

Putting everything together we have

Y 1
t = Z1

0 ,

Y 2
t = Z2

0e
−Z4

0
(t∧τ) + Z3

0Z
4
0 (t ∧ τ)e−Z4

0
(t∧τ),

Y 3
t = Z3

0e
−Z4

0
(t∧τ),

Y 4
t = Z4

0 .

For t ∈ [0, τ ], we have Yt = Zt. Remark that Yt > 0 for all t, hence
Ω1 = {τ > 0} = {τ = ∞}. Using this we get Yt = Zt∧τ = Zt and

Z1
t = Z1

0 ,

Z2
t = Z2

0e
−Z4

0
t + Z3

0Z
4
0 te

−Z4

0
t,

Z3
t = Z3

0e
−Z4

0
t,

Z4
t = Z4

0 ,

on Ω1. Putting everything together we get

Z1
t = Z1

0 ,

Z2
t = Z2

0e
−Z4

0
t + Z3

0Z
4
0 te

−Z4

0
t,

Z3
t = Z3

0e
−Z4

0
t,

Z4
t = Z4

0 +

∫ t∧τ

0
c1s1{Z2

0
=Z3

0
=0} ds+

d
∑

j=1

∫ t∧τ

0
σ4j
s 1{Z2

0
=Z3

0
=0} dW

j
s ,

which is the result of Theorem 3.7.



Chapter 3. Consistency: Itô process 27

We can of course substitute this expression for Z in the Nelson-Siegel
forward curve to see what this really means:

Corollary 3.9. The forward rates are non-random, they are F0-measurable.

Proof. The Nelson-Siegel forward rate on Ω0 is given by F (x,Zt) = Z1
0

(because Z2
t = Z3

t = 0), which is F0-measurable. The dynamics of Zt
4 have

no influence. The Nelson-Siegel forward rate on Ω1 is given by

F (x,Zt) = Z1
t + Z2

t e
−Z4

t x + Z3
t Z

4
t xe

−Z4
t x

= Z1
0 +

(

Z2
0e

−Z4

0
t + Z3

0Z
4
0 te

−Z4

0
t
)

e−Z4

0
x + Z3

0Z
4
t e

−Z4

0
txe−Z4

0
x

= Z1
0 + Z2

0e
−Z4

0
(t+x) + Z3

0Z
4
0 (t+ x)e−Z4

0
(t+x) = F (t+ x,Z0),

hence all the randomness remains F0-measurable.

Corollary 3.9 tells us that the interest rate model is nonrandom, trivial.
It only depends on the value of the process at time 0.





Chapter 4

Consistency: Jump process

In Chapter 3 we used stochastic processes without jumps, so called Itô pro-
cesses. For this class of processes it is shown that the only Itô processes con-
sistent with the Nelson-Siegel family provide a trivial interest rate model.
In this chapter we will show there is an analogous result for stochastic pro-
cesses involving jumps, from now on called jump processes. We will define
these processes first.

4.1 Stochastic process with jumps

4.1.1 Poisson process

One of the most well known jump processes is the Poisson process. This
section will give a short introduction. For more details, check for example
ref. [20], Section 11.2.

There are different descriptions of the Poisson process possible. Hereby
we use a definition that follows the construction in ref. [20] by Shreve.

Definition 4.1 (Poisson process). Given a sequence of independent identi-
cally distributed exponential random variables τ1, τ2, . . . with mean 1

λ
, define

a Poisson process N(t) with intensity λ > 0 as

N(t) = max{n :
n
∑

i=1

τi ≤ t}, (4.1)

i.e. when we interpret τk as the time between the kth jump and the k − 1th
jump, N(t) counts the number of jumps that occur at or before time t.

As a consequence

P (N(t) = k) =
(λt)k

k!
e−λt, k = 0, 1, . . .

and

P (N(t)−N(s) = k) =
λk(t− s)k

k!
e−λ(t−s), k = 0, 1, . . . , t > s.

29
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It is easy to check that

E[N(t)−N(s)] =

∞
∑

k=0

k
λk(t− s)k

k!
e−λ(t−s)

= λ(t− s)

∞
∑

k=1

λk−1(t− s)k−1

(k − 1)!
e−λ(t−s) = λ(t− s).

Furthermore we know that for t > s, N(t)−N(s) is independent of Fs, where
Ft is the σ-algebra containing all the information of N(s) for 0 ≤ s ≤ t.

4.1.2 Compensated Poisson process

Whereas the Poisson process is a pure jump process (the process does not
change, unless it jumps), there is an extension of this process which can be
shown to be a martingale. We need this process to be able to say something
about integrals with respect to the Poisson process later on.

Definition 4.2 (Compensated Poisson process). Let N(t) be a Poisson pro-
cess with intensity λ > 0. The compensated Poisson process M(t) is defined
as

M(t) = N(t)− λt. (4.2)

For this process, we prove the following:

Lemma 4.1. The compensated Poisson process M(t) is a martingale.

Proof. Let 0 ≤ s < t be given. We have

E[M(t)|Fs] = E[M(t)−M(s)|Fs] + E[M(s)|Fs]

= E[N(t)−N(s)− λt+ λs|Fs] +M(s)

= E[N(t)−N(s)]− λ(t− s) +M(s) = M(s),

because M(s) is Fs-measurable, N(t)−N(s) is independent of Fs and the
expected value of N(t)−N(s) is λ(t− s).

4.1.3 Jump process

Next we will use the Poisson process to extend the state space process from
an Itô process to a jump process where the jumps are given by a Pois-
son process. Recall the definition of the multidimensional Itô process: Let
(Ω,F ,P) be a complete probability space and (Ft)0≤t<∞ a filtration, satisfy-
ing the usual conditions [21], and let W = (W 1

t , . . . ,W
d
t )0≤t<∞ be standard
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d-dimensional (Ft)-Brownian motion, 1 ≤ d. The multidimensional Itô pro-
cess Z = (Zt)0≤t<∞, Zt = (Z1

t , . . . , Z
4
t ), is given by

Zi
t = Zi

0 +

∫ t

0
bis ds+

d
∑

j=1

∫ t

0
σij
s dW j

s , i = 1, . . . , 4, (4.3)

where Zi
0 is nonrandom (F0-measurable) and with b and σ progressively mea-

surable processes with values in R
4, respectively R

4×d, such that
∫ t

0 |b
i
s|ds <

∞ and
∫ t

0 |σ
ij
s |2 ds < ∞, P-a.s., for all t > 0. This part is the continuous

part of the process. We add to this the jump part J = (J1, . . . , J4) given by

J i
t =

m
∑

j=1

ΣijN j
t , i = 1, . . . , 4, (4.4)

where Nt = (N1
t , . . . , N

m
t ) is an m-dimensional vector with independent

Poisson processes with parameters λ1, . . . , λm > 0 and Σ ∈ R
4×m. The

general jump process we define in this thesis is defined as follows.

Definition 4.3. The jump process Z = (Zt)0≤t<∞, Zt = (Z1
t , . . . , Z

4
t ), is

given by

Zi
t = (Zc)it + J i

t , i = 1, . . . , 4, (4.5)

where (Zc)it is the continuous part of Z given by (3.6):

(Zc)it = Zi
0 +

∫ t

0
bis ds+

d
∑

j=1

∫ t

0
σij
s dW j

s , i = 1, . . . , 4,

and J i
t is the jump part of Z given by (4.4).

In what follows we will use a somewhat easier jump process, where Nt =
(N1

t , N
2
t , N

3
t ), Σ ∈ R

4×3, Σij = 0 for i 6= j, and Σ11 = α1, Σ22 = α2 and
Σ33 = α3. This gives the following process, which we call the Independent
jump process:

Definition 4.4 (Independent jump process). The Independent jump pro-
cess Z = (Zt)0≤t<∞, Zt = (Z1

t , . . . , Z
4
t ), is given by

Zi
t = Zi

0 +

∫ t

0
bis ds+

d
∑

j=1

∫ t

0
σij
s dW j

s + αiN i
t1{i 6=4}, i = 1, . . . , 4, (4.6)

where N i
t is a Poisson process with parameter λi ∈ R+, αi ∈ R, W is d-

dimensional Brownian motion, Zi
0 is nonrandom (F0-measurable) and with

b and σ progressively measurable processes with values in R
4, respectively

R
4×d, such that for i = 1, . . . , 4 and j = 1, . . . , d,

∫ t

0
|bis|ds < ∞ and

∫ t

0
|σij

s |
2 ds < ∞, P-a.s., for all t > 0.
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4.1.4 Stochastic Calculus for Jump processes

To be able to do some stochastic calculus, we have to analyze what the
quadratic (co)variation of those jump processes is. See Appendix B for more
information about the quadratic (co)variation. From standard Itô calculus,
we know that

[(Zc)i, (Zc)j ]t =

∫ t

0

d
∑

k=1

σik
s σjk

s ds

as we have used before. As shown in ref. [20], Theorem 11.4.7, the quadratic
variation of two processes X1 and X2 with jumps is given by [X1,X2]t =
[Xc

1,X
c
2 ]t + [J1, J2]t where Xc

i is the continuous part and Ji the pure jump
part of process i and [Ji, Jj ]t is given by [Ji, Jj ]t =

∑

0<s≤t∆Ji(s)∆Jj(s).
The remark on page 482 of [20] tells that in differential form,

dX1(t) dX2(t) = dXc
1(t) dX

c
2(t) + dJ1(t) dJ2(t)

and
dXc

1(t) dJ2(t) = dXc
2(t) dJ1(t) = 0.

The processes N i(t) are right continuous. Define by f(t−) the limit
lims↑t f(s) from the left. Define for a process Xt the jump size ∆X(t) =
X(t) −X(t−). For a right continuous process X, it holds that ∆X(t) = 0
if there is no jump and ∆X(t) = J if there is a jump with size J . For the
poisson process it holds that ∆N(t) = N(t)−N(t−) = 1 if there is a jump
and ∆N(t) = 0 when there is no jump. Furthermore, the poisson process
can only have a finite number of jumps in every time interval. Therefore we
mean by

∑

0<s≤t∆N(s) the sum over all jump times s of the process between
0 and t. This of course equals N(t) in this case: N(t) =

∑

0<s≤t∆N(s).
Suppose we have a continuous function f with continuous first and sec-

ond order partial derivatives, depending on a 1-dimensional Itô-process X(t)
with jumps given by

X(t) = Xc(t) + J(t),

Xc(t) = X(0) +

∫ t

0
bs ds+

∫ t

0
σs dWs,

where Wt is brownian motion and J(t) is a Poisson process. The function f
becomes discontinuous because of the discontinuity of X(t). However, when
there is no jump (i.e. in between jumps) we have

df(X(s)) = f ′(X(s)) dXc(s) +
1

2
f ′′(X(s))σ2

s ds, (4.7)

like we have seen before. When there is a jump, from X(s−) to X(s), the
process f will jump from f(X(s−)) to f(X(s)). This leads to the following
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identity which can be found at page 484 of ref. [20]:

f(X(t)) = f(X(0)) +

∫ t

0
f ′(X(s)) dXc(s) +

1

2

∫ t

0
f ′′(X(s))σ2

s ds

+
∑

0<s≤t

[

f(X(s))− f(X(s−))
]

. (4.8)

Remark 4.2. In some textbooks, for example in ref. [11], Theorem 7.3.1,
the second integral on the righthand side is with respect to the jump process,
not only to the continuous part of the jump process. To compensate for
the changes at the jump times, they have to add another term, involving
the derivative of the function and the jumps in X:

∫ t

0 f
′(X(s)) dXc(s) =

∫ t

0 f
′(X(s)) dX(s)−

∑

0≤s<t f
′(X(s))(X(s) −X(s−)).

This identity can be extended to the case that we have a function of a
multidimensional Itô process. Theorem 11.5.4 in ref. [20] gives the two-
dimensional Itô-Doeblin formula for processes with jumps. This can be
extended to the following identity for higher dimensional processes X(t) =
(

X1(t), . . . ,Xd(t)
)

with jumps:

f(t,X(t)) = f(0,X(0)) +

∫ t

0

∂

∂s
f(s,X(s)) ds+

d
∑

i=1

∫ t

0

∂

∂xi
f(s,X(s)) dXc

i (s)

+
1

2

d
∑

i,j=1

∫ t

0

∂2

∂xi∂xj
f(s,X(s)) dXc

i dX
c
j +

∑

0<s≤t

[

f(s,X(s))− f(s,X(s−))
]

.

(4.9)

The next step is to analyze
∑

0<s≤t

[

f(s,X(s))− f(s,X(s−))
]

. In order to
do this, we start with analyzing ∆X(t). Remark that again we can write
Xc(t) +XJ(t) with Xc(t) the continuous part of X(t) and XJ(t) the pure
jump part:

Xc(t) =
(

Xc
1(t), . . . ,X

c
d(t)

)

,

XJ(t) =
(

J1(t), . . . , Jd(t)
)

.

Now ∆X(t) = Xc(t) + XJ(t) − (Xc(t−) + XJ (t−)) = XJ(t) − XJ(t−) =
∆XJ(t) by continuity of Xc(t). Note that ∆XJ(t) = 0 if there is no jump
at time t.

If we take XJ (t) =
(

N1(t), . . . , Nd(t)
)

, i.e. XJ(t) is the vector containing
d independent Poisson processes, a jump in XJ(t) occurs when one of the
Poisson processes jumps. The following proposition tells that two of those
jumps never occur at the same time, almost surely.

Lemma 4.3. Let N1(t) and N2(t) be two independent Poisson processes
with intensities λ1 and λ2. Then P

(

∆N1(t) = 1,∆N2(t) = 1
)

= 0 for all t.



Chapter 4. Consistency: Jump process 34

Proof. Jumps of the Poisson processes occur when an arrival occurs. The
arrival times are defined as Si

n :=
∑n

k=1 τ
i
k with τ ik exponential distributed

independent random variables with parameter λi, for i = 1, 2. For the
probability we have

P
(

∆N1(t) = 1,∆N2(t) = 1
)

=

∞
∑

k=1

P
(

∆N1(t) = 1,∆N2(t) = 1|N1(t) = k
)

P (N1(t) = k)

=
∞
∑

k,l=1

P
(

∆N1(t) = 1,∆N2(t) = 1|N1(t) = k,N2(t) = l
)

P (N1(t) = k)P (N2(t) = l)

=
∞
∑

k,l=1

P
(

S1
k = t, S2

l = t
)

P (N1(t) = k)P (N2(t) = l). (4.10)

The arrival times Si
n are Erlang(n, λi) distributed. Their distribution func-

tion is given by

fSi
n
(x;n, λi) =

λix
n−1e−λix

(k − 1)!
.

The probability P
(

S1
k = t, S2

l = t
)

can now be computed as

P
(

S1
k = t, S2

l = t
)

=

∫ ∞

0
P
(

S1
k = t, S2

l = t|S2
l = s

)

fS2

l
(s; l, λ2) ds

=

∫ ∞

0
P
(

S1
k = s

)

fS2

l
(s; l, λ2) ds

=

∫ ∞

0

[

P
(

S1
k ≤ s

)

− P
(

S1
k < s

)

]

fS2

l
(s; l, λ2) ds.

(4.11)

Now

P
(

S1
k ≤ s

)

=

∫ s

0
fS1

k
(η; k, λ1) dη = P

(

S1
k < s

)

and hence equation (4.11) and (4.10) equal zero, hence

P
(

∆N1(t) = 1,∆N2(t) = 1
)

= 0.

This holds for every t, hence two jumps never occur at the same time, almost
surely.

Next to this, we can prove an even stronger Lemma, which could have
been used to prove Lemma 4.3:
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Lemma 4.4. Let N1(t) be a Poisson processes with intensity λ1 > 0. Then
P
(

∆N1(t) = 1
)

= 0 for all t.

Proof. Again ∆N1(t) = 1 if there is an arrival at time t, so P
(

∆N1(t) = 1
)

=
∑∞

n=1 P (Sn = t), where Sn is the time of the n-th arrival. Now P (Sn = t) =
P (Sn ≤ t)− P (Sn < t) and because

P (Sk ≤ s) =

∫ s

0
fSk

(η; k, λ1) dη = P (Sk < s) (4.12)

we have P
(

∆N1(t) = 1
)

=
∑∞

n=1 P (Sn = t) = 0.

We are now able to rewrite
∑

0<s≤t

[

f(s,X(s))− f(s,X(s−))
]

: When
we denote by ∆k the occurrence of a jump of process Nk(t), we can rewrite
(4.14) as

∑

0<s≤t

∆f(s,X(s)) =
∑

0<s≤t

[

f(s,X(s))− f(s,X(s−))
]

a.s.
=

∑

0<s≤t

d
∑

k=1

∆kf(s,X(s)). (4.13)

Remark 4.5. In the case of independent jumps this can be written out as:
∑

0<s≤t

[

f(s,X(s))− f(s,X(s−))
]

=
∑

0<s≤t

[

f(s, (X1(s), . . . ,Xd(s))) − f(s, (X1(s−), . . . ,Xd(s−)))
]

a.s.
=

∑

0<s≤t

[

f(s, (X1(s), . . . ,Xd(s)))− f(s, (X1(s−), . . . ,Xd(s)))
]

+
∑

0<s≤t

[

f(s, (X1(s), . . . ,Xd(s)))− f(s, (X1(s),X2(s−), . . . ,Xd(s)))
]

...

+
∑

0<s≤t

[

f(s, (X1(s), . . . ,Xd(s)))− f(s, (X1(s), . . . ,Xd(s−)))
]

,

(4.14)

because a jump in Nk only causes a jump in Xk.

Using equation (4.13), we can write the Itô-Doeblin formula (4.9) as

f(t,X(t))
a.s.
= f(0,X(0)) +

∫ t

0

∂

∂s
f(s,X(s)) ds+

d
∑

i=1

∫ t

0

∂

∂xi
f(s,X(s)) dXc

i (s)

+
1

2

d
∑

i,j=1

∫ t

0

∂2

∂xi∂xj
f(s,X(s)) dXc

i dX
c
j +

∑

0<s≤t

d
∑

k=1

∆kf(s,X(s)). (4.15)
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4.2 Consistency of the Independent jump process

In the following theorem, we state a condition using the forward curve for
the Independent jump process to be consistent, following Definition 3.1.

Theorem 4.6 (Filipović with independent jumps). Suppose Z = (Zt)0≤t<∞

follows a jump process with independent jumps with values in Z. Then Z is
consistent with the forward curve family F only if

DxF (x,Zt) = b · ∇zF (x,Zt) +
1

2

4
∑

i,j=1

aij
∂2

∂zi∂zj
F (x,Zt)

−
4
∑

i,j=1

aij
(

∂

∂zi
F (x,Zt)

∫ x

0

∂

∂zj
F (η, Zt) dη

)

−Dx

3
∑

k=1

(

1− exαkW
k
x(Z

4)
)

λk,

for all x ≥ 0, where a = σσ∗.

Proof. Assume as given an Independent jump process Zt following Definition
4.4: For i = 1, . . . , 4, 0 ≤ t < ∞,

Zi
t = Zi

0 +

∫ t

0
bisds+

d
∑

j=1

∫ t

0
σij
s dW

j
s + αiN i

t1{i 6=4}, (4.16)

where Wt = (W 1
t , . . . ,W

d
t )0≤t<∞ is standard d-dimensional Brownian mo-

tion, 1 ≤ d, and N j
t is a Poisson process with parameter λj , for 1 ≤ j ≤ 4.

This process can be written as the sum of a continuous process and a pure
jump process:

Zi
t = (Zc)it + αiN i

t1{i 6=4}, (4.17)

where (Zc)it is the continuous part, consisting of Z
i
0+
∫ t

0 b
i
sds+

∑d
j=1

∫ t

0 σ
ij
s dW

j
s

and N i
t is the pure jump part. Remark that the continuous part (Zc)it in

this case equals Zi
t in (3.6).

In line with the proof of Theorem 3.1, we apply equation (4.9) to the
bond prize P (t, T ) = G(T − t, Zt) where the process Zt is given by (4.16).
The continuous part of the proof remains the same, hence we add the jump
part to (3.10)

P (t, T ) = P (0, T ) +

∫ t

0
(AsG(T − s, Zs)−DxG(T − s, Zt)) ds

+

∫ t

0
∇zG(T − s, Zs)

∗σs dWs

+
∑

0<s≤t

[

P (s, T )− P (s−, T )
]

, 0 ≤ t ≤ T, P-a.s.. (4.18)
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Let P (t, T ) be the bond prize implied by the Nelson-Siegel forward rate
(3.1), so

P (t, T ) = exp






−(T − t)



Z1
t + Z2

t

(

1− e−Z4
t (T−t)

Z4
t (T − t)

)

+Z3
t

(

1− e−Z4
t (T−t)

Z4
t (T − t)

− e−Z4
t (T−t)

)











= exp
[

−(T − t)Z∗
tWT−t(Z

4
t )
]

, (4.19)

where

Zt :=







Z1
t

Z2
t

Z3
t






,Wt(λ) :=







W1
t (λ)

W2
t (λ)

W3
t (λ)






=







1
1−e−λt

λt
1−e−λt

λt
− e−λt






. (4.20)

Now we are interested in investigating the jump part of (4.18):
∑

0<s≤t

[

P (s, T )− P (s−, T )
]

=
∑

0<s≤t

∆P (s, T )

a.s.
=

∑

0<s≤t

∆1P (s, T ) + ∆2P (s, T ) + ∆3P (s, T )

=
∑

0<s≤t

3
∑

k=1

∆kP (s, T ).

When there is a jump at time s in Zi
t we know Zi

s = Zi
s− + ∆Zi

s = Zi
s− +

αi∆N i
s = Zi

s−+αi. Denote by ek the k-th unit vector, then Zs− = Zs−αkek
when there is a jump of Nk at time s. Now

∆kP (s, T ) = P (s, T )− P (s−, T )

= exp
[

−(T − s)Z∗
sWT−s(Z

4
s )
]

− exp
[

−(T − s)Z∗
s−WT−s(Z

4
s )
]

= exp
[

−(T − s)Z∗
sWT−s(Z

4
s )
]

− exp
[

−(T − s)(Z∗
s − αke

∗
k)WT−s(Z

4
s )
]

= exp
[

−(T − s)Z∗
sWT−s(Z

4
s )
]

(

1− exp
[

(T − s)αke
∗
kWT−s(Z

4
s )
]

)

= P (s, T )

(

1− exp
[

(T − s)αkW
k
T−s(Z

4
s )
]

)

when there is a jump of process Nk at time s, else ∆kP (s, T ) = 0. Hence

∆kP (s, T ) = P (s, T )

(

1− exp
[

(T − s)αkW
k
T−s(Z

4
s )
]

)

∆Nk(s). (4.21)
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Remark 4.7. Above we used Zs− = Zs − ek. Of course we could also have
substituted Zs = Zs− + ek. This would result in

∆kP (s, T ) = P (s−, T )

(

exp
[

−(T − s)αkW
k
T−s(Z

4
s )
]

− 1

)

∆Nk(s).

(4.22)

Combining (4.21) and (4.22) gives

P (s, T )∆Nk(s) = exp
[

(T − s)αkW
k
T−s(Z

4
s )
]

P (s−, T )∆Nk(s),

which shows the relation between P (s, T )∆Nk(s) and P (s−, T )∆Nk(s).

Now we get

∑

0<s≤t

[

P (s, T )− P (s−, T )
]

=
∑

0<s≤t

3
∑

k=1

∆kP (s, T )

=
∑

0<s≤t

3
∑

k=1

P (s, T )

(

1− exp
[

(T − s)αkW
k
T−s(Z

4
s )
]

)

∆Nk(s).

(4.23)

Remark that
∑

0<s≤t f(s)∆N(s) =
∫ t

0 f(s) dN(s) hence we can write

∑

0<s≤t

[

P (s, T )− P (s−, T )
]

=
3
∑

k=1

∫ t

0
P (s, T )

(

1− e(T−s)αkW
k
T−s(Z

4
s )
)

dNk(s).

(4.24)

Equation (4.18) now becomes:

P (t, T ) = P (0, T ) +

∫ t

0
(AsG(T − s, Zs)−DxG(T − s, Zt)) ds

+

∫ t

0
∇zG(T − s, Zs)

∗σs dWs

+

3
∑

k=1

∫ t

0
P (s, T )

(

1− e(T−s)αkW
k
T−s(Z

4
s )
)

dNk(s), 0 ≤ t ≤ T, P-a.s..

In differential notation:

dP (t, T ) = (AtG(T − t, Zt)−DxG(T − t, Zt)) dt+∇zG(T − t, Zt)
∗σt dWt

+

3
∑

k=1

P (t, T )
(

1− e(T−t)αkW
k
T−t(Z

4
t )
)

dNk(t), 0 ≤ t ≤ T, P-a.s..
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And this is equal to

dP (t, T ) = (AtG(T − t, Zt)−DxG(T − t, Zt)) dt+∇zG(T − t, Zt)
∗σt dWt

+

3
∑

k=1

G(T − t, Zt)
(

1− e(T−t)αkW
k
T−t(Z

4
t )
)

dNk(t), 0 ≤ t ≤ T, P-a.s..

In the same way as in equation (3.11) we are able to investigate d
(

P (t,T )
B(t)

)

:

d

(

P (t, T )

B(t)

)

=
1

B(t)
dP (t, T ) + P (t, T ) d

(

1

B(t)

)

+ d

(

1

B(t)

)

dP (t, T )

=
1

B(t)





(

AG(T − t, Zt)−DxG(T − t, Zt)
)

dt+∇zG(T − t, Zt)
∗σt dWt

+ G(T − t, Zt)

3
∑

k=1

(

1− e(T−t)αkW
k
T−t(Z

4
t )
)

dNk(t)





+G(T − t, Zt)
1

B(t)
DxG(0, Zt) dt

+
1

B(t)
DxG(0, Zt) dt





(

AG(T − t, Zt)−DxG(T − t, Zt)
)

dt

+∇zG(T − t, Zt)
∗σt dWt + G(T − t, Zt)

3
∑

k=1

(

1− e(T−t)αkW
k
T−t

(Z4
t )
)

dNk(t)





=
1

B(t)





(

AG(T − t, Zt)−DxG(T − t, Zt)
)

dt+∇zG(T − t, Zt)
∗σt dWt

+ G(T − t, Zt)
3
∑

k=1

(

1− e(T−t)αkW
k
T−t

(Z4
t )
)

dNk(t)





+G(T − t, Zt)
1

B(t)
DxG(0, Zt) dt.

Again because dt dt = 0, dt dWt = 0 and dt dN(t) = 0. Now we have in
integral form:

P (t, T )

B(t)
− P (0, T ) =

∫ t

0

1

B(s)
∇zG(T − s, Zs)

∗σs dWs

+

∫ t

0

1

B(s)

[

AG(T − s, Zs)−DxG(T − s, Zs) +G(T − s, Zs)DxG(0, Zs)
]

ds

+

3
∑

k=1

∫ t

0

1

B(s)
G(T − s, Zs)

(

1− e(T−s)αkW
k
T−s(Z

4
s )
)

dNk(s). (4.25)
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Remark that if poisson process N(t) has intensity λ, N(t)− λt is a martin-
gale. Add and subtract to (4.25)

3
∑

k=1

∫ t

0

1

B(s)
G(T − s, Zs)

(

1− e(T−s)αkW
k
T−s(Z

4
s )
)

λk ds

to get

P (t, T )

B(t)
− P (0, T ) =

∫ t

0

1

B(s)
∇zG(T − s, Zs)

∗σs dWs

+

∫ t

0

1

B(s)

[

AG(T − s, Zs)−DxG(T − s, Zs) +G(T − s, Zs)DxG(0, Zs)
]

ds

+
3
∑

k=1

∫ t

0

1

B(s)
G(T − s, Zs)

(

1− e(T−s)αkW
k
T−s

(Z4
s )
)

dNk(s)

+

3
∑

k=1

∫ t

0

1

B(s)
G(T − s, Zs)

(

1− e(T−s)αkW
k
T−s

(Z4
s )
)

λk ds

−

3
∑

k=1

∫ t

0

1

B(s)
G(T − s, Zs)

(

1− e(T−s)αkW
k
T−s

(Z4
s )
)

λk ds

=

∫ t

0

1

B(s)
∇zG(T − s, Zs)

∗σs dWs

+

∫ t

0

1

B(s)

[

AG(T − s, Zs)−DxG(T − s, Zs) +G(T − s, Zs)DxG(0, Zs)
]

ds

+

3
∑

k=1

∫ t

0

1

B(s)
G(T − s, Zs)

(

1− e(T−s)αkW
k
T−s(Z

4
s )
)

d
[

Nk(s)− λks
]

+

3
∑

k=1

∫ t

0

1

B(s)
G(T − s, Zs)

(

1− e(T−s)αkW
k
T−s(Z

4
s )
)

λk ds. (4.26)

Now define

M2(t, T ) :=

∫ t

0

1

B(s)
∇zG(T − s, Zs)

∗σs dWs

+

3
∑

k=1

∫ t

0

1

B(s)
G(T − s, Zs)

(

1− e(T−s)αkW
k
T−s

(Z4
s )
)

d
[

Nk(s)− λks
]

and

H2(t, T ) :=
1

B(t)
[AG(T − t, Zt)−DxG(T − t, Zt) +G(T − t, Zt)DxG(0, Zt)

+G(T − t, Zt)

3
∑

k=1

(

1− e(T−t)αkW
k
T−t(Z

4
t )
)

]λk. (4.27)
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M2(t, T ) is a local P-martingale because it is an integral with respect to a
(local) P-martingale. Now we have that equation (4.26) can be written as

P (t, T )

B(t)
− P (0, T ) =

∫ t

0
H2(s, T ) ds+M2(t, T ). (4.28)

In the same way as for the Itô process part, lets suppose Z is consistent

with the Nelson-Siegel family, i.e.
(

P (t,T )
B(t)

)

0≤t≤T
is a P-martingale, for all

T < ∞. Then we know
∫ t

0 H2(s, T ) ds is a local martingale. In this case, it
is only right-continuous so we have to do a little bit more work to be able
to conclude

∫ t

0 H2(s, T ) ds = 0.
Fix ω ∈ Ω. Let τ1, . . . , τl be the jump times of process Z such that τ0 :=

0 < τ1 < . . . < τl < t =: τl+1. On each of the intervals [τk, τk+1), H2(s, T ) is
continuous. Now

∫ t∧τ1
0 H2(s, T ) ds is a local martingale which is continuous

and of bounded variation. Therefore
∫ t∧τ1
0 H2(s, T ) ds = 0. Now we can

write
∫ t

0 H2(s, T ) ds =
∫ t∨τ1
τ1

H2(s, T ) ds which still is a local martingale.

Applying the same argument gives
∫ t∨τ2
τ1

H2(s, T ) ds = 0. Applying this

repeatedly we conclude
∫ t

0 H2(s, T ) ds = 0. Applying Claim 3.14 on the
continuous parts of the integral, we conclude, because H2(t, T ) is continuous
in T ,

H2(t, t+ x)(ω) = 0, ∀x ≥ 0, for dt⊗ dP-a.e. (t, ω). (4.29)

Because B(t) > 0 for all t, (4.29) yields

AG(x,Zt)−DxG(x,Zt) +G(x,Zt)DxG(0, Zt)

+G(x,Zt)

3
∑

k=1

(

1− exαkW
k
x(Z

4
t )
)

λk, ∀x ≥ 0, dt⊗ dP-a.s.. (4.30)

Using again that the definition of the bond price G(x, z), z ∈ Z, equation
(3.2), we have (see Appendix A.1):

dG(x, z)

dzi
= −

∫ x

0

d

dzi
F (η, z) dηG(x, z),

∂2G(x, z)

∂zj∂zi
=

(∫ x

0

∂

∂zi
F (η, z) dη

∫ x

0

∂

∂zj
F (η, z) dη

−

∫ x

0

∂2

∂zj∂zi

)

G(x, z)

and

DxG(x, z) = −F (x, z)G(x, z).
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Equation (4.30) can now be written as

0 = AG(x,Z)−DxG(x,Z) +DxG(0, Z)G(x,Z)

+G(x,Z)

3
∑

k=1

(

1− exαkW
k
x(Z

4)
)

λk

= −

∫ x

0
AF (η, Z) dηG(x,Z)

+
1

2

d
∑

i,j=1

aij
(∫ x

0

∂

∂zi
F (η, Z) dη

∫ x

0

∂

∂zj
F (η, Z) dη

)

G(x,Z)

+ F (x,Z)G(x,Z) − F (0, Z)G(x,Z)

+G(x,Z)

3
∑

k=1

(

1− exαkW
k
x(Z

4)
)

λk, ∀x ≥ 0, dt⊗ dP-a.s..

Dividing by −G(x,Z) gives:

∫ x

0
AF (η, z) dη −

1

2

4
∑

i,j=1

aij
(∫ x

0

∂

∂zi
F (η, Z) dη

∫ x

0

∂

∂zj
F (η, Z) dη

)

− F (x,Z) + F (0, Z)−

3
∑

k=1

(

1− exαkW
k
x(Z

4)
)

λk = 0, ∀x ≥ 0, dt⊗ dP-a.s..

Differentiating this to x gives

−
1

2

4
∑

i,j=1

aij
(

∂

∂zi
F (x,Z)

∫ x

0

∂

∂zj
F (η, Z) dη +

∫ x

0

∂

∂zi
F (η, Z) dη

∂

∂zj
F (x,Z)

)

+AF (η, Z) dη −DxF (x,Z)−Dx

3
∑

k=1

(

1− exαkW
k
x(Z

4)
)

λk = 0, (4.31)

∀x ≥ 0, dt⊗ dP-a.s., which can be rewritten to the expression of Theorem
4.6.

This theorem is very similar to Theorem 3.1, except the addition of three
terms involving the jump intensities λk and the elements of the matrix Σ.
In the following corollary we work out what Theorem 4.6 explicitly means
in the Nelson-Siegel forward curve case.

Corollary 4.8 (Nelson-Siegel with independent jumps). Suppose Z = (Zt)0≤t<∞

follows the jump process of Definition 4.4 with values in Z. Then Z is consis-
tent with the Nelson-Siegel family only if for dt⊗dP-a.e. (t, ω) in [0,∞)×Ω,

0 =p0(x) + p1(x)e
−z4x + p2(x)e

−2z4x

+ λ1α1e
α1x + λ2α2e

α2

(

1−e−z4x

z4

)

−z4x
+ λ3α3z4xe

α3

(

1−e−z4x

z4
−xe−z4x

)

−z4x
,

(4.32)
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for all x ≥ 0, where p0(x), p1(x) and p2(x) are polynomials in x with coeffi-
cients containing bi := bit(ω), a

ij := aijt (ω) and zi := Zi
t(ω) for 1 ≤ i, j ≤ 4

which are given by (3.18), (3.19) and (3.20) respectively.

Proof. The condition follows from writing out the condition of Theorem 4.6.
The proof is the same as the proof of Corollary 3.3, but then with addition

of −Dx

∑3
k=1

(

1− exαkW
k
x (z

4)
)

λk. Before we work this out, remember the

relations as shown in section 2.1.1:

1

τ

∫ τ

0
ws(λ) ds =

1

τ

∫ τ

0







1
e−λs

λse−λs






ds =







1
τ

∫ τ

0 1 ds
1
τ

∫ τ

0 e−λs ds
1
τ

∫ τ

0 λse−λs ds







=







1
1−eλτ

λτ
1−eλτ

λτ
− eλτ






=: Wτ (λ). (4.33)

Hence, because αk does not depend on x,

Dx

(

xαkWx(λ)
)

= αk







1
e−λx

λxe−λx






= αkwx(λ).

Now

−Dx

3
∑

k=1

(

1− exαkW
k
x(z

4)
)

λk =

3
∑

k=1

Dxe
xαkW

k
x(z

4)λk

=

3
∑

k=1

exαkW
k
x(z

4)Dx

(

xαkW
k
x(z

4)
)

λk

=

3
∑

k=1

exαkW
k
x(z

4)αkw
k
x(z

4)λk,

which can be written out as

−Dx

3
∑

k=1

(

1− exαkW
k
x(z

4)
)

λk = λ1α1e
α1x + λ2α2e

α2

(

1−e−z4x

z4

)

−z4x

+ λ3α3z4xe
α3

(

1−e−z4x

z4
−xe−z4x

)

−z4x
.

Adding this to the result of Corollary 3.3 gives Corollary 4.8.

It would be nice to be able to give a theoretical proof that Corollary 4.8
can only be satisfied if α1 = α2 = α3 = 0, i.e. that Corollary 4.8 can only
be satisfied if there is no jump part in the state space process. The rest of
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the analysis would be going like the analysis of the Itô process part. But
this, in general, is not as easy as the proofs in Appendix C which are used
in the analysis of the Itô process part. It looks evident that it has to be the
case that p0(x) = p1(x) = p2(x) = α1 = α2 = α3 = 0. Mathematica gives
the desired result.

Because α1, α2 and α3 have to be 0 to give a consistent state space
process, we see that an Independent jump process, a state space process of
the form of Definition 4.4, can’t in fact have jumps if it has to be consistent.
Therefore it will be a process as considered in Chapter 3 and we can draw
the same conclusion:

Theorem 4.9. Suppose Z = (Zt)0≤t<∞ follows the Independent jump pro-
cess of Definition 4.4 with values in Z. Let Zt be consistent with the Nelson-
Siegel family. Then Zt is of the form

Z1
t = Z1

0

Z2
t = Z2

0e
−Z4

0
t + Z3

0Z
4
0 te

−Z4

0
t

Z3
t = Z3

0e
−Z4

0
t

Z4
t = Z4

0 +

∫ t∧τ

0
c1s1{Z2

0
=Z3

0
=0} ds+

d
∑

j=1

∫ t∧τ

0
σ4j
s 1{Z2

0
=Z3

0
=0} dW

j
s ,

with c1 ∈ R and the stopping time τ := inf{s > 0|Z2
s = Z3

s = 0}.

Proof. Because for Z to be consistent α1, α2 and α3 have to be 0, the
Independent jump process is in fact just an Itô process following Definition
3.4. Therefore, the proof is the same as the proof of theorem 3.7.

And we can formulate the same corollary as in Chapter 3:

Corollary 4.10. The forward rates are non-random, they are F0-measurable.

Proof. The Nelson-Siegel forward rate on Ω0 is given by F (x,Zt) = Z1
0

(because Z2
t = Z3

t = 0), which is F0-measurable. The dynamics of Zt
4 have

no influence. The Nelson-Siegel forward rate on Ω1 is given by

F (x,Zt) = Z1
t + Z2

t e
−Z4

t x + Z3
t Z

4
t xe

−Z4
t x

= Z1
0 +

(

Z2
0e

−Z4

0
t + Z3

0Z
4
0 te

−Z4

0
t
)

e−Z4

0
x + Z3

0Z
4
t e

−Z4

0
txe−Z4

0
x

= Z1
0 + Z2

0e
−Z4

0
(t+x) + Z3

0Z
4
0 (t+ x)e−Z4

0
(t+x) = F (t+ x,Z0),

hence all the randomness remains F0-measurable.

Corollary 4.10 tells us that the interest rate model coming from a con-
sistent Independent jump process is nonrandom, trivial. It only depends on
the value of the process at time 0, as we saw earlier in the Itô process case.
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Concluding remarks

The Nelson-Siegel model is used by many practitioners in the field. In the
beginning it was just a method to fit the yield curve, nowadays people have
developed methods using the Nelson-Siegel curve to predict the yield curve.

Filipović’s work showed the lack of theoretical background of this model
as a forecasting method based on continuous processes. In his line, we
defined the consistent state space process: the process which, when repre-
senting the parameters of the Nelson-Siegel curve (or in general of a forward
rate curve), turns the discounted bond price into a martingale (which can
be seen as the no-arbitrage condition). First we considered an Itô process
and using the definition of the consistent state space process, we derived
conditions on the dynamics of the Itô process as the state space processes.
We concluded there exists no nontrivial interest rate model driven by an Itô
process consistent with the Nelson-Siegel family.

Secondly we extended his research by introducing jump processes and
stochastic calculus for jump processes. We also derived conditions on the
dynamics of the Independent jump process in order to represent a consistent
state space process. It turned out that there exists no nontrivial interest rate
model driven by an Independent jump process.

Based on my experience in the recent project, I believe it is relevant to
investigate the mathematical background of (new) mathematical and finan-
cial techniques to obtain a more reliable framework for financial products.
From my point of view, a theoretically rigid model which works well in prac-
tice is preferable. As mentioned before, some people think we don’t need
a mathematically or theoretically rigid method to forecast the yield curve.
This is of course true, if forecasting is the only aim of the method. However,
as soon as we want to say more about it, we need a solid mathematical
foundation. Not only because this could support the assumptions we make
in mathematical finance (like the concept of arbitrage-freeness), but also
because we will be able to base new theories on it.

45
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Further research

We only showed the dynamics of a consistent jump process in the Nelson-
Siegel framework for a so-called Independent jump process. It would be nice
to have a similar result for an arbitrary jump process, according to Definition
4.3, where the jump part is given by J = (J1, J2, J3, 0), J i

t =
∑m

j=1Σ
ijN j

t

where Nt = (N1
t , . . . , N

m
t ) is an m -dimensional vector with independent

Poisson processes with parameters λ1, . . . , λm > 0 and Σ ∈ R
4×m.

One can show this process leads to the following equivalence of Theorem
3.1 and Theorem 4.6:

Theorem (Filipović with jumps). Suppose Z = (Zt)0≤t<∞ follows a jump
process as described above with values in Z. Then Z is consistent with the
forward curve family F family only if

DxF (x,Z) = b · ∇zF (x,Z) +
1

2

4
∑

i,j=1

aij
∂2

∂zi∂zj
F (x,Z)

−

4
∑

i,j=1

aij
(

∂

∂zi
F (x,Z)

∫ x

0

∂

∂zj
F (η, Z) dη

)

−Dx

m
∑

k=1

(

1− ex
∑

3

j=1
ΣjkW

j
x(Z4)

)

λk

for all x ≥ 0, where a = σσ∗.

Proof. This proof is similar to the proof of Theorem 4.6. Outline of the
proof is given in Appendix D.1.

Corollary (Nelson-Siegel with jumps). Suppose Z = (Zt)0≤t<∞ follows the
jump process the Theorem above, with values in Z. Then Z is consistent
with the Nelson-Siegel family only if for dt⊗ dP-a.e. (t, ω) in [0,∞)× Ω,

0 = p0(x) + p1(x)e
−z4x + p2(x)e

−2z4x

+

m
∑

k=1

λk



ex
∑

3

j=1
Σ

jk
W

j
x(z4)

3
∑

i=1

Σikwi
x(z4)



 ,

for all x ≥ 0, where p0(x), p1(x) and p2(x) are polynomials in x with coeffi-
cients containing bi := bit(ω), a

ij := aijt (ω) and zi := Zi
t(ω) for 1 ≤ i, j ≤ 4

which are given by (3.18), (3.19) and (3.20) respectively.

Proof. This proof is similar to the proof of Corollary 4.8. See Appendix D.2
for more details.
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This is an equation with 3m−3 (the nonzero entries of Σ minus 3) more
unknowns than the equation of Corollary 4.8. Mathematica didn’t manage
to solve this. A nice extension of my research would be to find a theoretical
way to proof a that this equation also implies no existence of nontrivial
interest rate models. I believe the possible corresponding processes providing
a nontrivial interest rate model are at most very restricted, because of the
complexity of the equation, which has to hold for all x ≥ 0.

Apart from this ‘arbitrary jump process’, one could also think of other
jump processes to simulate interest rate jumps in specific periods in time,
like processes with clustered jumps, jump processes with time dependent
intensities and jump processes with time dependent jump sizes. Instead of
investigating all those cases separately, I think the analysis as proposed in
this thesis can be extended to a more ‘overall’ result. It may work with other,
arbitrary, (jump) processes, as long as they have a continuous compensator
to be able to construct expressions like 3.12 and 4.28.

Another subject which is not explored in this thesis is the question
whether (some of) those jump processes describe the data well, or in any
case better than the continuous processes, to be able to extend the research
of Diebold and Li [9].

Finally we come up with a subject for further research, which is not di-
rectly related to this thesis, but involves arbitrage-free-ness and jump pro-
cesses. As mentioned in the introduction, Christensen, Diebold and Rude-
busch adapted the Nelson-Siegel model to make it arbitrage-free [4, 5]. They
only used continuous processes. Being convinced that including jumps in
models is almost obligatory, another research subject might be to investi-
gate what the impact of jumps is on their arbitrage-free Nelson-Siegel model.
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Appendix A

Nelson-Siegel family:
integrals and derivatives

A.1 Bond prices

Recall the definition of the bond price G(x, z), z ∈ Z, equation (3.2):

G(x, z) = exp(−y(x, z)x) = exp

(

−

∫ x

0
F (η, z) dη

)

.

Then we can calculate the following derivatives:

dG(x, z)

dzi
=

d

dzi
exp

(

−

∫ x

0
F (η, z) dη

)

= exp

(

−

∫ x

0
F (η, z) dη

)

d

dzi

(

−

∫ x

0
F (η, z) dη

)

= −

∫ x

0

d

dzi
F (η, z) dηG(x, z), (A.1)

∂2G(x, z)

∂zj∂zi
=

∂2

∂zj∂zi
exp

(

−

∫ x

0
F (η, z) dη

)

=
∂

∂zj

[

exp

(

−

∫ x

0
F (η, z) dη

)

∂

∂zi

(

−

∫ x

0
F (η, z) dη

)

]

=
∂

∂zj

[

−

∫ x

0

∂

∂zi
F (η, z) dηG(x, z)

]

=

(

−

∫ x

0

∂2

∂zj∂zi
F (η, z) dη

)

G(x, z)

+

(

−

∫ x

0

∂

∂zi
F (η, z) dη

)(

−

∫ x

0

d

dzj
F (η, z) dη

)

G(x, z)

=

(
∫ x

0

∂

∂zi
F (η, z) dη

∫ x

0

∂

∂zj
F (η, z) dη
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−

∫ x

0

∂2

∂zj∂zi
F (η, z) dη

)

G(x, z) (A.2)

and

DxG(x, z) = Dx exp

(

−

∫ x

0
F (η, z) dη

)

= exp

(

−

∫ x

0
F (η, z) dη

)

Dx

(

−

∫ x

0
F (η, z) dη

)

= −F (x, z)G(x, z). (A.3)

A.2 Forward rates

The Nelson-Siegel forward rates F (x, z) are given by equation (3.1):

F (x, z) = z1 + z2e
−z4x + z3z4xe

−z4x.

The (partial) derivatives are then given by:

DxF (x, z) = −z2z4e
−z4x − z3z

2
4xe

−z4x + z3z4e
−z4x,

∇zF (x, z) =
(

1, e−z4x, z4xe
−z4x,−z2xe

−z4x − z3z4x
2e−z4x + z3xe

−z4x
)

,

∂2F (x, z)

∂zi∂zj
= 0 for 1 ≤ i, j ≤ 3,

∂

∂z4
∇zF (x, z) =

(

0,−xe−z4x, xe−z4x − x2z4e
−z4x ,

z2x
2e−z4x − z3x

2e−z4x + z3z4x
3e−z4x − z3x

2e−z4x
)

.

Remark that ∂2F (x,z)
∂zi∂zj

= ∂2F (x,z)
∂zj∂zi

for all 1 ≤ i ≤ 4, hence

∂2F (x, z)

∂zi∂z4
=

(

∂

∂z4
∇zF (x, z)

)

i

.

Because
∫ x

0 e−z4η dη = 1
z4

(

1− e−z4x
)

,
∫ x

0 ηe−z4η dη = 1
z2
4

−( x
z4
+ 1

z2
4

)e−z4x

and
∫ x

0 η2e−z4η dη = 2
z3
4

− (x
2

z4
+ 2x

z2
4

+ 2
z3
4

)e−z4x, we get

∫ x

0

∂F (η, z)

∂z1
dη = x,

∫ x

0

∂F (η, z)

∂z2
dη =

1

z4

(

1− e−z4x
)

,

∫ x

0

∂F (η, z)

∂z3
dη = z4(

1

z24
− (

x

z4
+

1

z24
)e−z4x) =

1

z4
− (x+

1

z4
)e−z4x,

∫ x

0

∂F (η, z)

∂z4
dη = (z3 − z2)





1

z24
−

(

x

z4
+

1

z24

)

e−z4x




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− z3z4





2

z34
−

(

x2

z4
+

2x

z24
+

2

z34

)

e−z4x



 ,

= (z3 − z2)





1

z24
−

(

x

z4
+

1

z24

)

e−z4x





− z3





2

z24
−

(

x2 +
2x

z4
+

2

z24

)

e−z4x



 .

Using these facts and combining terms, one can show Corollary 3.3.





Appendix B

Quadratic (co)variation

The quadratic covariation of two functions f(s) and g(s) which are defined
for 0 ≤ s ≤ t up to time t is given by

[f, g]t = lim
||Π||→0

n−1
∑

j=0

[f(tj+1)− f(tj)][g(tj+1)− g(tj)], (B.1)

where Π is a partition of [0, t], Π = {t0, t1, . . . , tn} with 0 = t0 < t1 < . . . <
tn = t, and ||Π|| = maxj=0,...,n−1(tj+1 − tj). The limit ||Π|| → 0 is taken
as n, the points in the partition, going to infinity while the length of the
longest subinterval tj+1 − tj goes to zero.

The quadratic variation is simply given by equation (B.1) with g(t) =
f(t):

[f, f ]t = lim
||Π||→0

n−1
∑

j=0

[f(tj+1)− f(tj)]
2. (B.2)

Sometimes the differential form of equations (B.1) and (B.2) are informally
written as:

d[f, g]t = df(t) dg(t), d[f, f ](t) = df(t) df(t).

The following identities are widely known and can for example be found
in ‘Stochastic Calculus for Finance II’ [20] (including the proofs). All iden-
tities including Brownian motion hold almost sure.

• Let f(t) = t, then [f, f ]t = 0. In the informal notation above, this
tells us dt dt = 0.

• Let f(t) = Wt be Brownian motion. Then [W,W ]t = t.

• Let W 1
t and W 2

t be independent Brownian motion, then [W i,W j]t =
t1ij . Informally: d[W i,W j ]t = dW i

t dW
j
t = 1ij dt.
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• Let f(t) = t and g(t) = Wt, then [f, g]t = [t,W ]t = 0. Informally:
d[t,W ]t = dt dWt = 0.

• The quadratic variation of an Itô process of the form

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs,

where W is 1-dimensional Brownian motion, X0 is nonrandom (i.e.
F0-measurable) and with b and σ adapted processes with values in R,
respectively R, such that

∫ t

0 |bs|ds < ∞ and
∫ t

0 |σs|
2 ds < ∞, P-a.s.,

for all t > 0, is given by

[X,X]t =

∫ t

0
(σs)

2 ds.

In informal notation: dXt dXt = (σt)
2 dt.

Remark that this result can be easily found by using the informal
notation and the bullets above:

d[X,X]t = dXt dXt = (bt dt+ σt dWt) (bt dt+ σt dWt)

= b2t dt dt+ 2btσt dt dWt + (σt)
2 dWt dWt

= 0 + 0 + σ2
t dt = (σt)

2 dt.

• Let X1
t and X2

t be two Itô processes:

X1
t = X1

0 +

∫ t

0
b1s ds+

∫ t

0
σ1
s dWs,

X2
t = X2

0 +

∫ t

0
b2s ds+

∫ t

0
σ2
s dWs,

where b1s, b
2
s and σ1

s , σ
2
s satisfy the same conditions as above. Then

the quadratic covariation is given by

[X1,X2]t =

∫ t

0
σ1
sσ

2
s ds.

Informally, this is written as: dX1
t dX

2
t = σ1

t σ
2
t dt.

• Let X1
t and X2

t be two Itô processes driven by two independent Brow-
nian motions W 1

t and W 2
t :

X1
t = X1

0 +

∫ t

0
b1s ds+

∫ t

0
σ11
s dW 1

s +

∫ t

0
σ12
s dW 2

s ,

X2
t = X2

0 +

∫ t

0
b2s ds+

∫ t

0
σ21
s dW 1

s +

∫ t

0
σ22
s dW 2

s ,
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where bis and σij
s , i, j = 1, 2, satisfy the same conditions as above.

Then the quadratic covariation is given by

[Xk,Xj ]t =

∫ t

0

2
∑

i=1

σki
s σji

s ds.

Informally, this is written as: dXk
t dX

j
t =

∑2
i=1 σ

ki
t σji

t dt.

• Let X1
t , . . . ,X

l
t be l Itô processes driven by d-dimensional Brownian

motion. Then

[Xk,Xj ]t =

∫ t

0

d
∑

i=1

σki
s σji

s ds.

Informally, this is written as: dXk
t dX

j
t =

∑d
i=1 σ

ki
t σji

t dt.

• Let f(t) = J1
t and g(t) = J2

t be two independent right continuous pure
jump processes. Then

[J1, J2]t =
∑

0<s≤t

∆J1
s∆J2

s .

• Add to the Itô processes X1
t , . . . ,X

l
t above the right continuous, pure

jump processes J1
t , . . . , J

l
t to get Y 1

t = X1
t + J1

t , . . . , Y
l
t = X l

t + J l
t .

Then

[Y k, Y j] =

∫ t

0

d
∑

i=1

σki
s σji

s ds+
∑

0<s≤t

∆Jk
t ∆J j

t ,

and
[Y k, Y j] = [Xk,Xj ] + [Jk, J j ],

and
[Xk, J j ] = [Xj , Y k] = 0.

In informal notation: dY k
t dY j

t = dXk
t dX

j
t + dJk

t dJ j
t and dXk

t dJ j
t =

dXj
t dJ

k
t = 0.
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Exponential polynomials

Lemma C.1. From

0 = p0(x) + p1(x)e
−x, ∀x ≥ 0, (C.1)

where p0(x) is a polynomial of degree q0 and p1(x) is a polynomial of degree
q1, we conclude

p0(x) = 0 and p1(x) = 0, ∀x ≥ 0.

Proof. Write p0(x) =
∑q0

k=0 akx
k and p1(x) =

∑q1
k=0 bkx

k where q0 and q1

are the orders of p0 and p1 respectively. We know e−x =
∑∞

k=0
(−1)k

k! xk.

Define ck := (−1)k

k! . Now (C.1) can be written as

0 =

q0
∑

k=0

akx
k +

q1
∑

k=0

bkx
k

∞
∑

k=0

ckx
k

=

∞
∑

k=0



ak +

k
∑

j=0

bjck−j



xk, (C.2)

with ak = 0 for k > q0 and bj = 0 for j > q1. Equation (C.2) to hold, yields

ak+
∑k

j=0 bjck−j = 0 for all k. For k > q0, we have ak = 0 hence this implies
∑k

j=0 bjck−j = 0. Because bj = 0 for j > q1 we have

q1∧k
∑

j=0

bjck−j = 0, ∀k > q0.
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Because q0+q1 > q0∨q1 we can make the following system of q1+1 equations:

q1
∑

j=0

bjcq0+q1−j = 0,

q1
∑

j=0

bjcq0+q1−j+1 = 0,

...

q1
∑

j=0

bjcq0+q1−j+q1 = 0.

This can be written in matrix form as Cb = 0 where b = (b0, b1, . . . , bq1)
∗

and

C =













cq0+q1 cq0+q1−1 . . . cq0+q1−q1

cq0+q1+1 cq0+q1 . . . cq0+q1−q1
...

...
cq0+q1+q1 cq0+q1+q1−1 . . . cq0+q1













.

Furthermore, we know that the homogeneous equation Cb = 0 has a non-
trivial solution if det(C)=0. If det(C)=0, there exists no inverse of C. But
Matlab shows that C has an inverse, so the only solution to Cb = 0 is
b = 0, hence p1(x) = 0. The inverse of C is not easy to determine. For
given q0 and q1, one can of course get the inverse with Matlab and check
that it is the inverse. Now (C.1) immediately gives p0(x) = 0,∀x ≥ 0, hence
ak = 0,∀k.

Lemma C.2. From

0 = p0(x) + p1(x)e
−x + p2(x)e

−2x, ∀x ≥ 0, (C.3)

where p0(x) is a polynomial of degree q0, p1(x) is a polynomial of degree q1
and p2(x) is a polynomial of degree q2, we conclude

p0(x) = 0, p1(x) = 0 and p2(x) = 0, ∀x ≥ 0.

Proof. Multiply (C.3) by ex > 0 to get

0 = p0(x)e
x + p1(x) + p2(x)e

−x, ∀x ≥ 0.

Using the same notation as in Lemma C.1 , we can write

0 =

q0
∑

k=0

akx
k

∞
∑

k=0

dkx
k +

q1
∑

k=0

bkx
k +

q2
∑

k=0

ckx
k

∞
∑

k=0

fkx
k

=
∞
∑

k=0





k
∑

j=0

ajdk−j + bk +
k
∑

j=0

cjfk−j



xk, (C.4)
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with dk = 1k

k! and fk = (−1)k

k! . Equation (C.4) gives

k
∑

j=0

ajdk−j + bk +

k
∑

j=0

cjfk−j = 0, ∀k ≥ 0. (C.5)

When we take k > q0 ∨ q1 ∨ q2, we have bk = 0 and

q0
∑

j=0

ajdk−j +

q2
∑

j=0

cjfk−j = 0, ∀k > q0 ∨ q1 ∨ q2. (C.6)

To determine the q0 + 1 + q2 + 1 coefficients of p0(x) and p2(x), we need
q0 + 1 + q2 + 1 equations. Because q0 + q1 + q2 > q0 ∨ q1 ∨ q2 we can take
the following equations:

q0
∑

j=0

ajdq0+q1+q2−j +

q2
∑

j=0

cjfq0+q1+q2−j = 0,

...

q0
∑

j=0

ajd2q0+q1+2q2+2−j +

q2
∑

j=0

cjf2q0+q1+2q2+2−j = 0.

This system can be written as Cb = 0 with

C =













dq0+q1+q2 . . . dq1+q2 fq0+q1+q2 . . . fq0+q1

dq0+q1+q2+1 . . . dq1+q2+1 fq0+q1+q2+1 . . . fq0+q1+1
...

...
...

...
d2q0+q1+2q2+1 . . . dq0+q1+2q2+1 f2q0+q1+2q2+1 . . . f2q0+q1+q2+1













and

b =
(

a0, . . . , aq0 , c0, . . . , cq2
)∗

.

Again, we know that the homogeneous equation Cb = 0 has a non- trivial
solution if det(C)=0. If det(C)=0, there exists no inverse of C. But Mat-

lab shows that C has an inverse, so the only solution to Cb = 0 is b = 0,
hence p0(x) = 0 and p2(x) = 0. The inverse of C is not easy to determine.
For given q0 and q2, one can of course get the inverse with Matlab and
check that it is the inverse. Now (C.3) immediately gives p1(x) = 0, for
x ≥ 0.





Appendix D

Appendix - Concluding
remarks

D.1 Proof of the theorem of the Concluding re-

marks

To prove the theorem in the Concluding remarks, Chapter 5, we mimic the
proof of Theorem 4.6. The only difference is the jump part of the process
under consideration.

Suppose we have a process according to Definition 4.3, where the jump
part is given by J = (J1, J2, J3, 0), J i

t =
∑m

j=1Σ
ijN j

t withNt = (N1
t , . . . , N

m
t )

is an m-dimensional vector with independent Poisson processes with param-
eters λ1, . . . , λm > 0 and Σ ∈ R

4×m.
Let P (t, T ) be the bond prize implied by the Nelson-Siegel forward rate

(3.1), so

P (t, T ) = exp
[

−(T − t)Z∗
tWT−t(Z

4
t )
]

,

where

Zt :=







Z1
t

Z2
t

Z3
t






,Wt(λ) :=







W1
t (λ)

W2
t (λ)

W3
t (λ)






=







1
1−e−λt

λt
1−e−λt

λt
− e−λt






.

Now we are interested in investigating the jump part of (4.18):

∑

0<s≤t

[

P (s, T )− P (s−, T )
]

=
∑

0<s≤t

m
∑

j=1

∆jP (s, T ).

When there is a jump at time s in Nk
t we know Zi

s = Zi
s− + ∆Zi

s = Zi
s− +

Σik∆Nk
s = Zi

s− + Σik. Denote by ek the k-th unit vector, then Zs− =

63
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Zs −Σek when there is a jump of Nk at time s. Now

∆kP (s, T ) = P (s, T )− P (s−, T )

= exp
[

−(T − s)Z∗
sWT−s(Z

4
s )
]

− exp
[

−(T − s)Z∗
s−WT−s(Z

4
s )
]

= exp
[

−(T − s)Z∗
sWT−s(Z

4
s )
]

− exp
[

−(T − s)(Z∗
s −Σek)

∗WT−s(Z
4
s )
]

= P (s, T )






1− exp



(T − s)
3
∑

j=1

ΣjkWj
T−s(Z

4
s )











when there is a jump of process Nk at time s, else ∆kP (s, T ) = 0. Hence

∆kP (s, T ) = P (s, T )






1− exp



(T − s)

3
∑

j=1

ΣjkWj
T−s(Z

4
s )










∆Nk(s).

Now we get

∑

0<s≤t

[

P (s, T )− P (s−, T )
]

=
∑

0<s≤t

m
∑

k=1

∆kP (s, T )

=
∑

0<s≤t

m
∑

k=1

P (s, T )






1− exp



(T − s)

3
∑

j=1

ΣjkWj
T−s(Z

4
s )










∆Nk(s).

Remark that
∑

0<s≤t f(s)∆N(s) =
∫ t

0 f(s) dN(s) hence we can write
∑

0<s≤t

[

P (s, T )− P (s−, T )
]

=
m
∑

k=1

∫ t

0
P (s, T )

(

1− e(T−s)
∑

3

j=1
ΣjkW

j

T−s
(Z4

s )

)

dNk(s).

Equation (4.18) now becomes:

P (t, T ) = P (0, T ) +

∫ t

0
(AsG(T − s, Zs)−DxG(T − s, Zt)) ds

+

∫ t

0
∇zG(T − s, Zs)

∗σs dWs

+

m
∑

k=1

∫ t

0
P (s, T )

(

1− e(T−s)
∑

3

j=1
ΣjkW

j

T−s
(Z4

s )

)

dNk(s), 0 ≤ t ≤ T, P-a.s..

In differential notation:

dP (t, T ) = (AtG(T − t, Zt)−DxG(T − t, Zt)) dt+∇zG(T − t, Zt)
∗σt dWt

+

m
∑

k=1

P (t, T )

(

1− e(T−t)
∑

3

j=1
Σ

jk
W

j

T−s
(Z4

s )

)

dNk(t), 0 ≤ t ≤ T, P-a.s..
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And this is equal to

dP (t, T ) = (AtG(T − t, Zt)−DxG(T − t, Zt)) dt+∇zG(T − t, Zt)
∗σt dWt

+

m
∑

k=1

G(T − t, Zt)

(

1− e(T−t)
∑

3

j=1
Σ

jk
W

j

T−s
(Z4

s )

)

dNk(t), 0 ≤ t ≤ T, P-a.s..

Following the lines in the proof of Theorem 4.6 with 1− e(T−s)αkW
k
T−s(Z

4)

replaced by 1− e(T−t)
∑

3

j=1
Σ

jk
W

j

T−s
(Z4

s ) gives the desired result.

Remark D.1. Theorem 4.6 is a special case of the theorem in Chapter 5.
It is the case that Σkk = αk for k = 1, 2, 3, and Σkj = 0 for k 6= j. The
sum

∑3
j=1Σ

jkWj
T−s(Z

4
s ) will disappear and only αkW

k
T−s(Z

4
s ) is left.

D.2 Proof of the corollary of the Concluding re-
marks

To prove the corollary in the Concluding remarks, Chapter 5, we mimic the
proof of Corollary 4.8. The only difference is the jump part of the process
under consideration.

Remember

Dx

(

xWx(λ)
)

=







1
e−λx

λxe−λx






= wx(λ),

hence

Dx



x
3
∑

j=1

ΣjkWj
x(λ)



 =
3
∑

j=1

Σjkwj
x(λ).

Now

−Dx

m
∑

k=1

(

1− ex
∑

3

j=1
Σ

jk
W

j
x(z

4)

)

λk =

m
∑

k=1

Dx

[

ex
∑

3

j=1
Σ

jk
W

j
x(z

4)λk

]

=

m
∑

k=1






ex
∑

3

j=1
Σ

jk
W

j
x(z

4)Dx



x

3
∑

j=1

ΣjkWj
x(z

4)



λk







=

m
∑

k=1



ex
∑

3

j=1
Σ

jk
W

j
x(z

4)
3
∑

j=1

Σjkwj
x(z

4)λk



 .

Adding this to the result of Corollary 3.3 gives the corollary in the Conclud-
ing remarks.



Appendix D. Appendix - Concluding remarks 66

Remark D.2. Remark that Corollary 4.8 is (of course) a special case of
the corollary above. It is the case that Σkk = αk for k = 1, 2, 3, and Σkj = 0
for k 6= j.

If we write out the result above we get

−Dx

m
∑

k=1

(

1− ex
∑

3

j=1
ΣjkW

j
x(z

4)

)

λk =
m
∑

k=1



ex
∑

3

j=1
ΣjkW

j
x(z

4)
3
∑

j=1

Σjkwj
x(z

4)λk





=

m
∑

k=1











e
x



Σ
1k+Σ

2k 1−e−z4t

z4t
+Σ

3k

(

1−e−z4t

z4t
−e−z4t

)















(

Σ1k +Σ2ke−z4t +Σ3kz4te−z4t
)

.

This equation has 3m − 3 more unknowns than the equation in the Inde-
pendent jump case.
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