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1 INTRODUCTION 

Medical artificial Intelligence has its origins in the early 1970’s. Research on the application 

of artificial intelligence in the medical domain resulted in the first clinical decision support 

systems such as Internist-1, CASNET and MYCIN in the mid 1970’s and early 1980’s (Patel, et 

al., 2009). Nowadays, interest in clinical decision support systems is still growing and they 

become widespread. (Berner & La Lande, 2007). Clinical support systems are systems 

purposed to improve clinical decision making by matching characteristics of patients to a 

knowledgebase and generating patient-specific recommendations.(Garg, et al., 2005). 

Clinical decision support systems can aid clinicians in several different ways. In their 

extensive review of clinical decision support systems, (Garg, et al., 2005) distinguish four 

different types, systems for diagnosis, reminder systems for prevention, systems for disease 

management and systems for drug dosing and drug prescribing. According to (Garg, et al., 

2005), 64% of these systems improve the performance of clinicians significantly; suggesting 

that the usage of these systems is helpful in the majority of cases.  

In this thesis, the focus is on clinical decision support systems that aid clinicians in making 

diagnoses. It is investigated which things are important for diagnosing patients correctly and 

a logic is proposed on which a medical diagnostic system can be based. 

Research for this thesis started out by an attempt to answer the following research 

questions: 

 What are the requirements for a medical diagnostic system? 

 On what logic should a medical diagnostic system be based to meet 

these requirements? 

First, requirements for a medical diagnostic system were established as an answer to the 

first research question. During the efforts made to answer the second research question, the 

question arose whether there is in fact an existing logic that can be incorporated by a 

medical diagnostic system such that all requirements are met. Since no such logic could be 

found, the focus of research shifted to designing such a logic, resulting in the temporal 

argumentation logic proposed in this thesis. It was also investigated whether this proposed 

logic does meet the requirements and to what extent. The consequence of this shift of focus 

is that the emphasis of this thesis is more on the defining of the proposed logic and its 

advantages and disadvantages, than on answering the originally established research 

questions. It is in my opinion that the proposed argumentation logic and its evaluation are 

more important results, than the answer to the original research questions. The research 

questions above have been investigated but are not discussed elaborately; this would lead to 

a thesis incorporating too many subjects and thus not being directed enough. A short 

summary of the output of the investigations conducted in order to answer the second 

research question above is however supplemented in an appendix. The requirements 

established to answer the first research question are used to evaluate the proposed logic. 

The investigation of the first research question was carried out by studying literature on the 

diagnostic process as performed by human diagnosticians and by consulting domain experts. 

It was determined that amongst others the ability to handle missing, contradictory and 
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temporal information and being able to give a clear account of the reasons for making 

certain diagnoses, are essential for a medical diagnostic system. To answer the second 

research question, several kinds of logics were studied and for each it was established 

whether a system incorporating them would meet all requirements. Argumentation logic 

emerged as the logic that would satisfy most of them. Systems based on argumentation logic 

would be able to handle missing information, such as missing facts about a patient. In 

addition, they would be very well equipped to handle contradictions. It is also possible to 

incorporate temporal arguments in argumentation logic and they thus are equipped to 

handle temporal information. Furthermore, argumentation logics are recognized for being 

intuitive and being able to give a clear account of their reasoning process. 

During consultations with experts in the medical domain, it became clear that in practice 

clinicians often have nothing more than partially missing or imprecise information about the 

temporal aspects of symptoms and other attributes of their patients. No logic could be 

found which can meet the requirements stated above and would be able to handle partially 

missing or imprecise temporal information. This led to the development of a temporal 

argumentation logic in which partially missing temporal information can be expressed and 

reasoned with. It was chosen to base this proposed logic on the argumentation logic DeLP 

(García & Simari, 2004). In DeLP, argumentation logic is combined with Logic Programming 

and thus it is very suitable to be implemented and to be used as a basis for a reasoning 

system. The temporal argumentation logic proposed in this thesis is defined formally and is 

discussed informally as well. For each of the requirements established, it is determined 

whether they are met by a system incorporating the proposed logic and to which extent. To 

determine its feasibility a proof of concept implementation of the proposed logic was made. 

It is important to note that though the medical information about diseases in this thesis 

came from reliable sources, the standards of a medical paper are not met. This thesis is 

primary an artificial intelligence thesis and not a medical one. Medical information on 

diseases has the sole purpose of clarifying certain ideas and concepts. I am not a medical 

expert and this thesis should therefore not be used as a resource of information on specific 

diseases and medical conditions.  

In section 2, the requirements of a medical diagnostic system are discussed and determined. 

In the subsequent section, argumentation logic in general and DeLP in particular are 

discussed. In section 4, the proposed temporal argumentation logic is defined formally and 

discussed. The proof of concept implementation of the proposed logic is discussed in section 

5. In the next section, it is evaluated to which extent the requirements of section 2 are met 

by a system implementing the proposed logic. In section 7, additional advantages and 

disadvantages of the proposed logic are discussed and suggestions for further research are 

made. A short summary of the evaluations of the logics of which the suitability has been 

investigated is included in the appendix. 
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2 REQUIREMENTS FOR A MEDICAL DIAGNOSIS PROGRAM 

Diagnosing patients is in essence inferring which disease they have on basis of information 

about them and their symptoms. The most straightforward way to do this in an automated 

reasoning program is by using the language of propositional logic to make rules of the form 

                           , where                     denote facts about 

patients such as their symptoms and test results and         denotes a disease. The 

program could search for a rule for which the antecedent matches the facts that are known 

about a patient. If such a rule is found, the program can derive the consequent and establish 

that the patient has the disease denoted in it. 

The medical diagnosis program described above does have several advantages.  Diagnosing 

the patient would be quick, since the only thing that needs to be done is to find the 

appropriate rule based on the facts about the patient and deriving its consequent. 

Furthermore, it would be fairly easy to explain to a user how and why the program made a 

certain diagnosis. Only the rule and the facts on basis of which the rule is chosen have to be 

displayed to do this. 

Although there are some benefits to such a simple program, there are several severe 

shortcomings as well. When more closely examined, diagnosis turns out to be a process that 

is much more complex, refined and flexible. An automated reasoning program capable of 

making precise diagnoses should be able to capture this and the simple program described 

here is clearly not. In this section, I will describe some of the necessities for accurate 

diagnosis. These requirements for diagnosis are mainly based on freely accessible 

information about the diagnostic process as performed by human diagnosticians, the 

consultation with domain experts and common sense. In the subsequent sections, I will 

provide a description of the logic I propose to use in a medical diagnostic program and I will 

evaluate whether this logic meets the mentioned requirements for accurate diagnosis. 

2.1 INCOMPLETE INFORMATION 

One of the shortcomings of the simple program is that it is assumed implicitly that all 

relevant facts about the patient are known. In practice, this is hardly ever the case. Patients 

may for example neglect to report some of the symptoms they experience and some non-

directly observable properties of the patient, such as blood levels may not be known. 

Patients could of course be asked whether they experience certain additional symptoms and 

supplementary tests can be done to measure non-directly observable properties. However, 

it is not feasible to ask the patient for every possible symptom and to do every possible test. 

Consequently, we still cannot assume we know every relevant fact about the patient. There 

are several ways to deal with this, whether diagnoses are made by a human physician or a 

computer. 

The usual strategy doctors use to make a diagnosis depends on hypothesis generation and 

hypothesis testing. To generate hypotheses, the main diagnostic possibilities based on the 

known facts about the patient are identified. This identification of the diagnostic 

possibilities, or differential diagnoses, is usually done by pattern recognition. Following, each 
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differential diagnosis gets an estimated likelihood assigned. Based upon, amongst others, 

these estimations of likelihood, doctors try to obtain more information to refute or support 

certain possibilities. This information is acquired by examining patients and asking them 

specific questions. Then a presumptive diagnosis is made and diagnostic tests are done to 

reduce remaining uncertainty. Subsequently, the decision for treatment is made depending 

on the benefit of treating a sick person and the risk of mistakenly treating a person that does 

not have the disorder. (The Merck Manual, 2010). 

The strategy used by physicians could be implemented in an automated reasoning system. In 

that case, missing data is dealt with by computing their informative value. The data which is 

most informative, i.e. which can be used to refute or support the most possibilities, will be 

requested from the user. The user can then perform the necessary tests, examinations and 

ask the patient questions to obtain the required information. The new data can be added to 

the database and the inference process can continue. The system described copies part of 

the strategy of physicians and will probably deal with missing information effectively. There 

are however cases in which this kind of system is used and when it is impossible to obtain 

new data. This may be because the user was not able to obtain it, or because it is in general 

not possible to obtain new data about the patient. An example of this is a program that is 

used for scientific research and has to diagnose an entire database of people. In those cases, 

each unknown fact about a patient will be assigned a default value, the value it is most likely 

to have when no information about it is available. These default values differ from normal 

values in that they may be changed when they become known. 

As a descriptive example of the above, assume that a program contains a rule with ‘high 

blood pressure’ in its antecedent. Assume also that it is unknown whether a patient has a 

high blood pressure and this fact cannot be derived from any other facts known about the 

patient. Assume in addition that it is not possible to obtain more information about the 

patient’s blood pressure at this time. In this case, ‘high blood pressure’ will get the default 

value ‘false’ assigned because people usually do not have a high blood pressure. Assigning 

the value ‘false’ to a variable when the program is not able to prove that it is true, is also 

called negation as failure. If later on in the diagnostic process it becomes known that the 

patient has a high blood pressure, the value of the variable will be changed to ‘true’ and new 

inferences can be made, while others get refuted. 

2.2 CONTRADICTIONS 

Contradiction arises when two facts about a patient (i.e. diseases, symptoms and such) are 

derived that cannot both be true. This problem may occur more frequently when the set of 

diagnostic rules is large and much data about patients is available. Contradictions may be 

due to mistakes such as false-negative or false-positive diagnostic tests and mistakes in 

entering patients’ data in the database. Another cause of problems with the data about 

patients is lack of information about certain aspects of the data. When for instance temporal 

information about symptoms is not taken into account, it may happen that a symptom and 

its negation are both entered in a database. Both could have been true, but at different 

times. When temporal information is not reckoned with, this may lead to a contradiction. 

This is merely one of the reasons why temporal information is important. In one of the 
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subsections below, I will discuss further reasons for taking temporal information into 

account. 

Another cause of contradictions may be that the rules for making certain diagnoses are 

conflicted. This in turn may be due to mistakes in determining what the rules should be. In 

some cases, contradictions may be a result of disagreement between medical experts about 

the nature of diseases. It is for instance known that because of this, contradictions may be 

derived when using rules from the DSM-IV-TR, the handbook for psychiatrists and 

psychologists with the standard criteria for classifying mental disorders.(Gartner, Swift, Tien, 

Damásio, & Pereira, 2000) 

It is vital that contradictions are noticed and dealt with since when a contradiction is derived, 

there is uncertainty about the diagnosis a patient should have or error could have been 

made. This means that a wrong diagnosis could have been made and in the medical domain 

this may have catastrophic consequences. 

In the case of errors in the patient data, the data should be corrected. This can for example 

be done by correcting mistakes made when entering the data in the program or by redoing 

tests. The program may also be modified to take additional aspects of the data into account. 

When two rules are conflicting, one of them has to be rejected or adapted. In the case that 

the contradiction arises from disagreement in the medical domain, it may be best to let the 

choice of rule depend upon the preference of the attending physician. An additional solution 

is to specify under which conditions certain rules or derived data may be rejected or an 

order of precedence may be specified on rules, this may make it possible to choose 

automatically the more probable of two contradictory alternatives. 

2.3 SINGLE OR MULTIPLE DISEASES 

In some cases, it may be possible to diagnose a patient with two diseases. Often this will be 

no problem because the patient has in fact both diseases. However, if the two diseases 

diagnosed are very similar, in other words, if they share many symptoms, this may indicate 

otherwise. Clearly, it is possible that the patient still actually has both diseases, but it may 

also be the case that there is a problem distinguishing the diseases from each other. 

Assume that a computer program (or a physician) uses the following rules for diagnosing 

         and         : 

Rule 1.                        
Rule 2.                                        

In addition, assume that               and                 are known to be true 

for a patient. Assume also that          and          are two different diseases and that 

Rule 1 and Rule 2 are not two alternative ways of diagnosing it. Now both          and 

         could be diagnosed. This allows for three relevant possibilities, the patient has in 

fact both          and          or the patient only has          or the patient has 

         and                 are due to other causes. Another possibility is of course 

that the patient has neither disease. In that case, the facts are accounted for by one or more 
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other diseases for which there are other rules or the disease the patient has is not known to 

the program or to the physician. In the first case, we have the same problem as discussed in 

this section, only the problem ranges over more rules. In the second case the problem is due 

to an incomplete knowledge about diseases, which is not of concern here. Therefore, and for 

the sake of clarity, this possibility is ignored here. 

To make an accurate diagnosis, a choice has to be made between the three remaining 

possibilities. The probabilities of the possibilities are likely to be different and may or may 

not be known. If they are not exactly known, one could for example argue that it is most 

probable that the patient has          because Rule 2 is more specific and accounts for 

more of the facts. On the other hand, if          is far more common than         , then it 

may be preferable to diagnose         . When          and          often occur 

together, the choice may be on diagnosing them both. Rules for which rule is preferred in 

certain cases can be implemented in the program or used by the physician. 

In some cases, it may not be possible or desirable to make a choice. Absolute certainty may 

be required when for instance, one of the diseases is very serious or treatment for one of 

the diseases involves high risks. In this situation, a way needs to be found to derive more 

facts about the patient and the possible diseases. If this is absolutely impossible, no 

diagnosis can be made. Treatment for one or both diseases should then be chosen such that 

the risks for the patient are minimal. 

2.4 EXCLUSIONARY CRITERIA 

Rules used by an automated reasoning program or a physician may not be applicable under 

certain circumstances. If such a circumstance occurs frequently and excludes only a small 

number of diagnoses, then this could be included in the antecedent of rules, making it 

impossible to derive their consequents when the circumstance occurs. There are situations 

in which rules are excluded because of reasons less common. An example is a patient who 

had a cholecystectomy (removal of the gall bladder), who experiences a combination of 

symptoms that could indicate several diseases, including cholecystitis (inflammation of the 

gall bladder). However, the patient cannot possibly have cholecystitis, since the gall bladder 

has been removed. (The Merck Manual, 2007 (1)) 

In cases when the reason for the inapplicability of a rule is uncommon, it is not feasible to 

include it in the antecedent of the rule. There may be a great number of such circumstances 

and checking whether every single one is true for each disease considered is an 

unreasonable amount of work for a physician or program. In the case of the example above, 

it may thus not be feasible to include in the antecedent of the rule for diagnosing 

cholecystitis that no cholecystectomy has been performed, even though cholecystitis should 

not be diagnosed when the patient has undergone this procedure. 

One method to take into account exclusionary criteria is by defining rules that specify under 

which circumstances other rules are inapplicable. They can be used in the case it is known 

that an exclusionary criterion is true, to exclude the appropriate rules. If no information 
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about an exclusionary criterion is available, it is by default considered false (see negation as 

failure and default values in sec. 2.1).  

2.5 TEMPORAL INFORMATION 

As an illustration of the importance of temporal information for diagnosis in de medical 

domain, I will start by describing the example of Reye’s syndrome. 

Reye’s syndrome is a fairly rare disease, but it is in many cases very serious. Fatality rates are 

between <2% and 80%, depending on the severity of the occurrence of the disease. The 

mean fatality rate is 21% and 30% of patients who do survive the disease will suffer from 

neurological sequelae such as intellectual disability and seizure disorders. This means that it 

is important to diagnose this disease quickly, yet Reye’s syndrome is hard to diagnose 

because its directly observable symptoms are very common in other diseases. (The Merck 

Manual, 2009). 

Reye’s syndrome is a biphasic disease. Initial symptoms of a viral infection are followed in 5 

to 7 days by nausea, vomiting and a sudden change in mental status. The change in mental 

status differs in severity from patient to patient, but may progress rapidly into a deep coma. 

The chance of developing this disease following a viral infection increases a 35-fold when 

salicylates, such as aspirin (The Merck Manual, 2007 (2)) are taken during the viral infection. 

The syndrome almost exclusively occurs in children younger than 18 years. (The Merck 

Manual, 2009) 

From the description of Reye’s syndrome, it is evident that temporal information is 

important. Because the symptoms are common, being able to take temporal information 

into account would make it easier to differentiate the diagnosis of Reye’s syndrome from 

other diseases. The fact that patients have a viral infection 5 to 7 days prior to the other 

symptoms and that they took salicylates during the period they suffered from the viral 

infection are characteristic of Reye’s syndrome. The temporal information that should be 

taken into account in this case would thus be the order of symptoms and events and the 

length of the period between symptoms. 

There are more types of temporal information that may be important for making an 

accurate diagnosis and to differentiate between diseases. One of them is the length of time 

a symptom or disease has been present. To show an example of this, I will describe 

idiopathic interstitial pneumonia (IIP). IIPs are interstitial lung diseases of unknown cause, 

which share similar features such as dyspnea (shortness of breath). The diseases can be 

classified in six different subtypes. Each subtype is characterized by varying degrees of 

inflammation and fibrosis (scarring of the lungs). Identifying which subtype patients have is 

of importance since the choice of treatment and prognosis depend on it. (The Merck 

Manual, 2008 (2)) 

To determine the subtype of the occurrence of IIP in patients, information about their 

histories is important. Especially significant is information about the duration of symptoms, 

family history, history of tobacco use, current and prior drug use and possible exposure to 

pollutants in the home and work environment. For the subtype acute interstitial pneumonia 
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it is typical that symptoms have a sudden onset and increase in severity over 7 to 14 days. 

On the other hand, patients suffering from the subtype idiopathic pulmonary fibrosis usually 

develop symptoms over more than 6 months. (The Merck Manual, 2008 (2)) To differentiate 

between the two, reasoning with information about the duration of symptoms may be 

important. 

It also is possible that patients suffered from different diseases at different times. If no 

temporal information is taken into account, it is harder to determine whether symptoms are 

due to one disease or multiple ones. If symptoms are clustered in one or more groups in 

different periods, this may be an indication that they originate from different diseases at 

different times (see section 2.3). Temporal information may also be useful for determining in 

which stage or phase a disease is and for determining whether a disease is chronic or 

recurrent. 

While temporal information may be vital for diagnosing a patient, in practice often there is 

not any, incomplete or imprecise temporal information available according to domain 

experts. In some cases it may for instance happen that it was not tracked when certain 

measurements (e.g. blood pressure, heart rate) where taken. Since such measurements 

generally provide only information about the instance the measurement was taken, 

information about the interval in which the measured symptom was present may also be 

missing. This may in addition occur in cases where patients do not remember exactly when 

and how long they experienced certain symptoms or in cases they are unable to report 

them. Temporal information may also be incomplete when for a diagnosis a symptom has to 

be present longer than the time that has elapsed since the symptom begun until “now”. A 

closely related cause of incomplete temporal information is that according to domain 

experts patients are very imprecise in reporting temporal aspects about their symptoms.   

2.6 CHAINING RULES 

One of the symptoms of Reye’s syndrome described in the section above is that the patient 

has had a viral infection, which is a disease itself. This implies that a diagnostic program 

being able to diagnose illnesses such as Reye’s syndrome should be able to use other 

diseases as a symptom of a disease. Of course, it is possible to add the symptoms of some 

disease to the symptoms of another disease. However, this would make a program less 

efficient and more redundant. This has in addition the disadvantage of making it harder to 

explain to the user why a certain disease was diagnosed by the program. Likewise, in some 

cases a combination of symptoms may be captured by a single symptom. An example of this 

is recurrent abdominal pain. When patients suffer for at least 3 months of intermittent 

abdominal pain, it is said that they have recurrent abdominal pain (The Merck Manual, 2008 

(1)). Reasoning with the symptom ‘recurrent abdominal pain’ instead of all the different 

episodes of abdominal pain, avoids the same disadvantages as the ones described above. 

2.7 CLARIFYING THE REASONING PROCESS TO USERS 

It is important for the user of a medical diagnostic program to know on basis of which 

information a certain diagnosis was made. Mistakes can be made at several points in the 
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diagnostic process, due to human errors or errors in the program. This means that when 

using a medical diagnostic program, physicians should check whether a certain diagnosis is 

plausible and they should be able to check whether a diagnosis was made on the right 

grounds. This can only be done if they have a clear view of the reasoning process of the 

program and the information on which a diagnosis is based. 

A related motivation for making the reasoning process clear is of a more ethical nature. Even 

though a computer program can make a diagnosis, the responsibility for making the correct 

diagnosis and choosing the right treatment lies with the physician. Physicians can only take 

this responsibility if they understand why the program made a certain diagnosis. In addition, 

a physician may need to explain the motives for making a certain diagnosis to a patient, for 

which insight into the reasoning process is also required. 

In the next section, the argumentation logic developed by Alejandro J. García and Guillermo 

R. Simari is described. This argumentation logic is the foundation for the temporal 

argumentation logic proposed in this paper. The proposed logic is formally defined and 

discussed in section 4. In section 6, we will return to the requirements described in this 

section and discuss the extent to which they are met by a program using the proposed logic.  
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3 ARGUMENTATION LOGIC 

One of the characteristics of classical logic is monotony. Monotony arises from the idea that 

a proof is a sequence of steps, starting with axioms on which inference rules may be applied 

to derive new sentences. These inference rules stay valid in any context. (Bochman, 2007) 

This means that there are no conditions under which the premises of a rule are true, but the 

conclusion may not be derived. To make the notion of monotony more formal, assume there 

are sets of premises   and   such that    . Assume in addition that there is a sentence   

such that    . If the logic has the property of monotonicity, then    . (Aldo, 2010) 

Monotonic logics have several useful applications; however, they turn out not to be suitable                                                                                            

for modeling and reasoning about real-world situations, as is done in medical diagnosis. 

When reasoning about real-world situations, it will be hardly ever the case that all 

information about the world is known. In addition, it is possible that certain properties of the 

information are unknown (such as temporal properties) or that errors are made, which can 

bring about contradictions. Monotonic logics are not able to deal with this in a sensible and 

informative way. Nonmonotonic logic however has certain strengths monotonic logic does 

not have which make it capable of dealing with the problems mentioned above. Contrary to 

monotonic logic, in nonmonotonic logic conclusions are derived tentatively and can be 

retracted later when for instance more information is available. It is possible in 

nonmonotonic systems to use negation as failure, i.e. to assume that something is not true 

in case the contrary cannot be proven.  

In the late 1970’s, nonmonotonic logic was developed by amongst others J. McCarthy, D. 

McDermott, J. Doyle and R. Reiter. In 1980, an issue of the Artificial Intelligence Journal was 

completely dedicated to the new field of nonmonotonic logic. (Aldo, 2010) During the mid 

1980’s, nonmonotonic logic got a lot of attention from the AI community. Useful applications 

in amongst others the philosophical and legal domain were discovered. (Chesñevar, 

Maguitman, & Loui, 2000) Several kinds of nonmonotonic logics were developed such as 

Circumscription Logic by J. McCarthy and Default Logic by R. Reiter.(Aldo, 2010) 

As mentioned above, when reasoning about the real world, we usually have only partial 

information about it. This means assumptions about the way things are by default need to 

be made. Without such assumptions, it would practically be impossible to reason about the 

real world. Reasoning using these kinds of assumptions is part of nonmonotonic reasoning. 

(Bochman, 2007) To illustrate, I will describe the most well known example. In 

nonmonotonic logic, one could formulate the sentence “Birds fly”. Contrary to classical logic, 

this sentence does not mean that all birds fly, but that birds are entities that fly in general, 

i.e. if “Tweety is a bird”, then in general it can be assumed that “Tweety flies”.  The general 

sentence “Birds fly” can be given up in the light of information with a better quality, such as 

information that is more specific or more reliable. Thus, if there is a sentence “Tweety is a 

penguin”, which is more specific than “Tweety is a bird”, then it can be assumed that 

“Tweety does not fly”. The rules on which the commonsense reasoning in this example is 
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built are the following:              ,                          and         

                 1. (Schlechta, 2007) 

If we look at the property of monotony, it is clear that the kind of nonmonotonic reasoning 

used in the example cannot possibly be done using classical logic. Consider the definition in 

the beginning of this chapter again, together with the rules of the example. Assume that 

                 and that                                  and that 

            is denoted by  . Now from premises   it can be derived that            . If 

the logic is monotonic and    , it should also be derived from premises  , that 

           . This means that a consistent monotonic logic containing the first rule from the 

example cannot contain the second and third rule. As a result, the commonsense reasoning 

conducted in the example cannot be done in a monotonic logic. To be able to deal with 

incomplete information all defeasible rules, like the ones from the example, are needed and 

this is not possible while using a monotonic logic. 

One type of nonmonotonic logic, developed mainly in AI research is argumentation logic 

(Prakken & Vreeswijk, 1998). In most nonmonotonic logics the logical consequence relation 

is defeasible, this is however not the case with argumentation logic. In argumentation logic a 

proof of a sentence, called an argument is built monotonically. Defeasibility results from the 

interaction between conflicting arguments. An argument can be defeated if there is another 

argument that conflicts in some way with it (i.e. it is a counterargument) and this argument 

is preferred over the first argument. In the case of the example used above, an argument 

can be made that “Tweety flies”, because “Tweety is a bird”. A counterargument can be 

made that “Tweety does not fly” because “Tweety is a penguin”. The counterargument may 

be preferred because “Tweety is a penguin” is more specific than “Tweety is a bird”. In that 

case, the first argument is defeated by the second one. (Prakken & Vreeswijk, 1998) There 

are several other forms of defeat possible, depending of the kind of argumentation logic 

used.  

In their paper Logics for Defeasible Argumentation, Henry Prakken and Gerard Vreeswijk 

describe five elements of every argumentation logic. The first element they describe is an 

underlying logical language. Sentences in argumentation logic are expressed in this logical 

language. The logical consequence relation is as well part of the logical language. Like 

mentioned above, this logical consequence relation is monotonic and does by itself not give 

rise to defeasibility. 

Defeasibility arises from the interaction between contradicting arguments. Arguments are 

described by Prakken and Vreeswijk as corresponding to monotonic proofs in the underlying 

logic. The sentence that is ‘proven’ is the conclusion of the argument. Arguments can have 

different forms depending on the argumentation logic in which they are defined. 

Though arguments are built monotonically themselves, different arguments in the logical 

system may be conflicted, it is also said that arguments are attacked by other arguments or 

                                                        

1  is the defeasible consequence relation,   is a variable 
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that arguments attack each other. Prakken and Vreeswijk describe two types of attack which 

are usually distinguished. The first type is symmetrical and is called rebutting attack. Two 

arguments are said to rebut each other when they have contradictory conclusions. The 

second type of attack, undercutting attack is asymmetric. There are in turn two types of 

undercutting attack. For the first type, it is assumed in an argument that a sentence is not 

provable and the conclusion of this argument is derived (partly) based on this assumption. 

This kind of argument can be undercut by an argument with a proof of this sentence. The 

second type is when an argument contradicts the link between premises and a conclusion of 

another argument. Besides the types of conflicts described here, several other types are 

possible2 as will be shown when the argumentation logic used in the medical diagnostic 

program is discussed. 

When an argument attacks another one, it has to be determined which argument is 

‘stronger’ or is preferred. To be able to evaluate a pair of conflicting arguments, certain 

criteria have to be set. Such a criterion could be that more specific arguments are preferred 

or that arguments based on fewer assumptions are preferred. Often criteria are provided by 

users, since the optimal criteria may be domain-specific. (Prakken & Vreeswijk, 1998) The 

fourth element of an argumentation logic described by Prakken and Vreeswijk is that of 

defeat among arguments. Defeat is essentially a binary relation on a pair of arguments which 

has a weak form (defeat) and a strong form (strict defeat). An argument is defeated by 

another argument if it is attacked by this argument and the attacking argument is not 

weaker as determined by the evaluation criteria. An argument is strict defeated if its 

attacker is stronger. (Prakken & Vreeswijk, 1998) 

Since the defeat relation only specifies the relation between pairs of arguments, in addition 

a status assignment for arguments is needed to determine the ultimate status of arguments 

based on the interaction between all arguments. This definition of the status of arguments is 

the fifth element that Prakken and Vreeswijk discuss. Arguments may be assigned one of 

several possible statuses on basis of the interaction between all arguments, depending on 

the type of the argumentation logic. An example of an interaction between more than a pair 

of arguments is when the defeater   of an argument   is itself defeated by an argument  . 

In that case, in the status assignment it is often defined that the status of argument   is 

changed back from ‘defeated’ to ‘undefeated’. Changing the status of argument   is also 

called a reinstatement of  . It is also said that   reinstates   in this case. Another principle 

that is often defined in the status assignment is that if a subargument of an argument is 

defeated, the argument cannot be considered undefeated anymore. (Prakken & Vreeswijk, 

1998) 

In the medical diagnostic program, the argumentation logic DeLP in combination with 

temporal arguments is used. DeLP is an argumentation logic developed by Alejandro J. 

García and Guillermo R. Simari and described in their paper Defeasible Logic Programming 

An Argumentative Approach (2004). DeLP stands for ‘defeasible logic programming’ and like 

                                                        

2 Even types bearing the same names as the ones described here, but with different 

definitions. 
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this name suggests, it is a combination of logical programming and argumentation logic. The 

combination of argumentation logic makes DeLP very suitable to use as basis of a computer 

program. In the subsections below, the way in which each of the five elements of 

argumentation logic is defined in DeLP is discussed using the definitions from (García & 

Simari, 2004). 

3.1 THE UNDERLYING LOGICAL LANGUAGE AND LOGIC PROGRAMS 

García and Simari define literals in the underlying logical language to be ground atoms or 

their negations. The version of negation used in DeLP is strong negation and denoted by  . 

The language of DeLP consists of three sets. The first set is a set of facts, this set of facts 

consists of literals. Facts are used to represent knowledge that is immediately available, such 

as data from a database about the symptoms of a patient. The second set is the set of strict 

rules. Strict rules are used to represent knowledge that is sound and indefeasible. An 

example of a strict rule from the medical domain is             denoting that men do 

not have uteruses. The third set is the set of defeasible rules. These rules are used to 

represent weak or tentative knowledge; this knowledge may only be used if there is no 

‘stronger’ knowledge opposing it. An example of a defeasible rule from the medical domain 

could be                                            denoting that “reasons to 

believe that people are coughing, have a sore throat and have a runny nose, provide reasons 

to believe that they have the common cold”. In the definitions below, each of the sets is 

defined formally. 

DEFINITION 3.1 (FACTS)(GARCÍA & SIMARI, 2004) 

A fact is a literal, i.e. a ground atom or a negated ground atom. 

DEFINITION 3.2 (STRICT RULE) (GARCÍA & SIMARI, 2004) 

A strict rule is an ordered pair, denoted “         ” 

whose first member     , is a literal, and whose second 

member,      is a finite non-empty set of literals. A strict rule 

with the head    and body           can also be written as 

                .  

DEFINITION 3.3 (DEFEASIBLE RULE) (GARCÍA & SIMARI, 2004) 

A defeasible rule is an ordered pair, denoted “        ” 

whose first member     , is a literal, and whose second 

member,      is a finite non-empty set of literals. A defeasible 

rule with the head    and body           can also be written 

as                . 

In logic programming, the rules defined above are called program rules. In DeLP, program 

rules are not allowed have an empty body. This does not mean that program rules with an 
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empty body cannot be represented in DeLP. Strict rules with an empty body can be 

represented by facts. Representing defeasible rules with an empty body is somewhat a more 

complicated matter. Defeasible rules with an empty body are called presumptions and are 

different from facts. García and Simari add them as an extension to DeLP. 

A defeasible logic program is a set containing facts, strict rules and defeasible rules. This set 

can be infinite, which deviates from the usual notion of a logic program. A distinction is 

made between indefeasible knowledge, i.e. facts and strict rules and defeasible knowledge, 

i.e. defeasible rules. In principle, strict and defeasible rules are ground. However, in the 

examples García and Simari provide, rules with variables are used and thus the grounded 

versions of defeasible logic programs are defined as the set of facts and all grounded 

instances of rules. 

The output of a defeasible logic program is one of the following answers to a query:    , 

  ,           and        . The procedure for obtaining these answers will be 

discussed in subsequent sections. Below is the definition from (García & Simari, 2004) of a 

defeasible logic program. Successively, an example is given of a defeasible logical program 

and its answers to some possible queries. 

DEFINITION 3.4 (DEFEASIBLE LOGIC PROGRAM) (GARCÍA & SIMARI, 

2004) 

A defeasible logic program  , abbreviated de.l.p., is a possibly 

infinite set of facts, strict rules and defeasible rules. In a 

program  , we will distinguish the subset   of facts and strict 

rules and the subset   of defeasible rules. When required we 

will denote   as      . 

Strict and defeasible rules are ground. However following the 

usual convention, some examples will use “schematic rules” 

with variables. Given a “schematic rule”  ,           stands 

for the set of all ground instances of  . Given a de.l.p   with 

schematic rules, we define: 

                    

   

 

In order to distinguish variables from other elements of a 

schematic rule, we will denote variables with an initial 

uppercase letter. 

In real-world situations, there may be things that are true in most cases, which can be 

represented by defeasible rules and there may be things that are always true, which can be 

represented by strict rules and facts. To give an example from the medical domain, the 

knowledge that most people with symptoms of sneezing and itching eyes after coming into 

contact with a cat are allergic to cats, can be represented by a defeasible rule. Another 

example from the medical domain is that if someone is dead, he or she is not alive. The 

knowledge from the latter example can be represented by a strict rule since it is always true. 
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Because such a distinction between types of knowledge about real-world situations is 

intuitively present, it seems natural to also make a distinction between types of rules and 

facts representing this knowledge. This is exactly what is done in DeLP. Some other reasons 

derived from a more logical and technical viewpoint for making a distinction between facts 

and strict rules and defeasible rules can be found below. 

Below is an example of a defeasible logic program incorporating amongst others the rules 

from the ‘Tweety’-example in the introduction of this section. 

EXAMPLE 3.1 (ADAPTED FROM (GARCÍA & SIMARI, 2004)) 

Here follows the de.l.p.           , where sets   (strict rules 

and facts) and   (defeasible rules) have been separated for 

convenience of the presentation: 

  

 
  
 

  
 

                   

                   

                     

              
                

             
  
 

  
 

  

  

 
 

 
                

                    

                             

                          
 

 

 

As will be shown in the following sections, in DeLP the answer 

for             will be    , whereas the answer for 

             will be   . The answer for               will be 

   and the answer for                will be    . 

 

3.2 ARGUMENTS 

To be able to explain the notion of an argument in DeLP, first the derivation of new literals 

has to be discussed. A derivation in DeLP is a sequence of literals which are facts or which 

are obtained by using defeasible or strict rules on literals previous in the sequence. García 

and Simari distinguish two different types of derivations, defeasible derivations and strict 

derivations. The difference between the two is that on the latter the restriction is imposed 

that it contains only literals in the sequence which are facts or are obtained by using a strict 

rule. Defeasible derivations and strict derivations are defined respectively in definition 3.5 

and definition 3.6. 

Derivations are monotonic; defeasibility arises from the way arguments are constructed and 

from the dialectical process in which arguments get assigned a status, not from the 

derivation of literals themselves. In addition, García and Simari observe that if a program has 
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no facts, then it is impossible to obtain any derivation. This property of defeasible logic 

programs stems from the fact that it is not possible for program rules to have an empty 

body. 

DEFINITION 3.5 (DEFEASIBLE DERIVATION) (GARCÍA & SIMARI, 2004) 

Let         de a de.l.p. and   a ground literal. A defeasible 

derivation of   from  , denoted    consists of a finite 

sequence              of ground literals, and each literal    

is in the sequence because: 

a.    is a fact in  , or 

b. there exists a rule    in   (strict or defeasible) with head    

and body            and every literal of the body is an 
element    of the sequence appearing before         . 

If in definition 3.5   contains schematic rules, then           is used to obtain the 

derivation. 

DEFINITION 3.6 (STRICT DERIVATION) (GARCÍA & SIMARI, 2004) 

Let   be a de.l.p. and   a literal with a defeasible derivation 

            . We will say that   has a strict derivation from 

 , denoted    3, if either   is a fact or all the rules used for 

obtaining the sequence            are strict rules. 

In the following examples, the derivations of some of the literals in example 3.1 are shown. 

EXAMPLE 3.2 (ADAPTED FROM (GARCÍA & SIMARI, 2004)) 

Consider de.l.p.      from example 3.1. 

A derivation for literal             is the sequence 

                                       obtained using the 

set of (ground-)rules 
                                       . This derivation 

is not a strict derivation, since it is not the case that only strict 

rules were used. 

There are multiple derivations possible for the literal 

           . The sequence 

                                                        

3 Here a deviation from the original definition in (García & Simari, 2004) was made. This 

formula originally was    , it was however assumed that this is a mistake and the formula 

has been replaced by    . 
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                                     is also a derivation for 

the literal             but now obtained by using rules 
                                                . 

Since defeasible rules were used in this derivation, this 

derivation is also not a strict one. 

EXAMPLE 3.3 (ADAPTED FROM (GARCÍA & SIMARI, 2004)) 

Consider de.l.p.      from example 3.1 once more. 

The derivation for the literal               using the set of 

(ground-)rules                               

                           is the sequence 

                                          . This 

derivation is clearly not strict. 

It is as well possible to derive the negation of              , 

which is the sequence                               . 

The set of rules used in this derivation is                 

                . All literals in the sequence are facts or are 

obtained using strict rules. This derivation for                

is thus a strict derivation. 

To be able to define the notion of an argument, the notion of a contradictory set has to be 

defined first.  As shown in example 3.2 and example 3.3 it is possible to have multiple 

derivations for a literal and moreover it is possible that there is a derivation for a literal as 

well as for its negation. García and Simari define contradictory sets of rules using the notion 

of complements, denoted by the symbol      for which it holds that       and          (with 

  being a literal). In other words, a literal and its negation are complements. 

DEFINITION 3.7 (CONTRADICTORY SET OF RULES) (GARCÍA & SIMARI, 

2004) 

A set of rules is contradictory if and only if, there exists a 

defeasible derivation for a pair of complementary literals from 

this set. 

Using definition 3.7 it can be clearly seen that the set of rules     in example 3.1 is 

contradictory since using this set, as there is a derivation for both             and its 

complement             . The set   of      is not contradictory since using only rules from 

this set there is no derivation for two complementary literals. 

In DeLP there is a convention that for a de.l.p.  , the set   is not contradictory. To be able to 

get an intuition for why this is, one has to look at how contradictions are handled in 

argumentation logic in general. In argumentation logic, when a contradiction arises from a 

set of rules, one of the complementary literals responsible for the contradiction should be 
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defeated. In this light the convention makes sense.   is the set of strict rules and facts and 

both facts and literals with a strict derivation cannot be defeated. The solution described 

above is thus not applicable to derivations using only elements from   and therefore it is 

better to make this part of the logic non-contradictory. Literals with a defeasible derivation 

can be defeated, therefore if defeasible rules are also in a minimal set of rules necessary to 

derive two complementary literals, the set is allowed to be contradictory. Of course the 

subset of strict rules and facts of this set still cannot be contradictory. 

At this moment the formalism of a defeasible argument structure in DeLP can be introduced. 

Essentially an argument structure supports a certain conclusion or a certain answer to a 

query. Argument structures consist of a set of defeasible rules and a conclusion. The 

conclusion is a literal and the set of defeasible rules includes only the rules that are used to 

make a derivation for this conclusion. Though the set of all defeasible and strict rules and 

facts of a de.l.p. may be contradictory, the union of the set of defeasible rules of an 

argument structure and the set of strict rules and facts are not allowed to be in 

contradiction. In addition, the set of defeasible rules should be minimal to derive the 

conclusion, in other words, there should not exist a proper subset of the set of defeasible 

rules, with which the conclusion also may be derived. This means that different arguments 

structures with the same conclusion are possible, as long as the set of defeasible rules of one 

of the structures is not a subset of the set of defeasible rules of the other. In the derivation 

of a conclusion strict rules may also be used, but these are not part of the argument 

structure. 

DEFINITION 3.8 (ARGUMENT STRUCTURE) (GARCÍA & SIMARI, 2004) 

Let   be a literal, and         a de.l.p. We say that       is 

an argument structure for  , if   is a set of defeasible rules of 

 , such that: 

1. There exists a defeasible derivation   from     

2. The set     is non-contradictory, and 

3.   is minimal: there is no proper subset    of   such that 

   satisfies both conditions 1. and 2.. 

The following example is based on the defeasible logic program in example 3.1. It shows 

some argument structures supporting some derivations in example 3.2. 

EXAMPLE 3.4 (ADAPTED FROM (GARCÍA & SIMARI, 2004)) 

Consider de.l.p.      from example 3.1. 

In example 3.2 it was shown that there are two possible 

derivations for the literal            , it has two supporting 

argument structures: 
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It can be observed that the conclusions of the argument 

structures are exactly the same as the literal they support. The 

set of defeasible rules are the same as the sets of rules used to 

make the derivation in example 3.2, minus the strict rules. It 

can also be observed that these are the grounded versions of 

the rules.  

The constraint that the set of defeasible rules in an argument structure should be minimal 

does not imply that the first argument for             in example 3.4 is a proper argument 

and the second one is not since the first one contains less defeasible rules. The constraint 

actually states that there should be no subset of the set of defeasible rules which can be 

used to derive the conclusion. Since the set of defeasible rules in the first argument 

structure is not a proper subset of the set of defeasible rules in the second one, they are 

different arguments supporting the same conclusion. 

In example 3.5 it is shown that in some cases, while a derivation of a literal is possible, there 

is no argument supporting it. In example 3.5 this stems from the fact that the complement of 

the literal may be derived using only strict rules and thus the union of the defeasible rules in 

the argument structure with the strict rules is a contradictory set. From this it may also be 

observed that while derivations are built monotonically, this is not the case for arguments, 

since adding strict rules or facts may invalidate arguments. 

EXAMPLE 3.5 (ADAPTED FROM (GARCÍA & SIMARI, 2004)) 

Consider de.l.p.      from example 3.1. 

In example 3.3 it was shown that there is a derivation for the 

literal               as well as for its negation, however, there 

is only an argument structure for                and not for 

             . It is impossible to construct an argument for 

              because of the constraint that the union of the 

set of defeasible rules in the argument structure with the set of 

strict rules and facts should be non-contradictory. 

               can be derived using only strict rules, so 

clearly such a contradiction exists for any argument with 

conclusion              .  

The argument structure for                is 
                  . The set of defeasible rules of this 

argument structure is empty, since in the derivation of this 

literal only strict rules were used and strict rules are not part of 

the argument structure. 
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It is not always the case that only one of two complementary literals has an argument 

structure, only when one of them only uses strict rules and facts. Another reason why a 

literal may have a derivation but not an argument structure is in the case there is another 

derivation of the same literal using only strict rules and facts. In that case the set of 

defeasible rules of the argument structure with the strict derivation is an empty set and the 

empty set is a subset of any set. Hence, the set of defeasible rules is not minimal for all other 

arguments with the same conclusion (see condition 3 of definition 3.8). García and Simari 

therefore conclude that if there is a strict derivation for a literal  , the argument structure 

for  , namely       is unique. 

García and Simari define subargument structures of an argument structure to be an 

argument structure with a set of defeasible rules that is a subset of its super argument 

structure. By constraint 3 of definition 3.8, the conclusion of the subargument structure is 

different from the conclusion of the super argument structure (or else it is exactly the same 

argument structure). 

DEFINITION 3.9 (SUBARGUMENT STRUCTURE) (GARCÍA & SIMARI, 2004) 

An argument structure       is a subargument structure of 
      if    . 

To recap, in example 3.6 an example for each of the notions discussed in this section. 

EXAMPLE 3.6 (ADAPTED FROM (GARCÍA & SIMARI, 2004)) 

Consider de.l.p.          such that4: 

   
                                 

                    
  and 

   
         

            
  

There are multiple derivations possible for the literal  , namely 

      and      . Based on this, two arguments structures 

supporting   can be constructed, namely          and 
           . However, the argument structure 
                 is invalid because the set of 

defeasible rules is not minimal. It is in addition possible to make 

an argument structure for the complement of  : 
             . 

The derivation for   is    . The derivation for the complement 

of   is        and is strict. The argument structure supporting 

the complement of   is       . There is no argument structure 

                                                        

4 Brackets were added to enhance readability. 
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supporting  , since only strict rules are used in the derivation of 

  . 

There is an argument structure supporting   (see above) and 

there is an argument structure supporting  , namely         . 

There is however no argument structure supporting  , such 

that                 , since using the set 
              5 derivations for both   and    can 

be constructed. 

Consider argument structure             again. One of its 

subarguments is          since it is an argument structure 

and             . 

The graphical representation of argument structures García and Simari use is that of a 

triangle with the conclusion of the argument structure at the top and the set of defeasible 

rules of the argument structure as the triangle itself. An example of a graphical 

representation of an argument structure is shown in figure 16. 

 

FIGURE 1: AN ARGUMENT       AND A SUBARGUMENT       (GARCÍA & SIMARI, 2004) 

 

3.3 ATTACK 

In DeLP it is possible for two complementary literals to have a supporting argument 

structure. It is intended that if this happens the ‘weaker’ argument gets defeated by the 

‘stronger’ one. Methods for deciding which argument structure is stronger and establishing a 

preference criterion for this will be discussed in later sections. First it has to be discussed 

what the notions of attack and disagreement between argument structures entail. 

                                                        

5 This is obviously also the case if the set of defeasible rules from the other argument 

supporting   is used. 

6 From this picture it is not immediately clear that the premises of   are a subset of the 

premises of  , this is however the case. 
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Two literals disagree if their union with the set of strict rules and facts is contradictory, i.e. if 

from this set two complementary literals can be derived. 

DEFINITION 3.10 (DISAGREEMENT) (GARCÍA & SIMARI, 2004) 

Let       be a de.l.p.. We say that two literals   and    

disagree, if and only if the set          is contradictory. 

If an argument structure has a conclusion which disagrees with the conclusion of a 

subargument structure of another argument structure, it is called the counterargument of 

the latter. The literal with which the counterargument disagrees is called the 

counterargument point and the subargument with it in its conclusion is called the 

disagreement subargument. It is also said that the counterargument counterargues, rebuts 

or attacks the super argument of the disagreement subargument. 

Counterarguing can be symmetrical or non-symmetrical or respectively direct and indirect as 

García and Simari call it. If the counterargument point is the same as the conclusion of the 

counterargued argument, then the relation is symmetrical, otherwise it is not. 

DEFINITION 3.11 (COUNTERARGUMENT) (GARCÍA & SIMARI, 2004) 

We say that         counterargues, rebuts or attacks         

at literal  , if and only if there exists a subargument       of 
        such that   and    disagree. 

Below is an example of some counterarguments. 

EXAMPLE 3.7 (ADAPTED FROM (GARCÍA & SIMARI, 2004)) 

Consider de.l.p.      of example 3.1. 

                                           

is a counterargument of 
                                      and vice versa since 

the set                            is clearly contradictory 

and thus              and             disagree. 

Counterarguing is symmetrical or direct in this case because the 

disagreement subargument is the argument structure itself. 

                                            is a 

counterargument for                          with 

   
                               

                     
 , since it disagrees 

with the conclusion of its subargument 
                                     . However in this 
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case the relation is not symmetrical, since the disagreement 

subargument is not the argument itself. 

The notions of a direct and indirect counterargument are graphically represented in figure 2. 

   

FIGURE 2: INDIRECT ATTACK (LEFT) AND DIRECT ATTACK (RIGHT) (GARCÍA & SIMARI, 2004) 

It is possible that a counterargument does not have a complementary conclusion at all. In 

that case, disagreement arises from the union with  . The example that García and Simari 

use to show this is below. 

EXAMPLE 3.8 (ADAPTED FROM (GARCÍA & SIMARI, 2004)) 

Consider de.l.p.         with                      

and          . From this program          is a 

counterargument for          because literals   and   

disagree. 

García and Simari prove that there exists no possible counterargument for an argument 

structure      . Furthermore, they prove that such an argument structure       cannot be a 

counterargument for any argument structure      . The purpose of investigating DeLP in 

this thesis is mainly to be able to combine it with temporal logic and use it in a medical 

diagnosis system. Therefore it is just noted that these are properties of the logic and the 

proof is omitted. The interested reader can however find it in (García & Simari, 2004). 

3.4 DEFEAT 

To determine if an argument is defeated by its counterargument some kind of criterion has 

to be established for comparing them to each other. García and Simari describe two criteria 

to do this. In this section, the criteria and their incorporation in DeLP are described.  

The first criterion García and Simari describe is generalized specificity. When comparing 

arguments using generalized specificity, arguments with greater information content, i.e. 

more precise arguments, are favored over arguments with less information content. In 

addition, arguments with less use of rules, i.e. more concise arguments, are favored of 

arguments which use more rules. 

DEFINITION 3.12 (SPECIFICITY) (GARCÍA & SIMARI, 2004) 
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Let         be a de.l.p., and let    be the set of all strict 

rules from   (without including facts). Let   be the set of all 

literals that have a defeasible derivation from   (  will be 

considered as a set of facts). Let         and         be two 

argument structures obtained from  .         is strictly more 

specific than         (denoted                ) if the 

following conditions hold: 

1. For all    : if           and        , then 

          
2. There exists      such that            and 

          . 

It is impossible to derive a literal using only a set of strict rules (  ) and a set of defeasible 

rules ( ). If   is a set of facts and a union of   ,   and   may make it possible to derive a 

literal  ,   is called an activation set of      . 

The first condition essentially states that if                , then if   is an activation set 

of an argument         and no strict derivation for    can be made using   as the set of 

facts, then   is an activation set of        . The second condition states that if         
       , then there is an activation set    of        . It in addition states that if no strict 

derivation for    can be made using    as the set of facts, then    is not an activation set of 
       . 

Below is an example of arguments of which some are more specific than other ones. 

EXAMPLE 3.9 (ADAPTED FROM (GARCÍA & SIMARI, 2004)) 

Consider de.l.p.      from example 3.1. 

Assume the following: 

         
                                          , 

                                              , 

and 

         
                                                      

        is strictly more specific than         because the first 

is more direct than the latter. It is observable that every 

activation set for         is also an activation set for        . 

An example of such an activation set is                . There 

is also an activation set for         which is not an activation 

set for        , namely             . 

        is strictly more specific than         because it is 

based on more information. It can be observed that every 
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activation set of         also activates        , since every 

activation set activating         should contain the literals 

              and             . The set                 

however activates        , but not        . 

García and Simari use the definition below to define the notion of equi-specificity. 

DEFINITION 3.13 (EQUI-SPECIFICITY) (GARCÍA & SIMARI, 2004) 

Two arguments         and         are equi-specific, 

denoted                , iff      , and the literal    

has a strict derivation from       , and the literal    has a 

strict derivation from       . 

The other criterion described by García and Simari is on basis of explicit priorities on rules. 

Contrary to many other argumentation logics, rules are not compared during the inference 

process, but the set of defeasible rules in argument structures are compared to each other. 

Only priorities for defeasible rules can be given since strict rules are not defeasible and thus 

need not to be compared. Strict derivations however will always be preferred over 

defeasible ones.  

DEFINITION 3.14 (PRIORITY ON RULES) (GARCÍA & SIMARI, 2004) 

Let   de a de.l.p. and “ ” a preference relation explicitly 

defined among defeasible rules. Given two argument structures 
        and        , argument         will be preferred 

over         if: 

1. There exists at least one rule      , and one rule 

     , such that      , 

2. And there is no   
     and   

    , such that   
    

 . 

Below is an example in which two arguments are compared using the priority criterion. 

EXAMPLE 3.10 (ADAPTED FROM (GARCÍA & SIMARI, 2004)) 

Consider de.l.p.                             . 

Suppose there is a priority on the defeasible rules, such that 
          .  

Now two argument structures can be made, one supporting  , 

namely          and one supporting its complement 
          . In this case former argument is preferred over 

the latter since all rules in its set with defeasible rules have a 

higher priority. 
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García and Simari mention the option of combining different comparison criteria or defining 

other comparison criteria than those they propose. In section 4 the choice of the comparison 

criterion used in the argumentation logic with temporal arguments is discussed. 

Independently from some given comparison criterion denoted by  , García and Simari 

distinguish two different forms of defeat. The first form of defeat, called proper defeat, 

occurs when a counterargument         of an argument         is better according to the 

comparison criterion. The second form of defeat, blocking defeat, occurs when a 

counterargument         of an argument         is neither better nor worse according to 

the comparison criterion. The definitions of the two forms of defeat are below. 

DEFINITION 3.15 (PROPER DEFEATER) (GARCÍA & SIMARI, 2004) 

Let         and         be two argument structures.         

is a proper defeater for         at literal  , if and only if there 

exists a subargument       of         such that         

counterargues         at   and              . 

DEFINITION 3.16 (BLOCKING DEFEATER) (GARCÍA & SIMARI, 2004) 

Let         and         be two argument structures.         

is a blocking defeater for         at literal  , if and only if 

there exists a subargument       of         such that 
        counterargues         at   and         is unrelated 

by the preference order to      , i.e.              , and 
             . 

Below is an example of a proper defeater and a blocking defeater. 

EXAMPLE 3.11 (PROPER DEFEATER AND BLOCKING DEFEATER) 

Consider arguments        ,        ,         and         

such that        ,         and         are all 

counterarguments of        . Consider the comparison 

criterion                 and                . 

Since         is preferred over        ,         is a proper 

defeater of        . Since         and         are unrelated 

according to the comparison criterion,         is a blocking 

defeater of        .         is preferred over         and 

therefore         is not a defeater of        . 

García and Simari define an argument to be a defeater for another argument, if it is its 

proper defeater or its blocking defeater. 
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DEFINITION 3.17 (DEFEATER) (GARCÍA & SIMARI, 2004) 

The argument structure         is a defeater for        , if 

and only if either: 

1.         is a proper defeater for        ; or 

2.         is a blocking defeater for        . 

3.5 STATUS ASSIGNMENTS 

Counterarguments are not the only argument structures that influence the defeat status of 

an argument structure. The ultimate status of an argument structure depends as well on 

counterarguments of its counterarguments and counterarguments of those arguments and 

so on. To determine the ultimate status of an argument structure, these also have to be 

evaluated. 

To be able to determine the ultimate status of an argument structure, a sequence of 

argument structures is made starting with the argument structure for which the status needs 

to be determined and in which each element defeats its predecessor. Such a sequence is 

called an argumentation line. 

DEFINITION 3.18 (ARGUMENTATION LINE) (GARCÍA & SIMARI, 2004) 

Let   be a de.l.p. and         an argument structure obtained 

from  . An argumentation line for         is a sequence of 

argument structures from  , denoted 

                             , where each element of 

the sequence        ,    , is a defeater of its predecessor 
           . 

Figure 3 depicts an argumentation line. 

 

FIGURE 3: ARGUMENTATION LINE (GARCÍA & SIMARI, 2004) 

Each argument structure in an argumentation line supports or interferes with the conclusion 

of the first argument structure in the sequence. The first argument structure obviously 

supports its conclusion. The second argument structure however defeats this argument and 

   

   

 

 

   

   

 

 

   

   

 

 

   

   

 

 

   

   

 

 



 

 30 

thus interferes with it. The third argument structure defeats the interfering second 

argument structure and is thus a supporting argument. Identifying in this way each 

argument structure as supporting or interfering with the conclusion of the first argument 

structure, two sets can be made; a set of supporting argument structures and a set of 

interfering argument structures. 

DEFINITION 3.19 (SUPPORTING AND INTERFERING ARGUMENT 

STRUCTURES) (GARCÍA & SIMARI, 2004) 

Let                               an argumentation line, 

we define the set of supporting argument structures 

                              , and the set of 

interfering argument structures                       . 

Below is an example of an argumentation line. 

EXAMPLE 3.12 (ARGUMENTATION LINES) 

Consider de.l.p.        
                

           
 . From this 

de.l.p. argument structures       ,         and         can 

be obtained with: 

          , 

                , and 

           . 

Suppose there is an preference relation on these argument 

structures, such that               ,  and         
       . An argumentation line   for argument structure 
       is                         , with the set of 

supporting argument structures                     and 

the set of interfering argument structures             . 

Figure 4 shows a graphical representation of this 

argumentation line. 

 

FIGURE 4: A GRAPHICAL REPRESENTATION OF THE ARGUMENTATION LINE 
IN EXAMPLE 3.12 
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There are several situations in which argumentation logics in general may exhibition 

unwanted behavior. In this section they are discussed briefly and superficially, since the 

purpose of this part of the thesis is mainly to explain the workings and structure of DeLP and 

not to evaluate it thoroughly. In later sections DeLP with temporal arguments will be 

discussed in more detail and so will be its advantages and disadvantages. I would like to 

refer the interested reader to (Prakken & Vreeswijk, 1998) or (García & Simari, 2004) 

respectively for a more in-depth analysis of problems and solutions for argumentation logics 

in general and for DeLP in specific. 

The first problem that occurs commonly in argumentation logic has to do with self-defeating 

arguments, i.e. arguments that defeat themselves. Self-defeating arguments could cause 

argumentation lines to have an infinite length, by repeating itself infinitely in the sequence. 

Self-defeat is, contrary to many other argumentation logics, not a problem in DeLP since 

García and Simari define the notion of an argument in such a way that it could never defeat 

itself7. 

There are other problems very similar to the problem with self-defeating arguments that 

nonetheless may occur in DeLP. An argumentation line may for instance become infinite 

when there is a pair of argument structures that defeat each other. Another form of circular 

argumentation leading to an infinite argumentation line is when arguments are reintroduced 

in the sequence to defend themselves. In some cases this problem may as well occur when a 

subargument of a preceding argument in the argumentation line is reintroduced, it may then 

even happen that an argument is both supporting and interfering with itself. 

Infinite argumentation lines are clearly undesirable; therefore García and Simari impose 

some additional restrictions on argumentation lines. These restrictions can be found in 

definitions 3.20 and 3.21. 

A different kind of undesirable behavior may arise when a blocking defeater in the sequence 

is used to defeat a blocking defeater (of a preceding argument). Allowing such sequences is 

equivalent to accepting that in a blocking situation, two arguments supporting (interfering 

with) a sentence is preferred over having one interfering (supporting) argument. Restriction 

4 of definition 3.21 prevents this problem. 

DEFINITION 3.20 (CONCORDANCE) (GARCÍA & SIMARI, 2004) 

Let         be a de.l.p.. Two arguments         and 
        are concordant iff the set         is non-

contradictory. More generally, a set of argument structures 
            

  is concordant iff      
 
    is non-

contradictory. 

                                                        

7 See (García & Simari, 2004) for a proof. 
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DEFINITION 3.21 (ACCEPTABLE ARGUMENTATION LINE) (GARCÍA & 

SIMARI, 2004) 

Let                                 be an 

argumentation line.   is an acceptable argumentation line iff: 

1.   is a finite sequence 

2. The set   , of supporting arguments is concordant, and the 

set    of interfering arguments is concordant. 

3. No argument         in   is a subargument of an 

argument         appearing earlier in        . 

4. For all  , such that the argument         is a blocking 

defeater for            , if             exists, then 
            is a proper defeater of        . 

The first restriction in definition 3.21, obviously prevents argumentation lines from being 

infinite. The second restriction makes sure that there are no arguments supporting as well as 

interfering with the same sentence. Restriction 3 prevents subarguments from being 

reintroduced and restriction 4 makes sure that blocking defeaters may only be defeated by a 

proper defeater. García and Simari note that different restrictions are possible and by 

modifying these restrictions, the behavior of the formalism can be controlled. In section 4 

the choice of restrictions on argumentation lines for the argumentation logic with temporal 

arguments is discussed. 

EXAMPLE 3.13 (PAIRS OF DEFEATING ARGUMENTS) 

Consider de.l.p.    
               

                     
 . From 

  two argument structures can be obtained, namely        

and        , with: 

                    , and 

                       . 

Now it is possible that argument structure        defeats 
       , by defeating its subargument structure 
            , while at the same time         defeats 
       by defeating its subargument structure 
               . If there were no restrictions like imposed 

in definition 3.21, an infinite argumentation line for        

could be made, namely 
                                 , which would be 

undesirable. However, if the restrictions in definition 3.21 are 

taken into account, such an argumentation line would be not 

acceptable, since it is infinite and this is not acceptable by 

restriction 1 and moreover an argument is a subargument of 
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itself and thus is not allowed to appear more than once in the 

argumentation line according to restriction 3. 

There may be multiple defeaters for an argument and thus multiple argumentation lines. 

Arguments in these argumentation lines may also have multiple defeaters and this means 

even more argumentation lines can be generated. All these possible argumentation lines for 

an argument structure can be joined into a dialectical tree for this argument structure.  

The root of a dialectical tree for an argument structure       is labeled      . The children 

of a node are labeled with the corresponding defeaters of the argument structure in its 

label. If a node is a leaf, the argument structure in its label is undefeated. In a dialectical 

tree, argument structures represented in the nodes in each path from the root of the tree to 

a leaf corresponds to one of the acceptable argumentation lines for the argument structure 

represented by the root. 

DEFINITION 3.22 (DIALECTICAL TREE) (GARCÍA & SIMARI, 2004) 

Let         be an argument structure from a program  . A 

dialectical tree for        , denoted         , is defined as 

follows: 

1. The root of the tree is labeled with        . 

2. Let   be a non-root node of the tree labeled        , and 

                                      the 

sequence of labels of the path from the root to  . Let 

                          be all the defeaters for 
       . 

For each defeater                , such that, the 

argumentation line 

                                               is 

acceptable, then the node   has a child    labeled        . 

If there is no defeater for         or there is no         

such that    is acceptable, then   is a leaf. 

Below is an example of a dialectical tree in DeLP. 

EXAMPLE 3.14 (DIALECTICAL TREE) (GARCÍA & SIMARI, 2004) 

Consider the following de.l.p.: 

 
                                   
                                        

  

Here the literal   is supported by 
                      and there exist three defeaters 

for it, each of them starting three different argumentation 

lines:                       , 
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                            and         
            . The first two are proper defeaters and the 

last one is a blocking defeater. 

Observe that the argument structure         has the 

counterargument           , but it is not a defeater since 

the former is more specific.8 Thus no defeaters for         

exist and the argumentation line ends there. 

The argument structure         has a blocking defeater: 
          . Note that            is the disagreement 

subargument of      , therefore, it cannot be introduced 

because it produces an argumentation line that is not 

acceptable. 

The argumentation structure         has two defeaters that 

can be introduced:                             

(proper defeater) and                      (blocking 

defeater). 

Thus one of the lines is split in two argumentation lines. The 

argument         has a blocking defeater that can be 

introduced in the line:                     . 

Finally observe that both         and         have a blocking 

defeater, but they cannot be introduced because they make 

the argumentation line not acceptable. 

The dialectical tree for       is shown in figure 5. 

 

FIGURE 5: DIALECTICAL TREE FOR EXAMPLE 3.14 (GARCÍA & SIMARI, 2004) 

                                                        

8 García and Simari use generalized specificity as the comparison criterion here. 

⟨𝒜,𝑎⟩ 

⟨     𝑏⟩ ⟨  2  𝑏⟩ 

⟨𝒞_1,~𝑓⟩ 

⟨𝒟_1 
   ⟩ 

⟨𝒞_2,~𝑓⟩ 

⟨  3  𝑏⟩ 
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García and Simari observe that a subtree of a dialectical tree is itself not always a dialectical 

tree since some defeaters that are not included in the super tree because they would make 

an argumentation line unacceptable are acceptable in the subtree. 

A sentence   in DeLP is warranted or justified if there is an argument structure       that is 

undefeated. A dialectical tree with       at the root can be built to determine whether it is 

undefeated. Each leaf in this tree is marked undefeated ( ), since it has no defeaters. Each 

inner node in the tree will get the mark defeated ( ) if one or more of its children is 

undefeated and will get the mark undefeated otherwise. By marking each node in the tree, it 

is eventually possible to mark the root node       and conclude whether it is defeated or 

undefeated and thus whether a sentence   is warranted or not. Below is the procedure by 

García and Simari for marking the nodes in a tree and the definition of warranted literals. 

PROCEDURE 3.1 (MARKING OF A DIALECTICAL TREE) (GARCÍA & SIMARI, 

2004) 

Let        be a dialectical tree for      . The corresponding 

marked dialectical tree denoted       
 , will be obtained 

marking every node in        as follows: 

1. All leaves in        are marked as “ ”’s in       
 . 

2. Let       be an inner node of       . Then       will be 

marked as “ ” in       
  iff every child of       is marked as 

“ ”. The node       will be marked as “ ” in       
  iff it 

has at least a child marked as “ ”. 

DEFINITION 3.23 (WARRANTED LITERALS) (GARCÍA & SIMARI, 2004) 

Let       be an argument structure and       
  its associated 

marked dialectical tree. The literal   is warranted iff the root of 

      
  is marked as “ ”. We will say that   is a warrant for  . 

Below is an example of a marked dialectical tree. 

EXAMPLE 3.15 (MARKED DIALECTICAL TREE) (ADAPTED FROM (GARCÍA 

& SIMARI, 2004)) 

Below is dialectical tree from figure 5, marked according to 

procedure 3.1. 
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FIGURE 6: THE MARKED DIALECTICAL TREE FOR EXAMPLE 3.15 (GARCÍA & 
SIMARI, 2004) 

From figure 6 it can be observed that literal   is not warranted.  

Using the definitions above, García and Simari prove that literals that have a strict derivation 

are always warranted. 

Building an entire dialectical tree for an argument structure and marking all nodes is clearly 

not the most efficient way to determine whether a literal is warranted. Consider example 

3.15 again.   is only warranted if all children of       are defeated (and there is no other 

argument structure with   at its conclusion which is ultimately undefeated). To know 

whether       is marked defeated, it is not necessary to build the entire marked dialectical 

tree. As soon as it is clear that one the children of       is marked undefeated,       can 

be marked defeated and the rest of the marked dialectical tree does not have to be built 

anymore. In case of example 3.15, as soon as it is clear that         or         is 

undefeated,       can be marked defeated and the rest of the dialectical tree is of no 

importance anymore. 

García and Simari developed a more efficient procedure for determining whether a literal is 

warranted, pruning nodes in the dialectical tree that do not contribute to the status of the 

root. The procedure considers each branch of the leaf depth-first and from left to right. To 

decide whether a literal   is warranted, the procedure considers each argument structure 

for   in turn. García and Simari give no formal description for the procedure, but they use 

the example below to describe it. 

EXAMPLE 3.16 (WARRANT PROCEDURE WITH PRUNING) (GARCÍA & 

SIMARI, 2004) 

Suppose that in order to find a warrant for   , the argument 

   is found, and the acceptable argumentation line 
                                          is built. In this 

situation, the acceptable argumentation line ends with the 

supporting argument   , so the marking procedure establishes 

⟨𝒜,𝑎⟩^𝐷 

⟨     𝑏
⟩^𝑈 

⟨  2  𝑏
⟩^𝐷 

⟨𝒞_1,~𝑓
⟩^𝐷 

⟨𝒟
     ⟩^

𝑈 

⟨𝒞_2,~𝑓
⟩^𝑈 

⟨  3  𝑏
⟩^𝑈 
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that         is up to this point a  . However, the warrant 

process cannot finish there because there could be more 

defeaters to consider. Therefore, the process will continue 

expanding other argumentation lines. 

First, note that although there could be more defeaters for   , 

considering them will not change   ’s status because of   . 

Therefore the tree can be pruned at that point without losing 

further defeaters for   . 

However, the previous analysis does not apply to   , because 

if an undefeated defeater is found for it, the mark of    could 

change. It is for this reason the procedure will look for any 

other possible defeater     for   , creating a new 

argumentation line. 

If a defeater     is found (with no defeaters for it), then the 

argumentation line will end with an interfering argument, and 

therefore   will be a  . Again, pruning could be influenced, 

because although there could be more defeaters for   , they 

cannot modify its status. However, there might be another 

defeater     for   , creating in that case a new argumentation 

line. 

Being able to determine whether a literal is warranted means that queries about literals can 

be answered. García and Simari use a modal belief-operator   such that for a literal  ,    

means that   is warranted and     means that   is not warranted. 

DEFINITION 3.24 (ANSWER TO QUERIES) (GARCÍA & SIMARI, 2004) 

The answer of a DeLP interpreter can be defined in terms of a 

modal operator  . In terms of  , there are four possible 

answers for a query  : 

    , if    (  is warranted) 

    if     (the complement of   is warranted) 

          , if     and      (nether   nor    are 

warranted) 

        , if   is not in the language of the program.  
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4 THE PROPOSED TEMPORAL ARGUMENTATION LOGIC 

As described in section 2.5 medical diagnostic systems are required to handle temporal 

information, they should furthermore be able to handle partially missing or imprecise 

temporal information. Even though argumentation logics are capable of dealing with facts 

that are missing as a whole, they are generally not equipped to handle cases in which part of 

the information of a fact is present and part is not. Therefore, merely expanding the 

argumentation logic with temporal arguments is insufficient. 

In a derivation process, to infer the head of a rule, all literals in its body need to be matched 

with facts or literals that have already been derived. If the literals in the body contain 

temporal arguments, these need to be also present in the corresponding facts. Below is an 

example in which temporal information is missing for one of the facts in a logic with 

temporal arguments. To show the problem logics in general have when a part of a fact is 

missing, it is not necessary to specify the logic used in the example below any further, which 

therefore has not been done. 

EXAMPLE 4.1 (MISSING TEMPORAL INFORMATION) 

Consider a rule                                   

                              in some logical system 

denoting that “if someone slept for less than 8 hours and 

worked for more than 8 hours, then they are tired”.          

and    are temporal arguments denoting start en ending times 

of the intervals at which the predicates are true. 

Consider the following facts in the same system: 

                   and              . To be able to infer 

the head of the rule above, the body needs to be determined to 

be true. 

                             can be determined to be 

true since there is a fact                    and      . 

                           can however not be 

determined to be true, since the fact               does 

not contain the required temporal information.  

Since there is no temporal information on how long Mary was working, we are not able to 

infer anything in the example above and information that Mary was working is disregarded. 

It is however undesirable to do this in many cases, since potentially useful information is not 

used. On the other hand, we cannot just add a fact saying that Mary was working for more 

than 8 hours, since we do not know that for certain. 

In this case, it would be preferable to derive             under the assumption that Mary 

was working for more than 8 hours. On the other hand, if stronger information becomes 

available that Mary was not working more than 8 hours or that Mary is not tired, we would 

like             to be defeated. In the temporal argumentation logic proposed in this 
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thesis, this is exactly the way in which partially missing temporal information is handled. The 

logic is designed to make optimal use of information that is available, while carefully keeping 

track of assumptions that need to be made when information is missing. 

In example 4.1, implicitly there is some temporal information about              , 

namely that it could possibly have any duration, including a duration of more than 8 hours. 

This kind of knowledge could be represented by replacing the temporal arguments in 

predicates that denote the exact time at which they became true and the exact time at 

which they ceased to be true with a set of all intervals at which the argument possibly could 

be true according to the available information. The facts from example 4.1 would in that 

case be written as                        and                 where   denotes a set 

containing all possible intervals in the range of time that is considered by the system in 

which the logic is used. In the proposed temporal argumentation logic, sets containing 

intervals, such as         and   are called interval sets. 

To deal with interval sets, the rule in example 4.1 should be rewritten as well. The 

corresponding rule in the proposed logic is in the example below. It expresses the same 

information as the rule in example 4.1, but due to its different form it is possible to use 

interval sets and to infer on which assumptions its head can be derived. How exactly rules of 

this form should be read and understood will become more apparent in the course of this 

section. 

EXAMPLE 4.2 (RULES AND FACTS IN THE PROPOSED LOGIC) 

The following rules and facts are in the language of the 

proposed logic and they replace the rules and facts in example 

4.1: 

                                      
                                           

   

                        

                 

In the rules and facts above,  ,   and   are called interval sets 

and    and    are intervals.   contains all intervals in the time 

span considered by a system that uses the proposed logic. 

                                              

is called a temporal constraint. A temporal constraint in the 

proposed logic expresses that the head of the rule may only be 

derived if it is possible that the intervals at which the literals in 

its body are true have the desired properties. 

In the proposed logic, there is a defeasible derivation of 

           . This literal is derived under the assumption that 

Mary worked for more than 8 hours. If information becomes 

available that Mary is not tired or did not work for more than 8 
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hours and this information is based on stronger assumptions, 

then             is defeated during the argumentation 

process in the proposed logic. 

In the first subsection of this section, some ideas that are essential to understanding the 

proposed logic are discussed. In subsequent subsections, the proposed temporal 

argumentation logic is defined formally. Most definitions are inspired by the definitions from 

(García & Simari, 2004) or are taken from it. The definitions of (García & Simari, 2004) for the 

system DeLP are discussed in chapter 3. 

4.1 FUNDAMENTALS OF THE PROPOSED LOGIC  

Literals containing a term that denotes an interval set are called temporal literals in the 

proposed logic. Their semantics are crucial to understanding the proposed logic and the 

thoughts behind it. It is therefore important to discuss some ideas on which the proposed 

logic was built prior to formally defining the logic. 

The information expressed in a temporal literal in the proposed logic differs from the 

information that is usually expressed in a literal. To establish their semantics, it is necessary 

to have some concept of the “real world” that is represented by the facts and rules in a 

logical system.  An elaborate philosophical discussion of what this “real world” is, is outside 

the scope of this thesis. Therefore, in this thesis the “real world” is defined in a short and 

simplified way, while avoiding controversy to the extent possible. 

The “real world” is whatever is represented by the rules and facts in a logical system, i.e. the 

domain of discourse. The actual situation in this “real world” is a collection of things that are 

true or false at certain intervals. It is assumed that the actual situation in the “real world” is 

such that contradictions do not exist. In other words, the actual situation in the “real world” 

cannot be such that there are things that are true and false at the same time. The things that 

are true and that are false can be represented by corresponding literals in the logic. 

It will be assumed that information about the actual situation in the “real world” can be 

incomplete. More specific, information may be completely or partially missing about at 

which intervals some things are true or false. Partially missing information still gives some 

information about the actual situation in the “real world”, namely which situations are 

possibly the actual situation in the “real world”. Temporal literals thus contain information 

about which situations in the “real world” are considered possible. It is assumed that 

information that is expressed by temporal literals that are facts in the logic is correct. In 

other words, of all the possible situations expressed by all facts in the logic, one is a partial 

or complete representation of the actual situation in the “real world”. 

The semantics and syntax of temporal literals are defined formally in section 4.2. The formal 

semantics of temporal literals are founded on the ideas described above. 
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4.2 ATOMIC FORMULAS AND INTERVAL SETS 

The notion of an interval set is built upon the notions of an interval and a set with natural 

numbers that denote the points in time that are considered by the system. 

DEFINITION 4.1 (INTERVAL SETS) 

  is a set of natural numbers such that given some  natural 

number    ,              . 

An interval in the proposed logic is a pair        , where: 

        , and 

       

An interval set       
    

        
    

    is a non-empty finite 

set of intervals. 

REMARKS 

  is the set of all points in time considered by the system using 

the logic, denoted by natural numbers. The natural number 

    denotes the first point in time considered by the system 

and   denotes the last point in time considered by the system. 

For each      , if    , then   denotes a point in time 

preceding the point in time denoted by  . 

For an interval        ,    denotes the point in time the 

interval starts and    denotes the point in time the interval 

ends. 

Set                        is the interval set containing all 

possible intervals based on  . The set of all possible interval 

sets in the time considered by a system is the power set of     , 

       . 

The symbols from the set           of lower case script 

letters may be used as an abbreviations to denote intervals, e.g. 

interval         may be denoted by  . 

From definition 4.1 it can be observed that set   is finite. Time is usually considered infinite. 

Defining the set of time points as infinite would make the set of possible intervals infinite as 

well, which in turn would allow for infinite interval sets. This would severely heighten the 

complexity of the definitions of the functions on these interval sets. While it probably is 

possible to define   as infinite, it was decided not to do so to guard the intelligibility of the 

proposed logic and its definitions. 
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Defining   as finite also makes sense from a more practical point of view since it would be 

pointless for a medical diagnostic system to take infinite time into account. When the 

proposed logic is used, the size and content of set   should match the domain in which the 

proposed logic is used. The timespan, i.e. the value of   may vary for different domains. For 

certain sets of diagnoses, it may be optimal to consider a time span of a couple of weeks and 

for others it may be optimal to consider the time span of a person’s whole life. 

Correspondingly, the natural numbers in   may denote different units of time. In some 

cases, it may be optimal to take seconds as units, while in others it may be optimal to let the 

elements of   denote hours, weeks or months. 

Intervals in the proposed logic are defined to be pairs of natural numbers. The first number 

denotes the point in time the interval starts and the second number denotes the point in 

time interval ends. Semantically, it is implicitly assumed that every point in time between 

this starting point and ending point is also in the interval. This assumption is however not 

made explicit since this assumption does not influence the syntactic definitions of the other 

notions. Intervals in addition are defined to always have a duration of 1 time unit or more, as 

there is no purpose for intervals with a duration of 0 if the elements in   are chosen 

correctly. 

Interval sets are sets containing intervals. They are used as terms in formulas. To be able to 

incorporate them into the language of the logic, the notion of an atomic formula has to be 

redefined. 

DEFINITION 4.2 (ATOMIC FORMULAS) 

Given a set of variable symbols            , a set of 

symbols for interval sets              and a set of 

function symbols             , terms are defined as 

follows: 

 Any variable     is a term, 

 Any interval set     is a term, 

 Any function           , such that     is a function 

with arity   where each    is a term, is a term. If a 

function has an arity of  , it is called a constant. 

Given a set of predicate symbols            , an 

expression           , where     is an  -ary predicate 

symbol and         are terms, is an atomic formula. 

REMARKS 

Commonly only variables and functions on terms are 

considered to be terms. In this definition interval sets are 

considered to be terms as well. Formally, this is not exactly 
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accurate. A term is not an interval set (or a variable etc.), but 

can be interpreted as an interval set under an interpretation. 

If   is a nonempty domain of discourse, then set   is the 

subset of   containing only elements that are time points. 

Which interval sets can possibly exist, depends on the elements 

of  . Therefore, a symbol denoting an interval set can be 

interpreted as an element of the set of interval sets,         (of 

which the content is determined by the content of set  ). 

Correspondingly, functions have different interpretations 

depending on whether they contain interval sets as terms and 

whether their range is        . 

  and   are predicate symbols in   denoting equality and 

inequality respectively.   and   are a function symbols in   

denoting intersection and the  -ary Cartesian product 

respectively.   is a constant symbol in   denoting the empty 

set. These predicates and functions all have their usual 

definitions. Their infix notation can be used as syntactic sugar. 

    is usually a constant. 

Below are some examples of atomic formulas. Some of them contain interval sets and some 

of them don’t. 

EXAMPLE 4.3 (ATOMIC FORMULAS) 

The following formulas are atomic formulas: 

      

        

              

                   

                 

                                  

The following are not atomic formulas: 

      

           

     

   

Literals usually are defined to be atomic formulas, since the proposed logic is based on DeLP 

the definition of a literal of (García & Simari, 2004) was used. 
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DEFINITION 4.3 (FACTS OR LITERALS) 

A fact or a literal            is a ground atomic formula or its 

negation. 

REMARKS 

A ground term is a term containing no variables, hence 

constants, interval sets and functions on ground terms are 

ground terms. 

A ground atomic formula is an atomic formula with only ground 

terms. 

EXAMPLE 4.4 (FACTS OR LITERALS) 

The following atomic formulas are facts or literals: 

      

        

               

                   

           

                                      

The following atomic formulas are not facts or literals: 

         

            

        

The word ‘fact’ is commonly used to refer to ground atomic formulas (or their negations) 

that are axioms in the system or serve as input to a system using the proposed logic. The 

word ‘literal’ is used to refer to ground atomic formulas and their negations, which are 

derived or are part of the body or the head of a rule. Both words refer to the same kind of 

formulas syntactically. 

Literals may or may not contain terms denoting interval sets. It is important to distinguish 

literals containing one term that denotes an interval set from literals containing multiple or 

no such terms, as their semantics are different in the proposed logic. A term denoting an 

interval set or a function that returns an interval set is called a temporal term. Literals 

containing exactly one temporal term, are named temporal literals. 

The definition of a temporal term is a bit unusual in the sense that a temporal term is 

defined by both its syntax as well as its semantics. To avoid this, it would be necessary to 
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make a syntactic distinction between functions that have a subset of         as their range 

and other functions. This would however be detrimental rather than beneficial to the 

intelligibility of the definitions of the proposed logic.  

DEFINITION 4.4 (TEMPORAL TERMS) 

A term   is a temporal term, if and only if: 

    , or 

             , where the range of   is a subset of 

        and         are ground terms. 

Below are some examples of temporal terms. 

EXAMPLE 4.5 (TEMPORAL TERMS) 

The following are temporal terms: 

   

     , where the range of   the set of interval sets 

       , where the range of   is the set of interval sets 

          , where the range of   and   is the set of 

interval sets 

                         

The following are not temporal terms: 

      

        

   

   

The notion of a temporal term is used to define the notion of a temporal literal. The 

semantics of temporal literals are discussed in section 4.1. 

DEFINITION 4.5 (TEMPORAL LITERALS) 

A temporal literal            or its negation is a literal that has 

exactly one temporal term    as term. Such a term    is said to 

be the temporal term of           . 

Below are some examples of temporal literals. 

EXAMPLE 4.6 (TEMPORAL LITERALS) 
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The following literals are temporal literals with their temporal 

terms: 

     , with temporal term   

        , with temporal term   

                     where the range of   is a subset of 

the power set of      and the range of   is not, with 

temporal term       

           , where the range of   is a subset of the 

power set of     , with temporal term         

                                    , with temporal 

term                         

The following are not temporal literals: 

      

        

           

         

The semantics of temporal literals are based on the ideas discussed in section 4.1. The 

information about the actual situation in the “real world” contained in a temporal literal 
           with its term    denoting an interval set  , is that the relationship   between 

                    holds at exactly one interval    . Such a temporal literal does 

however not contain information stating which of the intervals in   is the interval at which 

the relationship holds in the actual situation in the “real world”. Correspondingly, the 
information contained in a temporal literal             with its term    denoting an 

interval set   is that the relationship   between                     does not hold at 

exactly one interval    . If            is a temporal literal with temporal term    that 

denotes an interval set   and we would like to address a situation in which the relation   
holds between                     at interval    , then for the sake of brevity we say 

that            is true at   in this situation. 

Consider a temporal literal            with its term    denoting an interval set  . Suppose   

contains more than one element. In this case, it is only known that            is true at one 

of the intervals in   in the actual situation, but it is not known exactly at which one. This 

means that information about the situation in the “real world” concerning the interval at 

which            is true, is partial.            thus describes multiple  situations that are 

possibly the actual situation in the “real world”. These possible situations described are 

precisely all situations in which            holds at an interval in  . It is important to note 

that while a temporal literal states that it is true at exactly one interval in its interval set, this 

does not mean that it cannot be true at more than one interval in its interval set. This is only 

not what is expressed by the literal. If the same literal is true at multiple intervals, this can be 

expressed by multiple temporal literals which only differ by their interval sets. 
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The number of situations that are considered possible depends on the amount of 

information that is available. If for instance there is no information about at which interval 

something is true (only that it was true at some interval), then every situation in the “real 

world” in which this thing was true at some interval is a possible situation according to the 

corresponding temporal literal. The interval set of this temporal literal therefore should 

denote an interval set containing all intervals in the time span considered by the system. 

If it is absolutely certain at which interval something is true, then only situations are 

considered possible in which this thing was true at this interval. The temporal term of the 

corresponding temporal literal therefore should denote an interval set containing only this 

interval. Multiple situations in which the exact same things are true at the same intervals are 

called a group of situations. A temporal literal containing only one interval in its interval set 

thus denotes a group of possible situations. 

To illustrate the above, below are some examples of temporal literals and their meanings in 

natural language. 

EXAMPLE 4.7 (TEMPORAL LITERALS AND THEIR MEANING) 

The following are temporal literals with their corresponding 

interpretations in natural language: 

 “Mary had a headache from 8 to 10” can be denoted by 

                       . If it is in addition known that 

she had a headache from 12 to 15, then this can be 

denoted by an additional temporal literal 

                 2      . 

 If Mary had a fever and she is not sure whether it was 

from 8 to 10 or from 12 to 15, then this can be denoted 

by the temporal literal                      2      . 

 “Mary did not have a stomach ache from 8 to 10 and she 

did not have a stomach ache from 12 to 15” can be 

denoted by                             and 

                     2      . 

 “Mary did not have a stomach ache from 5 to 6 or from 7 

to 8” can be denoted by 

                                . 

In the next subsections, the proposed temporal argumentation logic is defined formally. 

In (Allen, 1983), James Allen defines 13 relationships that can be used to describe any 

possible relationship between two intervals. Based on these relationships, some functions 

are defined that take an interval set and return an interval set of which the elements have a 

certain relationship with the intervals of the first. These functions can be used in temporal 

literals to denote which intervals are in an interval set and which intervals are not in this 
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interval set. They do not add to the expressiveness of the language, but can be used as 

abbreviations. 

DEFINITION 4.6 (FUNCTIONS ON INTERVAL SETS) 

Consider an arbitrary interval set       
    

        
    

   . The 

following unary functions on   return the set of all possible 

intervals that have a relationship with one of the intervals in   

corresponding to the relationships in (Allen, 1983). 

Function Set 

             

              
    

     
    

    
                       

             
    

     
    

    
                       

          

    
    

   
 
   

    
    

    
   

   
    

    
    

  
  

   
    

    

  

            

    
    

   
 
   

    
    

    
   

   
    

    
    

  
  

   
    

    

  

            
    

    
   

  
    

    
    

  

  
    

     
    

    
  

                
    

    
   

  
    

    
    

  

  
    

     
    

    
  

             
    

     
            

             
    

     
          

              
    

     
    

     
    

      

                 
    

     
    

     
    

      

                
    

     
    

     
    

      

                  
    

     
    

     
    

      

REMARKS 

The set returned by each function is finite, since the set   is 

defined to be finite and each end or starting point of an interval 

is an element of  . This means that each variable in the 

definition above is implicitly bound by the restrictions on  . 

Below is an example of each of the functions on an interval set containing only one interval. 

The functions can of course be applied to interval sets containing more than one interval as 

well. 

EXAMPLE 4.8 (FUNCTIONS ON INTERVAL SETS WITH ONE ELEMENT) 
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Suppose we know that Mary had a headache from 8 to 10, this 

knowledge can be represented by the predicate 

                       . 

The results of the functions defined above on the interval on 

which Mary had a headache are in the tables below. 

Function Set 

                           
                                
                                
                 

          
             
            

   

                   
          

             
            

   

                             
         

     
  

                                
           

     
  

                               
                                
                                      
                                         
                                        
                                          

 

At times it may be useful to have certain information about intervals, such as their duration. 

Below some functions are defined with one interval as argument. In certain cases it can be 

useful as well to state that two intervals have a certain relation with each other. Functions to 

do this are additionally defined below. These functions again correspond with the relations 

described in (Allen, 1983). 

DEFINITION 4.7 (FUNCTIONS ON INTERVALS) 

Consider an arbitrary interval        . The following unary 

functions on         are defined, such that they return a 

natural number denoting respectively the starting point, ending 

point or duration of        : 

Function Returns 

                  

                

                        

 

Consider arbitrary intervals    
    

   and   2
   2

  . The following 

binary functions on    
    

   and   2
   2

  , return the truth value 

     if and only if    
    

   and   2
   2

   have a relationship 
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corresponding to the relationships described in (Allen, 1983). 

Otherwise these functions return the value      . 

Function      iff 

          
    

      
    

      
    

    
    

  

          
    

      
    

      
    

  

         
    

      
    

      
    

  

          
    

      
    

       
    

    
    

    
   

    
    

    
   

            
    

      
    

       
    

    
    

    
   

    
    

    
   

            
    

      
    

      
    

    
    

   
  
    

  

                
    

      
    

      
    

    
    

   
  
    

  

         
    

      
    

      
    

  

         
    

      
    

      
    

  

          
    

      
    

      
    

    
    

  

             
    

      
    

      
    

    
    

  

            
    

      
    

      
    

    
    

  

              
    

      
    

      
    

    
    

  

 

REMARKS 

The functions      ,         ,             ,      , 

          and            do not add to the expressiveness 

of the language, as they are the inverse functions of 

respectively       ,       ,         ,      ,        and 

         and these functions can thus be used with their 

arguments switched. They are however added to increase 

usability. 

Below is an example of each of the unary and binary functions from definition 4.7. 

EXAMPLE 4.9 (FUNCTIONS ON INTERVALS) 

Below is an example of each of the unary functions with the 

natural number they return. 

Function Returns 
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Below are examples of each of the binary functions. In the 

examples in the left column      is returned as a value, while 

in the examples in the right column the value       is returned. 

           

                              2     3   

                                        

                                      

                                        

                                            

                                3           

                                              3     

                            2   3     

                          3       2   

                                        

                                              

                                            

                                                

 

When temporal information is incomplete, but not completely missing, the information that 

is available can be used to define the interval set of a literal. To do this, the functions from 

the two definitions above may be used. Below are some examples of temporal literals 

containing these functions with their meanings in natural language.  

EXAMPLE 4.10 (INCOMPLETE TEMPORAL INFORMATION) 

Consider a case in which Mary had a stomachache which 

started and stopped before she had a fever. It is known when 

she had the fever, namely from 3 to 6. This knowledge can be 

represented by the literals              3      and 

                          3      . 

Suppose Mary had a headache with duration of 3 or 4 time 

units somewhere between 6 and 15. This can be represented 

by the literal                 , where 

     

                   

            3  
              

 . 

Suppose Mary had a fever from 3 to 6 and more than one time 

unit after the fever stopped, she got a fever again. During this 

second time she had a fever, she started to feel dizzy, which 

stopped after the fever stopped. The information above can be 

represented by the literals              3     , 

             , where 
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                3      

        3      
  and 

             , where                  . 

Complex interval sets, such as in the example above, can be used as facts in a system using 

the proposed logic. These facts can be from a database or can be given as input by the user. 

It is important to note that the building of these interval sets in facts is not part of a program 

using the proposed logic itself, but it is part of its input and therefore their realization is not 

of our concern here. In addition, facts are considered to be ground, this means that interval 

sets should not contain any variables when used as input. 

In the next section, rules and derivations in the proposed temporal argumentation logic are 

defined and discussed. 

4.3 RULES AND DERIVATIONS 

Strict and defeasible rules are defined similar to (García & Simari, 2004). The only difference 

between the definitions of (García & Simari, 2004) and the definitions below is that the body 

of a rule should be a sequence in the proposed logic. The need for this deviation from the 

“original” definitions will become more apparent in the course of this section. 

DEFINITION 4.8 (STRICT RULES)  

A strict rule is an ordered pair, denoted “         ” 

whose first member     , is a literal, and whose second 

member,      is a finite non-empty sequence of literals. 

A strict rule with the head    and body           can also be 

written as                 . 

DEFINITION 4.9 (DEFEASIBLE RULES) 

A defeasible rule is an ordered pair, denoted “        ” 

whose first member     , is a literal, and whose second 

member,      is a finite non-empty sequence of literals. 

A defeasible rule with the head    and body           can also 

be written as                . 

The definition of a defeasible logic program is the same as the definition of (García & Simari, 

2004). Their remark about which symbols denote variables is left out since this already has 

been discussed for the proposed logic. 

DEFINITION 4.10 (DEFEASIBLE LOGIC PROGRAM) (GARCÍA & SIMARI, 

2004) 
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A defeasible logic program  , abbreviated de.l.p., is a possibly 

infinite set of facts, strict rules and defeasible rules. In a 

program  , we will distinguish the subset   of facts and strict 

rules and the subset   of defeasible rules. When required we 

will denote   as      . 

Strict and defeasible rules are ground. However following the 

usual convention, some examples will use “schematic rules” 

with variables. Given a “schematic rule”  ,           stands 

for the set of all ground instances of  . Given a de.l.p   with 

schematic rules, we define: 

                    

   

 

In medical diagnostic systems, it may sometimes be necessary to express temporal 

constraints in the body of a rule. In order to diagnose a disease, it may for instance be 

required that symptoms have occurred in a certain order or that they have lasted for a 

certain amount of time. Such properties and relations between the intervals at which 

symptoms should have been present can be expressed by using temporal constraints in a 

rule. Temporal constraints state that the intervals at which the literals in the body of a rule 

can be true should have certain properties or relations to each other. If they do, then the 

head of a rule that contains them may be derived, if they don’t, then the head of such a rule 

may not be derived.  

As discussed in the previous section, in the proposed logic it is possible to express partial 

temporal information. This is done by using temporal literals that denote which situations 

could possibly be the actual situation in the “real world”. Since it is not always known which 

possible situation is the actual situation, it may not be certain that the literals in the body of 

a rule are true at intervals that have the right properties to meet the constraints. In some 

cases, of the possible situations expressed by a temporal literal, some have the right 

properties regarding the intervals, while some do not. It is then possible that the constraints 

in the body of a rule are met, but not certain. In such cases, the head of a rule may still be 

derived, but under the assumption that the actual situation is one of the possible situations 

expressed in the temporal literal that meets the constraints. 

Temporal constraints are expressed as a set denoting all situations in which the intervals at 

which the literals in the body of a rule are true have those relationships and properties. The 

head of a rule containing a temporal constraint may only be derived if there is at least one 

possible situation according to the literals in its body in which the constraints are met. A 

possible situation meets the temporal constraint if it is denoted in the set representing the 

constraint. 

To be able to define the way of expressing temporal constraints above, it is first necessary 

that possible situations according to single or multiple literals can be expressed more explicit 

and precise. The definitions below are used to do this. 
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DEFINITION 4.11 (TEMPORAL LITERAL SEQUENCES) 

A finite sequence            , where         are temporal 

literals is called a temporal literal sequence. 

Below are some examples of temporal literal sequences. 

EXAMPLE 4.11 (TEMPORAL LITERAL SEQUENCES) 

The following sequences are temporal literal sequences: 

          

                 
             2     

  
                            

                             
  

The following are not temporal literal sequences: 

        

                 
            

The information about which situations are possibly the actual situation in the “real world” 

on basis of multiple temporal literals is captured in a temporal literal sequence. According to 

the information in a temporal literal sequence, all situations that are not contradictory in 

which each of the literals in it is true at an interval in its temporal term are possible. A 

temporal literal sequence by itself is not sufficient to describe specific possible situations on 

basis of the information in it. To denote specific possible situations, temporal literal 

sequences are combined with configurations. 

DEFINITION 4.12 (CONFIGURATIONS) 

A finite sequence       
    

        
    

   , where 

   
    

        
    

   are intervals is called a configuration. 

Below are some examples of configurations. 

EXAMPLE 4.12 (CONFIGURATIONS) 

The following sequences are configurations: 
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Temporal literal sequences and configurations can be combined to denote specific possible 

situations. The configurations are used to denote the intervals at which the temporal literals 

in a temporal literal sequence are true in these situations expressed. To denote possible 

situations, the intervals in the configuration should be elements of the interval sets of the 

corresponding literals and they should be in the right order. In addition, the situations 

denoted should not be contradictory; otherwise the actual situation in the “real world” 

cannot possibly be one of them and the situation denoted is not possible. 

The notion of matching temporal literals is used to prevent that a combination of a temporal 

literal sequence and a configuration describes situations that are contradictory. Situations 

are contradictory if the same thing is true and false at overlying intervals. Overlying intervals 

are defined in definition 4.14. 

DEFINITION 4.13 (MATCHING TEMPORAL LITERALS) 

Let            and            be temporal literals with 

temporal terms    and   .            and            are said 

to match if and only for every natural number   between   and 
  that is not equal to  ,      . 

Below are some examples of matching temporal literals. 

EXAMPLE 4.13 (MATCHING TEMPORAL LITERALS) 

The following temporal literals match: 

        and        

        and        

                3          and 

                      

The following temporal literals do not match: 

         and        , where     2 

        and        

                3          and                       

Two temporal literals match if they are the same except for their temporal term. Two 

matching temporal literals thus denote situations in which the same relation between the 

same arguments holds, but possibly at different intervals. If a literal matches the negation of 

another literal, this means that one of them describes situations in which a relationship 

between arguments holds at one or more intervals, while the other describes situations in 

which the same relationships between the same arguments does not hold at certain 

intervals. A group of situations is contradictory and thus does not contain any possible 

situations if in it the same relationship between the same arguments holds and does not 

hold at a overlying interval. Such a situation can be denoted by two temporal literals of 



 

 56 

which one matches the negation of the other if they both contain the same interval in their 

interval set. 

Intervals are overlying if they have at least one point in time in common. This is however left 

implicit and the functions from definition 4.7 are used to define the notion of a overlying 

interval. 

DEFINITION 4.14 (OVERLYING INTERVALS) 

An interval    
    

 
  overlies with an interval    

    
 
  if and only 

if one of the following functions returns the value     : 

            
    

      
    

   , or 

           
    

      
    

   , or 

             
    

      
    

   , or 

             
    

      
    

   , or 

                 
    

      
    

   , or 

           
    

      
    

   , or 

              
    

      
    

   , or 

             
    

      
    

   , or 

               
    

      
    

    

Below are some examples of overlying intervals. 

EXAMPLE 4.14 (OVERLYING INTERVALS) 

The following intervals are overlying: 

    3  and    3  

    3  and  2    

    3  and  3    

        and        

        and         

The following intervals are not overlying: 

    3  and       

    3  and         

        and       

Temporal literal sequences and configurations are combined in a configuration pair to 

denote exactly one group of situations in which the literals in the temporal literal sequence 

are true at the intervals in the configuration. Contradictory situations are not considered 
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possible and therefore cannot be described by a configuration pair. To exclude the pairs of 

temporal literal sequences and configurations describing groups of impossible situations, the 

third requirement is added to the definition. 

DEFINITION 4.15 (CONFIGURATION PAIRS) 

Let   be a temporal literal sequence and let   be a 

configuration. The ordered pair       is a configuration pair if 

and only if: 

1.        , and 

2. if     , then      , where    is the temporal term of 

    9, and 

3. if there are         such that    matches the negation of 

   or vice versa, then         do not overlie 

REMARKS 

A configuration pair is used to denote exactly one group of 

situations in the “real world” that contains possible situations 

according to the information in its temporal literal sequence. 

Let                       be a configuration pair. This 

configuration pair denotes a group of situations in which    is 

true at interval   ,    is true at interval   , …, and    is true at 

interval   . Since each    should be an element of the interval 

set of    and contradictory situations are excluded by the third 

requirement, a configuration pair clearly denotes groups of 

situations that are possible according to the literals in its 

temporal literal sequence. 

In a configuration pair, each of the intervals in a configuration depends in a way on the literal 

that has the same position in the temporal literal sequence as the interval has in its 

configuration. The interval should, to be precise, be an element of the interval set denoted 

by the temporal term of this temporal literal. This means that the first interval in a 

configuration should be an element of the interval set denoted by the temporal term of the 

first temporal literal in the temporal literal sequence, the second interval should be an 

element of the interval set denoted by the temporal term of the second interval set, and so 

on. In the following configuration pair intervals have the same color as the temporal literals 

on which they depend:       2  3            2  3       . 

Some examples of configuration pairs are below. 

                                                        

9 For elements of sequences, the subscript denotes the position in the set, e.g.      

denotes the  th element of   and    
    

     denotes the  th element of  . 
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EXAMPLE 4.15 (CONFIGURATION PAIRS) 

The following are configuration pairs: 

                 

                                   

                                      

                                      

                3         2     2       3        3       2     
                   2         2      

                           , where      and      

do not overlie 

The following are ordered pairs that are not configuration pairs: 

               2  , where     2 

                 2   2      2     , where     2 

                                         

                   2          2  3     

                          

In a configuration pair, the configuration may contain any of the intervals of the interval sets 

of the corresponding literals in the temporal literals set, as long as no group of contradictory 

situations is expressed. Therefore, every group of possible situations according to a set of 

temporal literals can be denoted by a configuration pair. 

As an example, let                   3          denote that “Mary had a headache at 

interval    3  or at interval      ” and let              2             denote that “Mary 

had a fever at interval  2    or at interval       ”. From these literals, the temporal literal 

sequence  
                  3          
             2            

  can be composed. According to the definition 

above, this temporal literal sequence can form a configuration pair with configuration 

    3   2    , viz.   
                  3          
             2            

      3   2     . This configuration pair 

denotes the group of situations in which Mary had a headache at interval    3  and she had 

a fever at interval  2   . 

The group of situations denoted by the configuration pair above is clearly a group of possible 

situations according to the information in the literals in its temporal literal sequence. Of 

course, other groups of situations are considered possible based on the same information. 

They each can be denoted by a configuration pair with the same temporal literal sequence, 

but a different configuration. Examples of other configurations that can form a pair with the 

temporal literal sequence above are         2     and     3         . 

There are also configurations with which the temporal literal sequence above cannot form a 

pair. An example is configuration         2    , since  2    is not an element of the temporal 

term of              2            . Note also that if it were possible that         2     
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formed a configuration pair with the temporal literal sequence above, this configuration pair 

would not denote situations that are possible according to the information in its temporal 

literal sequence. 

To define temporal constraints and later on assumptions, it is in addition necessary to be 

able to denote multiple groups of possible situations on basis of the information in a 

temporal literal sequence. This can be done by using multi-configuration pairs. Multi-

configuration pairs are very similar to configuration pairs, the difference between them is 

that instead of a configuration, a multi-configuration pair contains a set of configurations.  

DEFINITION 4.16 (CONFIGURATION SETS) 

A set            , where         are configurations with 

the same cardinality, is called a configuration set. 

Some examples of configuration sets are below. 

EXAMPLE 4.16 (CONFIGURATION SETS) 

The following sets are configuration sets: 

       

  
                
               

  

  
              
             

  

  
    2           3           
    2           3          

  

     

The following are not configuration sets: 

                

  
    2           3           

    2             2   3          
  

   

The definition of a multi-configuration pair is below. 

DEFINITION 4.17 (MULTI-CONFIGURATION PAIRS) 

Let   be a temporal literal sequence and let   be a 

configuration set. The ordered pair       is said to be a multi-

configuration pair, if and only if for every configuration    , 
      is a configuration pair. 

Below are some examples of multi-configuration pairs. 
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EXAMPLE 4.17 (MULTI-CONFIGURATION PAIRS) 

The following are multi-configuration pairs: 

                    

                                                

  
         2   3                                 

     2                 3                 
  

The following pairs are not multi-configuration pairs: 

               2   , where     2 

                                              

  
         2   3                                 

     2                3             2   
   

A multi-configuration pair denotes multiple groups of possible situations based on the 

information in its temporal literal sequence. Each group of possible situations denoted by a 

multi-configuration pair can be denoted by a configuration pair containing the same 

temporal literal sequence and a configuration from its configuration set. The number of the 

groups of situations denoted by a multi-configuration pair is the same as the number of 

unique elements in its configuration set. 

Consider the temporal literal sequence at page 58 once again. This temporal literal sequence 

can form a multi-configuration pair with configuration set          2         3          . This 

multi-configuration pair denotes two groups of situations, namely a group of situations in 

which “Mary has a headache at       and Mary has a fever at  2   ” and a group of 

situations in which  “Mary has a headache at    3  and Mary has a fever at       ”. This 

multi-configuration pair does for instance not denote a group of situations in which “Mary 

has a headache at       and Mary has a fever at       ”, since the configuration 
               is not part of the configuration set of this multi-configuration pair. 

A complete multi-configuration pair denotes all possible situations according the temporal 

literals in its temporal literal sequence. Each of the groups of situations denoted by a multi-

configuration pair is denoted by a configuration in its configuration set. The configuration set 

of a complete multi-configuration pair should therefore contain all configurations with which 

its temporal literal sequence can form a configuration pair. 

DEFINITION 4.18 (COMPLETE MULTI-CONFIGURATION PAIRS) 

Let       be a multi-configuration pair.       is a complete 

multi-configuration pair if and only if for every configuration  , 

if       is a configuration pair, then    . 

REMARKS 
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Let             be a temporal literal sequence and         

be the interval sets denoted by the temporal terms of         

respectively. Let       be a complete multi-configuration set. If 

there is no configuration  , such that       does meet the first 

two requirements of definition 4.15, but not the third, then   is 

the  -ary Cartesian product of        , i.e.          . 

As an example, consider the following temporal literal 

sequence: 

                   2   3                           , 

the configuration set of its complete multi-configuration pair is 
     2           3           , which is clearly equal to 
    2   3            . Now consider temporal literal 

sequence 

                   2   3                    3      . 

The configuration set of the complete multi-configuration pair 

of    is      2   3     . Configuration   3     3     does not 

form a configuration pair with    since it describes a group of 

situations that is contradictory and thus does not meet the 

third requirement of definition 4.15. It is thus excluded from 

the configuration set of the complete multi-configuration pair 

of   . It can be observed easily that for this reason, the 

complete multi-configuration pair of    is not the Cartesian 

product of the interval sets denoted by the temporal terms of 

the temporal literals contained in it. 

Below are some examples of complete and incomplete multi-configuration pairs. 

EXAMPLE 4.18 (COMPLETE MULTI-CONFIGURATION PAIRS) 

The following multi-configuration pairs are complete: 

                    

                          

                               
                
               

   

  
         2   3                                 

     2                3             2   
  

                                

The following are multi-configuration pairs that are not 

complete: 

                         , where       

                               
                
               

  , where 
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         2   3                                 

     2               
  

                               , where     

To explain the notion of a complete multi-configuration pair, let 

                  3          once again denote that “Mary had a headache at interval 
   3  or at interval      ” and let              2             denote that “Mary had a 

fever at interval  2    or at interval       ”. From these literals, the temporal literal 

sequence                      3                       2              can be 

composed. 

According to the information in the temporal literal sequence above there are four groups of 

situations possible in the “real world”, viz.: 

 Mary had a had a headache at interval    3  and Mary had a fever at 

interval  2    

 Mary had a had a headache at interval    3  and Mary had a fever at 

interval        

 Mary had a had a headache at interval       and Mary had a fever at 

interval  2    

 Mary had a had a headache at interval       and Mary had a fever at 

interval        

The possible situations in the real world described above can each be denoted by a 

configuration pair, namely        3   2     ,        3          ,            2      and 
                   respectively. Since these configuration pairs are all possible configuration 

pairs on basis of  , the multi-configuration pair 
        3   2         3                  2                      is complete. Note that the 

configuration set of this multi-configuration pair contains every configuration of the 

configuration pairs above. 

An example of a multi-configuration pair that is not complete is 
        3   2         3                  2      . It is not complete because configuration 

pair                    exists and                is not an element of its configuration set. 

Clearly this multi-configuration pair does not denote all possible situations on basis of the 

information in  . 

Using the definitions above, it is possible to express one or more specific groups of possible 

situations on basis of single or multiple temporal literals explicitly. By using the definition 

below, it is possible to denote the groups of situations that are possible according to the 

temporal literals in the body of a rule. 

DEFINITION 4.19 (TEMPORAL LITERAL SEQUENCES OF RULES) 

Let   be a strict or defeasible rule with body     . Temporal 

literal sequence   is said to be the temporal literal sequence of 

  if and only if: 
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 For each     , there is a         and       

 For each         that is a temporal literal, there is a 
     and       

 For each            that are temporal literals, if    , 

then there are         and       and       and 

   . 

Below are some examples of rules and their temporal literal sequences. 

EXAMPLE 4.19 (TEMPORAL LITERAL SEQUENCES OF RULES) 

The following are rules with their temporal literal sequences: 

                        and           

                           and 
                

                           and               

The following are rules with temporal literal sequences that are 

not their temporal literal sequences: 

                   and                 

                            and          

                            and               

By definition 4.19, the temporal literal sequence of a rule is a temporal literal sequence 

containing every temporal literal in the body of the rule in the same order. The complete 

multi-configuration pair of the temporal literal sequence of a rule denotes all possible 

situations on basis of the information in the body of the rule. A temporal constraint is 

expressed as a configuration set that is such that every configuration that contains intervals 

that have the right properties and relations is in it. It can be verified whether there is a 

possible situation on basis of the temporal literal sequence of a rule that meets the 

constraints, by checking whether the intersection of the configuration set expressing the 

constraint and the configuration set of the complete multi-configuration pair of the 

temporal literal sequence of the rule is empty. This can be done by including temporal 

equations in the body of a rule. 

DEFINITION 4.20 (TEMPORAL EQUATIONS) 

A temporal equation is a literal of the form        , 

where    and    are configuration sets. 

   and    are said to be the configuration sets of       

 . 

EXAMPLE 4.20 (TEMPORAL EQUATIONS) 
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The following are temporal equations: 

                                     

                 

      2   3                         2   3        

                   
              

             
    

The following are not temporal equations: 

     

         

Just including a temporal equation in the body of a rule is not enough to conduct sound 

reasoning. This is partly due to the fact that if it is possible but not certain on basis of the 

information in the body of a rule that constraints are met, it needs to be assumed that the 

actual situation in the “real world” is one of the possible situations that do meet the 

constraints. Such an assumption can be expressed by a multi-configuration pair expressing 

all possible situations that do meet the constraints on basis of the information in the body of 

a rule. Determining what configurations should be in the configuration set of such a multi-

configuration pair would for instance be very hard if a rule contains multiple temporal 

equations or if the temporal equation is such that not all possible situations are checked. For 

these reasons, the notion of a temporal rule is defined. A temporal rule has exactly the right 

properties to be able to determine the exact assumption that needs to be made when 

deriving its head. 

DEFINITION 4.21 (TEMPORAL RULES) 

Let   be a strict or defeasible rule with body      and let   be 

its temporal literal sequence.   is a temporal rule if and only if: 

 There is exactly one literal       , such that   is a 

temporal equation, and 

 If                is a temporal equation, then 
       or        is a complete multi-configuration pair.  

If   is a temporal equation in the body of  , then it is said that 

  is the temporal equation of  . 

Below are some examples of temporal and non-temporal rules. 

EXAMPLE 4.21 (TEMPORAL RULES) 

The following rules are temporal rules: 
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                      2            2        
           2           2     2      

                           

The following are not temporal rules: 

                    

                                     
     

      
                2            2                  2       
                          

It is important to know which argument of the intersection in a temporal equation denotes 

the temporal constraints. Temporal constraints are therefore defined below. 

DEFINITION 4.22 (TEMPORAL CONSTRAINTS) 

Let   be a temporal rule and let   be its temporal literal 

sequence. A configuration set   is said to be the temporal 

constraint of   if and only if       is the temporal 

equation of   and       is a complete multi-configuration pair. 

Below are some examples of temporal rules with their temporal constraints. 

EXAMPLE 4.22 (TEMPORAL CONSTRAINTS) 

The following are temporal rules and their temporal 

constraints. 

                            and   

                                and   

                      2            2        
           2           2     2       
                          and 
                        

As an illustration of the way temporal constraints are expressed 

in the proposed logic, below are some examples of temporal 

rules and their meanings in natural language: 

                   
                                          
                            means “If Mary came 

into contact with a cat before she has a runny nose, then 

she has a cat allergy” 
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                                       10 

means “If Mary has pain for more than 6 time units, then 

she has chronic pain” 

           
                                   
                                         

means “If Mary had a headache during the interval at 

which she had a fever and the fever lasted for less than 4 

time units, then she has the flu” 

As discussed before, assumptions that need to be made to derive the head of a rule are 

expressed by multi-configuration pairs containing the temporal literal sequence of the rule 

and every configuration from the configuration set of its complete multi-configuration pair 

that is also in its temporal constraint. Such a multi-configuration pair is called the 

assumption of a rule. 

DEFINITION 4.23 (ASSUMPTION OF A RULE) 

Let   be a temporal rule, let   be its temporal literal sequence 

and let         be its temporal equation. Multi-

configuration pair           is said to be the assumption of 

 . 

To explain the definitions above more thoroughly, let   be a temporal rule and let   be its 

temporal literal sequence. Let       be the temporal equation of  . Let       be a 

complete multi-configuration pair.   is then the temporal constraint of   and         is 

its assumption. 

      clearly denotes all possible situations based on the temporal literals in the body of  . 

In the temporal equation,   thus contains all possible combinations of intervals from the 

temporal literals in the body of the rule. Since   is a temporal constraint, it contains all 

configurations of which the elements have certain properties or relations with each other. If 

    is empty it means that none of the configurations in   are such that their elements 

have these properties and relations with each other. If they were, they would be in  . If 

    is empty, this thus means that there is no situation possible on basis of the 

information in the body of  , in which the constraints are met. When     is empty, the 

temporal equation in   is false, and the head of   may not be derived. 

There are cases in which some elements of   are in  , but not all. In that case     is not 

empty and the temporal equation in   is true. It also means that there are configurations in 

  that meet the constraints in   and that there are some configurations in   that do not 

                                                        

10       is the unary Cartesian product of   in prefix notation. If            , then 

                  . 



 

 67 

meet these constraints.   is used in the temporal equation to express all possible situations 

based on the information in the body of  . There thus are some possible situations that 

meet the constraints and there are some possible situations that do not meet the 

constraints. Since it is not known which of the possible situations expressed by   is the 

actual situation the “real world” is in, it is not known whether in the actual situation the 

constraints are met or not. It would therefore be sensible to derive the head of   on basis of 

the assumption that the actual situation is such that it does meet the constraints. The 

configurations representing possible situations that do meet the constraints are in   as well 

as in  . The assumption when deriving the head of   can therefore be denoted by the multi-

configuration pair        . 

Normally, multiple rules can be used to derive a literal. In the proposed logic, this does 

however mean that it is possible that multiple assumptions need to be made. What is 

assumed when deriving the head of a rule is that that the actual situation in the “real world” 

is one of the situations denoted by the assumption. When multiple assumptions are made to 

derive a literal, this literal is derived based on all those assumptions. This means that it is 

assumed that the actual situation in the “real world” is a situation that is denoted by all 

assumptions. The situations that are denoted by multiple assumptions are denoted by multi-

configuration pairs that are a combination of these assumptions. The definition of such a 

combined multi-configuration pair is based on the definitions below. 

DEFINITION 4.24 (COMBINED TEMPORAL LITERAL SEQUENCES) 

Let    and    be temporal literal sequences.      is their 

combined temporal literal sequence if and only if      

           
              

    . 

Let    and    be temporal literal sequences. Their combined temporal literal sequence      

contains each element in    or in    exactly once, whether this element is in both sets or 

not. Below are some examples of temporal literal sequences and their combined temporal 

literal sequences. 

EXAMPLE 4.23 (COMBINED TEMPORAL LITERAL SEQUENCES) 

The following are temporal literal sequences and their 

combined temporal literal sequences: 

 The combined temporal literal sequence of     and     is 
   . 

 The combined temporal literal sequence of      and      

is        . 

 The combined temporal literal sequence of      and 
        is        . 

 The combined temporal literal sequence of         and 
        is        . 
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 The combined temporal literal sequence of               

and                     is                    . 

The combination of two configuration pairs denotes a group of situations which is part of the 

group of situations denoted by the first configuration pair, as well as part of the group of 

situations denoted by the second configuration pair. Two configuration pairs together can 

only denote such a group if the literals they have in common are true at the same intervals 

and if their combination does not denote a group of situations that is contradictory. If for 

two configuration pairs this is the case, then they can be combined. 

DEFINITION 4.25 (COMBINED CONFIGURATION PAIRS) 

Let         and         be configuration pairs. Configuration 

pair             is the combined configuration pair of         

and        , if and only if: 

      is the combined temporal literal sequence of    and 

  , and 

 If        , then: 

o There are       and      , such that       and 

     , and there are       and      , such that 

      and      , or 
o There is       and      such that       and 

      and if     , then     , or 

o There is       and       such that       and 

      and if     , then      

Below are some examples of combined configuration pairs. 

EXAMPLE 4.24 (COMBINED CONFIGURATION PAIRS) 

Below are temporal literal sequences, their related 

configurations and their combined configurations (if they exist): 

 The combined configuration pair of           and 
          is          . 

 The combined configuration pair of            and 
          , where       does not exist. 

 The combined configuration pair of             and 
            is                  . 

 The combined configuration pair of             and 
                  is                  . 

 The combined configuration pair of             and 
                 , where      , does not exist. 
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 The combined configuration pair of                   and 
                  is                  . 

 The combined configuration pair of                   and 
                 , where      , does not exist. 

 The combined configuration pair of 
                              and 
                                    is 
                                         . 

 The combined configuration pair of 
                              and 
                                   , where       does 

not exist. 

In a configuration pair, implicitly each element of the configuration is bound by the literal in 

the temporal literal sequence that has the same position in the sequence. This property 

arises directly from definition 4.15. If             and             form a 

configuration pair      , then we can say for each      that it is bound by     . 

Let         and         be configuration pairs. Their combined configuration pair             

(if it exists) contains the combined temporal literal sequence of    and   , viz.     . The 

configuration of this pair is a combination of configurations    and   , viz.     . 

According to the definition above, each element of      is: 

 an element of both    and    that is bound by a literal with is in    as 

well as    

 an element of    that is bound by a literal that is not in   , or 

 an element of    that is bound by a literal that is not in   , or 

If there is a literal in    that is also in   , but it does not bind the same element in    as in 

  , then by definition it is impossible to combine         and        , and             does 

thus not exist. 

From a semantic point of view the above makes sense as well. Recall that configuration pairs 

denote a group of situations in the “real world” that are possible according to their temporal 

literal sequences. A combined configuration pair of two configuration pairs denotes a group 

of possible situations in which all literals that are in the temporal literal sequence of one or 

both originating configuration pairs are true at the same intervals as denoted by those pairs. 

In other words, a combined configuration pair denotes a group of situations which is part of 

the groups of situations denoted by their originating configuration pairs. A group of 

situations can only be part of two other groups of situations if in these groups the same 

literals are true at the same intervals. If it is the case that according to two configuration 

pairs the exact same literal containing the same interval set is true at different times, then 

there is no group of situations that is denoted by both configuration pairs. Note that by the 

definition above, these are exactly the same cases in which two configuration pairs do not 

have a combined configuration pair. Note in addition that situations in which the same literal 

is true and false at overlying intervals are not considered to be possible and according to 
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definition 4.15 cannot be described by a configuration pair and thus not by a combined 

configuration pair. 

Multi-configuration pairs such as the ones denoting assumptions can also be combined. 

DEFINITION 4.26 (COMBINED MULTI-CONFIGURATION PAIRS) 

Let         and         be multi-configuration pairs. Multi-

configuration pair             is the combined multi-

configuration pair of         and        , if and only if: 

      is the combined temporal literal sequence of    and 

  , and 

 If          is the combined configuration pair of         

and        , where       and      , then       , 

and 

 If       , then there are       and      , such that 

         is the combined configuration pair of         and 
        

REMARKS 

The combined multi-configuration pair of multi-configuration 

pairs                 is the multi-configuration pair 
               , which is obtained by combining         with 

        and combining the thus obtained multi-configuration 

pair with         and combining the thus obtained multi-

configuration pair with … and combining the thus obtained 

multi-configuration pair with        . 

Below are some examples of combined multi-configuration pairs. 

EXAMPLE 4.25 (COMBINED MULTI-CONFIGURATION PAIRS) 

The following are multi-configuration pairs and their combined 

multi-configuration pairs: 

 The combined multi-configuration pair of             and 
            is            . 

 The combined multi-configuration pair of 
                  and                   is                  . 

 The combined multi-configuration pair of 
                  and                  , where       is 
            . 
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                    and                   , is 

          
                
               

  . 

 The combined multi-configuration pair of 
                            and 
                           , is                          . 

 The combined multi-configuration pair of 
                            and 

                           , is              
           
          

  . 

 The combined multi-configuration pair of 
                            and 
                           , is               . 

A multi-configuration pair denotes several groups of situations that are possible according to 

its temporal literal sequence. The combination of two or more multi-configuration pairs 

denotes all groups of situations that are part of a group of situations denoted by each of its 

originating multi-configuration pairs. 

Multi-configuration pairs are compatible if there is at least one group of situations that is 

part of the groups of situations denoted by every one of them. If such a group of situations 

does not exist, then their combined multi-configuration pair does not denote any situation. 

Its configuration set should then be empty, since the number of groups of situations 

described by a multi-configuration pair is the same as the number of configurations in its 

configuration set. 

DEFINITION 4.27 (COMPATIBLE MULTI-CONFIGURATION PAIRS) 

Let                 be multi-configuration pairs. Let 
                be their combined multi-configuration pair. 

                are said to be compatible if and only if 

       is not empty. 

Below are some examples of compatible and incompatible multi-configuration pairs. 

EXAMPLE 4.26 (COMPATIBLE MULTI-CONFIGURATION PAIRS) 

The following multi-configuration pairs are compatible: 

             and              

                   and                   

                   and                  , 

                    and                    

                             and 
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The following multi-configuration pairs are not compatible: 

              and             , where       

                   and                  , where       

and       and       and       

                             and 

                             , where       and       

and       and       

Let   be a temporal rule with temporal literal sequence   and temporal equation 

       . Its assumption is then          . As discussed before, it is important that it 

is possible that the assumptions in a derivation describe the same situations, as it is assumed 

that the actual situation is one of them. It would for instance be nonsensical to make an 

assumption that “Mary had a headache for more than 3 hours” and that “Mary had a 

headache for less than 3 hours” in the same derivation11.  To check that there are situations 

denoted by all assumptions, it may be determined whether the multi-configuration pairs 

denoting them are compatible. 

Consider the following multi-configuration pairs denoting the assumption in the example 

above: 

1.                                           3  , and 

2.                                           3   

Clearly the configuration sets of 1 and 2 are disjoint. The fact that they are disjoint obviously 

arises from the fact that 1 and 2 cannot denote same situations. It is impossible for   to 

contain an interval that has a duration that is more as well as less than 3 time units. The 

combined multi-configuration pair of 1 and 2 will have an empty configuration set, since 

there are no configurations in the configuration sets of both 1 and 2. The fact that the 

configuration set of the combination of 1 and 2 is empty does directly arise from the fact 

that they cannot possibly describe the same situations. Since the configuration set of the 

combination of 1 and 2 is empty, 1 and 2 are incompatible. 

Since we are able to determine what assumptions exactly may need to be made in a 

derivation and we are able to determine whether it is possible to make multiple assumptions 

in a derivation, it is possible to define the notion of a defeasible derivation in the proposed 

logic. Assumptions are part of a defeasible derivation and assumptions that are 

incompatible, as defined above cannot be made in the same derivation. Including 

assumptions in derivations makes it possible to make it explicit on which assumptions they 

are based. This will be of great importance later in the dialectical process. 

The definition of a defeasible derivation in the proposed logic is similar to the definition in 

(García & Simari, 2004). The only difference is that when temporal rules are used, their 

                                                        

11 Providing that the assumption is made on the same fact/literal, i.e. the assumption is 

about the same time Mary had a headache. 
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assumptions are part of the derivation and the assumptions in the derivation should all be 

compatible. This makes sure that assumptions made in the derivation are consistent. 

DEFINITION 4.28 (DEFEASIBLE DERIVATIONS) 

Let         be a de.l.p.. A defeasible derivation of a literal   

from  , is a finite sequence              of ground literals 

and assumptions and each    is in the sequence because: 

    is a fact in  , or 

 There exists a rule    in   or   with head    and body 
         , and 
o Every              is a true temporal equation or 

an element    of the sequence appearing before    

     , and 

o If    is a temporal rule, then its assumption is an 
element    of the sequence appearing before   , 

     , and 

o If    is a temporal rule, then its assumption is 

compatible with the combined assumptions of all 

assumptions prior in the sequence 

A multi-configuration pair is called the assumption of the 

derivation of a literal   if and only if it is the combined multi-

configuration pair of all assumptions in the derivation of  . 

Below is an example of a defeasible derivation. 

EXAMPLE 4.27 (DEFEASIBLE DERIVATIONS) 

Consider the following de.l.p.            , with  

  

 
 
 
 

 
 
 

              
                                    2    

                                                  

                2     
        3          

             2       
        3          

 
 
 

 
 
 

 

and    . 

There is a defeasible derivation for         3          from 

     , viz. 
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        3                      2       

 
         3                      2        

    3                  2                             
 

          3                 3                           2  

        3                  3                  3         

  

. 

In (García & Simari, 2004) strict derivations are derivations in which only facts and strict rules 

are used, arguments based on strict derivations cannot be defeated. In the proposed logic 

however, a literal that is derived on basis of assumptions may be false, since the actual 

situation may be one of the situations that is not denoted by the assumption. In other 

words, assumptions may be false. Therefore, a literal derived on basis of only strict rules and 

facts and assumptions could also be false and should be defeasible, even though no 

defeasible rules have been used. This possibility more specifically arises in case the 

combined multi-configuration pair of all assumptions in the derivation does not denote all 

possible situations on basis of its temporal literal sequence. Such a combined multi-

configuration denotes the assumption that the actual situation is one of the situations 

denoted by it and not one of the other situations that are possible according to its temporal 

literal sequence. The actual situation in the “real world” could however very well be any of 

these other possible situations. Since this is a possibility, it may also be possible that the 

literal that is derived is false. Therefore, in the proposed logic derivations are only 

considered to be strict if only strict rules and facts are used and in addition, if the combined 

multi-configuration set of all assumptions in the derivation is complete. 

DEFINITION 4.29 (STRICT DERIVATIONS) 

Let         be a de.l.p.. Let   be a literal with a defeasible 

derivation              from  . We will say that   has a strict 

derivation from  , if and only if: 

 either   is a fact in  , or all rules used for obtaining the 

sequence            are strict rules, and 

 if            contains assumptions, then the combined 

multi-configuration pair of all assumptions in            

is complete. 

Below is an example of a strict derivation. 

EXAMPLE 4.28 (STRICT DERIVATIONS) 

Consider de.l.p.       from example 4.27 once again. 

There is a strict derivation for         3          from      , 

viz. 

 
        3                         2     

        3                  3                  3         
 . 
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Literal         3          cannot be derived strictly from      , 

since the third rule in   has to be used to derive 

        3          and an assumption has to be made to do 

this. This assumption is not a complete multi-configuration pair. 

In the next section, argument structures are defined on basis of the definitions of strict and 

defeasible derivations above. Attack and defeat between arguments are defined as well. 

4.4 ARGUMENT STRUCTURES, ATTACK AND DEFEAT 

Similar to (García & Simari, 2004), in the proposed logic, the notion of a contradictory set of 

rules is used in the definition of an argument structure. The definition of a contradictory set 

of rules is different from the definition in (García & Simari, 2004). Complementary literals 

however are defined in a similar manner. 

DEFINITION 4.30 (COMPLEMENTARY LITERALS) 

Let    and    be literals.    and    are said to be 

complementary if and only if        or if       . 

Below are some examples of complementary literals. 

EXAMPLE 4.29 (COMPLEMENTARY LITERALS) 

The following literals are complementary: 

      and       

        and         

                3          and 

                3          

The following literals are not complementary: 

       and       , where       

        and        , where     

                3          and 

                   3          

In the proposed logic there are two kinds of literals, temporal and non-temporal ones. In 

(García & Simari, 2004) a set of rules is contradictory if two complementary literals can be 

derived. For non-temporal literals this definition remains valid. Temporal literals however do 

not necessarily contradict each other if they are complements. Normally a contradiction 

arises when it can be derived that something is true as well as false. Temporal literals take 

temporal information into account. When temporal information is taken into account, there 

is a contradiction if something is true and false at the same time. A temporal literal 

containing a temporal term denoting an interval set with multiple intervals expresses that it 
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can be true at any of the intervals in its temporal term. This means that if there are two 

temporal literals that are complements, one of the groups of situations they denote may not 

be contradictory. 

As an example, let                  and               be temporal literals, where    and 

   are not overlying. Clearly these literals are complementary. On basis of the information in 

these literals, the following four groups of situations can be described: 

1. The relation   between    and    holds at interval    and does not 

hold at interval    

2. The relation   between    and    holds at interval    and does not 

hold at interval    

3. The relation   between    and    holds at interval    and does not 

hold at interval    

4. The relation   between    and    holds at interval    and does not 

hold at interval    

Clearly the situations described in 1 and 4 are contradictory and thus are not possible. The 

situations described in 2 and 3 clearly are possible on basis of the information in the 

complementary literals.                  and                   thus do not only describe 

situations that are contradictory and a set of rules deriving them should not be considered 

contradictory as long as no other contradictions can be derived from them. Note that the 

multi-configuration set                                                          is 

complete. 

Two temporal literals are contradictory if all situations they denote are contradictory. In that 

case, there are no possible situations on basis of the information in those temporal literals. 

This means that if two temporal literals are contradictory, then any multi-configuration pair 

containing these temporal literals in their temporal literal sequence has an empty 

configuration set, even if they are complete. 

As an example, let               and                   be temporal literals, where    

overlies with   . The following groups of situations can be described: 

1. The relation   between    and    holds at interval    and does not 

hold at interval    

2. The relation   between    and    holds at interval    and does not 

hold at interval    

Clearly both groups contain only situations that are contradictory and thus not possible. It 

follows from definitions 4.15, 4.17 and 4.18 that multi-configuration pair 
                                      is complete. The fact that the configuration set is 

empty follows directly from the fact that all situations that can be described on basis of the 

information in it are contradictory. 

In some cases, a set of more than two temporal literals is contradictory, while any subset of 

this set is not. As an example, let                 ,                and                be 
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temporal literals. Let    and    not be overlying. The following groups of situations can be 

described: 

1. The relation   between    and    holds at interval    and does not 

hold at interval    and interval    

2. The relation   between    and    holds at interval    and does not 

hold at interval    and interval    

Clearly all situations described above are contradictory and multi-configuration pair 
                                                     is complete. Any complete multi-

configuration pair containing a subset of the temporal literal sequence in the multi-

configuration pair above contains a non-empty configuration set. It may therefore be 

concluded that contradiction may arise from more than two temporal literals. 

The definition of a contradictory set of temporal literals is below. 

DEFINITION 4.31 (CONTRADICTORY SETS OF LITERALS) 

A set of literals             is contradictory if and only if: 

 There are two non-temporal literals         and    and 

   are complements, or 

   contains a subset of temporal literals           and 

multi-configuration pair               is complete. 

Below are some examples of sets of literals that are contradictory. 

EXAMPLE 4.30 CONTRADICTORY SETS LITERALS 

The following sets of literals are contradictory: 

              

                           

                             , where    and    overlie 

                                                   

The following sets of temporal literals are not contradictory: 

                       , where       

                             , where    and    not 

overlie 

                                                   

A set of rules can now be defined as contradictory if the set of literals derived from it is 

contradictory. 

DEFINITION 4.32 (CONTRADICTORY SETS OF RULES) 
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A set of rules and facts is contradictory if and only if there exists 

a defeasible derivation for a set of literals from it that is 

contradictory. 

Below is an example of a contradictory set of rules. 

EXAMPLE 4.31 (CONTRADICTORY SETS OF RULES) 

Consider the following set of facts and rules: 

 
 
 
 
 

 
 
 
 

             

              
              
              

                   

              
      2 3   2  3     

             
 
 
 
 

 
 
 
 

 

From this set the literals                   ,             , 

       2 3   2  3     and               may be derived. 

The complete multi-configuration pair of a temporal literal 

sequence containing these literals has an empty configuration 

set. The set of rules and facts above is thus contradictory. 

Argument structures in the proposed logic are defined similar to the argument structures in 

(García & Simari, 2004). There are however some differences. While argument structures in 

DeLP contain a set with only defeasible rules, argument structures in the proposed logic 

contain a set with defeasible as well as strict rules. This is necessary since defeasibility in the 

proposed logic does not only arise from the use of defeasible rules, but also from the use of 

interval sets and assumptions. 

In (García & Simari, 2004), there is a convention that the set of strict rules and facts in a 

de.l.p. is not contradictory, since only indefeasible literals may be derived from this set. In 

the proposed logic this would not make a lot of sense since it is possible to make 

assumptions when using strict rules. The replacing convention in the proposed logic will thus 

be that the set of literals that have a strict derivation from a de.l.p. is not contradictory. In 

(García & Simari, 2004), the union of the set of rules in an argument structure and the set of 

strict rules and facts is not allowed to be contradictory, to prevent the creation of argument 

structures that are self-defeating. This requirement is adopted in the proposed logic in  a 

form that is adapted according to the new convention. 

Argument structures are used to attack and defeat each other. In (García & Simari, 2004), an 

argument structure can attack another argument structure if their conclusions are 

complements. As shown before, in the proposed logic contradiction may arise from literals 

that are not complements or from more than two literals. Attack is in principle a binary 

relation and to not unnecessarily complicate the argumentation process, it should be kept 
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that way. The way in which the new notion of contradiction between literals is incorporated 

in the proposed logic is by defining argument structures to have a set of literals as their 

conclusion instead of a single literal. In that way, most of the argumentation process defined 

by (García & Simari, 2004) stays intact, while attack between argument structures still is only 

possible if their conclusions contradict each other. In addition, it provides the possibility to 

put restrictions on the sets of argument structures that attack each other. One of the 

restrictions may be that the assumptions on which they are based need to be compatible 

(the third requirement in the definition below). If needed, these restrictions can be easily 

adapted by adding or removing requirements from definition 4.33. 

DEFINITION 4.33 (ARGUMENT STRUCTURES) 

Let             be a non-empty set of literals. Let 

        be a de.l.p.. Let the subset of facts in   be denoted 

by  . Let the set of literals that have a strict derivation from   

be denoted by  . We say that       is an argument structure 

for the literals in  , if   is a set of defeasible and strict rules of 

  and  , such that: 

1. There exists a defeasible or strict derivation for each of the 

literals in   from    , and 

2. The set     is non-contradictory, and 

3. The assumptions of the temporal rules in   are 

compatible, and 

4.   is minimal: there is no proper subset    of   such that 

the literals in   can be derived from    and    satisfies 

conditions 1., 2. and 3.. 

REMARKS 

The conclusion of an argument structure does not need to 

contain all literals that can be derived by the rules in its 

argument as long as 1., 2., 3. and 4. are satisfied and the 

conclusion is not empty. 

EXAMPLE 4.32 (ARGUMENT STRUCTURES) 

Let             be a de.l.p. with    
              

               
                  

  

and 

                                           . 

There are strict derivations for literals                    and 

               from      . Their argument structures are 
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                         and                      

respectively. 

There is in addition a strict derivation for                   , 

its argument structure is 

 
                                        

                    
 . 

There is also a strict derivation for                     from 

     . Its argument structure is 

 
                                         

                     
 . 

There is a defeasible derivation for                   . There is 

however no argument structure for this literal, since a set 

containing this literal and the literals that are derived strictly is 

contradictory. 

The following are additional argument structures: 

                                           

  
                                        

                                   
  

Subargument structures are defined the similar as in (García & Simari, 2004). 

DEFINITION 4.34 (SUBARGUMENT STRUCTURE) 

An argument structure        is a subargument structure of 
       if    . 

EXAMPLE 4.33 (SUBARGUMENT STRUCTURES) 

Consider the argument structure for literal                    

in example 4.32 once again. The argument structure for 

                   is a subargument structure of it. 

Disagreement in the proposed logic is between two sets of literals instead of between two 

literals. In addition, in the definition below, the set of strict rules and facts has been replaced 

by the set of literals that have a strict derivation. This has to do with the changed convention 

that the set of literals that have a strict derivation is not contradictory instead of the set of 

strict rules and facts. The definition is otherwise equivalent to the corresponding definition 

in (García & Simari, 2004). 

DEFINITION 4.35 (DISAGREEMENT) 
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Let         be a de.l.p.. Let   be the set of all literals that 

have a strict derivation from  . A non-empty set of literals    

and a non-empty set of literals    disagree if and only if the set 

        is contradictory. 

REMARKS 

An extra requirement to rule out cases in which one of the 

disagreeing sets by itself is contradictory is not necessary, since 

disagreement is used to define which arguments attack each 

other and the conclusions of arguments cannot be 

contradictory according to the second requirement in definition 

4.33. 

Counterarguments are defined similar as in (García & Simari, 2004). The only difference is 

that argument structures have a set of literals as their conclusion. 

DEFINITION 4.36 (COUNTERARGUMENTS) 

We say that         counterargues, rebuts or attacks         

at the literals in  , if and only if there exists a subargument 
      of         such that   and    disagree. 

It is possible to base a preference criterion on how strong the assumptions made in the 

derivations of the literals in the conclusion of an argument structure are. Let   be a 

temporal rule with temporal literal sequence   and with temporal equation      . Let 
      be a complete multi-configuration pair. The temporal constraint of   is   and its 

assumption is        . As discussed before, the number of groups of situations denoted 

by a multi-configuration pair is the same as the number of configurations in its configuration 

set. Let the cardinality of   be denoted by the natural number    and let the cardinality of 

    be denoted by the natural number   . This means that there are    groups of possible 

situations in the “real world” on basis of the temporal literals in   and    of them meet the 

constraints. 

Consider now a case where      . In that case, there are no configurations in  , which are 

not in  , i.e. all configurations in   meet the constraints. This means that all possible 

situations in the “real world” meet the constraints. This furthermore means that there is no 

chance that in the actual situation the constraints are not met. Therefore, the assumption 

made when deriving the head of the rule is as strong as possible. The assumption strength in 

this case would be 
  

  
  , which is indeed the highest number for assumption strength 

possible. When the assumption strength of a rule is  , this means that actually no 

assumption needs to be made since it is sure that constraints are met. 

Now consider a case in which        In that case, there are configurations in  , that are not 

in  , i.e. there are configurations in   that do not meet the constraints. This means that 

there are possible situations in the “real world” in which constraints are not met. Therefore 
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the assumption strength should be lower than in the case where all possible situations meet 

the constraints. The assumption strength in this case would indeed be lower than 1, since if 

     , then 
  

  
  . 

The strength of the assumption made when the head of a rule is derived, should depend on 

the number of groups of possible situations in the “real world” relative to the number of 

groups of possible situations that meet the constraints and are thus in the assumptions. If in 

a rule the number of groups of possible situations is much higher than the number of groups 

of possible situations that meet the constraints, then in general the chance that the actual 

situation meets the constraints is low. Therefore the assumption made in the rule is weak 

and the rule has a low assumption strength. If in a rule the number of groups of possible 

situations is a bit or not at all higher than the number of groups of possible situations that 

meet the constraints, then in general the chance that the actual situation meets the 

constraints is high. Therefore the assumption made in the rule is strong and the rule has high 

assumption strength. 

Since assumptions are expressed by multi-configuration pairs, the assumption strength of a 

rule is defined as the assumption strength of the multi-configuration pair that is its 

assumption. Assumption strength of argument structures is defined as well. A preference 

criterion is subsequently based on these definitions. 

DEFINITION 4.37 (ASSUMPTION STRENGTH OF MULTI-CONFIGURATION 

PAIRS) 

Let        be a multi-configuration pair. Let        be a 

complete multi-configuration pair. The rational   is said to be 

the assumption strength of        if and only if   
    

    
. 

Let   be a temporal rule and let        be its assumption.   is 

said to be the assumption strength of  . 

REMARKS 

Assumption strength is in no way implied to be an exact 

measurement of the chance that an assumption is “true”, since 

in an interval set some intervals may have a higher chance of 

being the interval at which a predicate is actually true in the 

“real world” than others. This information is however not taken 

into consideration in the system and therefore assumption 

strength cannot be seen as anything more than a rough 

estimation of the chance that the actual situation is as in the 

assumption. 

EXAMPLE 4.34 (ASSUMPTION STRENGTH) 
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The following are assumptions of rules and their assumption 

strength: 

  
         2   3       

      2   3                     
  and 

 

 
   

  
       3                  2        2     

  3             2        2                          
  

and 
 

 
 

  

         2                       2  3           3              
    2                  2  3      3            

            

              

              

             
 

  

and 
 

 
 

To derive literals, multiple assumptions may need to be made. The assumption strength of 

an argument structure for a set of literals should be based on all assumptions of the 

temporal rules used to derive them. The situations denoted by all assumptions of all 

temporal rules in an argument structure can be denoted by their combined multi-

configuration pair. The assumption strength of an argument structure is thus the assumption 

strength of this combined multi-configuration pair. 

DEFINITION 4.38 (ASSUMPTION STRENGTH OF ARGUMENT 

STRUCTURES) 

Let       be an argument structure. Let           be the set 

of all temporal rules in  . Let                   be the 

assumptions of         respectively. Let       be the 

combined multi-configuration pair of                  . Let 

  be the assumption strength of      .   is said to be the 

assumption strength of      . 

On basis of definition 4.38 a preference criterion is defined. Using this preference criterion, 

argument structures are preferred that are based on stronger assumptions. It can freely be 

adjusted and augmented to prefer for instance sets of argument structures based on more 

strict rules or more facts. 

DEFINITION 4.39 (PREFERENCE CRITERION) 

Let         and         be argument structures.         is 

preferred over        , denoted                 if and 

only if the assumption strength of         is greater than the 

assumption strength of        . 
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Proper and blocking defeat in the proposed logic is defined the same as in (García & Simari, 

2004). The only difference is that argument structures have a set of literals as their 

conclusion. 

DEFINITION 4.40 (PROPER DEFEATER) 

Let         and         be two argument structures.         

is a proper defeater for         at the literals in  , if and only if 

there exists a subargument       of         such that         

counterargues         at the literals in   and         
     . 

Corresponding to (García & Simari, 2004), an argument structure is a blocking defeater of 

another argument structure if it attacks it and the argument structures are unrelated by the 

preference order. 

DEFINITION 4.41 (BLOCKING DEFEATER) 

Let         and         be two argument structures.         

is a blocking defeater for         at the literals in  , if and only 

if there exists a subargument       of         such that 
        counterargues         at the literals in   and         

is unrelated by the preference order to      , i.e.         
     , and              . 

In accordance with (García & Simari, 2004), a set of argument structures defeats another set 

of argument structures if and only if it is its proper or blocking defeater. 

DEFINITION 4.42 (DEFEATER) 

Let         and         be argument structures.         is a 

defeater for        , if and only if either: 

         is a proper defeater for        ; or 

         is a blocking defeater for        . 

In the next section, the dialectics of the proposed logic are defined and discussed. 

4.5 DIALECTICS 

The argumentation process in the proposed logic is very similar to that of (García & Simari, 

2004). There are no major differences between the definitions in the proposed logic and the 

definitions in (García & Simari, 2004). Most differences that do exist stem from the fact that 

argument structures have a set of literals as their conclusion and do not interfere with the 

way the dialectics in DeLP work. A difference of another nature occurs in the definition of 

concordance. This definition is the only one in this subsection that has been adapted to a 
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greater extent. While the similarities between the argumentation process in the proposed 

logic and the argumentation process in DeLP are great, all definitions were still included to 

make the proposed logic complete. 

The definition of an argumentation line is the same, except for the conclusions of 

arguments. 

DEFINITION 4.43 (ARGUMENTATION LINES) 

Let   be a de.l.p. and         an argument structure obtained 

from  . An argumentation line for         is a sequence of 

argument structures from  , denoted 

                             , where each element of 

the sequence        ,    , is a defeater of its predecessor 
           . 

The notions of supporting and interfering argument structures have not been changed in the 

proposed logic. 

DEFINITION 4.44 (SUPPORTING AND INTERFERING ARGUMENT 

STRUCTURES)  

Let                               an argumentation line, 

we define the set of supporting argument structures 

                              , and the set of interfering 

argument structures                       . 

The notion of concordance was introduced by (García & Simari, 2004) to avoid circular 

argumentations in which arguments are reintroduced in an argumentation line, making it 

infinite. In (García & Simari, 2004) argument structures are concordant if their sets of rules 

together with the set of strict rules from a de.l.p. is not contradictory (see page 31). As 

mentioned before, using only strict rules, arguments may be constructed for literals that 

should be defeasible. Therefore, in the definition of concordance the set of literals that have 

a strict derivation are used instead. 

DEFINITION 4.45 (CONCORDANCE) 

Let         be a de.l.p.. Let   be the set of literals that have 

a strict derivation from  . Two arguments         and         

are concordant iff the set         is non-contradictory 

and their assumptions are compatible. More generally, a set of 

argument structures             
  is concordant iff      

 
    

is non-contradictory. 

The notion of an acceptable argumentation line is again similar to (García & Simari, 2004). 



 

 86 

DEFINITION 4.46 (ACCEPTABLE ARGUMENTATION LINE) 

Let                                 be an argumentation 

line.   is an acceptable argumentation line iff: 

1.   is a finite sequence 

2. The set   , of supporting arguments is concordant, and the 

set    of interfering arguments is concordant. 

3. No argument         in   is a subargument of an 

argument         appearing earlier in        . 

4. For all  , such that the argument         is a blocking 

defeater for            , if             exists, then 
            is a proper defeater of        . 

Dialectical trees are again defined similar to (García & Simari, 2004). 

DEFINITION 4.47 (DIALECTICAL TREE)  

Let         be an argument structure from a program  . A 

dialectical tree for        , denoted         , is defined as 

follows: 

 The root of the tree is labeled with        . 

 Let   be a non-root node of the tree labeled        , 

and                                       the 

sequence of labels of the path from the root to  . Let 

                          be all the defeaters for 
       . 

For each defeater                , such that, the 

argumentation line 

                                               is 

acceptable, then the node   has a child    labeled 

       . 

If there is no defeater for         or there is no         

such that    is acceptable, then   is a leaf. 

The nodes in a dialectical tree are marked exactly as described in (García & Simari, 2004). 

PROCEDURE 4.1 (MARKING OF A DIALECTICAL TREE) 

Let        be a dialectical tree for      . The corresponding 

marked dialectical tree denoted       
 , will be obtained marking 

every node in        as follows: 

 All leaves in        are marked as “ ”’s in       
 . 
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 Let       be an inner node of       . Then       will be 

marked as “ ” in       
  iff every child of       is marked 

as “ ”. The node       will be marked as “ ” in       
  iff 

it has at least a child marked as “ ”. 

At the end of the dialectical process, it is of course necessary to obtain an answer on a query 

for a literal. In (García & Simari, 2004) a literal is warranted if the root of its associated 

marked dialectical tree is marked as “ ”. This stays the same in the proposed logic. For a 

user it may in addition be important to know on what assumptions the warrant of a literal is 

based. If literals are warranted, then this does not only include the assumptions on which 

the derivations of the literals are based, but also the assumptions on which their supporting 

arguments are based. If literals are not warranted, then this is based on the assumptions of 

the interfering arguments in the path in the tree in which the argument structure with the 

literals in its conclusion is defeated. 

DEFINITION 4.48 (ASSUMPTIONS OF NODES IN A DIALECTICAL TREE) 

Let       be an argument structure and let       
  be its 

associated marked dialectical tree. Let         be a node in 

      
 . The supporting or interfering assumptions of         are 

the following: 

 If         is a leaf, then its supporting assumption is the 

assumption of         itself, and 

 If         is not a leaf and it is marked “ ”, then its 

interfering assumption is a disjunction of the supporting 

arguments of its children that are marked “ ”. 

  If         is not a leaf and it is marked “ ”, then its 

supporting assumption is a conjunction of the assumption 

of         itself and the interfering assumptions of each 

of its children 

Argument structures in the proposed logic can have multiple literals in their conclusion. This 

provides an extra advantage, namely that a user can query multiple literals. These are 

warranted together if they together are in the conclusion of an argument structure that 

emerges undefeated from the argumentation process. One query for multiple literals will 

only be warranted if they can be derived based on compatible assumptions. This is a 

consequence of the fact that literals derived using incompatible assumptions cannot be in 

the same argument according to definition 4.33. If one query is used for multiple literals and 

these literals together are not warranted, then it may be the case that they each (or some of 

them) are warranted if multiple queries are used, since in that case their assumptions do not 

necessarily need to be compatible. 

DEFINITION 4.49 (STRICTLY WARRANTED LITERALS)  
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Let       be an argument structure and       
  its associated 

marked dialectical tree. The literals in   are warranted under its 

supporting assumptions if and only if the root of       
  is 

marked as “ ”. 

In (García & Simari, 2004) a query for a literal   is answered     if   is warranted and    if 

its complement is warranted. As discussed before, a complement of a temporal literal does 

not necessarily contradict it. The definition of an answer to a query is adapted accordingly. 

DEFINITION 4.50 (ANSWER TO QUERIES) (GARCÍA & SIMARI, 2004) 

There are four possible answers for a query of a set of literals  : 

     under assumption  , if   is warranted under 

assumption   

    under assumption   if a set of literals   is warranted 

under assumption   and     is contradictory 

          , neither  , not a set of literals  , such that 

    is contradictory, is warranted 

        , if   contains one or more literals that are 

not in the language of the program 
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5 PROOF OF CONCEPT IMPLEMENTATION 

To demonstrate the feasibility of the proposed temporal argumentation logic, a proof of 

concept implementation was made using SWI-Prolog. Prolog was chosen as the language of 

the implementation since it is a high-level language in which it is possible to describe 

complex and abstract things and thus is very suitable for rapid prototyping (Blackburn, Bos, 

& Kristina, 2006). The properties stated above make it possible to translate the definitions in 

this thesis reasonably direct into the language of the implementation, which is of course an 

advantage in a proof of concept implementation. 

The sole purpose of this implementation of the proposed logic is to demonstrate the 

feasibility of the proposed logic in a medical diagnostic system. This means that no effort 

was made to make the implementation efficient or fast. In addition, the program is not 

complete. The argumentation process of the proposed logic was not included in the 

implementation, since it is based on and very closely resembles the argumentation process 

of DeLP. García and Simari already made a fine implementation of DeLP and thus 

demonstrated the feasibility of the argumentation process. The proposed logic is 

implemented up until the point it can be determined which of two counterarguments is 

stronger according to the preference criterion. 

Functions on interval sets and intervals are defined in the proposed logic as being equal to 

their outputs, e.g.          2 3           . It is however not possible to define a function 

in this way in Prolog. In Prolog, the implementation of the function        on an interval set 

should have two arguments, one being its input and one being its output. The same 

problems appear when functions are used to define a temporal criterion in a temporal rule. 

These problems are clearly caused by the choice of Prolog as the language of the 

implementation and not by the proposed logic itself. They may also indicate that Prolog 

should not be the language of choice for an implementation of the proposed logic in a 

medical diagnosis system. The purpose of implementing the proposed logic is to 

demonstrate its feasibility and not to solve the issues Prolog has with functions. Since the 

functions on interval sets denote interval sets, all temporal arguments of temporal literals 

are interval sets and they are not functions on interval sets. The same is the case for 

temporal constraints; they are configuration sets in the implementation and are not defined 

by functions on intervals. 

In the implementation for each of the definitions in this thesis, a Prolog-predicate was made. 

In some cases additional predicates had to be written to support the predicates 

implementing the definitions. It was tried to translate the definitions as literally as possible 

into Prolog, which succeeded in most cases. In the example below, such a literal translation 

of definition 4.8 into a Prolog-predicate is shown. 

EXAMPLE 5.1 THE PROLOG-PREDICATE FOR STRICT RULES 

The prolog-code below is used to implement definition 4.8. 
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% strict_rule(+Rule) is true if Rule meets the 

% requirements of a strict rule as defined in 

% definition 4.8. 

 

strict_rule(Literal1<-[Literal2]):- 

     literal(Literal1), 

     literal(Literal2). 

 

strict_rule(Literal1<-[Literal2|T]):- 

     literal(Literal2), 

     strict_rule(Literal1<-T). 

 

In the proof of concept implementation, it is possible to include rules containing variables as 

long as these variables are not part of the temporal equation of a rule. This is due to the 

aforementioned problems with Prolog and the way functions are defined in the proposed 

logic. There is no way to make a function equal to its output and thus there is no way to 

define temporal constraints by using functions on intervals or to define a function 

determining the configuration set of the complete configuration pair of the temporal literals 

in a rule. There are probably various ways to circumvent this problem, it was however 

decided not to use them, since this would again just be the solving of the problems Prolog 

has with functions and this would not contribute to demonstrating the feasibility of the 

proposed logic. 

Each definition implemented in the proof of concept implementation was tested using their 

corresponding examples from the section above. In cases there were not enough examples 

available to test an implemented definition, additional examples were made. The tests of 

each of the implemented definitions resulted in the desired and expected outputs. The proof 

of concept implementation thus demonstrated the feasibility of the proposed logic. 
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6 THE PROPOSED TEMPORAL ARGUMENTATION LOGIC AND THE 

REQUIREMENTS 

In section 2 some requirements for a medical diagnosis program were established. In this 

section, the fulfilling of each of these requirements by a system that contains the proposed 

logic is discussed. Each section in this chapter treats one of the corresponding requirements 

described in chapter 2. 

6.1 INCOMPLETE INFORMATION 

As discussed in chapter 2.1, incomplete information is one of the most important things a 

medical diagnostic program should be able to handle. The proposed logic is an 

argumentation logic. In argumentation logic, when information is incomplete literals are 

derived on basis of the information that is available. If some of the missing information 

becomes available later, the derived literals may be defeated. Missing information is 

essentially handled as in the Tweety-example at page 12. If information is missing that 

Tweety is a penguin, then it will be derived that Tweety flies, since this is generally the case 

for birds. If the missing information that Tweety is a penguin becomes available, then 

“Tweety flies” may be defeated. 

Consider a defeasible rule stating that “if someone sneezes, then they generally have a 

cold”, a defeasible rule stating “if someone has a high fever then they generally do not have 

a cold” and a defeasible rule stating that “if someone sneezes and has a fever, then they 

generally have the flu”. Suppose that Mary sneezes and that information on whether she has 

a fever is missing. In that case, it may be derived that she has a cold, which is the most 

probable in case nothing is known about whether Mary has a fever12. If information that she 

has a high fever becomes available, then “Mary does not have a cold” may be derived, 

defeating “Mary has a cold”. Furthermore, it may be derived that Mary has the flu. If it is not 

feasible to have rules such as the second rule in the program, both “Mary has a cold” and 

“Mary has the flu” may be derived. Then a choice has to be made between whether Mary 

has only a cold, only the flu, both or none of both. This is the problem of multiple or single 

diseases stated in section 2.3, a way of choosing one of the alternatives is proposed in 

section 6.3. 

Another way in which incomplete information can be handled is by using negation as failure 

more explicit. When negation as failure is used, it is assumed that a literal is not true when it 

cannot be derived that it is. Again, when more information becomes available from which it 

can be derived that the literal is true, this conflict is taken care of by the argumentation 

process. García and Simari propose an extension of DeLP in which negation as failure may be 

used. There are no obvious obstructions to extending the proposed logic with negation as 

                                                        

12 If it is not the case that it is the most probable that someone has a cold if they sneeze and 

no information about whether they have a fever is available, then the rule should be 

adapted to state “If someone sneezes and does not have a fever, then they have a cold”. 
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failure in the same way. Further research should however establish whether this is in fact 

possible. 

It may be possible to extend the proposed logic to deal with incomplete information even 

better. To do this, all unknown facts may get a default value assigned; the value they are 

most likely to have if they are unknown. Subsequently a preference criterion may be defined 

in which the defaults and literals derived on basis of these defaults may be defeated when 

contradictions arise with literals that are known facts or derived on basis of (more) known 

facts. García and Simari propose an extension of DeLP with presumptions. These 

presumptions may be used as defaults. Again, there are no obvious obstructions to 

extending the proposed logic in the same way, but further research should establish 

whether this is really the case. 

A system implementing the proposed logic can in addition be extended with a feature that 

computes the informative value of missing information and that subsequently requests the 

most informative missing information from the user. Though such a feature may be very 

useful, logic probably will not be the most suitable way to realize it. The proposed logic may 

however be used by the program to gain information about how informative certain missing 

information is. Whether and what changes need to be made to the proposed logic to serve 

this purpose may be investigated in future research. 

The way in which completely or partially missing temporal information is handled in the 

proposed logic is discussed in section 6.5. 

6.2 CONTRADICTIONS 

Argumentation logic in general is very well suited to deal with contradictions. If a 

contradiction is derived in an argumentation logic one of the contradictory literals is 

defeated by the other, depending on the preference criterion. How well a system 

incorporating the proposed logic handles contradictions does thus depend on the choice of 

the preference criterion. 

The proposed logic does not distinguish contradictions that arise due to mistakes. It is 

however possible to make the argumentation process clear to users. If necessary, they can 

identify contradictions due to mistakes and correct them by adding additional facts and rules 

or change them. When a contradiction arises because of disagreement in the medical 

domain, then the preference criterion may be adapted to suit the preferences of the user of 

the program.  

6.3 SINGLE OR MULTIPLE DISEASES 

In the proposed logic, it is possible that argument structures have multiple conclusions. This 

means that a user may make a query for multiple literals or a single one. A user may 

determine on basis of the order the argument structures for multiple or single literals have 

according to the preference criterion which of the argument structures is “stronger”. This 

may aid them in determining whether it is more probable that a patient has multiple 
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diseases or suffers just from a single one. The preference criterion may for instance be based 

on the strength of assumptions, specificity or the strength of the rules used in the derivation 

of the literals. In addition, the preference criterion may be adapted to prefer argument 

structures having certain combinations or numbers of literals in its conclusion. Additional 

facts and rules may be added to the system if more certainty is needed. 

In the example in section 2.3 three possibilities were considered. The first was that the 

patient has only         , the second was that the patient only has          and the third 

was that the patient has both diseases. In the proposed logic for each of the possibilities an 

argument structure can be constructed, let them be                ,                 and 
                         respectively. The third argument structure of course can only be 

constructed if the assumptions on which          and          were derived are 

compatible, otherwise, this could indicate that the patient probably does not have both 

diseases (see section 4.3). The argument structures above can be ordered according to some 

preference criterion. As mentioned above, this preference criterion could be based on 

several relevant factors and the choice of preference criterion clearly is vital in this case. 

Users could then use the order on the arguments above to determine which argument 

structure is “stronger” (i.e. is preferred according to the preference criterion). This in turn 

could help them determining whether it is more probable that the patient has         , 

         or both diseases. It is important to remark here that the preference criterion does 

not give an absolute probability of whether a patient has multiple diseases or a single one, 

when it is chosen right it just gives a rough indication. In addition, the user of course 

ultimately has the responsibility of choosing the right diagnosis and the order on argument 

structures can just be supporting in making that choice. 

It may be possible to automate the process of choosing between multiple or single diagnoses 

by treating their argument structures as if they attack each other. How this exactly should be 

realized may be subject to further research. 

6.4 EXCLUSIONARY CRITERIA 

In the proposed logic, it is possible to use exclusionary criteria to rule out certain conditions 

under certain circumstances. Exclusionary criteria can be formulated in the form of strict or 

defeasible rules in which the antecedent contains the exclusionary criterion and the 

consequent contains the negation of the literal that should not be derived in case the 

exclusionary criterion is true. Using such rules, if a literal that should be excluded is derived, 

its negation may also be derived, resulting in two counterarguments. In the argumentation 

process, the one of the two counterarguments may be defeated. In case the preference 

criterion is chosen correctly, this should be the argument structure for the literal that should 

be excluded. 

Consider the example in section 2.4 once again. There may be two rules in a system 

implementing the proposed logic. The rule by which cholecystitis may be may be derived, 

viz.                                  and the rule by which cholecystitis may be 
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excluded, viz.                               13. In the case the antecedents of both 

rules are true, two argument structures can be constructed in the proposed logic, namely 
                     and                      . Clearly these argument structures are 

counterarguments of each other, therefore               or                is defeated. If 

the preference criterion is chosen correctly,                will be preferred over 

              and               will be defeated. 

As mentioned in section 2.4, exclusionary criteria may also be included in the antecedent of 

a rule. This is also not a problem since negations in the antecedents of rules are allowed. 

6.5 TEMPORAL INFORMATION 

It is possible in the proposed logic to formulate criterions on the temporal aspects of the 

literals in the antecedent of a rule. The relationships between intervals as described by 

(Allen, 1983) may be used for this purpose. These relationships describe all possible 

relationships between intervals, however if for some reason it is needed to describe 

additional criterions on temporal aspects of literals, there are no obvious obstacles to adding 

the appropriate functions to the language of the logic. 

The proposed logic distinguishes itself from other prior existing argumentation logics by 

incorporating a way to express partial temporal information and by providing the possibility 

to reason with this partial information.14 Partial temporal information can be expressed in 

complex ways if necessary and may depend on partial or complete temporal information 

about other literals. In addition to the functions on interval sets already defined for this 

purpose, there are no obvious obstructions to defining supplementary functions, such as 

                or                 , where   denotes an interval set. 

The dependency of the description of partial temporal information about a literal on the 

temporal information of another literal may however in some cases cause difficulties. 

Consider the following facts:               and                 , where   

          and           . For these facts, it may not be immediately possible in the 

proposed logic to determine which intervals are exactly in their temporal literal sequences. 

There are several solutions to such a problem. The first is to consider it as a mistake in the 

input of a system incorporating the proposed logic and not as a problem of the logic itself. 

The second solution could be to redefine the functions on literal sets in such a way that if the 

above occurs in the set of facts of a de.l.p., the result of the functions is a temporal literal 

                                                        

13 For the sake of clarity, the rules are kept as simple as possible and no temporal terms are 

used. 

14 To my knowledge, at this time no other argumentation logic exists that can do the same. It 

may however be the case that such an argumentation logic did exist prior to my thesis and 

that I missed it during my research. In that case, this claim should be considered defeated. 
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sequence containing all intervals in the time span considered by the system 15. The best way 

to detect cycles such as the one described above and the best solutions to them should be 

determined by future research. 

A direct consequence of reasoning with partial temporal information is that assumptions 

may need to be made in the derivation of a literal. In the proposed logic “real” assumptions 

are only made if necessary and the exact assumptions on which the derivation of a literal is 

based can be made visible to a user (see section 6.7). A user can thus verify whether certain 

assumptions are reasonable from a medical point of view and in case they are not, or in 

cases additional temporal information has become available, users can adapt incorrect rules 

or add and change facts. One obvious disadvantage of making assumptions in the derivation 

of a literal is that there are greater chances that things are derived that are not true. It is 

however possible give an indication of the “strength” of an assumption to the user by using 

the notion of assumption strength of an argument structure (definition 4.38). Furthermore, 

uncertainty is inherent to reasoning with partial information, it is better to make this explicit 

than implicit. Uncertain information in most cases seems to be better than no information at 

all. 

As discussed in the introduction of section 4, temporal information may not only be partially 

available or completely missing, it may also be the case that it is imprecise. In the proposed 

logic, imprecise temporal information may be reckoned with by making the temporal literal 

sequences of literals larger, i.e. by adding intervals. This may be done automatically by a part 

of a system incorporating the logic or by the user. Future research, (possibly in the domain 

of psychology) may focus on determining in which cases patients are imprecise in reporting 

temporal information and what intervals need to be added to an interval set in that case. 

6.6 CHAINING RULES 

In the proposed logic, clearly rules can be chained to derive a literal. In addition, there is no 

obstruction to using literals denoting diseases in the antecedent of a rule, since literals 

denoting symptoms and literals denoting diseases or other information are not distinguished 

from each other. 

6.7 CLARIFYING THE REASONING PROCESS 

The argumentation process of argumentation logic in general is very intuitive to users. In 

most cases, it is possible to clarify the argumentation process to users in some graphical 

way. The argumentation process in the proposed logic very closely resembles the 

argumentation process of DeLP. In the implementation of DeLP by García and Simari, the 

argumentation process is clarified to users graphically. Below is an example of the dialectical 

tree from their implementation for the query             from example 3.1.  

                                                        

15 Except for for instance the last interval for the function        and the first interval for 

the function      . 
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FIGURE 7 GRAPHICAL FRONT-END OF THE IMPLEMENTATION OF DELP BY GARCÍA AND SIMARI 
(AVAILABLE AT HTTP://LIDIA.CS.UNS.EDU.AR/DELP_CLIENT) 

Different options for viewing the dialectical tree are available in the graphical front-end of 

the implementation of García and Simari, such as showing the complete argument of a 

structure or hiding it. This makes it even easier for users to understand the reasons of why 

certain literals are defeated or not. Since the dialectical process of the proposed logic is 

based upon the dialectical process as defined in (García & Simari, 2004) and does not deviate 

much from it, it should be possible to make the dialectical process of the proposed logic 

clear in a similar way. 

In the proposed logic, the making of assumptions in a derivation and their contents are 

tracked very precisely and therefore it can be determined exactly on which assumptions the 

derivation of a literal is based. The syntax of a multi-configuration pair with its numerous 

brackets is suitable for a computer to reason with, it is however very unattractive to look at 

for a human. This problem could be solved by supplementing an implementation of the 

proposed logic with a component that presents the assumptions in a graphical way that is 

easier to understand by humans. Designing such a component should not be very hard since 
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all assumptions have the exact same form. Which graphical representation of assumptions is 

the most appropriate can be subject to further research. 
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7 CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH 

7.1 EVALUATION OF THE PROPOSED ARGUMENTATION LOGIC 

As discussed in section 6, the proposed logic meets all requirements stated in section 2 to a 

greater or lesser extent. There are, however, some additional advantages of using the 

proposed logic in a medical diagnosis system. One of these advantages is that it is possible to 

use it not only as a temporal argumentation logic, but also as just a temporal logic, just an 

argumentation logic or just as a logic. The first can be accomplished by using only strict rules 

and interval sets containing just one interval. The logic can be used in the second way by not 

including temporal rules and temporal literals. The last option can be accomplished by doing 

both, namely not including temporal rules and literals and using only strict rules. These 

different options make it possible for an implementation of the proposed logic to serve 

different purposes in a medical diagnostic system that is modular, such as a multi-agent 

system that incorporates multiple reasoning agents. 

The most apparent disadvantage of the proposed logic is that an implementation probably 

will not be very efficient. In the proof of concept implementation described in section 5, no 

attention was paid to efficiency. It became however apparent quickly that the 

implementation is not very efficient. In cases, there is not much temporal information 

available and the time span considered by the system is great, interval sets may become 

very large, computing the output of functions on them and their intersections may then 

require a lot of computations. This is also the case for the computations of other things, such 

as the complete multi-configuration pair of a temporal literal sequence. In addition, the 

obtaining of the set of ground rules instead of using schematic rules is not efficient. 

The size of an interval set does directly depend on the amount of temporal information that 

is available. The more information that is available, the smaller the interval sets are. In that 

light, needing to do more computations may just be considered a price to pay for reasoning 

with partial information. There may however be some other ways to reduce the number of 

computations. Heuristics may for instance be used to compute the output of functions on 

interval sets, to make interval sets smaller or to reduce the number of time points in the 

time span considered by the system. Since the emphasis of this thesis has not been on the 

efficiency of algorithms there may exist many more ways to reduce it. In addition, ways may 

be found to use schematic rules instead of ground ones. In the proof of concept 

implementation, schematic rules could be used when functions were not used in rules or 

facts. Since there is a problem with implementing functions in their usual way in Prolog, it 

may be the case that schematic rules containing functions may be used when another 

language is used to implement the proposed logic. 

Overall, the proposed logic seems suitable to use in a medical diagnostic system. It meets 

many important requirements that should be met by a logic in a medical diagnostic system. 

The fact that partial temporal information can be expressed and reasoned with in the 

proposed logic is considered its most important and distinctive feature. A medical diagnostic 

system implementing the proposed logic is feasible as demonstrated by a proof of concept 

implementation. The computational complexity of an implementation may get high quickly 
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when less temporal information is available. Ways to lower this computational complexity 

have not been investigated in this thesis and could be subject to further research. 

7.2  SUGGESTIONS FOR FURTHER RESEARCH 

In addition to the suggestions for further research given in sections 6 and 7.1, some other 

important and interesting matters could be investigated. The most important subject of 

further research that already has been mentioned is the computational complexity of an 

implementation, since this may be the weakest point of the proposed logic. 

An additional interesting subject to investigate would be the suitability of the proposed logic 

in other domains than the medical domain. As described in section 6, the preference 

criterion of the proposed logic is crucial to how well a system incorporating it performs. It 

may therefore additionally be important to determine what the best preference criterion is 

from a medical point of view and whether this is different for different medical domains.  

In the proposed logic, only temporal information may be partial. It would be very interesting 

and probably useful to see if it is possible to extend the proposed logic such that other types 

of partial or imprecise information can be reasoned with as well. It may also be interesting to 

see whether these other types of partial information can be incorporated in the logic the 

same way as is done with partial temporal information. An example would be a case in 

which it is unclear whether the blood pressure of a patient is normal or high (due to for 

instance an imprecise measurement). There is no obvious reason why a fact 

                                      representing this information could not be 

expressed in the proposed logic and reasoned with. From my point of view, this is the most 

interesting subjects to investigate further. 
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9 APPENDIX: OVERVIEW OF LOGICS CONSIDERED FOR A MEDICAL 

DIAGNOSTIC SYSTEM 

In the search for a logic that could be used as a basis for a medical diagnostic system, several 

types of logic have been evaluated. Most of these types of logic have not been investigated 

into great depth, since in many cases it already appeared very early in the process that the 

type of logic did not have the required properties for a medical diagnostic system. In most 

cases, several logics of the same type were studied. For each type of logic a summary of its 

syntax and semantics was made, furthermore, ideas were sketched on how the logic could 

be used in a medical diagnostic system. Additionally, the advantages and disadvantages of 

each logic for a medical diagnostic system were described. 

It was decided that it is not a good idea to include the complete output of these 

investigations in this appendix, since this would make this appendix far too massive. In this 

appendix, a very short description and a short summary of the evaluation of each of the 

types logics that have been investigated is provided. Only the most important properties 

that make a logic suitable or unsuitable for use in a medical diagnostic system are given. 

Nonmonotonic logic and argumentation logic are already discussed elaborately in this thesis 

and are therefore not discussed here. 

The information in the descriptions of the types of logics in this appendix was obtained from 

the online version of the Stanford Encyclopedia of Philosophy16. 

HYBRID LOGIC 

SHORT DESCRIPTION 

In hybrid logic, additional expressive power is added to modal logic. While in normal modal 

logic it is only possible to say something about the world you are in now (at a given moment 

in the reasoning process) and the worlds accessible from it, in hybrid logic it is possible to 

denote and reason about specific worlds that are not directly accessible from the world you 

are currently in. 

ADVANTAGES AND DISADVANTAGES 

Hybrid logic does not provide a direct way to express or reason with incomplete information 

conveniently. There are some ideas on how to change the logic, such that it is possible to do 

this. These ideas all are not very practical and require a lot of information about diseases 

and their probabilities. In addition, almost all ideas require the combination of hybrid logic 

with other types of logic. 

There is not a straightforward way to deal with contradictions in hybrid logic, the fact that it 

is possible to denote specific worlds may however be used to find a way to do this. There is a 

version of hybrid logic, called hybrid tense logic in which it is possible to reason with 

                                                        

16 See: http://plato.stanford.edu 
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temporal information. This may be an advantage of this logic. Hybrid logic and modal logic in 

general seems to be harder to understand for humans than for instance classic logic, it may 

thus be harder to make the reasoning process of a medical diagnostic system that is based 

on this logic clear to users.  

DEONTIC LOGIC 

SHORT DESCRIPTION 

In deontic logic, concepts as permissibility, obligatory and optionality can be expressed and 

reasoned with.  

ADVANTAGES AND DISADVANTAGES 

Several deontic logics have been investigated and were evaluated. Most of these logics did 

not have properties that are beneficial for a medical diagnosis program that for instance 

classic logic does not have. The most interesting was standard possible world Kripke 

semantics for standard deontic logic. In this semantics, a world   is accessible from a world   

if everything that is obligatory in   is obligatory in  . When every symptom and property of a 

patient that is known is considered obligatory, then it would be possible to use this 

semantics to determine which worlds (and thus diseases) are possible according to the 

known symptoms, providing a way to incorporate a way of reasoning with incomplete 

information. 

It is also possible that for diseases, certain symptoms have to be present (obligatory), while 

others may be present (optional) or may be impossible to occur with a disease 

(impermissible). Deontic logic could be used to model this. This would allow for a very 

intuitive way to include for instance exclusionary criteria. 

In the case a contradiction is derived and one of the contradictory sentences is obligated and 

the other is not, this could be used to determine which of the sentences should be rejected. 

It is however not possible to deal with all kinds of contradictions in this manner. 

Furthermore, this would mean that the logic should be modified severely to be able to reject 

the right sentences. 

MANY-VALUED LOGIC 

SHORT DESCRIPTION 

In many-valued logic, sentences can have more or other truth-values than only      and 

     . The truth-value of a compound sentence is determined by the truth-values of its 

component sentences. 

ADVANTAGES/DISADVANTAGES 

Sentences in many-valued logic may not only get assigned the value      or      , but also 

the value        . This may provide a way to define a reasoning process in which 

incomplete information can be dealt with in a sensible manner. 
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Contradictions in this logic may arise less often if more than the three truth-values 

mentioned above are used. It is however not clear what the semantics of a logic with these 

multiple truth-values should be and how these relate to the “real world” in which patients 

either have a symptom or a disease or do not17. Furthermore, this would probably make the 

logic very counterintuitive. Using multiple truth-values would thus probably make it harder 

to explain the reasoning process to users.  

RELEVANCE LOGIC 

SHORT DESCRIPTION 

In normal logic, it is possible to make very counterintuitive inferences. An example of this is 

that in normal logic, from a premises  , the consequent     may be derived. In relevance 

logic, it is attempted to avoid some of these counterintuitive paradoxes of implication. More 

specific, in relevance logic, inferences in which consequents have completely different topics 

as their antecedents are excluded. 

ADVANTAGES AND DISADVANTAGES 

The main advantage of relevance logic is that inferences in it are more intuitive. This may 

make it easier to explain the reasoning process to users. On the other hand, it may make it 

impossible to derive things that are true and useful but just counterintuitive to humans. 

PARACONSISTENT LOGIC 

SHORT DESCRIPTION 

In a paraconsistent logic, even when contradictions are derived, the inference relation does 

not explode into triviality. In a paraconsistent logic several principles of classic logic are 

abandoned, making the logic propositionally weaker than classic logic. 

ADVANTAGES AND DISADVANTAGES 

It is of course not desirable that inferences in a medical diagnostic system explode into 

triviality. This logic does not seem to have any other advantages for medical diagnostic 

systems. 

FUZZY LOGIC 

SHORT DESCRIPTION 

Sentences in fuzzy logic have a degree of truth, classically on a continuous scale between   

and  . 

ADVANTAGES AND DISADVANTAGES 

                                                        

17 Many valued logic is not directly suitable to use to reason about probabilities. 
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It is possible to use truth degrees to denote the certainty that a patient has a certain 

symptom or a certain disease. This may provide a way to reason not only with in complete 

information, but also with information that is only partially missing.  

The reasoning process of fuzzy logic is not very easy to understand and it is a very 

controversial logic.  

FREE LOGIC 

SHORT DESCRIPTION 

In free logic, terms may denote objects outside the domain of discourse of a logic and may 

denote non-existing objects. 

ADVANTAGES AND DISADVANTAGES 

Free logic does not have any clear advantages over for instance classic logic to use in a 

medical diagnostic system. 

SECOND AND HIGHER ORDER LOGIC 

SHORT DESCRIPTION 

Second and higher order logics are extensions of first order logic. In first order logic, 

variables and quantifiers range over elements of the domain of discourse. In second and 

higher order logic, variables may range over sets of such elements and sets of such sets and 

so on. 

ADVANTAGES AND DISADVANTAGES 

Second and higher order logics are more expressive than first order logic. There however 

seems no need for this kind of larger expressivity in a logic for a medical diagnostic system. 

Furthermore, the semantics of second and higher order logic seems to be more complicated 

and this makes it harder to make the reasoning process of a program implementing second 

or higher order logic clear to users. 

LINEAR LOGIC 

SHORT DESCRIPTION 

In linear logic, certain formulas are marked by modals. The usual structural rules of 

contraction and weakening are only applicable to formulas marked by certain of these 

modals. Linear logic is a refinement of classic and Intuitionistic logic in which the emphasis is 

on formulas as resources. 

ADVANTAGES AND DISADVANTAGES 

Linear logic has many well-described applications in the field of AI, especially in the domain 

of knowledge representation. From that perspective, this logic could be interesting. The logic 
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does however not seem to meet any of the requirements defined for a medical diagnostic 

program specifically. 

EPISTEMIC LOGIC 

SHORT DESCRIPTION 

Epistemic logic is a modal logic in which notions as knowledge and believe can be reasoned 

with. In epistemic logic, it is possible to model scenarios about individuals and groups of 

individuals that know or believe certain things. 

ADVANTAGES AND DISADVANTAGES 

Epistemic logic would be suitable to use to reason with uncertain information. It may for 

instance be believed that a patient has a certain symptom, while this is not known for 

certain. This way of dealing with incomplete information does however not seem to be the 

most appropriate in the medical domain. There is no way to determine how certain or 

uncertain information is and the logic is more about the individuals that believe or know 

information than about the information itself. Epistemic logic seems not to have any other 

advantages for a medical diagnostic system. 

PROPOSITIONAL DYNAMIC LOGIC 

SHORT DESCRIPTION 

Propositional dynamic logic is a modal logic that is mainly used to study the properties of 

computer programs. Propositional dynamic logic is concerned with the executions of 

programs and whether these programs do or do not derive certain formulas when they are 

in a certain state. 

ADVANTAGES AND DISADVANTAGES 

This logic does not seem to help meeting any of the determined requirements for a medical 

diagnostic program. It could be used to model the working of the human body and help 

determining what disease a patient has from that point of view, since it is concerned with 

the execution of programs and the human body could be modeled analogous to that. This 

idea is however very far-fetched and still many of the requirements are not met. 

PROVABILITY LOGIC 

SHORT DESCRIPTION 

Provability logic is a modal logic in which reasoning about mathematical theories and what 

can be expressed in them is conducted. 

ADVANTAGES AND DISADVANTAGES 
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Provability logic seems more suitable to use in research on the fundamentals of 

mathematical theories than to conduct more practical forms of reasoning. This logic does 

not seem to have any advantages when used in a medical diagnostic program. 

INFINITARY LOGIC 

SHORT DESCRIPTION 

In infinitary logic, formulas are identified as infinite sets. In this logic, connectives such as 

disjunction and conjunction can be of infinite length. 

ADVANTAGES AND DISADVANTAGES 

While the expressive power of infinitary logic exceeds the expressive power of first order 

logic, expressive power is not increased in a way that would benefit a medical diagnostic 

system. This logic does not have any advantages for use in a medical diagnostic system. 

INDEPENDENCE FRIENDLY LOGIC 

SHORT DESCRIPTION 

Independence friendly logic is an extension of first order logic in which more dependencies 

and independencies between individuals that are quantified over can be expressed. 

ADVANTAGES AND DISADVANTAGES 

This logic seems only to be useful in the fields of linguistics and math, it does not seem to 

have any advantages when used in a medical diagnostic program. 

QUANTUM LOGIC 

SHORT DESCRIPTION 

In quantum logic, the theories of quantum mechanics are taken into account. 

ADVANTAGES AND DISADVANTAGES 

Quantum logic is very complicated and controversial; this makes it very unsuitable for use in 

a medical diagnosis system. 


