
Utrecht University

Master Thesis

Image Inpainting

Author:
Sander van de Ven

Supervisor:
Dr. Robby T. Tan

Student Number:
3369137

Thesis Number:
ICA-3369137

May 18, 2012

Abstract

Image inpainting is the process of filling an unknown region of an image
with visual plausible information. Filling this region with information that
could have been in the image. There is nothing like the ’perfect’ inpainting
algorithm, each method has it own advantages and drawbacks. In this thesis
we want to investigate if we can improve both the speed and the visual appeal
of two popular algorithms. First we look at the Bertalmio method, second at
the Criminisi method. The two algorithms were implemented and analyzed
by looking at the advantages and drawbacks of these methods. From these
drawbacks we came up with contributions to increase the visual appeal or
the speed of these algorithms.

For the Bertalmio paper three contribution are found, these are using
multi-resolution images, inpainting the unknown region inwards and estimat-
ing the amount of necessary iterations of the algorithm. These contributions
all increase the speed of the algorithm. Three contributions are also found for
the Criminisi paper. These are local searching which increases the speed but
should decrease the visual appeal, although in the experiments it increased
the visual quality. Patch estimation increases the quality of the resulting
images at the cost of a small speed decrease. The use of a lookup data struc-
ture significantly increases the speed of the algorithm at the cost of a small
quality drop.

Observations showed that the current numerical quality estimation is not
always ideal. Therefore an user study is conducted to investigate if this
quantitative estimation matches the quality of the images as perceived by
human beings. This user study showed that three observation were verified.

The main conclusions of the project are that contributions were found of
two important inpainting algorithms and the observations from the project
were verified by the user study.

Contents

1 Introduction 3

2 Related Work 6
2.1 Image inpainting techniques 6
2.2 Texture syntheses . 7
2.3 Guided method . 8
2.4 Multiple images . 9
2.5 Video inpainting . 9

3 Image Inpainting 12
3.1 Theory . 12
3.2 Anisotropic diffusion . 14
3.3 Quality of inpainting results 15
3.4 Experiments . 17

3.4.1 Multi resolution images 20
3.4.2 Inpainting inwards . 20
3.4.3 Iterations estimation 22
3.4.4 Conclusion . 23

4 Exemplar Based Image Inpainting 25
4.1 Theory . 25
4.2 Experiments . 28

4.2.1 Finding the exemplar 29
4.2.2 Local search . 36
4.2.3 Lookup data structures 45

5 Quantitative and Qualitative Comparison 54
5.1 Experimental setup . 54

1

5.1.1 Dataset . 56
5.1.2 Implementation . 56

5.2 Results . 56

6 Conclusions and Future Work 58
6.1 Future work . 59

7 Acknowledgments 60

2

Chapter 1

Introduction

As early as the Renaissance, people try to restore damaged paintings in a way
that the paintings will properly look like the original for an observer who is
unfamiliar with the original. This process is called restoration, conservation,
inpainting or retouching. This is done to preserve the paintings and other
fine art for future generations. An example of a restored painting and frame
is shown in Figure 1.1.

Figure 1.1: A restored painting and frame, photo by Oliver Brothers Fine
Art Restoration.

In image processing and computer vision we try to do the same with dig-

3

ital images, this is called image completion, image disocclusion or (digital)
image inpainting. The goal of image inpainting is filling the target region in
the image with visual plausible information. Filling this region with infor-
mation that could have been in the image. There are several applications for
image inpainting, one of these is the restoration of old images and movies
by removing cracks from these images and movies. The removal of objects
from images, like time stamps or a person. Another application can be image
inpainting as the pre-process of other computer vision or image processing
applications, an example of this is the use of image inpainting in image-based
material editing. It can also be used to fill missing parts in image communi-
cation, for example image compression, lost packets retrieval and zooming.
An example of image inpainting is shown in Figure 1.2.

Figure 1.2: Example of image inpainting from [1], the original image is shown
on the left and the inpainted image on the right.

This field consists of three main topics: the restoration of images by
texture synthesis, restoration of pictures by propagating linear structures and
the restoration of films. This master thesis primarily focuses on the second

4

technique: the restoration of images by propagating linear structures.
In this thesis we want to investigate if we can improve both the speed and

the visual appeal of two popular algorithms. We also investigate if the cur-
rent estimation method of the visual appeal of the result of image inpainting
matches the visual appeal as defined by humans. We look at two popular
methods and see if we can improve them by implementing the algorithms,
looking at the advantages and drawbacks and making contributions based on
these advantages and drawbacks. First we look at the Bertalmio[2] method,
second at the Criminisi[1] method. We also want to see how good an esti-
mation method for the quality of image inpainting works. This is done by
comparing the results of estimation method with a user study and verifying
some observations made throughout the project.

The main challenges in image inpainting are the continuation of structure,
finding the correct information and the speed of inpainting. An example of
the continuation challenge is an image with a fence; when a user wants to
inpaint an unknown part of a fence, the fence should continue. In inpainting
algorithms we have to find the perfect information to fill in a gap. That
information can come from multiple places, adjacent pixels, other parts of
the image or other images, it can be challenging to find the best match for
each situation. Current research of image inpainting techniques consists of
some different approaches. Some approaches are based on pixel by pixel
updating by computing partial differential equations. Others are based on
copying parts of the input image to the unknown region or even information
from a dataset of images.

The thesis starts with related work in chapter 2, followed by the analysis
of the image inpainting method of Bertalmio et al.[2] in chapter 3. In chapter
4 the analysis of the method, exemplar based image inpainting by Criminisi
et al.[1] is described. An analysis of quality estimation of image inpainting
is shown in chapter 5 and the conclusion and future work follow in chapter
6.

5

Chapter 2

Related Work

Image and video completion is discussed in a lot of papers and different
approaches are used for this. This chapter describes important methods of
image and video completion and some examples are shown.

2.1 Image inpainting techniques

Bertalmio et al.[2] introduce the term image inpainting to computer science.
In the algorithm the region that has to be inpainted will be filled-in by
information of the region surrounding the gap. The curves of equal intensity
(isophotes) arriving at the boundary are propagated inwards. Because this
is the first and one of the most important papers in image inpainting, we will
look more closely at it in chapter 3.

Criminisi et al.[1] propose an algorithm inspired by the algorithm by
Bertalmio et al.[2] and texture synthesis [3]. In contrast to the paper of
Bertalmio et al. the unknown region is inpainted patch by patch. The
sequence of which patch should be inpainted is based on the isophote infor-
mation and the amount of known information surrounding the patch. This
popular method increased the result of image inpainting at lot. Because of
that this method is further explained in chapter 4.

In the algorithm of Oliveira et al.[4], the unknown region of the image is
convolved with a Gaussian kernel. To prevent edges to be blurred the user
manually specifies barriers for the diffusion. This algorithm is much faster
than the other algorithms but it can only be used with very small unknown
regions and is less accurate. An example of this algorithm is shown in figure

6

Figure 2.1: Olivera method [4], input, mask and result, note the diffusion
barriers near the boundaries of the hair of Abraham Lincoln.

2.1.
The algorithm of Perez et al.[5] showed how gradient domain reconstruc-

tion can be used in image editing applications. The actual pixel values for
the unknown pixel values are computed by solving a Poisson equation that
locally matches the gradients while obeying the fixed Dirichlet (exact match-
ing) conditions at the seam boundary. Poisson Image Editing can be used
best for seamless inserting and local illumination changes but can also be
used for image inpainting.

The author of [6] proposed a new inpainting algorithm based on propagat-
ing an image smoothness estimator along the image gradient. Similar to the
algorithm of Bertalmio et al.[2]. The image smoothness is estimated as the
weighted average of the known image neighborhood of the pixel to inpaint.
The fast marching method (FMM) is used to create a distance function to
the initial boundary. The pixels of the unknown region are inpainted in the
order of the distance to the boundary, proceeding from the smallest to the
largest. This method is fast but creates blurry effects with larger unknown
regions. An example of this algorithm is shown in Figure 2.2.

2.2 Texture syntheses

Texture synthesis is the process of algorithmically constructing a large digital
image from a small digital sample image by taking advantage of its structural
content [3][7]. Texture synthesis can be also used to fill in unknown regions

7

Figure 2.2: Telea method [6], input plus mask and result.

Figure 2.3: Texture Syntheses by Efros et al.[3], input plus mask and result.

in images, the algorithm of Criminisi et al.[1] is partially based on these
algorithms. An example of the algorithm by Efros et al.[3] is shown in Figure
2.3

2.3 Guided method

Sun et al.[8] introduces a new direction in image inpainting. In the authors
algorithm the user is also able to specify support lines. These support lines
specify where important lines in an image should be continued. This al-
gorithm first fills in the unknown information around the support lines by
dynamic programming or belief propagation, depending on the structure of
the support lines. After that the rest of the image is filled in by texture
propagation. The result of this algorithm is good but we can not compare
these with others because this algorithm requires extra input. An example
of this algorithm is shown in Figure 2.4.

8

Figure 2.4: Sun method [8], input, mask, first stage and result.

2.4 Multiple images

Hays et al.[9] developed a total different way of image completion, instead
of searching in the input image, the algorithm searches throughout a whole
database of images to find information to fill the missing region. The new
area is pasted in using Poisson blending [5]. The authors state that their
results look better then the algorithm of Criminisi et al.[1] but the algorithm
needs a database of two million images for only three scenes. This algorithm
gives visual pleasing results but is very slow and is unpractical because it
needs the large dataset. An example of this algorithm is shown in Figure
2.5.

2.5 Video inpainting

Image completing methods can also be used for videos, because a video is a
set of multiple images. Naively inpainting each frame will not result in the
best result important information about the current frame can be found in
the adjacent frames. Patwardhan et al.[10] presented an algorithm for video
inpainting of a scene taken from a static camera. This method is an extension
of the paper of Criminisi et al.[1]. It extends the idea from a single image

9

Figure 2.5: Hays method [9], input, mask, first stage and result

to a set of images but also taken in to account the adjacent frames. In this
algorithm the frame is separated into a background and a foreground in which
the foreground is first inpainted. After this step the background is inpainted,
each patch is copied to every frame to get a consistent background. This
technique has some nice results but it has some restrictions, it requires a fixed
camera position and a stationary background with some moving foreground.

Wexler et al.[11] have proposed a method for space-time completion of
large damaged areas in a video sequence. They pose the problem of video
completion as a global optimization problem with a well-defined objective
function. In the algorithm every local patch should be found in the remaining
part of the video and globally all these patches must be consistent with each
other spatially and temporally. An example of this algorithm is shown in
Figure 2.6.

10

Figure 2.6: Wexler method [11], input, mask and result sequence.

11

Chapter 3

Image Inpainting

This chapter discusses the paper Image Inpainting by Bertalmio et al.[2].
It is an important paper in this field because it is the first paper that uses
a different approach. The algorithm presented in this paper is based on
partial differential equations (PDE’s). The ideas in this paper are inspired
by the basic techniques used by professional art restorators. By analysis the
advantages and drawbacks of this algorithm, we try to reach one of the goals
of the project, to improve this algorithm.

3.1 Theory

The technique proposed in this paper does not require any user intervention
after the user specifies the image that has to be restored and the mask that
represents which part of the image should be inpainted. The original image
is described as I0, the area that has to be inpainted is denoted as Ω, the
border of this region δΩ and the known region also known as source region
is indicated by Φ. This is shown in Figure 3.1

The algorithm works at an iterative way, by creating a series of image
I1, I2...In in a way that the new image is an improved version of the previous
image. This process will continue until a certain amount of iterations or until
the algorithm converges. The process is described as shown in Equation (3.1).
The new pixel value is calculated as the old pixel value of a pixel inside Ω
plus ∆t times the newly calculated value for this iteration.

In+1(i, j) = In(i, j) + ∆tInt (i, j),∀(i, j) ∈ Ω (3.1)

12

Figure 3.1: Definitions image inpainting.

The values for each iteration can be calculated. This is shown in Equa-
tions (3.2), in which

−−→
δLn(i, j) is an estimation of the smoothness of the image

at pixel i,j.
∣∣∣−→N (i, j, n)

∣∣∣ is the direction of the isophote. And |∇In(i, j)| is the
slope-limited version of the norm of the gradient of the image, a factor to
make the algorithm more stable. The equations for the terms are Equations
(3.3), (3.5) and (3.6).

Int (i, j) = (
−−→
δLn(i, j) ·

−→
N (i, j, n)∣∣∣−→N (i, j, n)

∣∣∣) |∇In(i, j)| , (3.2)

−−→
δLn(i, j) is an estimation of the smoothness of the image at pixel i,j. It is

calculated as the neighbors of the discrete implementation of the Laplacian
of the pixel i,j. The neighborhood is calculated as described in Equation (3.3)
and the discrete implementation of the Laplacian is described as Equation
(3.4), in which the subscripts represent the derivatives, in this case the second
derivatives in the x and y direction.

−−→
δLn(i, j) := (Ln(i+ 1, j)− Ln(i− 1, j), Ln(i, j + 1)− Ln(i, j − 1)), (3.3)

Ln(i, j) = Inxx(i, j) + Inyy(i, j), (3.4)

The next part of Equation (3.2) is the direction of the isophote mean-
ing the direction of the curves of equal intensity. This is done by calculat-
ing the direction of the least change of color, by calculating the gradient

13

∇In(i, j) as (Inx (i, j), Iny (i, j)) and taking the vector orthogonal to this vector
(−Iny (i, j), Inx (i, j)). The normalized version of the equation can be calculated
as shown in Equation (3.5).

−→
N (i, j, n)∣∣∣−→N (i, j, n)

∣∣∣ :=
(−Iny (i, j), Inx (i, j))√

(Inx (i, j))2 + (Iny (i, j)2)
(3.5)

The final part of Equation (3.2) can be calculated as the slope limited
version of the norm of the gradient of the image. This equation is shown in
Equation (3.7), this equation has as parameter β, the projection of

−→
δL onto

the vector
−→
N , which is calculated as shown in Equation (3.6), which is the

first part of Equation (3.2).
The terms of Equation (3.7) are as followed, the sub indexes b and f denote

backward and forward differences respectively, while the sub indexes m and
M denote the minimum or maximum, respectively, between the derivative
and zero. This equation is used to prevent too small and too big numbers.

βn(i, j) =
−−→
δLn(i, j) ·

−→
N (i, j, n)∣∣∣−→N (i, j, n)

∣∣∣ , (3.6)

|∇In(i, j)| =

√
(Inxbm)2 + (InxfM)2 + (Inybm)2 + (InyfM)2,

whenβn > 0√
(InxbM)2 + (Inxfm)2 + (InybM)2 + (Inyfm)2,

whenβn < 0

(3.7)

The algorithm will first run one step of anisotropic diffusion on the whole
image. After this step the algorithm will run A steps of the algorithm followed
by B steps of anisotropic diffusion. A and B are parameters, the authors
suggest the values A is 15 and B is 2 for the best result. Anisotropic diffusion
will be explained in the next section.

3.2 Anisotropic diffusion

Anisotropic diffusion or Perona- Malik diffusion[12] is a process that removes
noise off an image without removing the ’edges’ of the image. The process is
inspired by the technique of applying a Gaussian kernel to image to generate
smoother image. When applying a Gaussian kernel to an image the set of

14

images get smoother but it does not keep edges. In the paper of Perona and
Malik, the authors give the example of an image of a tree with a blue sky.
The result what the authors want is that the leaves of the tree get merged
together in the first iterations of the algorithm when applying more steps
of the algorithm the branches of the tree should merge until there is only a
single ’Blop’ left. When applying a Gaussian kernel to the image the leaves
already get merged with the blue sky before the branches of the tree get
merged. In this algorithm the anisotropic diffusion helps to smooth the filled
in regions. It also helps to join edges across the unknown region, so they we
be continued.

3.3 Quality of inpainting results

The quality of a result of image inpainting is very subjective, sometimes it is
very clear if an image looks ”good” but most of the times ”not that clear”.
Therefore we want to define a formal measurement to see how ”good” an
image looks. A numerical measurement would be practical to compare dif-
ferent inpainting methods with each other. This is theoretically not possible
because image inpainting is filling the gap with visual plausible information.
The information that could have been there. The information that is in the
original image is not always known. Therefore there is no ground truth to
compare the result with. For example Figure 3.2, an image of a bungee
jumper. After removing the bungee jumper there is no information of what
would be behind the bungee jumper, so there is no ground truth to compare
the result with.

A solution for this problem is only using a custom dataset to compare the
results of different methods. This dataset is created by taking a picture with
the object that you want to remove and taking one without while the rest of
the picture has to be exactly the same. This is almost impossible, keeping
the rest of the image exactly the same. For example the camera moved just
a little, the reflection of an object is on another object etc. See Figure 3.3.
Therefore we use a different method to estimate the quality of an inpainting
result. On an image a mask is drawn of an object that could have been on
the image. The use of this virtual mask will allow us to compare the end
result with a ground truth, which is the input image.

To measure the quality of an image we calculate the Mean Square Er-
ror(MSE) between the inpainted image and the original image. This tech-

15

Figure 3.2: Bungee jumper, no ground truth known.

Figure 3.3: Ground Truth problem, left original image, right incorrect ground
truth.

16

nique has also been used in the paper of Oliveira et al.[4] and other papers.
This is not the optimal way of comparing images because human perception
does not work the same way as color values in RGB color space.

The MSE is defined as:

MSE =
1

mn

M∑
y=1

N∑
x=1

[I(i, j)− I ′(i, j)]2, (3.8)

In which m and n are the dimensions of the image, I(i,j) is the original
image at pixel (i,j) and I’(i,j) is the inpainted images at the same position.
Note that a higher MSE is lower quality in the resulting image.

The maximum value of the MSE is 65536 (2562). To get a better overview
between the values we normalized the results resulting in a value between 0
and 1. This normalized Mean Squared Error can be calculated as:

nMSE =
1

mn ∗ 2552

M∑
y=1

N∑
x=1

[I(i, j)− I ′(i, j)]2, (3.9)

3.4 Experiments

One of the goals of this project is to see if it is possible to make some
improvements to the Bertalmio paper. This is done by implementing the
paper and looking at the advantages and drawbacks of the algorithm. The
algorithm was implemented in C++ with the Open Source Computer Vision
library version 2.2.

The algorithm gives acceptable results in specific settings. The algorithm
will produce good results if the unknown regions are thin, if the unknown
region gets to wide the results of the algorithm will decrease which is further
explained at the drawbacks. The algorithm does not need any user inter-
action after the input image and the masked region is specified. This in
contrast to the papers published before this paper. No limitations are made
on the topology of the unknown region.

The first drawback is that the algorithm does not perform well on big
unknown regions. The result will be blurry. This is because the algorithm
is not able to reproduce texture. This can be seen in Figure 3.5, when the
mask is not wide the algorithm works a lot better as can be seen in Figure
3.4.

17

Figure 3.4: Result small region width of 3 pixels.

18

Figure 3.5: Result big region width of 12 pixels.

19

This drawback is conquered in other papers, for example the paper of
Criminisi and texture synthesis. In these algorithms the information is being
copied in patch by patch, not pixel by pixel. Th3is will result in texture
in the resulting image in images with larger gaps instead of blur. It is not
possible to incorporate this techniques in this algorithm because it would
change the core ideas of the algorithm.

3.4.1 Multi resolution images

The algorithm is relatively slow because it needs a lot of iterations of complex
calculations for all unknown pixels of the algorithm. This can be partially
solved by using multi resolution images. With this idea the image is scaled
down a few times, the smallest scale is inpainted first of which the inpainted
pixels are copied to a larger scale. Knowing the information from the previous
scale will reduce the amount of iteration the algorithm needs to converge.
With this idea the unknown region can be faster inpainted knowing the color
value of the previous scale. This process increases the speed of the algorithm
significantly.

3.4.2 Inpainting inwards

Another way of improving the speed of the algorithm is changing the sequence
of the to be inpainted pixels. Our hypothesis is that we can improve rate
of change and by doing that, the speed of the algorithm by working from
the border of the unknown region δΩ inwards. The idea of this approach
is that the pixels at the border of the unknown region get inpainted with
the information from outside the unknown region first. The pixels that lay
one pixel inwards now get inpainted by the information of the border values.
With this inpainted sequence the pixels that lay one pixel inwards will be
based on the already filled border pixels not on the possible not yet filled
border pixels.

To see if our hypothesis is confirmed we evaluate the rate of change if
the algorithm is not yet finished. By doing this evaluation with a not yet
finished results we can see if the algorithm is ’further’ at a certain amount
of iterations of the algorithm than the default algorithm would be.

For this evaluation we use four images which are shown in Figure 3.6,
these image are used because they will result in visual pleasing end results.
We evaluate the current pixel values if the algorithm is approximately 75%

20

Figure 3.6: Input images plus masks, input14, input14a, disney006, city004.

finished. We compare these images of the regular and enhanced algorithm
with the ground truth. By calculating the MSE between the images and the
ground truth we can evaluate how far the image is inpainted.

This experiment shows no improvement as can be seen in Table 3.1. This
can be explained by the small value of the update value ∆t. The border
values are only marginally updated. The one pixel inwards of border values
get calculated with marginally update values, not enough to improve the
value. Increasing the value of ∆t to 0.2 will result in the expected end result.
All error values of the enhanced method will be equal or decreased, so the
hypothesis is confirmed. The results are shown in Table 3.1 and 3.2. Table
3.1 shows the error values when ∆t = 0.1 and table 3.2 shows the error values
when ∆t = 0.2.

21

image amount of iterations MSE regular MSE inwards
input14 400 78.2 78.2
input14a 400 8.9 8.9
disney006 3200 5.7 5.7
city004 400 0.6 0.6

Table 3.1: Error comparison regular versus inwards ∆t = 0.1.

image amount of iterations MSE regular MSE inwards
input14 200 418.7 396.0
input14a 200 167.2 164.7
disney006 1600 12.7 7.0
city004 400 0.6 0.6

Table 3.2: Error comparison regular versus inwards ∆t = 0.2.

3.4.3 Iterations estimation

Multiple parameters of the algorithm can be set, each set of different pa-
rameters resulting in different results. These parameters are the amount of
iterations before the algorithm finishes. The numbers of inpainting steps af-
ter which an amount of diffusion steps is applied. The margin of convergence
can also be set. All the possible values of the parameters in combination
with the relatively slow algorithm makes the algorithm less practical to use.

The usability of the algorithm will be improved if we would be able to cor-
rectly specify how many iterations the algorithm should run given a certain
image. Running the algorithm always with the same amount of iterations is
not user friendly and will not always give the best results. Using a margin
for the convergence will not be effective too because of the possible slow rate
of improvement. We want to estimate the amount of needed iterations based
on the size of the unknown region.

The amount of iterations is based on the width of the masked region. The
width of the mask is calculated as how many times you can erode the mask
before it is empty. We base the amount of iterations per width layer on the
amount of iterations the algorithm needs to change a masked region from
total white to total black. We notice that the algorithm needs 400 iterations
to calculate one layer. The algorithm is used to calculate the end results for

22

the previous mentioned images, which are shown in Figure 3.6 because the
end results of these images are visual pleasing.

In the regular algorithm the user has to specify a fixed amount of iter-
ations. In this case the amount of 12800 is used based on experimentation.
The end results of the test images are the same after the estimated amount
of iterations as after 12800 iterations. We can state that estimation of the
amount of needed iterations works. Table 3.3 shows the amount of iteration
needed for four test images. We also analyzed how many iterations the al-
gorithm really needed. This is shown in Table 3.4. There are slightly more
iterations estimated than really needed to make sure the result is correct.

image estimated iterations regular iterations percentage
input14 800 12800 6.25 %
input14a 800 12800 6.25 %
disney006 9600 12800 75.00 %
city004 5200 12800 40.63 %

Table 3.3: The amount of estimated iterations compared to the regular
amount of iterations.

image estimated iterations needed iterations
input14 800 750-800
input14a 800 500-550
disney006 9600 8700-8750
city004 5200 800-850

Table 3.4: The amount of estimated iterations compared to the amount of
needed iterations.

3.4.4 Conclusion

We can conclude that we found three possible contributions to the paper. The
first using multi-resolution images is already mentioned in the paper but not
explained. The experimentation shows that this contribution significantly
decreases the time needed to finish the algorithm. The second contribution,
inpainting inwards significantly reduces the needed amount of iterations. By
doing so it also reduces the time needed for the algorithm. The third con-
tribution estimating the amount of needed iterations will reduce the amount

23

of unnecessary iterations. By doing so it will also increase the speed of the
algorithm.

24

Chapter 4

Exemplar Based Image
Inpainting

This chapter discusses and analyzes the paper of Criminisi et al.[1]. The
authors proposed an algorithm inspired by the algorithm by Bertalmio et al.
[2] and texture synthesis [3]. In contrast to the paper of Bertalmio et al. the
isophote information is not directly used to update the target region of the
image but it is used to determine which patch should be updated first.

4.1 Theory

The goal of the algorithm is to fill in a region in an image. This is done
by first selecting which patch of the unknown region of the image has to be
inpainted. After that step the best matching patch for this region is searched.
The following definitions are used in the paper, see Figure 4.1. The region
to be filled is indicated by Ω and its border is denoted by δΩ. The known
region also known as source region is indicated by Φ. First the pseudo code
of the algorithm is defined, after that each step is looked into more closely.

25

Figure 4.1: Exemplar based image inpainting definitions part 1.

The pseudo code of the algorithm:

1. Calculate the initial boundary δΩ and confidence values C(p).

2. Repeat until the boundary is null.

(a) identify boundary.

(b) compute the priority P(p) for every point on this boundary.

(c) find the patch with the maximal priority Ψ(p).

(d) find the best exemplar Ψ(q̂).

(e) copy the pixel information from the exemplar to the patch with
the highest priority.

(f) update the confidence values of the patch with the highest priority
with the calculated values.

26

1. Calculate the initial boundary δΩ and confidence values C(p).
The first step of the algorithm is to calculate the boundary also known
as the fill front of the masked region. This boundary is needed because
we want to select a point on the boundary if there are still masked
values left.
To be able to calculate the confidence value of a patch, the initial
confidence value C(p) has to be set before the iterative steps of the
algorithm. The pixels that are on the mask are set to 0, the other
pixels are set to 1.

2. Repeat until the boundary is null
Repeat the following steps of the algorithm until there is no more
boundary, are pixels are inpainted.

(a) Identify boundary.
If the image has been changed in the previous iteration, the bound-
ary has to be re-calculated. See figure 4.1 a.

(b) Compute the priority P(p) for every point on this boundary. For
each point on this boundary, the priority has to be calculated.
This priority is the product between the Confidence term C(p)
and the Data term D(p), see Equation (4.1.)

P (p) = C(p)D(p) (4.1)

The Confidence term represents how much information is known
from the patch around the point p. At the first iteration this is
the amount of known pixels in the patch divided by the amount of
pixels in the patch. This is because the known pixels are initialized
with the value of 1 and the not known pixels with 0. After the first
iteration, the values calculated with this equation are also taken in
account. The equation for this confidence term is Equation(4.2).

C(p) =

∑
q∈Ψp∩(I−Ω)C(q)

|Ψp|
, (4.2)

The data term represents the edge propagation. See Equation
(4.3).

D(p) =

∣∣∣∇Ip⊥ · np∣∣∣
α

, (4.3)

27

In which ∇Ip⊥ is the vector orthogonal to the gradient vector. np
is the normal vector of the boundary and α is a normalization
factor, typically 255 for a grey-scale image, see Figure 4.2.

Figure 4.2: Exemplar based image inpainting definitions part 2.

(c) Find the patch with the maximal priority Ψ(p).
p̂ = arg max p∈δΩt P(p)
Find the patch with the highest priority of all points on the bound-
ary. See Figure 4.1 b.

(d) Find the best exemplar Ψ(q̂) .
Ψ(q̂) = arg min d(Ψ(p̂),Ψ(q))
Search in Φ for a patch that has the least Sum of the Squared
distance(SSD) in CIE LAB color space with Ψ(p̂) See Figure 4.1
c.

(e) Copy the color information from the exemplar to the unknown
pixels of the patch with the highest priority.
See figure 4.1 d.

(f) update the confidence values of the patch with the highest priority
with the calculated value of equation 4.2.

4.2 Experiments

To analyze the algorithm, it was implemented in C++ with the Open Source
Computer Vision library version 2.2. The experiments were done to improve
the visual quality of the results of the algorithm and to improve the speed of

28

the algorithm. The first experiment was meant to improve the visual appeal
of the end result. The second set of experiments were meant to increase the
speed of the algorithm.

4.2.1 Finding the exemplar

In the paper of Criminisi et al. the image is searched for the patch that is most
similar to the patch around the point with the highest priority p. Where most
similar is the patch that has the lowest Sum of Squared Differences(SSD) of
the color values of the known pixels between the two patches. Nothing is
explained about the case with multiple different possible patches with the
same SSD. Naive searching for the best exemplar from the left top to the
right bottom corner and selecting the first patch that has the lowest SSD,
might not result in the best result. The algorithm searches for a patch that
looks like Φ(p), shown by the blue square in Figure 4.3. The close-up is
shown in Figure 4.4. Searching the image from left to right and from top to
bottom will result in a set of possible patches. The first patch the algorithm
encounters is the red square. Other possible candidates are on the same row
to the right of the first patch, for example the yellow patch. Because the
SSD of the first patch is equal to the other good patches this one is selected.
Although the other patches might be perceived as better patches.

Figure 4.3: Patch selection sequence. Blue square is Ψ(p), red and yellow
are two possible patches.

29

Figure 4.4: Patch selection close-up, from left to right: the blue, red, yellow
patch.

There can be more than one patch with the lowest SSD and not all pos-
sible patches are the same. Selecting the best solution would be the patch
that would ’fit’ the mask the best. For example in Figure 4.3, in this image
the yellow patch is perceived as a better fit then the red patch, because the
human observer would think that the edge would continue instead of going
down a pixel as shown in the yellow and red square. See close up in figure
4.4. Modeling what humans perceive as better patches would result in higher
quality images. This is done by estimation the masked values of the patch
and taking them into account when searching for the best patch.

The unknown pixel values are estimated by the same method as in paper
of Kwok et al.[13]. In their algorithm the estimated pixels are needed to
search trough a search array data structure. The authors suggest two ways
of extrapolating the patch with the highest priority, in the paper also called
the query patch. The first way is filling the empty pixels with the average
color values of the known pixels, the second idea is filling the patch gradient
based.

In the average based estimation the unknown pixel values are assigned
the value of the average value of the known pixels values. The gradient based
filling method is based on the known pixel values surrounding a not known
pixel. In detail, for each unknown pixel p(i, j) letting the gradient be zero in
relation to the known left/right p(i± 1, j) and top/bottom p(i, j ± 1) neigh-
bors. This will result in an over-determined linear system. The optimal value
will be calculated by computing the Least-Square solution which minimizes
the norm of the gradient. This means calculating the different pixel values
of the known pixel values surrounding the unknown pixel. And taking the
value that has the least difference between all of them, which is the average
of the known surrounding pixels.

The set of possible best matches is first selected using the regular selection
procedure. After this step the best one is selected by calculating the SSD of

30

all the pixels taking in account the estimated values. Figure 4.5 shows the
different ways of filling a simple example patch. The first patch is the regular
patch, with the masked values displayed green, the second patch is the patch
average filled and the third patch is gradient based filled.

Figure 4.5: Example of different query patches, from left to right: original
patch, average and gradient based estimated.

The results of the patch estimation are shown in Table 4.1, note that a
lower value is a lower error which means a better result. The values shown
in the table are the average normalized MSE or the whole image category.

image category nMSE average nMSE gradient nMSE regular
City 0.003772 0.003737 0.003796
Dieren 0.002838 0.002835 0.002910
Disney 0.003664 0.003771 0.003742
Nature 0.003834 0.003834 0.003834
Simple 0.017309 0.011678 0.020300
Real 0.003527 0.003544 0.003571
Total 0.006284 0.005171 0.006916

Table 4.1: Error comparison patch estimation.

In Table 4.1 the results are shown of five categories: the first four cate-
gories are datasets with 10 images of different real images. These are images
from cities, animals, nature in general and Disney cartoons. In the fifth
category there are 10 images of synthetic images.

The average nMSE of the average and gradient estimation of most of the
categories is only marginally less than the regular method. In the synthetic
images the nMSE differs a lot. This can be explained because of the fact that
the synthetic images were chosen to prove some more complicated scenes and

31

the images and masks of the other categories are randomly chosen. In the
real images categories there are no images in which the regular algorithm
really fails. So for the further analysis an image is used that will result in a
visual unpleasing end result.

In the synthetic images the gradient based fill has always a better or equal
result than the regular algorithm, the average based fill performs sometimes
better and sometimes worse. This is shown in Figure 4.6.

Figure 4.6: Comparison error rating of the different estimation methods (im-
age 1-10).

We can conclude that gradient-based patch estimation significantly in-
creases the results of synthetic images. The result of the other images of the
previous mentioned dataset is not increased significant.

The next set of images shows the scenario that the use of patch estimation
increases the result in real images. Figure 4.7 shows the image that has to be
inpainted, the green values indicate the mask on the images. Figure 4.8 shows
the result of regular inpainting, Figure 4.9 shows the result of gradient based
inpainting. The iteration in which the problem with the regular inpainting
occurs is shown in Figure 4.10. In this image the mask is indicated with red
pixels, the pixel that will be inpainted in this iteration is shown green. The

32

blue pixels indicate the patch that has the lowest SSD with the query patch.
Note that is on the brown area near the top border.

Figure 4.7: The to be inpainted image.

33

Figure 4.8: result of regular inpainting.

Figure 4.9: Gradient based inpainting.

34

Figure 4.10: Iteration in which the problem occurs.

An idea would be to use the extrapolated patch as the query patch. This
is less intuitive as the normal algorithm because we calculate the SSD with
all patches in the image with estimated values. The amount of error is shown
in Table 4.2.

image category nMSE gradient nMSE first gradient est. nMSE regular
City 0.003737 0.003676 0.003796
Dieren 0.002835 0.002770 0.002910
Disney 0.003771 0.003971 0.003742
Nature 0.003834 0.003783 0.003835
Simple 0.011678 0.013861 0.020300
Real 0.003544 0.003550 0.003571
Total 0.005171 0.005612 0.006916

Table 4.2: Error comparison first selection vs. patch first estimation.

The previous mentioned method does not seem to improve the results
compared to the regular gradient based: the average error values on the real
images are almost equal and the result of the synthetic images are worse.

35

4.2.2 Local search

The speed of the algorithm is depended on two factors, the amount of pixels
that have to be filled and the search area. When there are a lot of pixels in
the masked region: it takes a lot of iterations before the algorithm finishes. If
the search area is very big one iteration takes a lot of time. The search area
can be reduced by only searching in an area around the point with the highest
priority. This solution is also suggested in different variations in other papers,
two of those papers are the papers by Chen et al.[14] and Anupam et al.[15].
In this technique there is only searched in the area around the patch with the
highest priority. In which the search area is an input parameter. This method
does speed up the process significantly but it does not guarantee that the
correct patch is selected. We want to investigate the quality and the speed
of this local search method. If the quality does not significantly decreases
and the speed significantly increases this is a valuable improvement. This
local searching is shown in Figure 4.11. The patch with the highest priority
is shown with the red square, multiple local search areas are shown in yellow.
The algorithm will only search in the yellow area instead of the whole image,
which is a lot faster.

Figure 4.11: Different areas of local searching. The red patch is Ψ(p). The
yellow squares indicate the search regions.

In the case of nature001.png, it is hard to say which result looks better.

36

The result of the original algorithm or the result of the algorithm with the
local search. This is shown in Figure 4.12 and 4.13.

Figure 4.12: Result local search.

Figure 4.13: Result regular search.

We have two hypotheses for the local searching of a complete dataset.
The first is that the different local searching methods speed will be at most

37

50 % of the original algorithm on average on the whole dataset. The second
is that the error margin of the local searching methods will be less than 105
% of the original algorithm. We want to compare a dataset consisting of 5
categories, images of cities, animals, Disney cartoons, images of nature in
general and synthetic images. In these synthetic images we want to prove
some easy and some challenging cases. The size of the query patch is the
same as in the original paper. The different search areas that we want to
research are:

• method 1 the area of the search area is 41 x 41: roughly 5 times as
large as the query patch.

• method 2 the area of the search area is 81 x 81: roughly 10 times as
large as the query patch.

• method 3 the area of the search area is 121 x 121: roughly 15 times as
large as the query patch.

• method 4 the area of the search area is 161 x 161: roughly 20 times as
large as the query patch.

The average running times of the different methods are:

• Average run time method 1 = 7,1 s

• Average run time method 2 = 7,2 s

• Average run time method 3 = 8,2 s

• Average run time method 4 = 9,4 s

• Average run time for the original method = 27,4 s

The comparison between the different methods is shown in the next graph.
The City dataset is chosen because it represents the rest of the datasets and
showing all datasets will result in a less clear graph.

38

Figure 4.14: Comparison running time (s) different methods city dataset
(image 1-10)

The average running time of method 1-4 is 27.2, 27.6, 31.6, 36.1 % of
the original algorithm. We can conclude that hypothesis 1 is true: the time
needed for the algorithm to finish is decreased, it is less than 50 % on average
on the whole dataset. Now look at the quality of the local search, the average
error of the whole dataset should not be more than 105 % of the original
algorithm. The next table will show the average nMSE of the different types
of images in the dataset.

method m1 m2 m3 m4 Regular
city 0.003867931 0.0037856 0.003846555 0.003852556 0.003795645
animals 0.002903525 0.00304247 0.002954053 0.002852621 0.002910101
Disney 0.003538927 0.003627958 0.003737955 0.003778746 0.003742715
nature 0.003815098 0.004174904 0.004016146 0.003807364 0.003834601
synthetic 0.012937862 0.016778802 0.019923678 0.01978139 0.020300476
all images 0.005412669 0.006281947 0.006895677 0.006814535 0.006916708
real images 0.00353137 0.003657733 0.003638677 0.003572822 0.003570766

Table 4.3: Error comparison different methods and types of images.

39

Method 1 should have a higher error rate than method 2, etc. This is
true for none of the datasets, when the local search very close to current
patch (method 1). This will sometimes give even better results. The average
error rating are for method one until four, 0.00541, 00628, 0.00689, 0.00681
respectively. This is 85.2 %, 98.9 %, 108.5 %, 107.2 % respectively. This
results in the fact that hypothesis 2 is assumed false. We expected that the
MSE would be bigger if we search only near the query patch. The experiments
show that this is not always the case. The average error of the smallest local
searches is even less than the regular algorithm, 0.005412669 and versus
0.006916708.

Some of the synthetic images are chosen to prove some challenging cases,
this means that the result of these cases can be very extreme and might
influence the average error of the whole dataset a lot. The average error
value of method 1 of the real image dataset is 0.00353137 compared with
0.003570766, so the local search has less effect on the real image dataset.
The other local search methods have a higher average error value, these are
0.003657733, 0.003638677 and 0.003572822.

Further analysis local search
We want to explain why the error in the closest local search sometimes gives
better results. For this analysis we look at image Disney006.png which is
shown in image 4.15, in this images the result of the local search witch the
size of 41x 41 is compared with the result of the local regular algorithm with
the size of 81x81. This is because the problem is more obvious in this method
then in the regular algorithm.

40

Figure 4.15: Disney006.png, the mask is shown with green pixels

In the iteration 1457 pixels left, the problem is the most obvious. In
method 1 the patch is selected that is part of the red part of the cap. In
method 2 the patch is selected that is part of the yellow/ brown part of the
cap. This selection will result in a better end result for method 1 compared
to method 2. Also the patch of method 1 looks like it would fit the query
patch the best.

41

Figure 4.16: Disney006.png, method 1, at iteration 1457 pixels left.

Figure 4.17: Disney006.png, method 2, at iteration 1457 pixels left.

42

Now we have to analyze why the patch of method 2 is chosen instead
of the patch of method 1. This is possible because the area of method 2 is
bigger than method 1, also including the area of method 1. In Figure 4.18,
the query patch is shown. In Figure 4.19 the exemplar patch of method 1, in
Figure 4.20 the exemplar patch of method 2. First the patch is displayed with
the mask. Second without the mask and third the difference of the known
pixels with the query patch, in the last patch the difference is displayed from
white, no difference to red, a difference of 255 on average in 3 color channels.

Figure 4.18: patch with the highest priority.

Figure 4.19: exemplar patch 1, the patch with the mask, without the mask
and the difference.

Figure 4.20: exemplar patch 2, the patch with the mask, without the mask
and the difference.

43

Although at first it looked like the patch of method 1 would fit a lot better
but the error is bigger than the patch of method 2. The SSD between the
patches and the query patch is 131323 versus 115889, this is a difference of
15434. This is 190,5 per pixel, this is 63 per color channel, this results in a
difference of 7,9 per pixel per color channel because the previous mentioned
value is squared.

The SSD of method one compared to method two in CIE LAB color space
is bigger, is this also the case in other color spaces? In RGB space the SSD
of method 1 is: 336389 versus 309455 with method 2, this is a difference of
26934. This difference is even larger. In the HSV color space the difference
is even bigger, method 1 has an SSD of 546567, compared with 340497 of
method 2. We can conclude that although the patch of method 1 looks better
in a SSD calculation is not lower. The right part of the patch influences the
result a lot.

In some cases, the patch that looks like a better match is not a better
matching patch as calculated by the mean square error. The two resulting
images are shown in Figure 4.21 and Figure 4.22.

Figure 4.21: Disney006.png, result method 1.

44

Figure 4.22: Disney006.png, result method 2.

From this analysis we can conclude two things. First, a patch with a lower
SSD will not always result in a better end result. Second, in some cases the
search with the smallest search region will result in a better end result. This
might be explained because the exemplar patch belongs to the same object
as the query patch.

4.2.3 Lookup data structures

Another way to reduce the search time is creating a lookup data structure
to speed up the process. Instead of calculating the Sum of Squared Differ-
ences(SSD) of the query patch with all the possible patches we only have to
calculate it for the amount of leaves at each level of the data structure. A
tree structure can be used for this, in which a node is a patch of the image.
This idea is shown in Figure 4.23. This tree can be created by using different
methods, k-means and k-medoids are used for this, which are explained in
the next sections.

45

Figure 4.23: Idea of a tree structure.

K-means
K-means is a clustering algorithm, which in this algorithm is used to

cluster groups of patches together. The algorithm is able to create k clusters,
depending on the user input. This clustering process is visualized in the next
four figures, for visualizing proposes the patches are visualized as 2dimential
points. The steps of the k-means algorithm on a dataset of points are:

1. random select the initial means see Figure 4.24.

2. associate points to the initial means see Figure 4.25.

3. shift the means to the centroid of the initial cluster see Figure 4.26.

4. repeat the step 2 and 3 until the algorithm converges see Figure 4.27.

46

Figure 4.24: K-means step 1, random select the initial means.

Figure 4.25: K-means step 2, associate points to the initial means.

47

Figure 4.26: K-means step 3, shift the means to the centroid of the initial
cluster.

Figure 4.27: K-means step 4, repeat the step 2 and 3 until the algorithm
converges.

K-medoids
K-medoids is another clustering algorithm, instead of K-means, the al-

gorithm allows the user to specify the distance metric. It is more robust
to noise and outliers as compared to k-means because it can calculate the
difference between the data points in different ways instead of the sum of

48

squared Euclidean distances. In this case the patches are also simplified into
points.

1. Randomly select k data points as medoids.

2. Associate each data point to the closest medoid. (”closest” here is
defined using any valid distance metric, most commonly Euclidean dis-
tance or Manhattan distance)

3. Calculate the total cost, using the previous mentioned distance metric

4. For each medoid
For all associated data points
Swap m and o’ and compute the total cost of the configuration

5. If the cost of the old configuration is more than the new configuration,
change it to the new configuration.

6. Repeat steps 2 to 5 until there is no change in the medoid.

The following figures will demonstrate K-medoids for a data set of 2-d
points. Figure 4.28 demonstrates the original dataset. Figure 4.29 shows
the two random selected medoid points (c1 and c2) and the points that are
close to those medoid points. Figure 4.30 shows the swapping of the points,
changing c2 in o’. This will not result in a better result so another new
medoid point o’ is selected.

49

Figure 4.28: K-medoids, points.

Figure 4.29: K-medoids, random selected medoid points c1 and c2.

50

Figure 4.30: K-medoids, swapped o’ with c2.

Estimated values
The problem with this approach is that at the creation step of the tree,

all pixel values of a patch are known. When searching for the best exemplar
only the non-masked values are used. This will result in selecting a possible
wrong patch. This is shown in Figure 4.31. The patch with the highest
priority Ψ(p) is shown on the right, with the masked values in green. When
we traverse the tree, we first go left because the white values of Ψ(p) have
the least color difference with the left patch. After this step it is impossible
to access the left sub patch of the right patch. So the wrong patch will be
selected.

Extrapolating the patch as suggested in the paper of Kwok et al.[13]
would solve this problem according to the authors of the paper. The authors
suggest two ways of extrapolating the patch with the highest priority, in the
paper also called the query patch. The first way is filling the empty pixels
with the average color values of the known pixels, the second idea is filling
the patch gradient based. This is also used in chapter 4.2.1.

51

Figure 4.31: Problem using tree.

First Experiment
My hypothesis is that the algorithm will become 25 % faster using the

lookup data structures, with an error that may be 5 % higher calculated as
the nMSE. For this experiment a dataset is used containing random selected
images and random selected masks. The first experiment is designed to
notice the difference between the two data structures, estimate the correct
parameters and notice other problems. This experiment only consists out
of ten images. The second experiment is designed to validate the in the
experiment made conclusions and consists out of 40 images.

Speed analysis
During the test runs of the experimentation, the runs with the k-means

data structures were not always faster than the regular Criminisi algorithm.
This is because the masked region has to be large enough. When the masked
region is too small the creation of the tree takes too much time.

The tests showed that the masked region of the images has to cover at
least 1.5% of the image for the k-means method to be faster. The average
running time of the test dataset using the k-means data structure decreased
with 9.95 %. In this dataset there were also images with a small masked
region. The average time of the K- medoids method decrease with 48.37 %.

Quality analysis
The decrease of the quality of the result image estimated by the nMSE

52

has to be less than 5%. The average nMSE of the test dataset of the K-
means data structure is 1.5% more than the nMSE of the regular Criminisi
algorithm. The average nMSE using the K-medoids data structure is 10.8
% more than the regular algorithm. This shows that for this dataset we can
not use the K-medoids data structure.

Second Experiment
In the second experiment we try to confirm the results from the first

experiment. The average nMSE of the K-means and K-medoids data struc-
ture compared to the regular algorithm should be less than 5% for a bigger
dataset. The parameters of the algorithm are k = 2 and max dept level of
the tree = 2. A dataset of 40 random selected images is used. For these
images random created masks are used. The size of these masks is increased
to be larger than 1.5% of the whole image but it seems that the mask were
smaller because of the random creation of the masks.

Speed analysis
The speed of the algorithm increases with 7.8% using the k-means data

structure. This value is lower than expected because not all masks cover
1.5%, because of the randomness of the masks. Removing the images with a
mask smaller than 1.5% results in an increasement of 26.3%. The speed of
the algorithm using the k-medoids increases with 34.4%.

Quality analysis
The quality as estimated by the nMSE decreases with 0.8 % of the k-

means data structure compared with the regular algorithm. The results of
the algorithm using the k-medoids decrease with 6.6%.

Conclusion
My hypothesis is false for the k-medoids data structure. The speed in-

creases with 34.4%, as predicted with the hypothesis. The quality however
does decreases too much. The quality as estimated by the nMSE decreases
with 6.6%. The hypothesis of the k-means is confirmed if the masked region
in the image is at least 1.5% of the whole image. For the whole dataset the
algorithm becomes 7.8 % faster and the error becomes 0.8% higher. If we
calculate the error and speed from the images with a masked region that is
big enough. The speed increases with 26.3% and the quality only decreases
with 0.4%.

53

Chapter 5

Quantitative and Qualitative
Comparison

As described in chapter 3.3 the quality of an inpainted image is subjective.
In the previous chapters the result of the inpainting method is compared
with the ground-truth using a virtual mask. The result comparison is done
by using the (n)MSE to estimate the quality of the resulting images. During
the project we noticed the (n)MSE is not always an ideal error estimation.
An example of this is that a low error value will result in a visual pleasing
result, but a large error value does not necessarily has to result in a poor
result. This observation is showed in Figure 5.1. We want to investigate if
this quantitative estimation matches the quality of the images as perceived
by human beings. This is done by creating an experiment to analyze some
of these observations.

5.1 Experimental setup

To do this comparison, we want to do a user study to compare the quanti-
tative estimation matches the quality of the images as perceived by persons.
To compare these two methods we look at the rating of the MSE of the dif-
ferent methods and compare this with the rating of the different methods in
the user study. By doing this we can compare both methods.

54

Figure 5.1: Observation 2, input, mask, first result (high error) and second
result (low error).

55

5.1.1 Dataset

In this experiment we verify some important observations made during the
project. The dataset of the experiment is based on the following observations:

1. A low error rating will result in a visual pleasing result; a high error
rating will result most of the times in a bad result.

2. A higher error rating does not necessarily has to result in a less pleasing
result.

3. The error calculation of the Criminisi algorithm can be higher as the
Bertalmio algorithm although the result will be equal or more visual
pleasing.

The dataset of the rest of the experiments consisted out of random se-
lected images and masks, in this experiment a dataset is used that consist
of images supporting the previous mentioned observation. This experiment
is based on a small dataset of 14 images. In each image an observation is
verified.

5.1.2 Implementation

The user study is created with the idea that a lot of people can cooperate in
the experiment. The experiment is implemented as a web page that can be
viewed on different kinds of devices. In this way people are able to do the
experiment from their home pc or do the user survey on a smart phone or
tablet. The experiment starts with an introduction and an example. After
that the real experiment starts: first the original image and mask are shown
in one image, second the result is shown and the participants can grade the
result of an image. Participants can grade the resulting images from 1 to 5,
in which 1 is visual very unpleasing result and 5 is visual very pleasing result.

5.2 Results

25 persons participated in the experiment with an average age of 31. The
average rating of all images of all participants was calculated. With these
average rating the observations were validated. The results were as followed:

56

Observation 1: a low error rating will result in a visual pleasing result, a
high error rating will result most of the times in a bad result. This observation
is validated by two times three images. Three low error rated images which
should result in visual pleasing results and three high error rated image which
should result in visual unpleasing results. The three low error rated images
result in an average rating of 3.6, 3.9 and 4.8. The three high error rated
images result in an average rating of 1.5, 1.7 and 1.8. We can state that the
user study verified this observation.

Observation 2: a higher error rating does not necessarily has to result in a
less pleasing result. For this observation we tested two times two images. In
which the image with the higher error rate as calculated by the MSE should
result in equal rating by the participants. This is true for the first set of two
images, the rating differs less than one point between the two images. The
ratings are 4.1 and 4.6. In the second set of images the difference is larger,
3.1 and 4.3. This can be explained by the large difference in rating in image
14, the image with the rating of 3.0. Some participants graded this image
with the grade 1, a very poor result, while other people graded this image
with the grade 5, a perfect result. Because of the big spread we can state
that the result is acceptable. Observation two is verified taking into account
the big spread in the ratings of image 14.

Observation 3: the error calculation of the Criminisi algorithm can be
higher as the Bertalmio algorithm although the result will be equal or more
visual pleasing. The observation is tested with two times two images. In
the first set of images this observation is confirmed, the Criminisi algorithm
result image is graded with 4.4 versus the 1.9 of the result of the Bertalmio
algorithm. In the second set of images the both methods are graded equal,
with the average grade of 3.1. This observation is also confirmed.

We can conclude that all of observations were confirmed in the user study.
Only observation 2 is less concrete because of the big spread of ratings in
images 14.

57

Chapter 6

Conclusions and Future Work

In this thesis project we have implemented and analyzed two popular image
inpainting algorithms and possible contributions. For the Bertalmio paper
three contributions are found, these are using multi-resolution images, in-
painting the unknown region inwards and estimating the amount of necessary
iterations of the algorithm. These contributions all increase the speed of the
algorithm.

Three contributions are also found for the Criminisi paper. These are local
searching which increases the speed but should decrease the visual appeal,
although in the experiments it increased the visual quality. Patch estimation
increases the quality of the resulting images at the cost of a small speed
decrease. The use of a lookup data structure increases the speed of the
algorithm at the cost of a small quality drop.

Calculating MSE of the resulting images with the input image using a
virtual mask is the only way of calculating the visual appeal of the resulting
image found in literature. The user study verified the observation made
throughout the project. The technique has it flaws, a low error value means
a visual pleasing result but a high error value can result in both a visual
pleasing and an unpleasing result. Another conclusion that can be made
from the observation is that the MSE is not a correct way of comparing
different image inpainting methods.

58

6.1 Future work

Future projects may consist out of extending the ideas from this thesis project
from images to videos. Another idea for future work is the creation of a bet-
ter quantitative evaluation method. The MSE is no good quality estimation
in all cases. Creating the perfect method for this is impossible because it
would be the same as image inpainting. During the project there were a lot
of ideas that could not be done because of time limitations. Most of these
ideas are on improving the Criminisi paper. These were creating patches if
there is no exemplar patch under a certain error value. Using the information
of image segmentation. For example in an image of the beach and the ocean,
when searching for a patch on the beach, searching on the ocean would be
unnecessary. Another idea that was investigated was patch shifting. Shift-
ing the patch in the Criminisi paper in such a way that a certain amount
of the patch is known. This will decrease the speed of the algorithm but
will probably increase the quality. There was also no time to look into the
vantage point data structure to improve the performance of the lookup data
structures. Future work for the Sun paper may be the automatic creating
support lines based on extrapolated lines which are recovered by using line
segment detection. The analysis of other image inpainting algorithms and
programs to come up with some other ideas, for example Photoshop and
Remove. Remove is an commercial smart phone application designed to fast
remove an object from an image based on a sequence of adjacent recorded
images. The advertisement video of this application shows very promising
results.

59

Chapter 7

Acknowledgments

First of all I would like to thank my supervisor dr. R.T. Tan for his im-
portant ideas and suggestions and for keeping me innovative and motivated
throughout the whole master thesis project. I would also like to thank my
family, my girlfriend and my friends for keeping me smiling and motivated.
My thanks also goes to the other students who were also working on their
Game and Media Technology master thesis project. Especially W. Saaltink,
W.J. Spoel and M. Tomin, not only for the valuable discussions but also for
the pleasant working environment.

60

Bibliography

[1] A. Criminisi, P. Pérez, and K. Toyama, “Region filling and object re-
moval by exemplar-based image inpainting,” IEEE Transactions on Im-
age Processing, vol. 13, pp. 1200–1212, 2004.

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpaint-
ing,” in Proceedings of the 27th annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’00, (New York, NY, USA),
pp. 417–424, ACM Press/Addison-Wesley Publishing Co., 2000.

[3] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proceedings of the International Conference on Com-
puter Vision-Volume 2 - Volume 2, ICCV ’99, (Washington, DC, USA),
pp. 1033–, IEEE Computer Society, 1999.

[4] M. M. Oliveira, B. Bowen, R. Mckenna, and Y. sung Chang, “Fast
digital image inpainting,” in Proceedings of the International Conference
on Visualization, Imaging and Image Processing (VIIP 2001), pp. 261–
266, ACTA Press, 2001.

[5] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” in ACM
SIGGRAPH 2003 Papers, SIGGRAPH ’03, (New York, NY, USA),
pp. 313–318, ACM, 2003.

[6] A. Telea, “An image inpainting technique based on the fast marching
method,” Journal of Graphics, GPU, and Game Tools, vol. 9, no. 1,
pp. 23–34, 2004.

[7] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured
vector quantization,” in Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’00, (New

61

York, NY, USA), pp. 479–488, ACM Press/Addison-Wesley Publishing
Co., 2000.

[8] J. Sun, L. Yuan, J. Jia, and H.-Y. Shum, “Image completion with struc-
ture propagation,” ACM Trans. Graph., vol. 24, pp. 861–868, July 2005.

[9] J. Hays and A. A. Efros, “Scene completion using millions of pho-
tographs,” ACM Transactions on Graphics (SIGGRAPH 2007), vol. 26,
no. 3, 2007.

[10] K. A. Patwardhan, G. Sapiro, and M. Bertalmo, “Video inpainting of
occluding and occluded objects,” in International Conference on Image
Processing, pp. 69–72, 2005.

[11] Y. Wexler, E. Shechtman, and M. Irani, “Space-time video comple-
tion,” Computer Vision and Pattern Recognition, IEEE Computer So-
ciety Conference on, vol. 1, pp. 120–127, 2004.

[12] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12,
pp. 629–639, July 1990.

[13] T.-H. Kwok, H. Sheung, and C. C. L. Wang, “Fast query for exemplar-
based image completion,” IEEE Transactions on Image Processing.,
vol. 19, pp. 3106–3115, December 2010.

[14] Q. Chen, Y. Zhang, and Y. Liu, “Image inpainting with improved
exemplar-based approach,” in Proceedings of the 2007 international con-
ference on Multimedia content analysis and mining, MCAM’07, (Berlin,
Heidelberg), pp. 242–251, Springer-Verlag, 2007.

[15] Anupam, P. Goyal, and S. Diwakar, “Fast and enhanced algorithm
for exemplar based image inpainting,” Image and Video Technology,
Pacific-Rim Symposium on Image and Video Technology, vol. 0, pp. 325–
330, 2010.

62

	Introduction
	Related Work
	Image inpainting techniques
	Texture syntheses
	Guided method
	Multiple images
	Video inpainting

	Image Inpainting
	Theory
	Anisotropic diffusion
	Quality of inpainting results
	Experiments
	Multi resolution images
	Inpainting inwards
	Iterations estimation
	Conclusion

	Exemplar Based Image Inpainting
	Theory
	Experiments
	Finding the exemplar
	Local search
	Lookup data structures

	Quantitative and Qualitative Comparison
	Experimental setup
	Dataset
	Implementation

	Results

	Conclusions and Future Work
	Future work

	Acknowledgments

