
1

Strategic reasoning in complex domains:

A comparative survey on scientific AI techniques to improve real-time strategy

game AI.

Author: Kasper van Mens

Bachelor Thesis

Supervisor: Jan Broersen

May 14, 2012

2

Abstract:

Over the past decade, scientific artificial intelligence research has picked up real-time

strategy video games as testbed for research. The large amount of data, the dynamic

environment and strategic depth of the game makes the genre a challenge for scientific

artificial intelligence research. This thesis is a comparative survey of two artificial intelligence

techniques from scientific research, Case-based reasoning and Dynamic Scripting, to create

a strong real-time strategy game playing agent.

3

Contents:
1 Introduction .. 5

2 Real-time strategy games .. 6

2.1 The genre / history ... 6

2.2 Game-play (Starcraft) ... 6

2.2.1 World representation.. 6

2.2.2 Resources ... 7

2.2.3 Buildings .. 7

2.2.4 Units ... 7

2.2.5 Tech-tree ... 7

2.2.6 Macro ... 8

2.2.7 Micro ... 8

2.3 Low level AI and High level AI in RTS games ... 9

3 Complexity of RTS games ... 9

3.1 Large action space .. 9

3.2 Goal Oriented Action Planning .. 9

3.3 Complex state space ... 10

3.4 Multiple levels of reasoning .. 10

3.5 Domain Knowledge ... 11

4 Planning in RTS games ... 12

4.1 Classical Planning ... 12

4.2 Case-based Reasoning .. 12

4.2.1 Definition of Case-based Reasoning ... 12

4.2.2 CBR in RTS game AI ... 13

4.2.3 Basic Case representations .. 13

4.2.4 Complex case representations ... 14

4.2.5 Integrating domain knowledge ... 15

4.3 Dynamic Scripting .. 16

4.3.1 Definition of Dynamic Scripting .. 16

4.3.2 Dynamic Scripting in RTS game AI ... 16

4.3.3 Evaluation .. 17

4.3.4 Goal-directed hierarchical approach ... 18

5 Conclusions ... 19

5.1 Scientific answer to the large amount of data ... 19

4

5.2 Scientific answer to be adaptive .. 19

5.3 Scientific answer to be dynamic .. 20

6 Future research ... 21

7 References ... 22

7.1 Books ... 22

7.2 Articles ... 22

7.3 Websites ... 24

5

1 Introduction

The computer game industry has grown enormously over the past years. One genre of

games in this industry is real-time strategy (RTS). In a typical RTS game, players fight over

resources, build bases and try to defeat the enemy forces. A player can choose to play

versus another human player or to play versus a computer controlled opponent, called an

Artificial Intelligence (AI). The AI in RTS games is of very low quality. Creating a strong AI for

RTS games is very difficult [4]. The main focus of commercial game developers is to

entertain the player. Therefore most of the research in improving the quality of games is

done on the graphics. Games are developed under sever time constraints and most game

designers do not get their hands dirty on a complex task, such as creating a human like AI

[13]. However, 15 years after a machine defeated the world chess champion Kasparov, how

hard can it be to create a strong RTS game AI?

To understand the complexity of a RTS game, imagine playing chess on a 512x512 board,

where players can have over a hundred pieces. All pieces may move simultaneously and

can have several complex abilities. Players may create new units and buildings and only

have visibility within a small area around their own pieces. In AI terms, this means that

players have to deal with a very complex game state, a very large action space and with

imperfect information. The commercial game industry uses a script as AI in these complex

environments. A script is a sequence of actions that the computer controlled player must

execute. Scripts are developed by the game designers in a very late stage of game

development [18]. The complexity of RTS games makes it very plausible that game

designers cannot foresee every situation in the game and it is very likely that the scripts

contain weaknesses [27] . Unforeseen situations by the game developers will be poorly

handled by the AI and this will eventually lead to inferior game-play. Besides being weak in

new situations, scripts are static [3]. The static nature of the scripts results in predictable

behavior that will be easily exploited by human players. Weak, predictable and non adaptive

scripts are common problems in state-of-the-art game AI [17].

Over the past decade, AI researchers have picked up RTS games as topic for their research.

Scientists have argued that there is a need for scientific research on RTS game AI [4,6,9].

One of the reasons RTS games are a good testbed for AI research is because they provide

a well defined environment to test and evaluate AI techniques. Most RTS games allow

researchers to research loose aspects of a full game AI independently, like resource

management or scouting behaviors. Commercial game developers can benefit from scientific

AI research, because high level AI increases the playing challenge and is a potential selling

point for a game [10,18]. Besides the benefits for commercial game developers, knowledge

gained from AI research can be used for other applications such as military drones [6].

This thesis is a comparative survey of different AI techniques that are being used by

scientific researchers to improve RTS game AI. Different designs are compared and the

most fruitful ones are discussed. The main problem of RTS game AI is the complexity of the

game. Strong RTS AI needs to be able to handle new situations and be unpredictable for the

opponent. The agent must perform multiple tasks at once, in a complex and highly dynamic

environment. Case-based reasoning and Dynamic Scripting have been proposed as

techniques for strong RTS game-play. The question is, to what extend are the techniques

suitable for the complex task of playing high level RTS game-play?

6

2 Real-time strategy games

2.1 The genre / history

Real-time strategy (RTS) games are a sub-genre within the genre of strategy computer

games. The game that has arguably been the most influential to the genre is Dune II

(Westwood,1992). There were a few games before that could be considered as real-time

strategy, but Dune II defined the RTS mechanics we know today [43]. The term real-time

means that players are allowed to make actions independent of the other player, in other

words: they do not have to wait their turn. The real-time aspect makes every RTS game a

race against the clock: who gets the most actions done in the same amount of time. Being

inactive is detrimental for a player. Professional players execute over 200 actions per minute

[42].

Figure 1: A screenshot of Dune II (Westwood,1992) [43]

2.2 Game-play (Starcraft)

Starcraft (Blizzard Entertainment,1998) is often chosen as number one strategy game of all

time and can be seen as the prototype RTS game [43]. Even fourteen years after its release

it is still played by millions of players online. In South Korea there is a professional league

devoted to the game, where players earn six figure incomes and three television channels

stream 24 hours of Starcraft a day [42]. One of the reasons for the popularity of the game is

the strategic depth and balance. Throughout the years, the developers have continued

updating and balancing the game by patches and this process has contributed to the high

level competitive scene there is today.

2.2.1 World representation

The world of a RTS game is called a map and players usually view the map from an

isometric perspective. The map is divided into tiles which can represent several types of

terrain. Different maps are of different sizes. The screen of a player only shows a part of the

total map, but players have access to a minimap at the bottom of the screen, where the

whole map is visible. However, what is on the map is only partially visible due to the fog-of-

7

war. Fog-of-war is an important aspect of RTS games. Fog-of-war means players have

visibility only in a small area around their own buildings and units. Players therefore need to

make decisions under uncertainty.

2.2.2 Resources

Gathering and managing resources is a key element of RTS games. Buildings and units cost

resources and those resources need to be gathered with workers. At the start of a game a

player usually starts with very limited resources and only a few units. Throughout the game

more workers are generated in order to boost the players income. A player with an economic

lead is most of the times ahead in the game. However, investing too much in economy

leaves the player with a weaker military force. An aggressive opponent could sacrifice some

of his economic growth in order to have a bigger army than the more economic oriented

player. In this way the aggressive player has the military advantage and can exert some

pressure on the economic player. Sometimes a player sacrifices all of his economic growth

and performs a ‘rush-attack’ on the opponent, overwhelming the opponent with inexpensive

units. If a player does not notice this rush intention of the opponent, he could lose the game

very quickly. A key aspect of RTS is the balance between investing in economy and military.

2.2.3 Buildings

A player starts with one ‘main’ building and five workers. Throughout the game new buildings

are constructed in order to generate advanced military units, research technologies or

expand to new resource locations. The sequence and timing of buildings constructed is

called a build-order. Build-orders often contain the sequence of training units and

researching technology too. Strategies are defined by the sequence of the construction of

buildings, units and technologies.

2.2.4 Units

Player make units with their buildings. Units cost resources and have a shadow cost.

Examples of shadow costs are: the time it takes to produce a unit, the technology required

for the unit or the amount of supply the units takes in the army. The size of an army is limited

by the supply cap. Different unit types have different properties and abilities. Properties of

units are for example health, attack damage and attack speed. The different unit types

defined by the abilities and properties of a unit, behave in a rock-paper-scissor fashion. This

means that there is no absolute best unit or army. Every army has a counter. A counter

strategy is a strategy that is cost-effective on the strategy that the opponent is executing.

Units of the scissor type will be very effective on units with the paper type, these units

‘counter’ the paper type ones. Because every strategy has a counter strategy, there is no

nash-equilibrium. Players need to be highly dynamic and react to what the opponent is doing

all time. Building a model of your opponent is therefore very important.

2.2.5 Tech-tree

A tech-tree is a model of the research path a player can take (Figure 2).The tree is a one-

dimensional directed graph, where each node represents a type of building. The tree is

traversed by constructing a new type of building. Buildings generate units and technology.

The state of a player in the tech-tree reveals the different types of buildings a players ownes

and therefore defines the possibilities a player has. This tech-tree is very important for

strategy planning and opponent modeling.

8

2.2.6 Macro

Macro management (macro) is everything that involves your economy and building your

base. You have to create additional workers for a long period of the game in order to

increase your economy. Buildings have to be created in order to produce units and research

important technologies. Resource management is an important aspect of macro, deciding

where to spend the resources on: army, tech or economy. Inactivity or bad planning leads to

banked up resources. Every resource that is not spend and could have been spend on

something useful means either; a smaller army, later technology or being behind in resource

income.

2.2.7 Micro

A very important aspect of a high level RTS player is micromanagement (micro). Micro

involves all the commands you give to your individual units. Examples of micromanagement

behavior in combat are: choosing to focus fire with your troops on one particular unit, or to

retreat single units that are low in health, or to flank or surround an enemy. Terrain is very

important for micromanagement, spatial reasoning is needed to position your army efficiently

and benefit from the terrain.

Figure 2: Tech-tree (left) and unit counters (right) for the Protoss faction of Starcraft 2 (Blizzard
Entertainment, 1998) [42]

9

2.3 Low level AI and High level AI in RTS games

There is a difference between the game engine domain AI (low level) and the player domain

AI (high level). The former one is everything that is needed to run the game, like path-finding

algorithms for the units. The latter one is the intelligence that is needed to play the game.

The RTS AI referred to in this thesis is the high level RTS AI, as if we replace the human

player with a computer controlled player, a bot.

3 Complexity of RTS games

A RTS game playing agent must have the ability to deal with the complexity of RTS games.

Dealing with the complexity involves being able to handle the large amount of information,

making decisions in a very large action space and perform multiple tasks at once. The task

of winning an RTS game involves highly reactive play, which means predicting the strategy

of the opponent and react to it with a counter strategy. For an agent to be able to reason in

such complex environments, abstractions of certain aspects of the game are needed.

Human players make abstractions of the data of RTS games naturally [11,26].

3.1 Large action space

A problem for RTS AI, is that there are many different complex unit types in a RTS game.

Ponsen et al. have analyzed the size of the action space in the RTS game Wargus [25,45].

They formulated a formula for the action space which results in a space of 15.000 moves for

a simple early game. For comparison, chess has a decision complexity of 30 moves. In

chess only one piece can be moved at a the time, while in RTS games all units can move

simultaneously. With the action space of Wargus, it is impossible to systematically search

the actual action space for good moves, because the space is simply too large to search

under the real-time constraints [19].

Scientific research on RTS AI often makes abstractions of the action space in order to

reduce the size of it. Aha et al. group several game actions together and call it a tactic [2].

Instead of searching for possible next-moves, their agent chooses the best next-tactic. By

reducing the action space, planning becomes manageable for the agent. Another way of

making abstractions to action space is to reason about army squads instead of individual

units [23]. One thing to notice is that abstractions mean a loss of information. It could be

discussed if essential RTS game-play is lost if micromanagement over individual units is

neglected.

3.2 Goal Oriented Action Planning

Another way to conceptualize the action space is by using goal oriented action planning.

Classical decision making techniques use state-action rules. In a given state the best set of

action is chosen and performed. This technique is static and is unable to cope with highly

dynamic environments [22]. Goal oriented action planning (GOAP) is a technique to improve

the performance of game agents. The basic idea of GOAP is that in a given game state, the

agent does not decide what action to perform, but what goal to pursue. In every game state,

the agent first chooses one or more goals to pursue and then what actions to perform in

10

order to reach these goals. By reasoning about goals the AI becomes less predictive. It is

possible for the agent to achieve the same goal in different manners on different occasions.

Another way a goal driven autonomy strengthens the RTS game AI, is by integrating

knowledge about the intentions of the opponent [38]. If actions are coupled to goals, the

agent is able to build a model of the opponent based on the intentions of the opponent.

Instead of figuring out the next move the opponent, the agent reasons about the goals the

opponent is pursuing. The large number of possible next-moves an opponent can make, is

too large to reason about. Conceptualization of actions to goals reduces the action space.

Human players do not think and reason about actual game actions, but make

conceptualizations and group actions together that have the same intention.

3.3 Complex state space

One of the aspects of the complexity of RTS games are the complex and dynamic game

states. The actual game state would be defined by the position of all the units and buildings

on the map, which has an average size of 512x512 tiles. If a player moves one unit, the

actual game state would be changed. Players move units all the time. Interpreting the raw

data of a RTS game, to determine the game state, is problematic [23]. One way to overcome

this problem is to categorize all the possible game states in fewer meta-states of the game.

Ponsen et al. created a state lattice with meta-game states and reduced the total amount of

game states of Wargus. Each meta-game state is defined by the sequence of the building

types that have been constructed. Constructing a new type of building means that the game

state has transitioned into another state. Their motivation for this type of categorization is the

tech-tree of the game, which humans use to determine the position and possibilities of a

player. Multiple instances of the same type of building are discriminated by this definition of

meta-game state. Buildings that do not unlock new features, like walls or defensive towers,

are also left out of the definition. With this abstraction the total amount of possible game

states of Wargus is only 20 [23].

It is easy to see that by reducing the state-space to 20 a lot of information about the game

situation is lost, like the distance to the opponent, the amount of units of both players and the

positions of the armies. However, using the tech-tree as fundament for the game sate has

become a standard in AI research [2,19,33].

3.4 Multiple levels of reasoning

The task of winning a RTS game involves multiple subtasks, like setting up an economy and

fighting battles. Different independent subtasks need to be optimized simultaneously by the

player. There is often more than one goal a player needs to pursue. The design of a RTS

game playing agent has to be suited for multitasking. A classic method for implementing AI

behaviors is a finite state machine (FSM). A FSM is a simple, effective and expressive

method used by many AI developers [1]. However, the design does not allow reasoning

about multiple goals at once or the execution of different independent subtasks

simultaneously.

The design of the agent needs to have different independent working modules, each

specified to a subtask of RTS game-play. Each subtask needs to be hierarchically structured

from the high level strategic plans that entail all available military units to the low level

11

individual unit commands. The advantage of a modular hierarchical design is that the search

space for each subtask is reduced. Different independent managers work on a subtask with

specific levels of abstraction, most suited for that domain. Another benefit is that each

manager can use its own AI technique, most suited for the type of subtask. Research has

shown that statistical AI techniques are more appropriate for micromanagement tasks and

symbolic techniques are more suitable for strategic decisions [32].

Safadi et al. propose a simple hierarchical model to improve RTS game AI [26]. Their model

is based on knowledge from human experts. Wintermute et al. use a hierarchical

architecture called SOAR to play complete RTS games[40]. The architecture of SOAR is

based on human perception. The research shows how to design a hierarchical modular

agent, but the framework did not show good results in game-play. Weber used a reactive

planner for his Starcraft playing agent. This agent is very similar to the SOAR architecture

but differs in two ways. First, there is no claim that the model is similar to the human

cognitive brain. Second, there is more coordination between units in the reactive planner

than in the SOAR architecture[39].

3.5 Domain Knowledge

For strong RTS game play, a lot of knowledge about the game is required. There are

different ways to acquire this domain knowledge. Common sense and personal game play

experience are the most simple ones. Expert human knowledge in the form of strategy

guides or online communities are another way to acquire domain knowledge. Research done

with the game Wargus has studied the built-in AI scripts to acquire domain knowledge

[2,23,25]. Wargus did not have a competitive, professional scene. There was not an online

community to learn from. Knowledge about the game was scarce. More recent research is

done with the Brood War Application Programming Interface (BWAPI), which is a free and

open source C++ framework for creating AI modules for Starcraft [35,38,44]. With Starcraft

as new testbed for AI research, a lot of domain knowledge becomes available. The

professional scene and live online community provide endless information about the game in

the form of strategies, rules of thumb, map analyzes and more. Tons of expert

demonstrations are available in the form of replays, which are recorded game logs from

human players.

One interesting approach to acquiring domain knowledge was performed by Ponsen and

Spronck. They created an evolutionary algorithm which could automatically generate new

tactics for the game Wargus. The idea behind the algorithm is to acquire domain knowledge

which is not yet available by the designers of the game. The domain knowledge encoded by

AI designers is likely to be sub-optimal. Game designers are unable to try every option in

every situation, but an offline learning algorithm is able to.Test results show that the

algorithm is capable of finding counter tactics to a given strategy. However the algorithm is

only tested on a few very basic strategies [24].

12

4 Planning in RTS games

4.1 Classical Planning

The classical planning techniques, like a state-space search are impractical for the domain

of RTS games. Classical planning is done in fully observable, deterministic, finite, static and

discrete environments [1]. RTS environments are not in this category. The fog-of-war, real-

time aspect and the huge amounts of raw data pose a problem for a classic planning

approach. The game states are too complex and the action space is too large to handle with

a systematic search. Another problem for a systematic search for the best move is that a

single move is very difficult to evaluate. The evaluation of the performance of a single action

is problematic because most of the single actions do not directly lead to winning the game, in

most cases not even to winning a local fight.

4.2 Case-based Reasoning

4.2.1 Definition of Case-based Reasoning

Case-based reasoning (CBR) is a technique that uses old experiences to understand new

problems [14].CBR techniques are able to handle domains where classical planning is

computationally undoable. In RTS games it is very hard to define general relationships

between problems and solutions. The CBR techniques deals with this problem by using

specific knowledge learned from previous situations to solve a new problem. This method is

similar to way humans interpreted a new situation, with the use of old experience. The

psychological plausibility motivates the CBR approach [28].

Case-based reasoning uses a database of problem situations called cases. Each case

describes a problem situation and a used solution, called the case-representation. New

problem situations are solved by using solutions from similar problems in the past (Figure 3).

If the solution from the past problem does not yet fit the current problem, adaptation methods

are required. Adaptation methods transform the old solution to fit the new problem. After the

adaptation, the solution is used to solve the new problem. The next step is to evaluate the

perfomance of the (adapted) solution to the new problem. If the evaluation is positive

enough, the solution is then again stored in the case-memory for later use. This last step of

CBR makes it an online learning technique by continuously updating the memory-case.

Figure 3: Schematic representation of a case-based reasoning cycle

13

4.2.2 CBR in RTS game AI

Different researchers use different designs for their CBR system. Some designs have left

steps out of the system, like adaptation or evaluation. Adaptation methods are complex and

a lot of knowledge is required to define efficient adaptation methods for RTS games [33].

Evaluation and storage requires a correct evaluation function of short-term game actions,

which is difficult to define for RTS games. For a CBR technique to work, a lot of domain

modeling is required. Cases are labeled with a game state (problem situation) and

information about the next-moves. A major part of the efficiency of CBR depends on the way

the cases are represented, indexed and searched

4.2.3 Basic Case representations

For a CBR technique to work in the domain of RTS games, abstractions of the game state

have to be made. Abstractions mean loss of information. How much information is used to

label a case, is called the richness of the case-representation. A problem situation in a CBR

technique applied on RTS games is the game state. A very rich case representation is for

example, a game state that is defined by the exact location and properties of every unit and

building owned by a player. Such a representation would probably be inefficient, because it

contains too much data and changes every time a unit moves, which is almost every

instance of the game. Very rich case-representations allow more complex reasoning [19].

One downside of rich case-representations is the effort it takes to create a large database of

rich cases. The search and comparison of similar cases is computationally heavier too.

Another problem is, that for rich case-representations a lot of domain knowledge must be at

hand [34].

Aha et al. were the first researchers who used a CBR technique for strategy planning in

Wargus [2]. Their system is an online learning technique with a very simple case

representation. The game state is based on the meta-game states defined by Ponsen and

Spronck [23]. The solutions stored in the cases are a set of actions which they call a tactic.

No adaptation of tactics take place, but an evaluation of the tactics is stored. The best suited

case for a new problem is found by comparing similarity of the game state and the

performance of the tactic stored in the case. When the most similar case, with the best

performing tactic, is found, the tactic is executed. After the execution of the tactic, the system

updates the performance of the tactic, or if the situation was new, a whole new case is

stored (Figure 4).

Although the agent was able to defeat the built-in scripts of Wargus 80 percent of the time,

some critique can be given. First of all, using only one algorithm for a full game playing agent

is probably not the best design. RTS game play is a typical example of multi-level reasoning.

To make their single algorithm work for a domain that needs such complex reasoning, huge

abstractions have to be made. Also, several important features of RTS game play are

ignored. Moreover, the agent does not build a model of the opponent, nor does it have any

spatial or temporal reasoning. A smaller point of critique is the fact that the game state

estimation of the agent cheats, it uses information that is not visible due to the fog-of-war.

One of the major challenges of AI research in this area, is dealing with imperfect information.

14

Figure 4: Schematic representation of the CBR technique applied on a RTS game. The blue arrow
indicates that the state of the game has changed after the execution of the actions in the stored tactic. A
new game state means a new problem situation and the process starts over.

4.2.4 Complex case representations

The first step of CBR is interpreting a new problem with the use of old experiences. The

technique searches for the most similar case. In RTS games, the first step involves

searching for game states that are similar to the current game state. With complex case

representations it is more likely that there does not exist an exact match in the case memory.

The more information used in the definition of the game state, the more likely it is that one

variable is not the same. Generalization methods are required to generalize variables and

compare the game states. Adaptation methods are required to transform the stored solution

to fit the new game state.

Aamodt et al. used CBR on the application of micromanagement in battles of the strategy

game Warcraft 3 [30,46].Their system is capable of fighting a battle efficiently by retreating

low health units and focus fire enemy troops. The problem situation is determined by the

army composition of the two players. These army compositions are complex and most of the

time differ from the cases stored. Several generalization and adaptation methods are

therefore used to match the situation and to adapt the rules that are in the case. The system

of Aamodt et al. is able to constantly defeat the hardest built-in AI of Warcraft 3. However,

the system uses several trigger conditions to activate certain important behaviors, like the

retreat of low health units. This part of the system is basically a finite-state-machine. It is

hard to evaluate if the CBR techniques has improved micromanagement of units in Warcraft

3, but the research shows that CBR is able to handle rich case representations with the use

of generalization and adaptation methods.

Another research that used generalization and adaptation methods is done by Weber and

Mateas, who used CBR on build-order planning in Wargus [33]. The CBR technique of

Weber and Mateas uses a complex game state definition and therefore rich case

representations. However, not all the information is used in every situation. Generalization-

and adaptation methods are created with the use of knowledge about the game. It depends

on the type of decision the agent has to make, how much information is used by the agent.

15

The agent uses huge abstractions of the game data where possible and reason about fine

nuances where needed. The downside of this approach is that a lot of domain knowledge

must be at hand to create the methods and it takes a lot of time to create a case memory of

cases with a rich case representation.

4.2.5 Integrating domain knowledge

The first researchers on RTS game AI used game actions performed by the built-in scripts of

Wargus as starting domain knowledge[2,23]. The machine played a game according to the

rules defined in a script, the game log was recorded and individual cases were extracted.

Every time a game state changed, a new case was made and all the actions performed until

the next state change were stored in the case as a solution.

Ontañón et al. built a full game playing agent with the use of a CBR technique with very rich

case representations [19]. A complicated goal oriented architecture allows their agent to

reason about goals in Wargus. The case memory is filled by human demonstrations, expert

players playing games of Wargus. Cases are labeled with a game state and actions

performed in the game state. Additional knowledge is inserted in each case by manually

annotating in every case which action contributed to achieving which goal. The agent not

only knows what actions were performed, but why they were performed. Manually annotating

game logs takes a lot of time and the knowledge about the goals must be at hand. This

research used only a few demonstrations and the agent was only tested on 2 customized

maps. The technique showed good results on the two customized test maps, but problems

occurred when tested on a larger and more varying map set [20]. The case memory of this

agent was relatively small due to the time consuming nature of manually annotating game

logs.

Instead of manually annotating the demonstrations, researchers have tried to do it

automatically. Data mining is a technique for discovering patterns in large databases to

guide future decisions. This approach lets the machine process very large data sets with

minimum input from a human user. Research on the game Starcraft used data mining on

replay databases [35]. The approach seems fruitful, if the machine can automatically learn

domain knowledge, it can browse through all the tons of expert demonstrations available in

the form of professional Starcraft replays. This should result in a relatively large case

memory. However there is a difference between the game demonstrations used in earlier

research on Wargus and the professional Starcraft replays. The demonstrations used in

Wargus were made solely for AI training purposes [2,19]. The demonstrations consisted of

prototype strategies where the intention of every move is clear. Starcraft replays are not

made for AI training purposes and are stored in a proprietary binary format specified by

Blizzard, so researchers have no control over the data and the replays have to be converted

to a useable format. The replays are noisy and contain a lot of spamming actions.

Spamming actions are extra unnecessary actions of a player. Professional Starcraft players

often execute more than 200 actions per minute, which results in more than 3000 actions per

replay. Therefore annotating goals and other information is very hard [35].

Weber and Ontañón have done research on automatically annotating game traces [36]. First

they automated the process of converting expert replays into cases. A goal ontology is

defined to specify the intentions of a player during a replay. The idea is to group sets of

actions to goals and build cases based on these goals. A case consists of a game state,

coupled with a goal. While playing the game, the CBR part of the agent receives a goal as

16

input and retrieves the most suitable case to achieve this goal. The agent did not win against

the built-in AI of Starcraft but showed a promising start to automatically annotate replays for

a case-based planner. Improvements to their system can be made with a richer case

representations, allow the system to pursue more than one goal at once and better methods

for adaptation.

4.3 Dynamic Scripting

4.3.1 Definition of Dynamic Scripting

Dynamic scripting is an online machine learning technique that is based on reinforcement

learning. Dynamic scripting was originally developed to create scripts for computer controlled

opponents in computer role-playing games (RPG). When a human player encounters a

battle with a computer controlled character, a script is generated on the spot. This script

defines the combat behavior of the computer controlled character and consists of a set of

rules extracted from the rule database. The probability that a rule is chosen for a script is

influenced by a weight attached to the rule. When the battle between the human player and

the computer controlled player is over, rules are evaluated and the rule database is updated.

Rules that lead to successful outcomes increase in weight and rules that lead to failure

decrease in weight. After the adaptation of the rules, a weight redistribution function is used

so that the sum of all weights in the database is constant. One of the advantages of the

dynamic scripting technique is the use of domain knowledge. Rule databases are made with

the use of knowledge about the game. In the original development of dynamic scripting,

each type of computer controlled character in the RPG had its own rule database. The

scripts made for warrior characters were made from the rules specified in the warrior rule

base and for the wizard characters from the wizard rule base.

4.3.2 Dynamic Scripting in RTS game AI

Dynamic scripting is implemented in the RTS game Wargus by Ponsen [23]. The difference

between dynamic scripting applied to a RPG game and a RTS game is that in the RTS

variant there exists a rule base for each game state instead of for each character. A script is

created when the AI controlled player enters a new game state. At the start of the game, the

agent is in state one and selects several rules from the database of state one. When a

executed rule converts the game state into another state, a new script is generated out of

the rule base belonging to the new game state. After each state transition, the performance

of the script is evaluated, where good evaluation of rules means a weight increase, which

means a higher chance to be chosen next time the agent is in that game state.

Ponsen made abstractions to the game state and action space [23]. They defined twenty

possible meta-game states. With conceptualizations of the action space the space is

reduced to fifty rules per rule base. With this abstraction, micromanagement of units is never

performed. The idea of this technique is that the agent is able to adapt to a new situation by

exploring all the different rules. If a generated tactic does not work in a given situation,

chances are unlikely that the tactic is chosen again due to the weight decrease. Each time

the unsolved situation is encountered, different combinations and sequences of rules can be

tried until a working tactic is found. The agent should be dynamic by always stochastically

choosing rules and not allowing a zero percent chance of choosing a rule.

17

The agent of Ponsen is only tested against the four built-in scripts of Wargus, where the

technique did not perform well [23,25]. Two of the four strategies, soldier rush and knight

rush, won about 99 percent of the games versus the dynamic scripting player. After

improvement of the rule databases the dynamic scripting player won eventually 29 percent

of the games versus the soldier rush and 13 percent of the games versus the knight rush.

One point of critique is the fact that Ponsen and Spronck had one counter strategy to the

knight rush which was developed by their evolutionary algorithm and added the whole

strategy as a single rule to a rule base. In other words, they scripted a full counter strategy to

the knight rush. This counter strategy was a knight rush itself, slightly optimized with a fast

armor upgrade [23]. Dynamic scripting is developed to be unpredictable and able to adapt to

new situations. Hard coding a strong rush tactic does not contribute to these principles. The

results against the other 2 built-in scripts increased after improving the rule bases. The

problem is, that adding a full hard coded strategy to a system that is developed for being

adaptive and unpredictable, seems counter intuitive.

A second point of critique is that the agent does not build a model of the opponent. The

technique is developed as adaptive game AI and RTS game-play relies on reactive, adaptive

play. However, DS adapts to its opponent in a delayed fashion. Weights are updated after

the evaluation of a tactic. Against static opponents, the DS technique will eventually learn

how to counter the strategy of the opponent. Against dynamic opponents, it is very doubtable

if DS will be able to adapt. The DS technique will adapt after every game to the evaluation of

the last played game. If the opponent changes its strategy every time, the DS technique will

always learn the wrong tactics. Eventually, after many games, the technique will probably

develop an all-round strategy that generally counters every strategy a little. First of all, this

would then be a static all around strategy, second of all it is very likely this strategy will be

weak. One of the challenges of RTS game AI research is to find a way to deal with imperfect

information. Imperfect information is only a problem for opponent modeling, when this aspect

of RTS game play is ignored, research in RTS-game AI looses one of its challenging

aspects.

4.3.3 Evaluation

One of the problems of dynamic scripting applied to RTS games is the evaluation function.

Ponsen et al. explain that dynamic scripting may be successful applied to game AI if the

game AI can be scripted, domain knowledge on the characteristics of a successful script can

be collected and an evaluation function can be designed to assess the success of the

functions collected [25]. The problem with RTS games is the evaluation function of a

successful script. It is very hard to evaluate short-term tactics, let alone single game actions.

Ponsen et al. used the game score as an evaluation function for their technique. The game

score consists of military points gained by killing enemy units and production points by

creating buildings and units. The score neglects spatial and temporal factors. For example, it

could be efficient for a player to sacrifice several units in order to gain control over the map.

The points gained for killing and producing units are only based on the cost of the unit in the

game. Shadow costs like production time or the technology required, are not taken into

consideration.

A second problem with the use of the military point system is that the points gained for killing

units are based on the value of the units. The value of a unit is determined by its utility.

Some units rely heavily on micromanagement. These units, like archers or catapults, can do

18

a lot of damage when controlled correctly, but die instantly if sent blindly into battle. In the

experiments of Ponsen et al., both AI controlled players do not micromanage their units,

which makes those units inefficient. Nevertheless, the points rewarded for killing those units

are still based on the efficiency of the units with proper control. The rewards are relatively

too high and result in a distorted game score. Another thing with the wrong use of units, is

that the in-game unit costs are also based on the usefulness of the units, the effectiveness of

a unit in a game. Without micro, the AI will pay relatively too much for units that they do not

use cost effectively. Scientific research that aims to create strong RTS AI must take this into

account and prevent the AI for spending valuable resources on worthless units.

4.3.4 Goal-directed hierarchical approach

One way to improve the dynamic scripting technique is to design a goal-directed hierarchical

approach for dynamic scripting [8]. The idea of this approach is to decouple the rules from

the game state and couple rules to goals and then the goals to game state (Figure 5). There

are weights between a game state and a set of goals and between each goal and a set of

rules. In each game state a goal is selected out of the goal database belonging to that game

state. When a goal is selected a script is generated from the rule base belonging to the goal

and game state. In this design there are separate learning spaces for goals and rules. It

should enhance the learning speed by applying additional domain knowledge. The design is

not implemented in a RTS game playing agent and the actual usefulness of the goal-directed

hierarchical design for dynamic scripting on RTS games remain to be examined.

Figure 5: A schematic representation of goal-directed dynamic scripting (Dahlbom,2006)

19

5 Conclusions
The complexity of RTS games makes it difficult to create a RTS game AI that is able to

compete with high level human game-play. The commercial game industry deals with the

complexity by creating complex scripts for the computer controlled players. These scripts are

static and often contain weaknesses, which players exploit very easily. Scientific research on

RTS game AI has experimented with new techniques to improve RTS game AI. The

techniques proposed have to be able to deal with the large amount of data in a highly

dynamic, partial observable environment. Agents need to reason in a very large action space

and perform multiple tasks simultaneously. The question is, to what extend are the scientific

AI techniques suitable for this complex task?

5.1 Scientific answer to the large amount of data

Scientific techniques rely on abstractions of the game data. With the use of correct

abstractions, scientific techniques are suitable to handle the large amount of data. One of

the fundamental structures that defines the game state is the tech-tree [24]. However,

defining meta-game states solely on the tech-tree position of a player is too simple. It only

defines what the player is doing, not when or where. Without temporal and spatial

information, an agent is not suitable for strong RTS game-play, so this information must be

taken into the definition of the game state. The current position of a player can be defined as

the path that a player has traversed in the tech-tree together with the elapsed game time at

which each transition to a new node first occurred. Additional information about the size of

the map and the distance to the enemy base must be added to allow spatial reasoning.

Besides a complex game state, there are too many game actions to take into consideration

when planning the next action. Therefore scientists have made conceptualizations of the

action space. A good way to reduce the action space is by grouping actions together that

lead to the same goal [22,38]. This way, the agent reasons about goals and intentions

instead of actual game actions. Another advantage of symbolic goal representations is the

ability to communicate between different managers. Playing a RTS game involves

performing multiple subtasks simultaneously. An agent design with multiple independent

managers is able to handle multiple subtasks [26]. Due to the fact that the managers use

different algorithms internally, a communication language between the managers is required,

namely symbolic goal representations [39].

A multiple hierarchical agent design is suitable for the task of playing RTS games. It models

the multiple levels of reasoning that are involved in RTS game-play. Another reason to

choose such a design is that specific domain knowledge can be integrated in each internal

manager. Each manager can run on a different algorithm, one that works best in the sub-

domain of the agent [32].

5.2 Scientific answer to be adaptive

In RTS games, it is very likely that an agent encounters a problem situation it has never

encountered before. Scientific research has tried to create an agent that is able to efficiently

deal with these new situations.

Case-based reasoning (CBR) has been proposed as a technique that is able to effectively

handle new situations in RTS games [2,19,33]. With specific knowledge from a solution to a

similar problem, CBR adapts to new situations. However, strategic decisions in RTS games

require a rich case representation, with a lot of information to base decisions on. The

20

problem with rich case representations is the fact that building a large case memory is very

time consuming and the knowledge about the game must be at hand [19,20,33]. CBR is able

to learn this domain knowledge by storing new solved problems in the case memory. CBR

design with this last step are not suited for RTS games because it requires an evaluation

function for short-term game actions [2,14]. The evaluation function currently used for short-

term tactics is based on the game score [2,23]. The game score only discriminates between

produced units and killed units. Not all tactics have the goal to produce or kill units, the goal

may also be to research a lot of technological upgrades very fast or to effectively position an

army somewhere on the map [42]. The advantages of such tactics are not rewarded by the

game score.

Without a correct evaluation function, machine learning is problematic [1]. However, a CBR

technique without learning has been successfully applied to build-order selection and

opponent modeling [33,34]. Build-order planning and opponent modeling do not require the

same information as strategic reasoning. Therefore a more simple case representation can

be used and an automatic method is able to build the case memory from expert replays

[35,36]. The problem with a non-learning variant of CBR is that it does not create new cases

online and all the knowledge must be in the case memory on forehand. This technique is

only suitable for RTS games where a lot of domain knowledge is known.

Another technique proposed to effectively handle new situations is Dynamic Scripting (DS)

[8,23]. DS is a form of reinforcement learning and the technique has problems with the

evaluation of short-term game plans. A correct evaluation function is fundamental for DS to

be efficient. DS has only been tested to play full games of Wargus. The results of this

research showed that DS is able to learn to choose the correct rules in a given situation.

However, it has not shown results that indicate a future in RTS game AI. The technique is

not suited for strong RTS game-play because of the huge abstractions that have to be made

to the game information. The meta-game states are oversimplified and therefore the agent is

not able to perform spatial or temporal reasoning. The technique is proposed as a solution

for adaptive game AI. However, DS does not build a model of the opponent. Opponent

modeling and reactive game-play are the essence of RTS games. DS builds a model of its

opponent in a delayed fashion and this way of opponent modeling will most likely not work

against highly dynamic opponents. The biggest eyesore of the research done with DS, is the

implementation of a full game script called the ‘knight-rush’ [23]. This addition of a static, full

game script, goes against all what DS stands for, creating dynamic scripts on the spot.

5.3 Scientific answer to be dynamic

Goal oriented action planning has been proposed as structure so that the agent does not

always perform predictable actions. The agent first chooses a goal it wants to achieve, then

selects the best actions to get there. There are often multiple ways to achieve a goal and the

agent can vary in the actions he chooses to reach the same goal at different moments

[22,38]. This technique is suitable for RTS game AI. Case-based reasoning is dynamic with

the use of adaptation methods [30,33]. The downside of adaptation methods is that they

require a lot of domain knowledge. The method of choosing rules to generate scripts in DS

ensures that there is always a possibility that a script differs from time to time. Even if a

script has been proven to be the best solution in a certain situation, there is a possibility that

the agent does not choose this script and diverges from the best known tactic. The

effectiveness of this mechanism is arguable. Being unpredictable for your opponent is an

21

advantage in RTS games. However, performing an optimal, but predictable strategy can win

you games too.

One thing to notice, is that due to the fog-of-war, not every part of the map is visible. An

enemy cannot predict what you are doing, unless he performs some form of reconnaissance.

If a player denies the scouting of the opponent, it is very hard to predict his next move. This

shows that AI techniques do not have to switch between actions all the time in order to be

unpredictable. Human players often perform optimal predictable strategies, but do everything

they can to deny the opponent to get the information [42].

6 Future research
There are several directions for future research. First, a more complex evaluation function

must be identified. Research can be done to determine the actual unit values in AI games.

Temporal difference learning methods have been used in scientific research to determine

the values of pieces in chess. Another research direction that involves the game score is to

integrate the shadow costs of units. Units are relatively more expensive if they take a long

time to produce, or a lot of technology is required to produce the units. These properties

should be represented in the score gained for producing or killing such a unit. A third

improvement of the game score can be made by integrating a point system for tactics that

gain technological- or spatial advantages for a player. With a more precise and correct

evaluation of tactics, or even game actions, more research can be done on machine learning

algorithms in RTS game AI.

Current research on RTS game AI has problems with testing the performance of the agent.

Playing full RTS games is very time consuming. If the only evaluation of the agent is the

outcome of the game, it is hard to determine if the agent has a strong opening, mid- or end

game. It is also hard to determine the performance of the individual subtasks performed by

the agent. Multi agent designs often want to research if the implementation of another

technique into the agent will improve the game-play of the agent. It is very hard to measure if

the performance of an agent is improved. New, better methods for evaluating the

performance of an agent should be examined. Chess- and checker bots from scientific AI

research are often tested in a competition with an ELO rating. Such a competition exists

online for the game Starcaft. With an ELO rating, better comparisons of different agents of

scientific research can be made. ELO ratings can accurately measure improvement in the

performance of players. So, future research should test the strength of their agents in these

ELO competitions.

Another direction for future research is to identify more methods to automatically integrate

domain knowledge. RTS AI research is very time consuming and research on data mining

methods may be able to find a solution to this problem. With the use of algorithms that are

able to learn from expert demonstrations, a lot of domain knowledge can automatically be

integrated. An agent with a lot of knowledge about the game and a correct evaluation

function that allows machine learning, could potentially be a strong RTS player. Future

research must demonstrate if an agent, armed with these properties will outperform humans

in this challenging and popular domain.

22

7 References

7.1 Books
[1] S.J. Russell, P. Norvig; “Artificial intelligence: a modern approach”; Prentice hall; 2009.

7.2 Articles
[2] D.W. Aha, M.Molineaux, M. Ponsen; “Learning to Win: Case-Based Plan Selection in a Real-Time

Strategy Game”; Lecture notes in computer science; 2005.

[3] M. Brockington, M. Darrah; “‘How not to Implement a Basic Scripting Language”; AI Game

Programming Wisdom; 2002

[4] M. Buro; “Real-time strategy games: A new AI research challenge”; International Joint Conference

on Artificial Intelligence; 2003

[5] M. Buro; “ORTS: A hack-free RTS game environment”; Lecture notes in computer science; 2003

[6] M. Buro; “Call for AI research in RTS games”; AAAI; 2004

[7] D.C. Cheng, R. Thawonmas; “Case-based plan recognition for real-time strategy games”;

Proceedings of the Fifth Game-On International Conference; 2004

[8] Dahlbom, Niklasson; “Goal-directed hierarchical dynamic scripting for RTS games”; AAAI; 2006

[9] C. Fairclough, M. Fagan, B.M. Namee, P. Cunningham; “Research directions for AI in computer

games”; Proceedings of the Twelfth Irish Conference on Artificial Intelligence and Cognitive Science;

2001

[10] K. Forbus, J. Laird; “AI and the Entertainment Industry”; IEEE Intelligent Systems; 2002

[11] J. Graham, L. Zheng, C. Gonzalez; “A Cognitive Approach to Game Usability and Design: Mental

Model development in Novice Real-Time Strategy Gamers”; Cyber Psychology & behavior; 2006

[12] T. Kent; “Multi-tiered AI layers and terrain analysis for RTS games”; AI Game Programming

Wisdom; 2004

[13] J.E. Laird, M. Lent; “Human-level AI’s Killer Application”; AI Magazine; 2002

[14] J. Kolodner; “An introduction to case-based reasoning”; Artificial Intelligence Review; 1992

[15] M. Molineaux, D.W. Aha, M. Ponsen; “Defeating novel opponents in a real-time strategy game”;

IJCAI 2005Workshop on Reasoning, Representation, and Learning in Computer Games; 2005.

[16] M. Molineaux, D.W. Aha; P. Moore; “Learning Continuous Action Models in a Real-Time Strategy

Environment”; Proceedings of the Twenty-First Florida Artificial Intelligence Research Conference;

2008

[17] A. Nareyek; “Intelligent Agents for Computer Games”; Lecture Notes in Computer Science; 2002

23

[18] A. Nareyek; “AI in Computer Games”; ACM Queue; 2004

[19] S. Ontañón, K.Mishra, N. Sugandh, A. Ram; “Case-Based Planning and Execution for Real-Time

Strategy Games”; Lecture notes in computer science; 2007

[20] S. Ontañón, K. Bonnette, P. Mahindrakar, M.A. Gómez-Martín, K. Long, J. Radhakrishnan, R.

Shah, A. Ram; “Learning from human demonstrations for real-time case-based planning”; IJCAI

STRUCK; 2009

[21] S. Ontanón, K.Mishra, N. Sugandh, A. Ram; “On-Line Case-Based Planning”; Computational

Intelligence; 2010

[22] J. Orkin; “Applying Goal-Oriented Action Planning to Games”; AI Game ProgrammingWisdom 2;

2003.

[23] M. Ponsen; “Improving Adaptive Game AI with Evolutionary Learning”; Master’s thesis Delft

University, Netherlands; 2004

[24] M. Ponsen, H. Muñoz-Avila, P. Spronck, D.W. Aha; “Automatically Generating Game Tactics

through Evolutionary Learning”; AI Magazine; 2006

[25] M. Ponsen, P. Spronck, H.Muñoz-Avila, D.W. Aha; “Knowledge acquisition for adaptive game AI”;

AI Magazine; 2006

[26] R. Safadi, R. Fonteneau, D. Ernst; “Artificial Intelligence design for real-time strategy games”;

NIPS Workshop on Decision Making with Multiple Imperfect Decisoin Makers; 2011

[27] J. Schaeffer; “A Gamut of Games”; AI Magazine; 2001

[28] R. Schank; “Dynamic memory; a theory of reminding and learning in computers and people”;

Camebridge University Press; 1982

[29] P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, E. Postma; “Adaptive Game AI with Dynamic

Scripting”; Machine Learning; 2006

[30] T. Szczepanski, A. Aamodt; “Case-based reasoning for improved micromanagement in Real-time

strategy games”; Proceedings of the ICCBR 2009 Workshop on CBR for Computer Games; 2009.

[31] P. Tozour; “The Perils of AI Scripting”; AI Game Programming Wisdom; 2002

[32] B. Weber; “Integrating Expert Knowledge”; AAAI; 2010

[33] B. Weber, M. Mateas; “Case-Based Reasoning for Build Order in Real-Time Strategy Games”;

Proceedings of the Artificial Intelligence for Interactive Digital Entertainment Conference; 2009

[34] B. Weber, M.Mateas; “Conceptual Neighborhoods for Retrieval in Case-Based Reasoning”

Proceedings of the International Conference on Case-Based Reasoning; 2009

[35] B. Weber, M.Mateas; “A Data Mining Approach to Strategy Prediction”; Proceedings of the 5th

IEEE Symposium on Computational Intelligence and Games; 2009

24

[36] B.Weber, S. Ontañón; “Using Automated Replay Annotation for Case-Based Planning in Games”

To appear in Proceedings of the ICCBR Workshop on Computer Games; 2010.

 [37] B. Weber, M. Mateas, A. Jhala; “Case-Based Goal Formulation” To appear in Proceedings of the

AAI Workshop on Goal-Driven Autonomy; 2010

[38] B.Weber, M.Mateas, and A. Jhala; “Applying Goal-Driven Autonomy to StarCraft”; Proceedings of

the Artificial Intelligence and Interactive Digital Entertainment Conference; 2010

[39] B.Weber, P.Mawhorter,M.Mateas, A. Jhala; “Reactive Planning Idioms for Multi-Scale Game AI”;

Proceedings of the IEEE Conference on Computational Intelligence and Games; 2010

[40] S. Wintermute, J. XU, J. E. Laird; “SORTS: A Human-Level Approach to Real-Time Strategy AI”;

AAAI; 2007

7.3 Websites

[41] J. Orkin; “Applying Goal-Oriented Action Planning to Games”; www.jorkin.com

[42] www.teamliquid.net

[43] www.gamespot.com

[44] http://code.google.com/p/bwapi/

[45] http://wargus.sourceforge.net

http://www.teamliquid.net/
http://www.gamespot.com/
http://code.google.com/p/bwapi/

