
A TEMPORAL ARGUM ENTA T IO N THE ORY
FOR MEDIC AL D I AG N OSI S

SÉ L I N DE VAN EN GE LEN BU RG (ST UD. NR . : 0309389)
SUP E R VI SOR S: JOHN - JULE S ME YE R , GE R AR D VR EE SWI JK
E CT S: 30
DAT E : 24 FEBR UAR Y 2012

 1

CONTENT

1 Introduction ..3

2 Requirements for a medical diagnosis program ...5

2.1 Incomplete information ..5

2.2 Contradictions ..6

2.3 Single or multiple diseases ...7

2.4 Exclusionary criteria ...8

2.5 Temporal information ..9

2.6 Chaining rules ...10

2.7 Clarifying the reasoning process to users ..10

3 Argumentation logic ..12

3.1 The underlying logical language and logic programs ...15

3.2 Arguments..17

3.3 Attack ...23

3.4 Defeat ..25

3.5 Status assignments ...29

4 The proposed temporal argumentation logic ...38

4.1 Fundamentals of the proposed logic...40

4.2 Atomic formulas and interval sets ..41

4.3 Rules and derivations ...52

4.4 Argument structures, attack and Defeat ...75

4.5 Dialectics ..84

5 Proof of Concept Implementation ...89

6 The proposed temporal argumentation logic and the requirements91

6.1 Incomplete information ..91

6.2 Contradictions ..92

6.3 Single or multiple diseases ...92

6.4 Exclusionary criteria ...93

6.5 Temporal information ..94

6.6 Chaining rules ...95

6.7 Clarifying the reasoning process ...95

7 Conclusion and suggestions for further research ...98

7.1 Evaluation of the proposed argumentation logic ..98

7.2 Suggestions for further research ..99

 2

8 References .. 100

9 Appendix: Overview of logics considered for a medical diagnostic system................... 102

 3

1 INTRODUCTION

Medical artificial Intelligence has its origins in the early 1970’s. Research on the application

of artificial intelligence in the medical domain resulted in the first clinical decision support

systems such as Internist-1, CASNET and MYCIN in the mid 1970’s and early 1980’s (Patel, et

al., 2009). Nowadays, interest in clinical decision support systems is still growing and they

become widespread. (Berner & La Lande, 2007). Clinical support systems are systems

purposed to improve clinical decision making by matching characteristics of patients to a

knowledgebase and generating patient-specific recommendations.(Garg, et al., 2005).

Clinical decision support systems can aid clinicians in several different ways. In their

extensive review of clinical decision support systems, (Garg, et al., 2005) distinguish four

different types, systems for diagnosis, reminder systems for prevention, systems for disease

management and systems for drug dosing and drug prescribing. According to (Garg, et al.,

2005), 64% of these systems improve the performance of clinicians significantly; suggesting

that the usage of these systems is helpful in the majority of cases.

In this thesis, the focus is on clinical decision support systems that aid clinicians in making

diagnoses. It is investigated which things are important for diagnosing patients correctly and

a logic is proposed on which a medical diagnostic system can be based.

Research for this thesis started out by an attempt to answer the following research

questions:

 What are the requirements for a medical diagnostic system?

 On what logic should a medical diagnostic system be based to meet

these requirements?

First, requirements for a medical diagnostic system were established as an answer to the

first research question. During the efforts made to answer the second research question, the

question arose whether there is in fact an existing logic that can be incorporated by a

medical diagnostic system such that all requirements are met. Since no such logic could be

found, the focus of research shifted to designing such a logic, resulting in the temporal

argumentation logic proposed in this thesis. It was also investigated whether this proposed

logic does meet the requirements and to what extent. The consequence of this shift of focus

is that the emphasis of this thesis is more on the defining of the proposed logic and its

advantages and disadvantages, than on answering the originally established research

questions. It is in my opinion that the proposed argumentation logic and its evaluation are

more important results, than the answer to the original research questions. The research

questions above have been investigated but are not discussed elaborately; this would lead to

a thesis incorporating too many subjects and thus not being directed enough. A short

summary of the output of the investigations conducted in order to answer the second

research question above is however supplemented in an appendix. The requirements

established to answer the first research question are used to evaluate the proposed logic.

The investigation of the first research question was carried out by studying literature on the

diagnostic process as performed by human diagnosticians and by consulting domain experts.

It was determined that amongst others the ability to handle missing, contradictory and

 4

temporal information and being able to give a clear account of the reasons for making

certain diagnoses, are essential for a medical diagnostic system. To answer the second

research question, several kinds of logics were studied and for each it was established

whether a system incorporating them would meet all requirements. Argumentation logic

emerged as the logic that would satisfy most of them. Systems based on argumentation logic

would be able to handle missing information, such as missing facts about a patient. In

addition, they would be very well equipped to handle contradictions. It is also possible to

incorporate temporal arguments in argumentation logic and they thus are equipped to

handle temporal information. Furthermore, argumentation logics are recognized for being

intuitive and being able to give a clear account of their reasoning process.

During consultations with experts in the medical domain, it became clear that in practice

clinicians often have nothing more than partially missing or imprecise information about the

temporal aspects of symptoms and other attributes of their patients. No logic could be

found which can meet the requirements stated above and would be able to handle partially

missing or imprecise temporal information. This led to the development of a temporal

argumentation logic in which partially missing temporal information can be expressed and

reasoned with. It was chosen to base this proposed logic on the argumentation logic DeLP

(García & Simari, 2004). In DeLP, argumentation logic is combined with Logic Programming

and thus it is very suitable to be implemented and to be used as a basis for a reasoning

system. The temporal argumentation logic proposed in this thesis is defined formally and is

discussed informally as well. For each of the requirements established, it is determined

whether they are met by a system incorporating the proposed logic and to which extent. To

determine its feasibility a proof of concept implementation of the proposed logic was made.

It is important to note that though the medical information about diseases in this thesis

came from reliable sources, the standards of a medical paper are not met. This thesis is

primary an artificial intelligence thesis and not a medical one. Medical information on

diseases has the sole purpose of clarifying certain ideas and concepts. I am not a medical

expert and this thesis should therefore not be used as a resource of information on specific

diseases and medical conditions.

In section 2, the requirements of a medical diagnostic system are discussed and determined.

In the subsequent section, argumentation logic in general and DeLP in particular are

discussed. In section 4, the proposed temporal argumentation logic is defined formally and

discussed. The proof of concept implementation of the proposed logic is discussed in section

5. In the next section, it is evaluated to which extent the requirements of section 2 are met

by a system implementing the proposed logic. In section 7, additional advantages and

disadvantages of the proposed logic are discussed and suggestions for further research are

made. A short summary of the evaluations of the logics of which the suitability has been

investigated is included in the appendix.

 5

2 REQUIREMENTS FOR A MEDICAL DIAGNOSIS PROGRAM

Diagnosing patients is in essence inferring which disease they have on basis of information

about them and their symptoms. The most straightforward way to do this in an automated

reasoning program is by using the language of propositional logic to make rules of the form

 , where denote facts about

patients such as their symptoms and test results and denotes a disease. The

program could search for a rule for which the antecedent matches the facts that are known

about a patient. If such a rule is found, the program can derive the consequent and establish

that the patient has the disease denoted in it.

The medical diagnosis program described above does have several advantages. Diagnosing

the patient would be quick, since the only thing that needs to be done is to find the

appropriate rule based on the facts about the patient and deriving its consequent.

Furthermore, it would be fairly easy to explain to a user how and why the program made a

certain diagnosis. Only the rule and the facts on basis of which the rule is chosen have to be

displayed to do this.

Although there are some benefits to such a simple program, there are several severe

shortcomings as well. When more closely examined, diagnosis turns out to be a process that

is much more complex, refined and flexible. An automated reasoning program capable of

making precise diagnoses should be able to capture this and the simple program described

here is clearly not. In this section, I will describe some of the necessities for accurate

diagnosis. These requirements for diagnosis are mainly based on freely accessible

information about the diagnostic process as performed by human diagnosticians, the

consultation with domain experts and common sense. In the subsequent sections, I will

provide a description of the logic I propose to use in a medical diagnostic program and I will

evaluate whether this logic meets the mentioned requirements for accurate diagnosis.

2.1 INCOMPLETE INFORMATION

One of the shortcomings of the simple program is that it is assumed implicitly that all

relevant facts about the patient are known. In practice, this is hardly ever the case. Patients

may for example neglect to report some of the symptoms they experience and some non-

directly observable properties of the patient, such as blood levels may not be known.

Patients could of course be asked whether they experience certain additional symptoms and

supplementary tests can be done to measure non-directly observable properties. However,

it is not feasible to ask the patient for every possible symptom and to do every possible test.

Consequently, we still cannot assume we know every relevant fact about the patient. There

are several ways to deal with this, whether diagnoses are made by a human physician or a

computer.

The usual strategy doctors use to make a diagnosis depends on hypothesis generation and

hypothesis testing. To generate hypotheses, the main diagnostic possibilities based on the

known facts about the patient are identified. This identification of the diagnostic

possibilities, or differential diagnoses, is usually done by pattern recognition. Following, each

 6

differential diagnosis gets an estimated likelihood assigned. Based upon, amongst others,

these estimations of likelihood, doctors try to obtain more information to refute or support

certain possibilities. This information is acquired by examining patients and asking them

specific questions. Then a presumptive diagnosis is made and diagnostic tests are done to

reduce remaining uncertainty. Subsequently, the decision for treatment is made depending

on the benefit of treating a sick person and the risk of mistakenly treating a person that does

not have the disorder. (The Merck Manual, 2010).

The strategy used by physicians could be implemented in an automated reasoning system. In

that case, missing data is dealt with by computing their informative value. The data which is

most informative, i.e. which can be used to refute or support the most possibilities, will be

requested from the user. The user can then perform the necessary tests, examinations and

ask the patient questions to obtain the required information. The new data can be added to

the database and the inference process can continue. The system described copies part of

the strategy of physicians and will probably deal with missing information effectively. There

are however cases in which this kind of system is used and when it is impossible to obtain

new data. This may be because the user was not able to obtain it, or because it is in general

not possible to obtain new data about the patient. An example of this is a program that is

used for scientific research and has to diagnose an entire database of people. In those cases,

each unknown fact about a patient will be assigned a default value, the value it is most likely

to have when no information about it is available. These default values differ from normal

values in that they may be changed when they become known.

As a descriptive example of the above, assume that a program contains a rule with ‘high

blood pressure’ in its antecedent. Assume also that it is unknown whether a patient has a

high blood pressure and this fact cannot be derived from any other facts known about the

patient. Assume in addition that it is not possible to obtain more information about the

patient’s blood pressure at this time. In this case, ‘high blood pressure’ will get the default

value ‘false’ assigned because people usually do not have a high blood pressure. Assigning

the value ‘false’ to a variable when the program is not able to prove that it is true, is also

called negation as failure. If later on in the diagnostic process it becomes known that the

patient has a high blood pressure, the value of the variable will be changed to ‘true’ and new

inferences can be made, while others get refuted.

2.2 CONTRADICTIONS

Contradiction arises when two facts about a patient (i.e. diseases, symptoms and such) are

derived that cannot both be true. This problem may occur more frequently when the set of

diagnostic rules is large and much data about patients is available. Contradictions may be

due to mistakes such as false-negative or false-positive diagnostic tests and mistakes in

entering patients’ data in the database. Another cause of problems with the data about

patients is lack of information about certain aspects of the data. When for instance temporal

information about symptoms is not taken into account, it may happen that a symptom and

its negation are both entered in a database. Both could have been true, but at different

times. When temporal information is not reckoned with, this may lead to a contradiction.

This is merely one of the reasons why temporal information is important. In one of the

 7

subsections below, I will discuss further reasons for taking temporal information into

account.

Another cause of contradictions may be that the rules for making certain diagnoses are

conflicted. This in turn may be due to mistakes in determining what the rules should be. In

some cases, contradictions may be a result of disagreement between medical experts about

the nature of diseases. It is for instance known that because of this, contradictions may be

derived when using rules from the DSM-IV-TR, the handbook for psychiatrists and

psychologists with the standard criteria for classifying mental disorders.(Gartner, Swift, Tien,

Damásio, & Pereira, 2000)

It is vital that contradictions are noticed and dealt with since when a contradiction is derived,

there is uncertainty about the diagnosis a patient should have or error could have been

made. This means that a wrong diagnosis could have been made and in the medical domain

this may have catastrophic consequences.

In the case of errors in the patient data, the data should be corrected. This can for example

be done by correcting mistakes made when entering the data in the program or by redoing

tests. The program may also be modified to take additional aspects of the data into account.

When two rules are conflicting, one of them has to be rejected or adapted. In the case that

the contradiction arises from disagreement in the medical domain, it may be best to let the

choice of rule depend upon the preference of the attending physician. An additional solution

is to specify under which conditions certain rules or derived data may be rejected or an

order of precedence may be specified on rules, this may make it possible to choose

automatically the more probable of two contradictory alternatives.

2.3 SINGLE OR MULTIPLE DISEASES

In some cases, it may be possible to diagnose a patient with two diseases. Often this will be

no problem because the patient has in fact both diseases. However, if the two diseases

diagnosed are very similar, in other words, if they share many symptoms, this may indicate

otherwise. Clearly, it is possible that the patient still actually has both diseases, but it may

also be the case that there is a problem distinguishing the diseases from each other.

Assume that a computer program (or a physician) uses the following rules for diagnosing

 and :

Rule 1.
Rule 2.

In addition, assume that and are known to be true

for a patient. Assume also that and are two different diseases and that

Rule 1 and Rule 2 are not two alternative ways of diagnosing it. Now both and

 could be diagnosed. This allows for three relevant possibilities, the patient has in

fact both and or the patient only has or the patient has

 and are due to other causes. Another possibility is of course

that the patient has neither disease. In that case, the facts are accounted for by one or more

 8

other diseases for which there are other rules or the disease the patient has is not known to

the program or to the physician. In the first case, we have the same problem as discussed in

this section, only the problem ranges over more rules. In the second case the problem is due

to an incomplete knowledge about diseases, which is not of concern here. Therefore, and for

the sake of clarity, this possibility is ignored here.

To make an accurate diagnosis, a choice has to be made between the three remaining

possibilities. The probabilities of the possibilities are likely to be different and may or may

not be known. If they are not exactly known, one could for example argue that it is most

probable that the patient has because Rule 2 is more specific and accounts for

more of the facts. On the other hand, if is far more common than , then it

may be preferable to diagnose . When and often occur

together, the choice may be on diagnosing them both. Rules for which rule is preferred in

certain cases can be implemented in the program or used by the physician.

In some cases, it may not be possible or desirable to make a choice. Absolute certainty may

be required when for instance, one of the diseases is very serious or treatment for one of

the diseases involves high risks. In this situation, a way needs to be found to derive more

facts about the patient and the possible diseases. If this is absolutely impossible, no

diagnosis can be made. Treatment for one or both diseases should then be chosen such that

the risks for the patient are minimal.

2.4 EXCLUSIONARY CRITERIA

Rules used by an automated reasoning program or a physician may not be applicable under

certain circumstances. If such a circumstance occurs frequently and excludes only a small

number of diagnoses, then this could be included in the antecedent of rules, making it

impossible to derive their consequents when the circumstance occurs. There are situations

in which rules are excluded because of reasons less common. An example is a patient who

had a cholecystectomy (removal of the gall bladder), who experiences a combination of

symptoms that could indicate several diseases, including cholecystitis (inflammation of the

gall bladder). However, the patient cannot possibly have cholecystitis, since the gall bladder

has been removed. (The Merck Manual, 2007 (1))

In cases when the reason for the inapplicability of a rule is uncommon, it is not feasible to

include it in the antecedent of the rule. There may be a great number of such circumstances

and checking whether every single one is true for each disease considered is an

unreasonable amount of work for a physician or program. In the case of the example above,

it may thus not be feasible to include in the antecedent of the rule for diagnosing

cholecystitis that no cholecystectomy has been performed, even though cholecystitis should

not be diagnosed when the patient has undergone this procedure.

One method to take into account exclusionary criteria is by defining rules that specify under

which circumstances other rules are inapplicable. They can be used in the case it is known

that an exclusionary criterion is true, to exclude the appropriate rules. If no information

 9

about an exclusionary criterion is available, it is by default considered false (see negation as

failure and default values in sec. 2.1).

2.5 TEMPORAL INFORMATION

As an illustration of the importance of temporal information for diagnosis in de medical

domain, I will start by describing the example of Reye’s syndrome.

Reye’s syndrome is a fairly rare disease, but it is in many cases very serious. Fatality rates are

between <2% and 80%, depending on the severity of the occurrence of the disease. The

mean fatality rate is 21% and 30% of patients who do survive the disease will suffer from

neurological sequelae such as intellectual disability and seizure disorders. This means that it

is important to diagnose this disease quickly, yet Reye’s syndrome is hard to diagnose

because its directly observable symptoms are very common in other diseases. (The Merck

Manual, 2009).

Reye’s syndrome is a biphasic disease. Initial symptoms of a viral infection are followed in 5

to 7 days by nausea, vomiting and a sudden change in mental status. The change in mental

status differs in severity from patient to patient, but may progress rapidly into a deep coma.

The chance of developing this disease following a viral infection increases a 35-fold when

salicylates, such as aspirin (The Merck Manual, 2007 (2)) are taken during the viral infection.

The syndrome almost exclusively occurs in children younger than 18 years. (The Merck

Manual, 2009)

From the description of Reye’s syndrome, it is evident that temporal information is

important. Because the symptoms are common, being able to take temporal information

into account would make it easier to differentiate the diagnosis of Reye’s syndrome from

other diseases. The fact that patients have a viral infection 5 to 7 days prior to the other

symptoms and that they took salicylates during the period they suffered from the viral

infection are characteristic of Reye’s syndrome. The temporal information that should be

taken into account in this case would thus be the order of symptoms and events and the

length of the period between symptoms.

There are more types of temporal information that may be important for making an

accurate diagnosis and to differentiate between diseases. One of them is the length of time

a symptom or disease has been present. To show an example of this, I will describe

idiopathic interstitial pneumonia (IIP). IIPs are interstitial lung diseases of unknown cause,

which share similar features such as dyspnea (shortness of breath). The diseases can be

classified in six different subtypes. Each subtype is characterized by varying degrees of

inflammation and fibrosis (scarring of the lungs). Identifying which subtype patients have is

of importance since the choice of treatment and prognosis depend on it. (The Merck

Manual, 2008 (2))

To determine the subtype of the occurrence of IIP in patients, information about their

histories is important. Especially significant is information about the duration of symptoms,

family history, history of tobacco use, current and prior drug use and possible exposure to

pollutants in the home and work environment. For the subtype acute interstitial pneumonia

 10

it is typical that symptoms have a sudden onset and increase in severity over 7 to 14 days.

On the other hand, patients suffering from the subtype idiopathic pulmonary fibrosis usually

develop symptoms over more than 6 months. (The Merck Manual, 2008 (2)) To differentiate

between the two, reasoning with information about the duration of symptoms may be

important.

It also is possible that patients suffered from different diseases at different times. If no

temporal information is taken into account, it is harder to determine whether symptoms are

due to one disease or multiple ones. If symptoms are clustered in one or more groups in

different periods, this may be an indication that they originate from different diseases at

different times (see section 2.3). Temporal information may also be useful for determining in

which stage or phase a disease is and for determining whether a disease is chronic or

recurrent.

While temporal information may be vital for diagnosing a patient, in practice often there is

not any, incomplete or imprecise temporal information available according to domain

experts. In some cases it may for instance happen that it was not tracked when certain

measurements (e.g. blood pressure, heart rate) where taken. Since such measurements

generally provide only information about the instance the measurement was taken,

information about the interval in which the measured symptom was present may also be

missing. This may in addition occur in cases where patients do not remember exactly when

and how long they experienced certain symptoms or in cases they are unable to report

them. Temporal information may also be incomplete when for a diagnosis a symptom has to

be present longer than the time that has elapsed since the symptom begun until “now”. A

closely related cause of incomplete temporal information is that according to domain

experts patients are very imprecise in reporting temporal aspects about their symptoms.

2.6 CHAINING RULES

One of the symptoms of Reye’s syndrome described in the section above is that the patient

has had a viral infection, which is a disease itself. This implies that a diagnostic program

being able to diagnose illnesses such as Reye’s syndrome should be able to use other

diseases as a symptom of a disease. Of course, it is possible to add the symptoms of some

disease to the symptoms of another disease. However, this would make a program less

efficient and more redundant. This has in addition the disadvantage of making it harder to

explain to the user why a certain disease was diagnosed by the program. Likewise, in some

cases a combination of symptoms may be captured by a single symptom. An example of this

is recurrent abdominal pain. When patients suffer for at least 3 months of intermittent

abdominal pain, it is said that they have recurrent abdominal pain (The Merck Manual, 2008

(1)). Reasoning with the symptom ‘recurrent abdominal pain’ instead of all the different

episodes of abdominal pain, avoids the same disadvantages as the ones described above.

2.7 CLARIFYING THE REASONING PROCESS TO USERS

It is important for the user of a medical diagnostic program to know on basis of which

information a certain diagnosis was made. Mistakes can be made at several points in the

 11

diagnostic process, due to human errors or errors in the program. This means that when

using a medical diagnostic program, physicians should check whether a certain diagnosis is

plausible and they should be able to check whether a diagnosis was made on the right

grounds. This can only be done if they have a clear view of the reasoning process of the

program and the information on which a diagnosis is based.

A related motivation for making the reasoning process clear is of a more ethical nature. Even

though a computer program can make a diagnosis, the responsibility for making the correct

diagnosis and choosing the right treatment lies with the physician. Physicians can only take

this responsibility if they understand why the program made a certain diagnosis. In addition,

a physician may need to explain the motives for making a certain diagnosis to a patient, for

which insight into the reasoning process is also required.

In the next section, the argumentation logic developed by Alejandro J. García and Guillermo

R. Simari is described. This argumentation logic is the foundation for the temporal

argumentation logic proposed in this paper. The proposed logic is formally defined and

discussed in section 4. In section 6, we will return to the requirements described in this

section and discuss the extent to which they are met by a program using the proposed logic.

 12

3 ARGUMENTATION LOGIC

One of the characteristics of classical logic is monotony. Monotony arises from the idea that

a proof is a sequence of steps, starting with axioms on which inference rules may be applied

to derive new sentences. These inference rules stay valid in any context. (Bochman, 2007)

This means that there are no conditions under which the premises of a rule are true, but the

conclusion may not be derived. To make the notion of monotony more formal, assume there

are sets of premises and such that . Assume in addition that there is a sentence

such that . If the logic has the property of monotonicity, then . (Aldo, 2010)

Monotonic logics have several useful applications; however, they turn out not to be suitable

for modeling and reasoning about real-world situations, as is done in medical diagnosis.

When reasoning about real-world situations, it will be hardly ever the case that all

information about the world is known. In addition, it is possible that certain properties of the

information are unknown (such as temporal properties) or that errors are made, which can

bring about contradictions. Monotonic logics are not able to deal with this in a sensible and

informative way. Nonmonotonic logic however has certain strengths monotonic logic does

not have which make it capable of dealing with the problems mentioned above. Contrary to

monotonic logic, in nonmonotonic logic conclusions are derived tentatively and can be

retracted later when for instance more information is available. It is possible in

nonmonotonic systems to use negation as failure, i.e. to assume that something is not true

in case the contrary cannot be proven.

In the late 1970’s, nonmonotonic logic was developed by amongst others J. McCarthy, D.

McDermott, J. Doyle and R. Reiter. In 1980, an issue of the Artificial Intelligence Journal was

completely dedicated to the new field of nonmonotonic logic. (Aldo, 2010) During the mid

1980’s, nonmonotonic logic got a lot of attention from the AI community. Useful applications

in amongst others the philosophical and legal domain were discovered. (Chesñevar,

Maguitman, & Loui, 2000) Several kinds of nonmonotonic logics were developed such as

Circumscription Logic by J. McCarthy and Default Logic by R. Reiter.(Aldo, 2010)

As mentioned above, when reasoning about the real world, we usually have only partial

information about it. This means assumptions about the way things are by default need to

be made. Without such assumptions, it would practically be impossible to reason about the

real world. Reasoning using these kinds of assumptions is part of nonmonotonic reasoning.

(Bochman, 2007) To illustrate, I will describe the most well known example. In

nonmonotonic logic, one could formulate the sentence “Birds fly”. Contrary to classical logic,

this sentence does not mean that all birds fly, but that birds are entities that fly in general,

i.e. if “Tweety is a bird”, then in general it can be assumed that “Tweety flies”. The general

sentence “Birds fly” can be given up in the light of information with a better quality, such as

information that is more specific or more reliable. Thus, if there is a sentence “Tweety is a

penguin”, which is more specific than “Tweety is a bird”, then it can be assumed that

“Tweety does not fly”. The rules on which the commonsense reasoning in this example is

 13

built are the following: , and

 1. (Schlechta, 2007)

If we look at the property of monotony, it is clear that the kind of nonmonotonic reasoning

used in the example cannot possibly be done using classical logic. Consider the definition in

the beginning of this chapter again, together with the rules of the example. Assume that

 and that and that

 is denoted by . Now from premises it can be derived that . If

the logic is monotonic and , it should also be derived from premises , that

 . This means that a consistent monotonic logic containing the first rule from the

example cannot contain the second and third rule. As a result, the commonsense reasoning

conducted in the example cannot be done in a monotonic logic. To be able to deal with

incomplete information all defeasible rules, like the ones from the example, are needed and

this is not possible while using a monotonic logic.

One type of nonmonotonic logic, developed mainly in AI research is argumentation logic

(Prakken & Vreeswijk, 1998). In most nonmonotonic logics the logical consequence relation

is defeasible, this is however not the case with argumentation logic. In argumentation logic a

proof of a sentence, called an argument is built monotonically. Defeasibility results from the

interaction between conflicting arguments. An argument can be defeated if there is another

argument that conflicts in some way with it (i.e. it is a counterargument) and this argument

is preferred over the first argument. In the case of the example used above, an argument

can be made that “Tweety flies”, because “Tweety is a bird”. A counterargument can be

made that “Tweety does not fly” because “Tweety is a penguin”. The counterargument may

be preferred because “Tweety is a penguin” is more specific than “Tweety is a bird”. In that

case, the first argument is defeated by the second one. (Prakken & Vreeswijk, 1998) There

are several other forms of defeat possible, depending of the kind of argumentation logic

used.

In their paper Logics for Defeasible Argumentation, Henry Prakken and Gerard Vreeswijk

describe five elements of every argumentation logic. The first element they describe is an

underlying logical language. Sentences in argumentation logic are expressed in this logical

language. The logical consequence relation is as well part of the logical language. Like

mentioned above, this logical consequence relation is monotonic and does by itself not give

rise to defeasibility.

Defeasibility arises from the interaction between contradicting arguments. Arguments are

described by Prakken and Vreeswijk as corresponding to monotonic proofs in the underlying

logic. The sentence that is ‘proven’ is the conclusion of the argument. Arguments can have

different forms depending on the argumentation logic in which they are defined.

Though arguments are built monotonically themselves, different arguments in the logical

system may be conflicted, it is also said that arguments are attacked by other arguments or

1 is the defeasible consequence relation, is a variable

 14

that arguments attack each other. Prakken and Vreeswijk describe two types of attack which

are usually distinguished. The first type is symmetrical and is called rebutting attack. Two

arguments are said to rebut each other when they have contradictory conclusions. The

second type of attack, undercutting attack is asymmetric. There are in turn two types of

undercutting attack. For the first type, it is assumed in an argument that a sentence is not

provable and the conclusion of this argument is derived (partly) based on this assumption.

This kind of argument can be undercut by an argument with a proof of this sentence. The

second type is when an argument contradicts the link between premises and a conclusion of

another argument. Besides the types of conflicts described here, several other types are

possible2 as will be shown when the argumentation logic used in the medical diagnostic

program is discussed.

When an argument attacks another one, it has to be determined which argument is

‘stronger’ or is preferred. To be able to evaluate a pair of conflicting arguments, certain

criteria have to be set. Such a criterion could be that more specific arguments are preferred

or that arguments based on fewer assumptions are preferred. Often criteria are provided by

users, since the optimal criteria may be domain-specific. (Prakken & Vreeswijk, 1998) The

fourth element of an argumentation logic described by Prakken and Vreeswijk is that of

defeat among arguments. Defeat is essentially a binary relation on a pair of arguments which

has a weak form (defeat) and a strong form (strict defeat). An argument is defeated by

another argument if it is attacked by this argument and the attacking argument is not

weaker as determined by the evaluation criteria. An argument is strict defeated if its

attacker is stronger. (Prakken & Vreeswijk, 1998)

Since the defeat relation only specifies the relation between pairs of arguments, in addition

a status assignment for arguments is needed to determine the ultimate status of arguments

based on the interaction between all arguments. This definition of the status of arguments is

the fifth element that Prakken and Vreeswijk discuss. Arguments may be assigned one of

several possible statuses on basis of the interaction between all arguments, depending on

the type of the argumentation logic. An example of an interaction between more than a pair

of arguments is when the defeater of an argument is itself defeated by an argument .

In that case, in the status assignment it is often defined that the status of argument is

changed back from ‘defeated’ to ‘undefeated’. Changing the status of argument is also

called a reinstatement of . It is also said that reinstates in this case. Another principle

that is often defined in the status assignment is that if a subargument of an argument is

defeated, the argument cannot be considered undefeated anymore. (Prakken & Vreeswijk,

1998)

In the medical diagnostic program, the argumentation logic DeLP in combination with

temporal arguments is used. DeLP is an argumentation logic developed by Alejandro J.

García and Guillermo R. Simari and described in their paper Defeasible Logic Programming

An Argumentative Approach (2004). DeLP stands for ‘defeasible logic programming’ and like

2 Even types bearing the same names as the ones described here, but with different

definitions.

 15

this name suggests, it is a combination of logical programming and argumentation logic. The

combination of argumentation logic makes DeLP very suitable to use as basis of a computer

program. In the subsections below, the way in which each of the five elements of

argumentation logic is defined in DeLP is discussed using the definitions from (García &

Simari, 2004).

3.1 THE UNDERLYING LOGICAL LANGUAGE AND LOGIC PROGRAMS

García and Simari define literals in the underlying logical language to be ground atoms or

their negations. The version of negation used in DeLP is strong negation and denoted by .

The language of DeLP consists of three sets. The first set is a set of facts, this set of facts

consists of literals. Facts are used to represent knowledge that is immediately available, such

as data from a database about the symptoms of a patient. The second set is the set of strict

rules. Strict rules are used to represent knowledge that is sound and indefeasible. An

example of a strict rule from the medical domain is denoting that men do

not have uteruses. The third set is the set of defeasible rules. These rules are used to

represent weak or tentative knowledge; this knowledge may only be used if there is no

‘stronger’ knowledge opposing it. An example of a defeasible rule from the medical domain

could be denoting that “reasons to

believe that people are coughing, have a sore throat and have a runny nose, provide reasons

to believe that they have the common cold”. In the definitions below, each of the sets is

defined formally.

DEFINITION 3.1 (FACTS)(GARCÍA & SIMARI, 2004)

A fact is a literal, i.e. a ground atom or a negated ground atom.

DEFINITION 3.2 (STRICT RULE) (GARCÍA & SIMARI, 2004)

A strict rule is an ordered pair, denoted “ ”

whose first member , is a literal, and whose second

member, is a finite non-empty set of literals. A strict rule

with the head and body can also be written as

 .

DEFINITION 3.3 (DEFEASIBLE RULE) (GARCÍA & SIMARI, 2004)

A defeasible rule is an ordered pair, denoted “ ”

whose first member , is a literal, and whose second

member, is a finite non-empty set of literals. A defeasible

rule with the head and body can also be written

as .

In logic programming, the rules defined above are called program rules. In DeLP, program

rules are not allowed have an empty body. This does not mean that program rules with an

 16

empty body cannot be represented in DeLP. Strict rules with an empty body can be

represented by facts. Representing defeasible rules with an empty body is somewhat a more

complicated matter. Defeasible rules with an empty body are called presumptions and are

different from facts. García and Simari add them as an extension to DeLP.

A defeasible logic program is a set containing facts, strict rules and defeasible rules. This set

can be infinite, which deviates from the usual notion of a logic program. A distinction is

made between indefeasible knowledge, i.e. facts and strict rules and defeasible knowledge,

i.e. defeasible rules. In principle, strict and defeasible rules are ground. However, in the

examples García and Simari provide, rules with variables are used and thus the grounded

versions of defeasible logic programs are defined as the set of facts and all grounded

instances of rules.

The output of a defeasible logic program is one of the following answers to a query: ,

 , and . The procedure for obtaining these answers will be

discussed in subsequent sections. Below is the definition from (García & Simari, 2004) of a

defeasible logic program. Successively, an example is given of a defeasible logical program

and its answers to some possible queries.

DEFINITION 3.4 (DEFEASIBLE LOGIC PROGRAM) (GARCÍA & SIMARI,

2004)

A defeasible logic program , abbreviated de.l.p., is a possibly

infinite set of facts, strict rules and defeasible rules. In a

program , we will distinguish the subset of facts and strict

rules and the subset of defeasible rules. When required we

will denote as .

Strict and defeasible rules are ground. However following the

usual convention, some examples will use “schematic rules”

with variables. Given a “schematic rule” , stands

for the set of all ground instances of . Given a de.l.p with

schematic rules, we define:

In order to distinguish variables from other elements of a

schematic rule, we will denote variables with an initial

uppercase letter.

In real-world situations, there may be things that are true in most cases, which can be

represented by defeasible rules and there may be things that are always true, which can be

represented by strict rules and facts. To give an example from the medical domain, the

knowledge that most people with symptoms of sneezing and itching eyes after coming into

contact with a cat are allergic to cats, can be represented by a defeasible rule. Another

example from the medical domain is that if someone is dead, he or she is not alive. The

knowledge from the latter example can be represented by a strict rule since it is always true.

 17

Because such a distinction between types of knowledge about real-world situations is

intuitively present, it seems natural to also make a distinction between types of rules and

facts representing this knowledge. This is exactly what is done in DeLP. Some other reasons

derived from a more logical and technical viewpoint for making a distinction between facts

and strict rules and defeasible rules can be found below.

Below is an example of a defeasible logic program incorporating amongst others the rules

from the ‘Tweety’-example in the introduction of this section.

EXAMPLE 3.1 (ADAPTED FROM (GARCÍA & SIMARI, 2004))

Here follows the de.l.p. , where sets (strict rules

and facts) and (defeasible rules) have been separated for

convenience of the presentation:

As will be shown in the following sections, in DeLP the answer

for will be , whereas the answer for

 will be . The answer for will be

 and the answer for will be .

3.2 ARGUMENTS

To be able to explain the notion of an argument in DeLP, first the derivation of new literals

has to be discussed. A derivation in DeLP is a sequence of literals which are facts or which

are obtained by using defeasible or strict rules on literals previous in the sequence. García

and Simari distinguish two different types of derivations, defeasible derivations and strict

derivations. The difference between the two is that on the latter the restriction is imposed

that it contains only literals in the sequence which are facts or are obtained by using a strict

rule. Defeasible derivations and strict derivations are defined respectively in definition 3.5

and definition 3.6.

Derivations are monotonic; defeasibility arises from the way arguments are constructed and

from the dialectical process in which arguments get assigned a status, not from the

derivation of literals themselves. In addition, García and Simari observe that if a program has

 18

no facts, then it is impossible to obtain any derivation. This property of defeasible logic

programs stems from the fact that it is not possible for program rules to have an empty

body.

DEFINITION 3.5 (DEFEASIBLE DERIVATION) (GARCÍA & SIMARI, 2004)

Let de a de.l.p. and a ground literal. A defeasible

derivation of from , denoted consists of a finite

sequence of ground literals, and each literal

is in the sequence because:

a. is a fact in , or

b. there exists a rule in (strict or defeasible) with head

and body and every literal of the body is an
element of the sequence appearing before .

If in definition 3.5 contains schematic rules, then is used to obtain the

derivation.

DEFINITION 3.6 (STRICT DERIVATION) (GARCÍA & SIMARI, 2004)

Let be a de.l.p. and a literal with a defeasible derivation

 . We will say that has a strict derivation from

 , denoted 3, if either is a fact or all the rules used for

obtaining the sequence are strict rules.

In the following examples, the derivations of some of the literals in example 3.1 are shown.

EXAMPLE 3.2 (ADAPTED FROM (GARCÍA & SIMARI, 2004))

Consider de.l.p. from example 3.1.

A derivation for literal is the sequence

 obtained using the

set of (ground-)rules
 . This derivation

is not a strict derivation, since it is not the case that only strict

rules were used.

There are multiple derivations possible for the literal

 . The sequence

3 Here a deviation from the original definition in (García & Simari, 2004) was made. This

formula originally was , it was however assumed that this is a mistake and the formula

has been replaced by .

 19

 is also a derivation for

the literal but now obtained by using rules
 .

Since defeasible rules were used in this derivation, this

derivation is also not a strict one.

EXAMPLE 3.3 (ADAPTED FROM (GARCÍA & SIMARI, 2004))

Consider de.l.p. from example 3.1 once more.

The derivation for the literal using the set of

(ground-)rules

 is the sequence

 . This

derivation is clearly not strict.

It is as well possible to derive the negation of ,

which is the sequence .

The set of rules used in this derivation is

 . All literals in the sequence are facts or are

obtained using strict rules. This derivation for

is thus a strict derivation.

To be able to define the notion of an argument, the notion of a contradictory set has to be

defined first. As shown in example 3.2 and example 3.3 it is possible to have multiple

derivations for a literal and moreover it is possible that there is a derivation for a literal as

well as for its negation. García and Simari define contradictory sets of rules using the notion

of complements, denoted by the symbol for which it holds that and (with

 being a literal). In other words, a literal and its negation are complements.

DEFINITION 3.7 (CONTRADICTORY SET OF RULES) (GARCÍA & SIMARI,

2004)

A set of rules is contradictory if and only if, there exists a

defeasible derivation for a pair of complementary literals from

this set.

Using definition 3.7 it can be clearly seen that the set of rules in example 3.1 is

contradictory since using this set, as there is a derivation for both and its

complement . The set of is not contradictory since using only rules from

this set there is no derivation for two complementary literals.

In DeLP there is a convention that for a de.l.p. , the set is not contradictory. To be able to

get an intuition for why this is, one has to look at how contradictions are handled in

argumentation logic in general. In argumentation logic, when a contradiction arises from a

set of rules, one of the complementary literals responsible for the contradiction should be

 20

defeated. In this light the convention makes sense. is the set of strict rules and facts and

both facts and literals with a strict derivation cannot be defeated. The solution described

above is thus not applicable to derivations using only elements from and therefore it is

better to make this part of the logic non-contradictory. Literals with a defeasible derivation

can be defeated, therefore if defeasible rules are also in a minimal set of rules necessary to

derive two complementary literals, the set is allowed to be contradictory. Of course the

subset of strict rules and facts of this set still cannot be contradictory.

At this moment the formalism of a defeasible argument structure in DeLP can be introduced.

Essentially an argument structure supports a certain conclusion or a certain answer to a

query. Argument structures consist of a set of defeasible rules and a conclusion. The

conclusion is a literal and the set of defeasible rules includes only the rules that are used to

make a derivation for this conclusion. Though the set of all defeasible and strict rules and

facts of a de.l.p. may be contradictory, the union of the set of defeasible rules of an

argument structure and the set of strict rules and facts are not allowed to be in

contradiction. In addition, the set of defeasible rules should be minimal to derive the

conclusion, in other words, there should not exist a proper subset of the set of defeasible

rules, with which the conclusion also may be derived. This means that different arguments

structures with the same conclusion are possible, as long as the set of defeasible rules of one

of the structures is not a subset of the set of defeasible rules of the other. In the derivation

of a conclusion strict rules may also be used, but these are not part of the argument

structure.

DEFINITION 3.8 (ARGUMENT STRUCTURE) (GARCÍA & SIMARI, 2004)

Let be a literal, and a de.l.p. We say that is

an argument structure for , if is a set of defeasible rules of

 , such that:

1. There exists a defeasible derivation from

2. The set is non-contradictory, and

3. is minimal: there is no proper subset of such that

 satisfies both conditions 1. and 2..

The following example is based on the defeasible logic program in example 3.1. It shows

some argument structures supporting some derivations in example 3.2.

EXAMPLE 3.4 (ADAPTED FROM (GARCÍA & SIMARI, 2004))

Consider de.l.p. from example 3.1.

In example 3.2 it was shown that there are two possible

derivations for the literal , it has two supporting

argument structures:

 21

It can be observed that the conclusions of the argument

structures are exactly the same as the literal they support. The

set of defeasible rules are the same as the sets of rules used to

make the derivation in example 3.2, minus the strict rules. It

can also be observed that these are the grounded versions of

the rules.

The constraint that the set of defeasible rules in an argument structure should be minimal

does not imply that the first argument for in example 3.4 is a proper argument

and the second one is not since the first one contains less defeasible rules. The constraint

actually states that there should be no subset of the set of defeasible rules which can be

used to derive the conclusion. Since the set of defeasible rules in the first argument

structure is not a proper subset of the set of defeasible rules in the second one, they are

different arguments supporting the same conclusion.

In example 3.5 it is shown that in some cases, while a derivation of a literal is possible, there

is no argument supporting it. In example 3.5 this stems from the fact that the complement of

the literal may be derived using only strict rules and thus the union of the defeasible rules in

the argument structure with the strict rules is a contradictory set. From this it may also be

observed that while derivations are built monotonically, this is not the case for arguments,

since adding strict rules or facts may invalidate arguments.

EXAMPLE 3.5 (ADAPTED FROM (GARCÍA & SIMARI, 2004))

Consider de.l.p. from example 3.1.

In example 3.3 it was shown that there is a derivation for the

literal as well as for its negation, however, there

is only an argument structure for and not for

 . It is impossible to construct an argument for

 because of the constraint that the union of the

set of defeasible rules in the argument structure with the set of

strict rules and facts should be non-contradictory.

 can be derived using only strict rules, so

clearly such a contradiction exists for any argument with

conclusion .

The argument structure for is
 . The set of defeasible rules of this

argument structure is empty, since in the derivation of this

literal only strict rules were used and strict rules are not part of

the argument structure.

 22

It is not always the case that only one of two complementary literals has an argument

structure, only when one of them only uses strict rules and facts. Another reason why a

literal may have a derivation but not an argument structure is in the case there is another

derivation of the same literal using only strict rules and facts. In that case the set of

defeasible rules of the argument structure with the strict derivation is an empty set and the

empty set is a subset of any set. Hence, the set of defeasible rules is not minimal for all other

arguments with the same conclusion (see condition 3 of definition 3.8). García and Simari

therefore conclude that if there is a strict derivation for a literal , the argument structure

for , namely is unique.

García and Simari define subargument structures of an argument structure to be an

argument structure with a set of defeasible rules that is a subset of its super argument

structure. By constraint 3 of definition 3.8, the conclusion of the subargument structure is

different from the conclusion of the super argument structure (or else it is exactly the same

argument structure).

DEFINITION 3.9 (SUBARGUMENT STRUCTURE) (GARCÍA & SIMARI, 2004)

An argument structure is a subargument structure of
 if .

To recap, in example 3.6 an example for each of the notions discussed in this section.

EXAMPLE 3.6 (ADAPTED FROM (GARCÍA & SIMARI, 2004))

Consider de.l.p. such that4:

 and

There are multiple derivations possible for the literal , namely

 and . Based on this, two arguments structures

supporting can be constructed, namely and
 . However, the argument structure
 is invalid because the set of

defeasible rules is not minimal. It is in addition possible to make

an argument structure for the complement of :
 .

The derivation for is . The derivation for the complement

of is and is strict. The argument structure supporting

the complement of is . There is no argument structure

4 Brackets were added to enhance readability.

 23

supporting , since only strict rules are used in the derivation of

 .

There is an argument structure supporting (see above) and

there is an argument structure supporting , namely .

There is however no argument structure supporting , such

that , since using the set
 5 derivations for both and can

be constructed.

Consider argument structure again. One of its

subarguments is since it is an argument structure

and .

The graphical representation of argument structures García and Simari use is that of a

triangle with the conclusion of the argument structure at the top and the set of defeasible

rules of the argument structure as the triangle itself. An example of a graphical

representation of an argument structure is shown in figure 16.

FIGURE 1: AN ARGUMENT AND A SUBARGUMENT (GARCÍA & SIMARI, 2004)

3.3 ATTACK

In DeLP it is possible for two complementary literals to have a supporting argument

structure. It is intended that if this happens the ‘weaker’ argument gets defeated by the

‘stronger’ one. Methods for deciding which argument structure is stronger and establishing a

preference criterion for this will be discussed in later sections. First it has to be discussed

what the notions of attack and disagreement between argument structures entail.

5 This is obviously also the case if the set of defeasible rules from the other argument

supporting is used.

6 From this picture it is not immediately clear that the premises of are a subset of the

premises of , this is however the case.

 24

Two literals disagree if their union with the set of strict rules and facts is contradictory, i.e. if

from this set two complementary literals can be derived.

DEFINITION 3.10 (DISAGREEMENT) (GARCÍA & SIMARI, 2004)

Let be a de.l.p.. We say that two literals and

disagree, if and only if the set is contradictory.

If an argument structure has a conclusion which disagrees with the conclusion of a

subargument structure of another argument structure, it is called the counterargument of

the latter. The literal with which the counterargument disagrees is called the

counterargument point and the subargument with it in its conclusion is called the

disagreement subargument. It is also said that the counterargument counterargues, rebuts

or attacks the super argument of the disagreement subargument.

Counterarguing can be symmetrical or non-symmetrical or respectively direct and indirect as

García and Simari call it. If the counterargument point is the same as the conclusion of the

counterargued argument, then the relation is symmetrical, otherwise it is not.

DEFINITION 3.11 (COUNTERARGUMENT) (GARCÍA & SIMARI, 2004)

We say that counterargues, rebuts or attacks

at literal , if and only if there exists a subargument of
 such that and disagree.

Below is an example of some counterarguments.

EXAMPLE 3.7 (ADAPTED FROM (GARCÍA & SIMARI, 2004))

Consider de.l.p. of example 3.1.

is a counterargument of
 and vice versa since

the set is clearly contradictory

and thus and disagree.

Counterarguing is symmetrical or direct in this case because the

disagreement subargument is the argument structure itself.

 is a

counterargument for with

 , since it disagrees

with the conclusion of its subargument
 . However in this

 25

case the relation is not symmetrical, since the disagreement

subargument is not the argument itself.

The notions of a direct and indirect counterargument are graphically represented in figure 2.

FIGURE 2: INDIRECT ATTACK (LEFT) AND DIRECT ATTACK (RIGHT) (GARCÍA & SIMARI, 2004)

It is possible that a counterargument does not have a complementary conclusion at all. In

that case, disagreement arises from the union with . The example that García and Simari

use to show this is below.

EXAMPLE 3.8 (ADAPTED FROM (GARCÍA & SIMARI, 2004))

Consider de.l.p. with

and . From this program is a

counterargument for because literals and

disagree.

García and Simari prove that there exists no possible counterargument for an argument

structure . Furthermore, they prove that such an argument structure cannot be a

counterargument for any argument structure . The purpose of investigating DeLP in

this thesis is mainly to be able to combine it with temporal logic and use it in a medical

diagnosis system. Therefore it is just noted that these are properties of the logic and the

proof is omitted. The interested reader can however find it in (García & Simari, 2004).

3.4 DEFEAT

To determine if an argument is defeated by its counterargument some kind of criterion has

to be established for comparing them to each other. García and Simari describe two criteria

to do this. In this section, the criteria and their incorporation in DeLP are described.

The first criterion García and Simari describe is generalized specificity. When comparing

arguments using generalized specificity, arguments with greater information content, i.e.

more precise arguments, are favored over arguments with less information content. In

addition, arguments with less use of rules, i.e. more concise arguments, are favored of

arguments which use more rules.

DEFINITION 3.12 (SPECIFICITY) (GARCÍA & SIMARI, 2004)

 26

Let be a de.l.p., and let be the set of all strict

rules from (without including facts). Let be the set of all

literals that have a defeasible derivation from (will be

considered as a set of facts). Let and be two

argument structures obtained from . is strictly more

specific than (denoted) if the

following conditions hold:

1. For all : if and , then

2. There exists such that and

 .

It is impossible to derive a literal using only a set of strict rules () and a set of defeasible

rules (). If is a set of facts and a union of , and may make it possible to derive a

literal , is called an activation set of .

The first condition essentially states that if , then if is an activation set

of an argument and no strict derivation for can be made using as the set of

facts, then is an activation set of . The second condition states that if
 , then there is an activation set of . It in addition states that if no strict

derivation for can be made using as the set of facts, then is not an activation set of
 .

Below is an example of arguments of which some are more specific than other ones.

EXAMPLE 3.9 (ADAPTED FROM (GARCÍA & SIMARI, 2004))

Consider de.l.p. from example 3.1.

Assume the following:

 ,

 ,

and

 is strictly more specific than because the first

is more direct than the latter. It is observable that every

activation set for is also an activation set for .

An example of such an activation set is . There

is also an activation set for which is not an activation

set for , namely .

 is strictly more specific than because it is

based on more information. It can be observed that every

 27

activation set of also activates , since every

activation set activating should contain the literals

 and . The set

however activates , but not .

García and Simari use the definition below to define the notion of equi-specificity.

DEFINITION 3.13 (EQUI-SPECIFICITY) (GARCÍA & SIMARI, 2004)

Two arguments and are equi-specific,

denoted , iff , and the literal

has a strict derivation from , and the literal has a

strict derivation from .

The other criterion described by García and Simari is on basis of explicit priorities on rules.

Contrary to many other argumentation logics, rules are not compared during the inference

process, but the set of defeasible rules in argument structures are compared to each other.

Only priorities for defeasible rules can be given since strict rules are not defeasible and thus

need not to be compared. Strict derivations however will always be preferred over

defeasible ones.

DEFINITION 3.14 (PRIORITY ON RULES) (GARCÍA & SIMARI, 2004)

Let de a de.l.p. and “ ” a preference relation explicitly

defined among defeasible rules. Given two argument structures
 and , argument will be preferred

over if:

1. There exists at least one rule , and one rule

 , such that ,

2. And there is no
 and

 , such that

 .

Below is an example in which two arguments are compared using the priority criterion.

EXAMPLE 3.10 (ADAPTED FROM (GARCÍA & SIMARI, 2004))

Consider de.l.p. .

Suppose there is a priority on the defeasible rules, such that
 .

Now two argument structures can be made, one supporting ,

namely and one supporting its complement
 . In this case former argument is preferred over

the latter since all rules in its set with defeasible rules have a

higher priority.

 28

García and Simari mention the option of combining different comparison criteria or defining

other comparison criteria than those they propose. In section 4 the choice of the comparison

criterion used in the argumentation logic with temporal arguments is discussed.

Independently from some given comparison criterion denoted by , García and Simari

distinguish two different forms of defeat. The first form of defeat, called proper defeat,

occurs when a counterargument of an argument is better according to the

comparison criterion. The second form of defeat, blocking defeat, occurs when a

counterargument of an argument is neither better nor worse according to

the comparison criterion. The definitions of the two forms of defeat are below.

DEFINITION 3.15 (PROPER DEFEATER) (GARCÍA & SIMARI, 2004)

Let and be two argument structures.

is a proper defeater for at literal , if and only if there

exists a subargument of such that

counterargues at and .

DEFINITION 3.16 (BLOCKING DEFEATER) (GARCÍA & SIMARI, 2004)

Let and be two argument structures.

is a blocking defeater for at literal , if and only if

there exists a subargument of such that
 counterargues at and is unrelated

by the preference order to , i.e. , and
 .

Below is an example of a proper defeater and a blocking defeater.

EXAMPLE 3.11 (PROPER DEFEATER AND BLOCKING DEFEATER)

Consider arguments , , and

such that , and are all

counterarguments of . Consider the comparison

criterion and .

Since is preferred over , is a proper

defeater of . Since and are unrelated

according to the comparison criterion, is a blocking

defeater of . is preferred over and

therefore is not a defeater of .

García and Simari define an argument to be a defeater for another argument, if it is its

proper defeater or its blocking defeater.

 29

DEFINITION 3.17 (DEFEATER) (GARCÍA & SIMARI, 2004)

The argument structure is a defeater for , if

and only if either:

1. is a proper defeater for ; or

2. is a blocking defeater for .

3.5 STATUS ASSIGNMENTS

Counterarguments are not the only argument structures that influence the defeat status of

an argument structure. The ultimate status of an argument structure depends as well on

counterarguments of its counterarguments and counterarguments of those arguments and

so on. To determine the ultimate status of an argument structure, these also have to be

evaluated.

To be able to determine the ultimate status of an argument structure, a sequence of

argument structures is made starting with the argument structure for which the status needs

to be determined and in which each element defeats its predecessor. Such a sequence is

called an argumentation line.

DEFINITION 3.18 (ARGUMENTATION LINE) (GARCÍA & SIMARI, 2004)

Let be a de.l.p. and an argument structure obtained

from . An argumentation line for is a sequence of

argument structures from , denoted

 , where each element of

the sequence , , is a defeater of its predecessor
 .

Figure 3 depicts an argumentation line.

FIGURE 3: ARGUMENTATION LINE (GARCÍA & SIMARI, 2004)

Each argument structure in an argumentation line supports or interferes with the conclusion

of the first argument structure in the sequence. The first argument structure obviously

supports its conclusion. The second argument structure however defeats this argument and

 30

thus interferes with it. The third argument structure defeats the interfering second

argument structure and is thus a supporting argument. Identifying in this way each

argument structure as supporting or interfering with the conclusion of the first argument

structure, two sets can be made; a set of supporting argument structures and a set of

interfering argument structures.

DEFINITION 3.19 (SUPPORTING AND INTERFERING ARGUMENT

STRUCTURES) (GARCÍA & SIMARI, 2004)

Let an argumentation line,

we define the set of supporting argument structures

 , and the set of

interfering argument structures .

Below is an example of an argumentation line.

EXAMPLE 3.12 (ARGUMENTATION LINES)

Consider de.l.p.

 . From this

de.l.p. argument structures , and can

be obtained with:

 ,

 , and

 .

Suppose there is an preference relation on these argument

structures, such that , and
 . An argumentation line for argument structure
 is , with the set of

supporting argument structures and

the set of interfering argument structures .

Figure 4 shows a graphical representation of this

argumentation line.

FIGURE 4: A GRAPHICAL REPRESENTATION OF THE ARGUMENTATION LINE
IN EXAMPLE 3.12

 31

There are several situations in which argumentation logics in general may exhibition

unwanted behavior. In this section they are discussed briefly and superficially, since the

purpose of this part of the thesis is mainly to explain the workings and structure of DeLP and

not to evaluate it thoroughly. In later sections DeLP with temporal arguments will be

discussed in more detail and so will be its advantages and disadvantages. I would like to

refer the interested reader to (Prakken & Vreeswijk, 1998) or (García & Simari, 2004)

respectively for a more in-depth analysis of problems and solutions for argumentation logics

in general and for DeLP in specific.

The first problem that occurs commonly in argumentation logic has to do with self-defeating

arguments, i.e. arguments that defeat themselves. Self-defeating arguments could cause

argumentation lines to have an infinite length, by repeating itself infinitely in the sequence.

Self-defeat is, contrary to many other argumentation logics, not a problem in DeLP since

García and Simari define the notion of an argument in such a way that it could never defeat

itself7.

There are other problems very similar to the problem with self-defeating arguments that

nonetheless may occur in DeLP. An argumentation line may for instance become infinite

when there is a pair of argument structures that defeat each other. Another form of circular

argumentation leading to an infinite argumentation line is when arguments are reintroduced

in the sequence to defend themselves. In some cases this problem may as well occur when a

subargument of a preceding argument in the argumentation line is reintroduced, it may then

even happen that an argument is both supporting and interfering with itself.

Infinite argumentation lines are clearly undesirable; therefore García and Simari impose

some additional restrictions on argumentation lines. These restrictions can be found in

definitions 3.20 and 3.21.

A different kind of undesirable behavior may arise when a blocking defeater in the sequence

is used to defeat a blocking defeater (of a preceding argument). Allowing such sequences is

equivalent to accepting that in a blocking situation, two arguments supporting (interfering

with) a sentence is preferred over having one interfering (supporting) argument. Restriction

4 of definition 3.21 prevents this problem.

DEFINITION 3.20 (CONCORDANCE) (GARCÍA & SIMARI, 2004)

Let be a de.l.p.. Two arguments and
 are concordant iff the set is non-

contradictory. More generally, a set of argument structures

 is concordant iff

 is non-

contradictory.

7 See (García & Simari, 2004) for a proof.

 32

DEFINITION 3.21 (ACCEPTABLE ARGUMENTATION LINE) (GARCÍA &

SIMARI, 2004)

Let be an

argumentation line. is an acceptable argumentation line iff:

1. is a finite sequence

2. The set , of supporting arguments is concordant, and the

set of interfering arguments is concordant.

3. No argument in is a subargument of an

argument appearing earlier in .

4. For all , such that the argument is a blocking

defeater for , if exists, then
 is a proper defeater of .

The first restriction in definition 3.21, obviously prevents argumentation lines from being

infinite. The second restriction makes sure that there are no arguments supporting as well as

interfering with the same sentence. Restriction 3 prevents subarguments from being

reintroduced and restriction 4 makes sure that blocking defeaters may only be defeated by a

proper defeater. García and Simari note that different restrictions are possible and by

modifying these restrictions, the behavior of the formalism can be controlled. In section 4

the choice of restrictions on argumentation lines for the argumentation logic with temporal

arguments is discussed.

EXAMPLE 3.13 (PAIRS OF DEFEATING ARGUMENTS)

Consider de.l.p.

 . From

 two argument structures can be obtained, namely

and , with:

 , and

 .

Now it is possible that argument structure defeats
 , by defeating its subargument structure
 , while at the same time defeats
 by defeating its subargument structure
 . If there were no restrictions like imposed

in definition 3.21, an infinite argumentation line for

could be made, namely
 , which would be

undesirable. However, if the restrictions in definition 3.21 are

taken into account, such an argumentation line would be not

acceptable, since it is infinite and this is not acceptable by

restriction 1 and moreover an argument is a subargument of

 33

itself and thus is not allowed to appear more than once in the

argumentation line according to restriction 3.

There may be multiple defeaters for an argument and thus multiple argumentation lines.

Arguments in these argumentation lines may also have multiple defeaters and this means

even more argumentation lines can be generated. All these possible argumentation lines for

an argument structure can be joined into a dialectical tree for this argument structure.

The root of a dialectical tree for an argument structure is labeled . The children

of a node are labeled with the corresponding defeaters of the argument structure in its

label. If a node is a leaf, the argument structure in its label is undefeated. In a dialectical

tree, argument structures represented in the nodes in each path from the root of the tree to

a leaf corresponds to one of the acceptable argumentation lines for the argument structure

represented by the root.

DEFINITION 3.22 (DIALECTICAL TREE) (GARCÍA & SIMARI, 2004)

Let be an argument structure from a program . A

dialectical tree for , denoted , is defined as

follows:

1. The root of the tree is labeled with .

2. Let be a non-root node of the tree labeled , and

 the

sequence of labels of the path from the root to . Let

 be all the defeaters for
 .

For each defeater , such that, the

argumentation line

 is

acceptable, then the node has a child labeled .

If there is no defeater for or there is no

such that is acceptable, then is a leaf.

Below is an example of a dialectical tree in DeLP.

EXAMPLE 3.14 (DIALECTICAL TREE) (GARCÍA & SIMARI, 2004)

Consider the following de.l.p.:

Here the literal is supported by
 and there exist three defeaters

for it, each of them starting three different argumentation

lines: ,

 34

 and
 . The first two are proper defeaters and the

last one is a blocking defeater.

Observe that the argument structure has the

counterargument , but it is not a defeater since

the former is more specific.8 Thus no defeaters for

exist and the argumentation line ends there.

The argument structure has a blocking defeater:
 . Note that is the disagreement

subargument of , therefore, it cannot be introduced

because it produces an argumentation line that is not

acceptable.

The argumentation structure has two defeaters that

can be introduced:

(proper defeater) and (blocking

defeater).

Thus one of the lines is split in two argumentation lines. The

argument has a blocking defeater that can be

introduced in the line: .

Finally observe that both and have a blocking

defeater, but they cannot be introduced because they make

the argumentation line not acceptable.

The dialectical tree for is shown in figure 5.

FIGURE 5: DIALECTICAL TREE FOR EXAMPLE 3.14 (GARCÍA & SIMARI, 2004)

8 García and Simari use generalized specificity as the comparison criterion here.

⟨𝒜,𝑎⟩

⟨ 𝑏⟩ ⟨ 2 𝑏⟩

⟨𝒞_1,~𝑓⟩

⟨𝒟_1
 ⟩

⟨𝒞_2,~𝑓⟩

⟨ 3 𝑏⟩

 35

García and Simari observe that a subtree of a dialectical tree is itself not always a dialectical

tree since some defeaters that are not included in the super tree because they would make

an argumentation line unacceptable are acceptable in the subtree.

A sentence in DeLP is warranted or justified if there is an argument structure that is

undefeated. A dialectical tree with at the root can be built to determine whether it is

undefeated. Each leaf in this tree is marked undefeated (), since it has no defeaters. Each

inner node in the tree will get the mark defeated () if one or more of its children is

undefeated and will get the mark undefeated otherwise. By marking each node in the tree, it

is eventually possible to mark the root node and conclude whether it is defeated or

undefeated and thus whether a sentence is warranted or not. Below is the procedure by

García and Simari for marking the nodes in a tree and the definition of warranted literals.

PROCEDURE 3.1 (MARKING OF A DIALECTICAL TREE) (GARCÍA & SIMARI,

2004)

Let be a dialectical tree for . The corresponding

marked dialectical tree denoted
 , will be obtained

marking every node in as follows:

1. All leaves in are marked as “ ”’s in
 .

2. Let be an inner node of . Then will be

marked as “ ” in
 iff every child of is marked as

“ ”. The node will be marked as “ ” in
 iff it

has at least a child marked as “ ”.

DEFINITION 3.23 (WARRANTED LITERALS) (GARCÍA & SIMARI, 2004)

Let be an argument structure and
 its associated

marked dialectical tree. The literal is warranted iff the root of

 is marked as “ ”. We will say that is a warrant for .

Below is an example of a marked dialectical tree.

EXAMPLE 3.15 (MARKED DIALECTICAL TREE) (ADAPTED FROM (GARCÍA

& SIMARI, 2004))

Below is dialectical tree from figure 5, marked according to

procedure 3.1.

 36

FIGURE 6: THE MARKED DIALECTICAL TREE FOR EXAMPLE 3.15 (GARCÍA &
SIMARI, 2004)

From figure 6 it can be observed that literal is not warranted.

Using the definitions above, García and Simari prove that literals that have a strict derivation

are always warranted.

Building an entire dialectical tree for an argument structure and marking all nodes is clearly

not the most efficient way to determine whether a literal is warranted. Consider example

3.15 again. is only warranted if all children of are defeated (and there is no other

argument structure with at its conclusion which is ultimately undefeated). To know

whether is marked defeated, it is not necessary to build the entire marked dialectical

tree. As soon as it is clear that one the children of is marked undefeated, can

be marked defeated and the rest of the marked dialectical tree does not have to be built

anymore. In case of example 3.15, as soon as it is clear that or is

undefeated, can be marked defeated and the rest of the dialectical tree is of no

importance anymore.

García and Simari developed a more efficient procedure for determining whether a literal is

warranted, pruning nodes in the dialectical tree that do not contribute to the status of the

root. The procedure considers each branch of the leaf depth-first and from left to right. To

decide whether a literal is warranted, the procedure considers each argument structure

for in turn. García and Simari give no formal description for the procedure, but they use

the example below to describe it.

EXAMPLE 3.16 (WARRANT PROCEDURE WITH PRUNING) (GARCÍA &

SIMARI, 2004)

Suppose that in order to find a warrant for , the argument

 is found, and the acceptable argumentation line
 is built. In this

situation, the acceptable argumentation line ends with the

supporting argument , so the marking procedure establishes

⟨𝒜,𝑎⟩^𝐷

⟨ 𝑏
⟩^𝑈

⟨ 2 𝑏
⟩^𝐷

⟨𝒞_1,~𝑓
⟩^𝐷

⟨𝒟
 ⟩^

𝑈

⟨𝒞_2,~𝑓
⟩^𝑈

⟨ 3 𝑏
⟩^𝑈

 37

that is up to this point a . However, the warrant

process cannot finish there because there could be more

defeaters to consider. Therefore, the process will continue

expanding other argumentation lines.

First, note that although there could be more defeaters for ,

considering them will not change ’s status because of .

Therefore the tree can be pruned at that point without losing

further defeaters for .

However, the previous analysis does not apply to , because

if an undefeated defeater is found for it, the mark of could

change. It is for this reason the procedure will look for any

other possible defeater for , creating a new

argumentation line.

If a defeater is found (with no defeaters for it), then the

argumentation line will end with an interfering argument, and

therefore will be a . Again, pruning could be influenced,

because although there could be more defeaters for , they

cannot modify its status. However, there might be another

defeater for , creating in that case a new argumentation

line.

Being able to determine whether a literal is warranted means that queries about literals can

be answered. García and Simari use a modal belief-operator such that for a literal ,

means that is warranted and means that is not warranted.

DEFINITION 3.24 (ANSWER TO QUERIES) (GARCÍA & SIMARI, 2004)

The answer of a DeLP interpreter can be defined in terms of a

modal operator . In terms of , there are four possible

answers for a query :

 , if (is warranted)

 if (the complement of is warranted)

 , if and (nether nor are

warranted)

 , if is not in the language of the program.

 38

4 THE PROPOSED TEMPORAL ARGUMENTATION LOGIC

As described in section 2.5 medical diagnostic systems are required to handle temporal

information, they should furthermore be able to handle partially missing or imprecise

temporal information. Even though argumentation logics are capable of dealing with facts

that are missing as a whole, they are generally not equipped to handle cases in which part of

the information of a fact is present and part is not. Therefore, merely expanding the

argumentation logic with temporal arguments is insufficient.

In a derivation process, to infer the head of a rule, all literals in its body need to be matched

with facts or literals that have already been derived. If the literals in the body contain

temporal arguments, these need to be also present in the corresponding facts. Below is an

example in which temporal information is missing for one of the facts in a logic with

temporal arguments. To show the problem logics in general have when a part of a fact is

missing, it is not necessary to specify the logic used in the example below any further, which

therefore has not been done.

EXAMPLE 4.1 (MISSING TEMPORAL INFORMATION)

Consider a rule

 in some logical system

denoting that “if someone slept for less than 8 hours and

worked for more than 8 hours, then they are tired”.

and are temporal arguments denoting start en ending times

of the intervals at which the predicates are true.

Consider the following facts in the same system:

 and . To be able to infer

the head of the rule above, the body needs to be determined to

be true.

 can be determined to be

true since there is a fact and .

 can however not be

determined to be true, since the fact does

not contain the required temporal information.

Since there is no temporal information on how long Mary was working, we are not able to

infer anything in the example above and information that Mary was working is disregarded.

It is however undesirable to do this in many cases, since potentially useful information is not

used. On the other hand, we cannot just add a fact saying that Mary was working for more

than 8 hours, since we do not know that for certain.

In this case, it would be preferable to derive under the assumption that Mary

was working for more than 8 hours. On the other hand, if stronger information becomes

available that Mary was not working more than 8 hours or that Mary is not tired, we would

like to be defeated. In the temporal argumentation logic proposed in this

 39

thesis, this is exactly the way in which partially missing temporal information is handled. The

logic is designed to make optimal use of information that is available, while carefully keeping

track of assumptions that need to be made when information is missing.

In example 4.1, implicitly there is some temporal information about ,

namely that it could possibly have any duration, including a duration of more than 8 hours.

This kind of knowledge could be represented by replacing the temporal arguments in

predicates that denote the exact time at which they became true and the exact time at

which they ceased to be true with a set of all intervals at which the argument possibly could

be true according to the available information. The facts from example 4.1 would in that

case be written as and where denotes a set

containing all possible intervals in the range of time that is considered by the system in

which the logic is used. In the proposed temporal argumentation logic, sets containing

intervals, such as and are called interval sets.

To deal with interval sets, the rule in example 4.1 should be rewritten as well. The

corresponding rule in the proposed logic is in the example below. It expresses the same

information as the rule in example 4.1, but due to its different form it is possible to use

interval sets and to infer on which assumptions its head can be derived. How exactly rules of

this form should be read and understood will become more apparent in the course of this

section.

EXAMPLE 4.2 (RULES AND FACTS IN THE PROPOSED LOGIC)

The following rules and facts are in the language of the

proposed logic and they replace the rules and facts in example

4.1:

In the rules and facts above, , and are called interval sets

and and are intervals. contains all intervals in the time

span considered by a system that uses the proposed logic.

is called a temporal constraint. A temporal constraint in the

proposed logic expresses that the head of the rule may only be

derived if it is possible that the intervals at which the literals in

its body are true have the desired properties.

In the proposed logic, there is a defeasible derivation of

 . This literal is derived under the assumption that

Mary worked for more than 8 hours. If information becomes

available that Mary is not tired or did not work for more than 8

 40

hours and this information is based on stronger assumptions,

then is defeated during the argumentation

process in the proposed logic.

In the first subsection of this section, some ideas that are essential to understanding the

proposed logic are discussed. In subsequent subsections, the proposed temporal

argumentation logic is defined formally. Most definitions are inspired by the definitions from

(García & Simari, 2004) or are taken from it. The definitions of (García & Simari, 2004) for the

system DeLP are discussed in chapter 3.

4.1 FUNDAMENTALS OF THE PROPOSED LOGIC

Literals containing a term that denotes an interval set are called temporal literals in the

proposed logic. Their semantics are crucial to understanding the proposed logic and the

thoughts behind it. It is therefore important to discuss some ideas on which the proposed

logic was built prior to formally defining the logic.

The information expressed in a temporal literal in the proposed logic differs from the

information that is usually expressed in a literal. To establish their semantics, it is necessary

to have some concept of the “real world” that is represented by the facts and rules in a

logical system. An elaborate philosophical discussion of what this “real world” is, is outside

the scope of this thesis. Therefore, in this thesis the “real world” is defined in a short and

simplified way, while avoiding controversy to the extent possible.

The “real world” is whatever is represented by the rules and facts in a logical system, i.e. the

domain of discourse. The actual situation in this “real world” is a collection of things that are

true or false at certain intervals. It is assumed that the actual situation in the “real world” is

such that contradictions do not exist. In other words, the actual situation in the “real world”

cannot be such that there are things that are true and false at the same time. The things that

are true and that are false can be represented by corresponding literals in the logic.

It will be assumed that information about the actual situation in the “real world” can be

incomplete. More specific, information may be completely or partially missing about at

which intervals some things are true or false. Partially missing information still gives some

information about the actual situation in the “real world”, namely which situations are

possibly the actual situation in the “real world”. Temporal literals thus contain information

about which situations in the “real world” are considered possible. It is assumed that

information that is expressed by temporal literals that are facts in the logic is correct. In

other words, of all the possible situations expressed by all facts in the logic, one is a partial

or complete representation of the actual situation in the “real world”.

The semantics and syntax of temporal literals are defined formally in section 4.2. The formal

semantics of temporal literals are founded on the ideas described above.

 41

4.2 ATOMIC FORMULAS AND INTERVAL SETS

The notion of an interval set is built upon the notions of an interval and a set with natural

numbers that denote the points in time that are considered by the system.

DEFINITION 4.1 (INTERVAL SETS)

 is a set of natural numbers such that given some natural

number , .

An interval in the proposed logic is a pair , where:

 , and

An interval set

 is a non-empty finite

set of intervals.

REMARKS

 is the set of all points in time considered by the system using

the logic, denoted by natural numbers. The natural number

 denotes the first point in time considered by the system

and denotes the last point in time considered by the system.

For each , if , then denotes a point in time

preceding the point in time denoted by .

For an interval , denotes the point in time the

interval starts and denotes the point in time the interval

ends.

Set is the interval set containing all

possible intervals based on . The set of all possible interval

sets in the time considered by a system is the power set of ,

 .

The symbols from the set of lower case script

letters may be used as an abbreviations to denote intervals, e.g.

interval may be denoted by .

From definition 4.1 it can be observed that set is finite. Time is usually considered infinite.

Defining the set of time points as infinite would make the set of possible intervals infinite as

well, which in turn would allow for infinite interval sets. This would severely heighten the

complexity of the definitions of the functions on these interval sets. While it probably is

possible to define as infinite, it was decided not to do so to guard the intelligibility of the

proposed logic and its definitions.

 42

Defining as finite also makes sense from a more practical point of view since it would be

pointless for a medical diagnostic system to take infinite time into account. When the

proposed logic is used, the size and content of set should match the domain in which the

proposed logic is used. The timespan, i.e. the value of may vary for different domains. For

certain sets of diagnoses, it may be optimal to consider a time span of a couple of weeks and

for others it may be optimal to consider the time span of a person’s whole life.

Correspondingly, the natural numbers in may denote different units of time. In some

cases, it may be optimal to take seconds as units, while in others it may be optimal to let the

elements of denote hours, weeks or months.

Intervals in the proposed logic are defined to be pairs of natural numbers. The first number

denotes the point in time the interval starts and the second number denotes the point in

time interval ends. Semantically, it is implicitly assumed that every point in time between

this starting point and ending point is also in the interval. This assumption is however not

made explicit since this assumption does not influence the syntactic definitions of the other

notions. Intervals in addition are defined to always have a duration of 1 time unit or more, as

there is no purpose for intervals with a duration of 0 if the elements in are chosen

correctly.

Interval sets are sets containing intervals. They are used as terms in formulas. To be able to

incorporate them into the language of the logic, the notion of an atomic formula has to be

redefined.

DEFINITION 4.2 (ATOMIC FORMULAS)

Given a set of variable symbols , a set of

symbols for interval sets and a set of

function symbols , terms are defined as

follows:

 Any variable is a term,

 Any interval set is a term,

 Any function , such that is a function

with arity where each is a term, is a term. If a

function has an arity of , it is called a constant.

Given a set of predicate symbols , an

expression , where is an -ary predicate

symbol and are terms, is an atomic formula.

REMARKS

Commonly only variables and functions on terms are

considered to be terms. In this definition interval sets are

considered to be terms as well. Formally, this is not exactly

 43

accurate. A term is not an interval set (or a variable etc.), but

can be interpreted as an interval set under an interpretation.

If is a nonempty domain of discourse, then set is the

subset of containing only elements that are time points.

Which interval sets can possibly exist, depends on the elements

of . Therefore, a symbol denoting an interval set can be

interpreted as an element of the set of interval sets, (of

which the content is determined by the content of set).

Correspondingly, functions have different interpretations

depending on whether they contain interval sets as terms and

whether their range is .

 and are predicate symbols in denoting equality and

inequality respectively. and are a function symbols in

denoting intersection and the -ary Cartesian product

respectively. is a constant symbol in denoting the empty

set. These predicates and functions all have their usual

definitions. Their infix notation can be used as syntactic sugar.

 is usually a constant.

Below are some examples of atomic formulas. Some of them contain interval sets and some

of them don’t.

EXAMPLE 4.3 (ATOMIC FORMULAS)

The following formulas are atomic formulas:

The following are not atomic formulas:

Literals usually are defined to be atomic formulas, since the proposed logic is based on DeLP

the definition of a literal of (García & Simari, 2004) was used.

 44

DEFINITION 4.3 (FACTS OR LITERALS)

A fact or a literal is a ground atomic formula or its

negation.

REMARKS

A ground term is a term containing no variables, hence

constants, interval sets and functions on ground terms are

ground terms.

A ground atomic formula is an atomic formula with only ground

terms.

EXAMPLE 4.4 (FACTS OR LITERALS)

The following atomic formulas are facts or literals:

The following atomic formulas are not facts or literals:

The word ‘fact’ is commonly used to refer to ground atomic formulas (or their negations)

that are axioms in the system or serve as input to a system using the proposed logic. The

word ‘literal’ is used to refer to ground atomic formulas and their negations, which are

derived or are part of the body or the head of a rule. Both words refer to the same kind of

formulas syntactically.

Literals may or may not contain terms denoting interval sets. It is important to distinguish

literals containing one term that denotes an interval set from literals containing multiple or

no such terms, as their semantics are different in the proposed logic. A term denoting an

interval set or a function that returns an interval set is called a temporal term. Literals

containing exactly one temporal term, are named temporal literals.

The definition of a temporal term is a bit unusual in the sense that a temporal term is

defined by both its syntax as well as its semantics. To avoid this, it would be necessary to

 45

make a syntactic distinction between functions that have a subset of as their range

and other functions. This would however be detrimental rather than beneficial to the

intelligibility of the definitions of the proposed logic.

DEFINITION 4.4 (TEMPORAL TERMS)

A term is a temporal term, if and only if:

 , or

 , where the range of is a subset of

 and are ground terms.

Below are some examples of temporal terms.

EXAMPLE 4.5 (TEMPORAL TERMS)

The following are temporal terms:

 , where the range of the set of interval sets

 , where the range of is the set of interval sets

 , where the range of and is the set of

interval sets

The following are not temporal terms:

The notion of a temporal term is used to define the notion of a temporal literal. The

semantics of temporal literals are discussed in section 4.1.

DEFINITION 4.5 (TEMPORAL LITERALS)

A temporal literal or its negation is a literal that has

exactly one temporal term as term. Such a term is said to

be the temporal term of .

Below are some examples of temporal literals.

EXAMPLE 4.6 (TEMPORAL LITERALS)

 46

The following literals are temporal literals with their temporal

terms:

 , with temporal term

 , with temporal term

 where the range of is a subset of

the power set of and the range of is not, with

temporal term

 , where the range of is a subset of the

power set of , with temporal term

 , with temporal

term

The following are not temporal literals:

The semantics of temporal literals are based on the ideas discussed in section 4.1. The

information about the actual situation in the “real world” contained in a temporal literal
 with its term denoting an interval set , is that the relationship between

 holds at exactly one interval . Such a temporal literal does

however not contain information stating which of the intervals in is the interval at which

the relationship holds in the actual situation in the “real world”. Correspondingly, the
information contained in a temporal literal with its term denoting an

interval set is that the relationship between does not hold at

exactly one interval . If is a temporal literal with temporal term that

denotes an interval set and we would like to address a situation in which the relation
holds between at interval , then for the sake of brevity we say

that is true at in this situation.

Consider a temporal literal with its term denoting an interval set . Suppose

contains more than one element. In this case, it is only known that is true at one

of the intervals in in the actual situation, but it is not known exactly at which one. This

means that information about the situation in the “real world” concerning the interval at

which is true, is partial. thus describes multiple situations that are

possibly the actual situation in the “real world”. These possible situations described are

precisely all situations in which holds at an interval in . It is important to note

that while a temporal literal states that it is true at exactly one interval in its interval set, this

does not mean that it cannot be true at more than one interval in its interval set. This is only

not what is expressed by the literal. If the same literal is true at multiple intervals, this can be

expressed by multiple temporal literals which only differ by their interval sets.

 47

The number of situations that are considered possible depends on the amount of

information that is available. If for instance there is no information about at which interval

something is true (only that it was true at some interval), then every situation in the “real

world” in which this thing was true at some interval is a possible situation according to the

corresponding temporal literal. The interval set of this temporal literal therefore should

denote an interval set containing all intervals in the time span considered by the system.

If it is absolutely certain at which interval something is true, then only situations are

considered possible in which this thing was true at this interval. The temporal term of the

corresponding temporal literal therefore should denote an interval set containing only this

interval. Multiple situations in which the exact same things are true at the same intervals are

called a group of situations. A temporal literal containing only one interval in its interval set

thus denotes a group of possible situations.

To illustrate the above, below are some examples of temporal literals and their meanings in

natural language.

EXAMPLE 4.7 (TEMPORAL LITERALS AND THEIR MEANING)

The following are temporal literals with their corresponding

interpretations in natural language:

 “Mary had a headache from 8 to 10” can be denoted by

 . If it is in addition known that

she had a headache from 12 to 15, then this can be

denoted by an additional temporal literal

 2 .

 If Mary had a fever and she is not sure whether it was

from 8 to 10 or from 12 to 15, then this can be denoted

by the temporal literal 2 .

 “Mary did not have a stomach ache from 8 to 10 and she

did not have a stomach ache from 12 to 15” can be

denoted by and

 2 .

 “Mary did not have a stomach ache from 5 to 6 or from 7

to 8” can be denoted by

 .

In the next subsections, the proposed temporal argumentation logic is defined formally.

In (Allen, 1983), James Allen defines 13 relationships that can be used to describe any

possible relationship between two intervals. Based on these relationships, some functions

are defined that take an interval set and return an interval set of which the elements have a

certain relationship with the intervals of the first. These functions can be used in temporal

literals to denote which intervals are in an interval set and which intervals are not in this

 48

interval set. They do not add to the expressiveness of the language, but can be used as

abbreviations.

DEFINITION 4.6 (FUNCTIONS ON INTERVAL SETS)

Consider an arbitrary interval set

 . The

following unary functions on return the set of all possible

intervals that have a relationship with one of the intervals in

corresponding to the relationships in (Allen, 1983).

Function Set

REMARKS

The set returned by each function is finite, since the set is

defined to be finite and each end or starting point of an interval

is an element of . This means that each variable in the

definition above is implicitly bound by the restrictions on .

Below is an example of each of the functions on an interval set containing only one interval.

The functions can of course be applied to interval sets containing more than one interval as

well.

EXAMPLE 4.8 (FUNCTIONS ON INTERVAL SETS WITH ONE ELEMENT)

 49

Suppose we know that Mary had a headache from 8 to 10, this

knowledge can be represented by the predicate

 .

The results of the functions defined above on the interval on

which Mary had a headache are in the tables below.

Function Set

At times it may be useful to have certain information about intervals, such as their duration.

Below some functions are defined with one interval as argument. In certain cases it can be

useful as well to state that two intervals have a certain relation with each other. Functions to

do this are additionally defined below. These functions again correspond with the relations

described in (Allen, 1983).

DEFINITION 4.7 (FUNCTIONS ON INTERVALS)

Consider an arbitrary interval . The following unary

functions on are defined, such that they return a

natural number denoting respectively the starting point, ending

point or duration of :

Function Returns

Consider arbitrary intervals

 and 2
 2

 . The following

binary functions on

 and 2
 2

 , return the truth value

 if and only if

 and 2
 2

 have a relationship

 50

corresponding to the relationships described in (Allen, 1983).

Otherwise these functions return the value .

Function iff

REMARKS

The functions , , , ,

 and do not add to the expressiveness

of the language, as they are the inverse functions of

respectively , , , , and

 and these functions can thus be used with their

arguments switched. They are however added to increase

usability.

Below is an example of each of the unary and binary functions from definition 4.7.

EXAMPLE 4.9 (FUNCTIONS ON INTERVALS)

Below is an example of each of the unary functions with the

natural number they return.

Function Returns

 51

Below are examples of each of the binary functions. In the

examples in the left column is returned as a value, while

in the examples in the right column the value is returned.

 2 3

 3

 3

 2 3

 3 2

When temporal information is incomplete, but not completely missing, the information that

is available can be used to define the interval set of a literal. To do this, the functions from

the two definitions above may be used. Below are some examples of temporal literals

containing these functions with their meanings in natural language.

EXAMPLE 4.10 (INCOMPLETE TEMPORAL INFORMATION)

Consider a case in which Mary had a stomachache which

started and stopped before she had a fever. It is known when

she had the fever, namely from 3 to 6. This knowledge can be

represented by the literals 3 and

 3 .

Suppose Mary had a headache with duration of 3 or 4 time

units somewhere between 6 and 15. This can be represented

by the literal , where

 3

 .

Suppose Mary had a fever from 3 to 6 and more than one time

unit after the fever stopped, she got a fever again. During this

second time she had a fever, she started to feel dizzy, which

stopped after the fever stopped. The information above can be

represented by the literals 3 ,

 , where

 52

 3

 3
 and

 , where .

Complex interval sets, such as in the example above, can be used as facts in a system using

the proposed logic. These facts can be from a database or can be given as input by the user.

It is important to note that the building of these interval sets in facts is not part of a program

using the proposed logic itself, but it is part of its input and therefore their realization is not

of our concern here. In addition, facts are considered to be ground, this means that interval

sets should not contain any variables when used as input.

In the next section, rules and derivations in the proposed temporal argumentation logic are

defined and discussed.

4.3 RULES AND DERIVATIONS

Strict and defeasible rules are defined similar to (García & Simari, 2004). The only difference

between the definitions of (García & Simari, 2004) and the definitions below is that the body

of a rule should be a sequence in the proposed logic. The need for this deviation from the

“original” definitions will become more apparent in the course of this section.

DEFINITION 4.8 (STRICT RULES)

A strict rule is an ordered pair, denoted “ ”

whose first member , is a literal, and whose second

member, is a finite non-empty sequence of literals.

A strict rule with the head and body can also be

written as .

DEFINITION 4.9 (DEFEASIBLE RULES)

A defeasible rule is an ordered pair, denoted “ ”

whose first member , is a literal, and whose second

member, is a finite non-empty sequence of literals.

A defeasible rule with the head and body can also

be written as .

The definition of a defeasible logic program is the same as the definition of (García & Simari,

2004). Their remark about which symbols denote variables is left out since this already has

been discussed for the proposed logic.

DEFINITION 4.10 (DEFEASIBLE LOGIC PROGRAM) (GARCÍA & SIMARI,

2004)

 53

A defeasible logic program , abbreviated de.l.p., is a possibly

infinite set of facts, strict rules and defeasible rules. In a

program , we will distinguish the subset of facts and strict

rules and the subset of defeasible rules. When required we

will denote as .

Strict and defeasible rules are ground. However following the

usual convention, some examples will use “schematic rules”

with variables. Given a “schematic rule” , stands

for the set of all ground instances of . Given a de.l.p with

schematic rules, we define:

In medical diagnostic systems, it may sometimes be necessary to express temporal

constraints in the body of a rule. In order to diagnose a disease, it may for instance be

required that symptoms have occurred in a certain order or that they have lasted for a

certain amount of time. Such properties and relations between the intervals at which

symptoms should have been present can be expressed by using temporal constraints in a

rule. Temporal constraints state that the intervals at which the literals in the body of a rule

can be true should have certain properties or relations to each other. If they do, then the

head of a rule that contains them may be derived, if they don’t, then the head of such a rule

may not be derived.

As discussed in the previous section, in the proposed logic it is possible to express partial

temporal information. This is done by using temporal literals that denote which situations

could possibly be the actual situation in the “real world”. Since it is not always known which

possible situation is the actual situation, it may not be certain that the literals in the body of

a rule are true at intervals that have the right properties to meet the constraints. In some

cases, of the possible situations expressed by a temporal literal, some have the right

properties regarding the intervals, while some do not. It is then possible that the constraints

in the body of a rule are met, but not certain. In such cases, the head of a rule may still be

derived, but under the assumption that the actual situation is one of the possible situations

expressed in the temporal literal that meets the constraints.

Temporal constraints are expressed as a set denoting all situations in which the intervals at

which the literals in the body of a rule are true have those relationships and properties. The

head of a rule containing a temporal constraint may only be derived if there is at least one

possible situation according to the literals in its body in which the constraints are met. A

possible situation meets the temporal constraint if it is denoted in the set representing the

constraint.

To be able to define the way of expressing temporal constraints above, it is first necessary

that possible situations according to single or multiple literals can be expressed more explicit

and precise. The definitions below are used to do this.

 54

DEFINITION 4.11 (TEMPORAL LITERAL SEQUENCES)

A finite sequence , where are temporal

literals is called a temporal literal sequence.

Below are some examples of temporal literal sequences.

EXAMPLE 4.11 (TEMPORAL LITERAL SEQUENCES)

The following sequences are temporal literal sequences:

 2

The following are not temporal literal sequences:

The information about which situations are possibly the actual situation in the “real world”

on basis of multiple temporal literals is captured in a temporal literal sequence. According to

the information in a temporal literal sequence, all situations that are not contradictory in

which each of the literals in it is true at an interval in its temporal term are possible. A

temporal literal sequence by itself is not sufficient to describe specific possible situations on

basis of the information in it. To denote specific possible situations, temporal literal

sequences are combined with configurations.

DEFINITION 4.12 (CONFIGURATIONS)

A finite sequence

 , where

 are intervals is called a configuration.

Below are some examples of configurations.

EXAMPLE 4.12 (CONFIGURATIONS)

The following sequences are configurations:

 55

Temporal literal sequences and configurations can be combined to denote specific possible

situations. The configurations are used to denote the intervals at which the temporal literals

in a temporal literal sequence are true in these situations expressed. To denote possible

situations, the intervals in the configuration should be elements of the interval sets of the

corresponding literals and they should be in the right order. In addition, the situations

denoted should not be contradictory; otherwise the actual situation in the “real world”

cannot possibly be one of them and the situation denoted is not possible.

The notion of matching temporal literals is used to prevent that a combination of a temporal

literal sequence and a configuration describes situations that are contradictory. Situations

are contradictory if the same thing is true and false at overlying intervals. Overlying intervals

are defined in definition 4.14.

DEFINITION 4.13 (MATCHING TEMPORAL LITERALS)

Let and be temporal literals with

temporal terms and . and are said

to match if and only for every natural number between and
 that is not equal to , .

Below are some examples of matching temporal literals.

EXAMPLE 4.13 (MATCHING TEMPORAL LITERALS)

The following temporal literals match:

 and

 and

 3 and

The following temporal literals do not match:

 and , where 2

 and

 3 and

Two temporal literals match if they are the same except for their temporal term. Two

matching temporal literals thus denote situations in which the same relation between the

same arguments holds, but possibly at different intervals. If a literal matches the negation of

another literal, this means that one of them describes situations in which a relationship

between arguments holds at one or more intervals, while the other describes situations in

which the same relationships between the same arguments does not hold at certain

intervals. A group of situations is contradictory and thus does not contain any possible

situations if in it the same relationship between the same arguments holds and does not

hold at a overlying interval. Such a situation can be denoted by two temporal literals of

 56

which one matches the negation of the other if they both contain the same interval in their

interval set.

Intervals are overlying if they have at least one point in time in common. This is however left

implicit and the functions from definition 4.7 are used to define the notion of a overlying

interval.

DEFINITION 4.14 (OVERLYING INTERVALS)

An interval

 overlies with an interval

 if and only

if one of the following functions returns the value :

 , or

 , or

 , or

 , or

 , or

 , or

 , or

 , or

Below are some examples of overlying intervals.

EXAMPLE 4.14 (OVERLYING INTERVALS)

The following intervals are overlying:

 3 and 3

 3 and 2

 3 and 3

 and

 and

The following intervals are not overlying:

 3 and

 3 and

 and

Temporal literal sequences and configurations are combined in a configuration pair to

denote exactly one group of situations in which the literals in the temporal literal sequence

are true at the intervals in the configuration. Contradictory situations are not considered

 57

possible and therefore cannot be described by a configuration pair. To exclude the pairs of

temporal literal sequences and configurations describing groups of impossible situations, the

third requirement is added to the definition.

DEFINITION 4.15 (CONFIGURATION PAIRS)

Let be a temporal literal sequence and let be a

configuration. The ordered pair is a configuration pair if

and only if:

1. , and

2. if , then , where is the temporal term of

 9, and

3. if there are such that matches the negation of

 or vice versa, then do not overlie

REMARKS

A configuration pair is used to denote exactly one group of

situations in the “real world” that contains possible situations

according to the information in its temporal literal sequence.

Let be a configuration pair. This

configuration pair denotes a group of situations in which is

true at interval , is true at interval , …, and is true at

interval . Since each should be an element of the interval

set of and contradictory situations are excluded by the third

requirement, a configuration pair clearly denotes groups of

situations that are possible according to the literals in its

temporal literal sequence.

In a configuration pair, each of the intervals in a configuration depends in a way on the literal

that has the same position in the temporal literal sequence as the interval has in its

configuration. The interval should, to be precise, be an element of the interval set denoted

by the temporal term of this temporal literal. This means that the first interval in a

configuration should be an element of the interval set denoted by the temporal term of the

first temporal literal in the temporal literal sequence, the second interval should be an

element of the interval set denoted by the temporal term of the second interval set, and so

on. In the following configuration pair intervals have the same color as the temporal literals

on which they depend: 2 3 2 3 .

Some examples of configuration pairs are below.

9 For elements of sequences, the subscript denotes the position in the set, e.g.

denotes the th element of and

 denotes the th element of .

 58

EXAMPLE 4.15 (CONFIGURATION PAIRS)

The following are configuration pairs:

 3 2 2 3 3 2
 2 2

 , where and

do not overlie

The following are ordered pairs that are not configuration pairs:

 2 , where 2

 2 2 2 , where 2

 2 2 3

In a configuration pair, the configuration may contain any of the intervals of the interval sets

of the corresponding literals in the temporal literals set, as long as no group of contradictory

situations is expressed. Therefore, every group of possible situations according to a set of

temporal literals can be denoted by a configuration pair.

As an example, let 3 denote that “Mary had a headache at

interval 3 or at interval ” and let 2 denote that “Mary

had a fever at interval 2 or at interval ”. From these literals, the temporal literal

sequence
 3
 2

 can be composed. According to the definition

above, this temporal literal sequence can form a configuration pair with configuration

 3 2 , viz.
 3
 2

 3 2 . This configuration pair

denotes the group of situations in which Mary had a headache at interval 3 and she had

a fever at interval 2 .

The group of situations denoted by the configuration pair above is clearly a group of possible

situations according to the information in the literals in its temporal literal sequence. Of

course, other groups of situations are considered possible based on the same information.

They each can be denoted by a configuration pair with the same temporal literal sequence,

but a different configuration. Examples of other configurations that can form a pair with the

temporal literal sequence above are 2 and 3 .

There are also configurations with which the temporal literal sequence above cannot form a

pair. An example is configuration 2 , since 2 is not an element of the temporal

term of 2 . Note also that if it were possible that 2

 59

formed a configuration pair with the temporal literal sequence above, this configuration pair

would not denote situations that are possible according to the information in its temporal

literal sequence.

To define temporal constraints and later on assumptions, it is in addition necessary to be

able to denote multiple groups of possible situations on basis of the information in a

temporal literal sequence. This can be done by using multi-configuration pairs. Multi-

configuration pairs are very similar to configuration pairs, the difference between them is

that instead of a configuration, a multi-configuration pair contains a set of configurations.

DEFINITION 4.16 (CONFIGURATION SETS)

A set , where are configurations with

the same cardinality, is called a configuration set.

Some examples of configuration sets are below.

EXAMPLE 4.16 (CONFIGURATION SETS)

The following sets are configuration sets:

 2 3
 2 3

The following are not configuration sets:

 2 3

 2 2 3

The definition of a multi-configuration pair is below.

DEFINITION 4.17 (MULTI-CONFIGURATION PAIRS)

Let be a temporal literal sequence and let be a

configuration set. The ordered pair is said to be a multi-

configuration pair, if and only if for every configuration ,
 is a configuration pair.

Below are some examples of multi-configuration pairs.

 60

EXAMPLE 4.17 (MULTI-CONFIGURATION PAIRS)

The following are multi-configuration pairs:

 2 3

 2 3

The following pairs are not multi-configuration pairs:

 2 , where 2

 2 3

 2 3 2

A multi-configuration pair denotes multiple groups of possible situations based on the

information in its temporal literal sequence. Each group of possible situations denoted by a

multi-configuration pair can be denoted by a configuration pair containing the same

temporal literal sequence and a configuration from its configuration set. The number of the

groups of situations denoted by a multi-configuration pair is the same as the number of

unique elements in its configuration set.

Consider the temporal literal sequence at page 58 once again. This temporal literal sequence

can form a multi-configuration pair with configuration set 2 3 . This

multi-configuration pair denotes two groups of situations, namely a group of situations in

which “Mary has a headache at and Mary has a fever at 2 ” and a group of

situations in which “Mary has a headache at 3 and Mary has a fever at ”. This

multi-configuration pair does for instance not denote a group of situations in which “Mary

has a headache at and Mary has a fever at ”, since the configuration
 is not part of the configuration set of this multi-configuration pair.

A complete multi-configuration pair denotes all possible situations according the temporal

literals in its temporal literal sequence. Each of the groups of situations denoted by a multi-

configuration pair is denoted by a configuration in its configuration set. The configuration set

of a complete multi-configuration pair should therefore contain all configurations with which

its temporal literal sequence can form a configuration pair.

DEFINITION 4.18 (COMPLETE MULTI-CONFIGURATION PAIRS)

Let be a multi-configuration pair. is a complete

multi-configuration pair if and only if for every configuration ,

if is a configuration pair, then .

REMARKS

 61

Let be a temporal literal sequence and

be the interval sets denoted by the temporal terms of

respectively. Let be a complete multi-configuration set. If

there is no configuration , such that does meet the first

two requirements of definition 4.15, but not the third, then is

the -ary Cartesian product of , i.e. .

As an example, consider the following temporal literal

sequence:

 2 3 ,

the configuration set of its complete multi-configuration pair is
 2 3 , which is clearly equal to
 2 3 . Now consider temporal literal

sequence

 2 3 3 .

The configuration set of the complete multi-configuration pair

of is 2 3 . Configuration 3 3 does not

form a configuration pair with since it describes a group of

situations that is contradictory and thus does not meet the

third requirement of definition 4.15. It is thus excluded from

the configuration set of the complete multi-configuration pair

of . It can be observed easily that for this reason, the

complete multi-configuration pair of is not the Cartesian

product of the interval sets denoted by the temporal terms of

the temporal literals contained in it.

Below are some examples of complete and incomplete multi-configuration pairs.

EXAMPLE 4.18 (COMPLETE MULTI-CONFIGURATION PAIRS)

The following multi-configuration pairs are complete:

 2 3

 2 3 2

The following are multi-configuration pairs that are not

complete:

 , where

 , where

 62

 2 3

 2

 , where

To explain the notion of a complete multi-configuration pair, let

 3 once again denote that “Mary had a headache at interval
 3 or at interval ” and let 2 denote that “Mary had a

fever at interval 2 or at interval ”. From these literals, the temporal literal

sequence 3 2 can be

composed.

According to the information in the temporal literal sequence above there are four groups of

situations possible in the “real world”, viz.:

 Mary had a had a headache at interval 3 and Mary had a fever at

interval 2

 Mary had a had a headache at interval 3 and Mary had a fever at

interval

 Mary had a had a headache at interval and Mary had a fever at

interval 2

 Mary had a had a headache at interval and Mary had a fever at

interval

The possible situations in the real world described above can each be denoted by a

configuration pair, namely 3 2 , 3 , 2 and
 respectively. Since these configuration pairs are all possible configuration

pairs on basis of , the multi-configuration pair
 3 2 3 2 is complete. Note that the

configuration set of this multi-configuration pair contains every configuration of the

configuration pairs above.

An example of a multi-configuration pair that is not complete is
 3 2 3 2 . It is not complete because configuration

pair exists and is not an element of its configuration set.

Clearly this multi-configuration pair does not denote all possible situations on basis of the

information in .

Using the definitions above, it is possible to express one or more specific groups of possible

situations on basis of single or multiple temporal literals explicitly. By using the definition

below, it is possible to denote the groups of situations that are possible according to the

temporal literals in the body of a rule.

DEFINITION 4.19 (TEMPORAL LITERAL SEQUENCES OF RULES)

Let be a strict or defeasible rule with body . Temporal

literal sequence is said to be the temporal literal sequence of

 if and only if:

 63

 For each , there is a and

 For each that is a temporal literal, there is a
 and

 For each that are temporal literals, if ,

then there are and and and

 .

Below are some examples of rules and their temporal literal sequences.

EXAMPLE 4.19 (TEMPORAL LITERAL SEQUENCES OF RULES)

The following are rules with their temporal literal sequences:

 and

 and

 and

The following are rules with temporal literal sequences that are

not their temporal literal sequences:

 and

 and

 and

By definition 4.19, the temporal literal sequence of a rule is a temporal literal sequence

containing every temporal literal in the body of the rule in the same order. The complete

multi-configuration pair of the temporal literal sequence of a rule denotes all possible

situations on basis of the information in the body of the rule. A temporal constraint is

expressed as a configuration set that is such that every configuration that contains intervals

that have the right properties and relations is in it. It can be verified whether there is a

possible situation on basis of the temporal literal sequence of a rule that meets the

constraints, by checking whether the intersection of the configuration set expressing the

constraint and the configuration set of the complete multi-configuration pair of the

temporal literal sequence of the rule is empty. This can be done by including temporal

equations in the body of a rule.

DEFINITION 4.20 (TEMPORAL EQUATIONS)

A temporal equation is a literal of the form ,

where and are configuration sets.

 and are said to be the configuration sets of

 .

EXAMPLE 4.20 (TEMPORAL EQUATIONS)

 64

The following are temporal equations:

 2 3 2 3

The following are not temporal equations:

Just including a temporal equation in the body of a rule is not enough to conduct sound

reasoning. This is partly due to the fact that if it is possible but not certain on basis of the

information in the body of a rule that constraints are met, it needs to be assumed that the

actual situation in the “real world” is one of the possible situations that do meet the

constraints. Such an assumption can be expressed by a multi-configuration pair expressing

all possible situations that do meet the constraints on basis of the information in the body of

a rule. Determining what configurations should be in the configuration set of such a multi-

configuration pair would for instance be very hard if a rule contains multiple temporal

equations or if the temporal equation is such that not all possible situations are checked. For

these reasons, the notion of a temporal rule is defined. A temporal rule has exactly the right

properties to be able to determine the exact assumption that needs to be made when

deriving its head.

DEFINITION 4.21 (TEMPORAL RULES)

Let be a strict or defeasible rule with body and let be

its temporal literal sequence. is a temporal rule if and only if:

 There is exactly one literal , such that is a

temporal equation, and

 If is a temporal equation, then
 or is a complete multi-configuration pair.

If is a temporal equation in the body of , then it is said that

 is the temporal equation of .

Below are some examples of temporal and non-temporal rules.

EXAMPLE 4.21 (TEMPORAL RULES)

The following rules are temporal rules:

 65

 2 2
 2 2 2

The following are not temporal rules:

 2 2 2

It is important to know which argument of the intersection in a temporal equation denotes

the temporal constraints. Temporal constraints are therefore defined below.

DEFINITION 4.22 (TEMPORAL CONSTRAINTS)

Let be a temporal rule and let be its temporal literal

sequence. A configuration set is said to be the temporal

constraint of if and only if is the temporal

equation of and is a complete multi-configuration pair.

Below are some examples of temporal rules with their temporal constraints.

EXAMPLE 4.22 (TEMPORAL CONSTRAINTS)

The following are temporal rules and their temporal

constraints.

 and

 and

 2 2
 2 2 2
 and

As an illustration of the way temporal constraints are expressed

in the proposed logic, below are some examples of temporal

rules and their meanings in natural language:

 means “If Mary came

into contact with a cat before she has a runny nose, then

she has a cat allergy”

 66

 10

means “If Mary has pain for more than 6 time units, then

she has chronic pain”

means “If Mary had a headache during the interval at

which she had a fever and the fever lasted for less than 4

time units, then she has the flu”

As discussed before, assumptions that need to be made to derive the head of a rule are

expressed by multi-configuration pairs containing the temporal literal sequence of the rule

and every configuration from the configuration set of its complete multi-configuration pair

that is also in its temporal constraint. Such a multi-configuration pair is called the

assumption of a rule.

DEFINITION 4.23 (ASSUMPTION OF A RULE)

Let be a temporal rule, let be its temporal literal sequence

and let be its temporal equation. Multi-

configuration pair is said to be the assumption of

 .

To explain the definitions above more thoroughly, let be a temporal rule and let be its

temporal literal sequence. Let be the temporal equation of . Let be a

complete multi-configuration pair. is then the temporal constraint of and is

its assumption.

 clearly denotes all possible situations based on the temporal literals in the body of .

In the temporal equation, thus contains all possible combinations of intervals from the

temporal literals in the body of the rule. Since is a temporal constraint, it contains all

configurations of which the elements have certain properties or relations with each other. If

 is empty it means that none of the configurations in are such that their elements

have these properties and relations with each other. If they were, they would be in . If

 is empty, this thus means that there is no situation possible on basis of the

information in the body of , in which the constraints are met. When is empty, the

temporal equation in is false, and the head of may not be derived.

There are cases in which some elements of are in , but not all. In that case is not

empty and the temporal equation in is true. It also means that there are configurations in

 that meet the constraints in and that there are some configurations in that do not

10 is the unary Cartesian product of in prefix notation. If , then

 .

 67

meet these constraints. is used in the temporal equation to express all possible situations

based on the information in the body of . There thus are some possible situations that

meet the constraints and there are some possible situations that do not meet the

constraints. Since it is not known which of the possible situations expressed by is the

actual situation the “real world” is in, it is not known whether in the actual situation the

constraints are met or not. It would therefore be sensible to derive the head of on basis of

the assumption that the actual situation is such that it does meet the constraints. The

configurations representing possible situations that do meet the constraints are in as well

as in . The assumption when deriving the head of can therefore be denoted by the multi-

configuration pair .

Normally, multiple rules can be used to derive a literal. In the proposed logic, this does

however mean that it is possible that multiple assumptions need to be made. What is

assumed when deriving the head of a rule is that that the actual situation in the “real world”

is one of the situations denoted by the assumption. When multiple assumptions are made to

derive a literal, this literal is derived based on all those assumptions. This means that it is

assumed that the actual situation in the “real world” is a situation that is denoted by all

assumptions. The situations that are denoted by multiple assumptions are denoted by multi-

configuration pairs that are a combination of these assumptions. The definition of such a

combined multi-configuration pair is based on the definitions below.

DEFINITION 4.24 (COMBINED TEMPORAL LITERAL SEQUENCES)

Let and be temporal literal sequences. is their

combined temporal literal sequence if and only if

 .

Let and be temporal literal sequences. Their combined temporal literal sequence

contains each element in or in exactly once, whether this element is in both sets or

not. Below are some examples of temporal literal sequences and their combined temporal

literal sequences.

EXAMPLE 4.23 (COMBINED TEMPORAL LITERAL SEQUENCES)

The following are temporal literal sequences and their

combined temporal literal sequences:

 The combined temporal literal sequence of and is
 .

 The combined temporal literal sequence of and

is .

 The combined temporal literal sequence of and
 is .

 The combined temporal literal sequence of and
 is .

 68

 The combined temporal literal sequence of

and is .

The combination of two configuration pairs denotes a group of situations which is part of the

group of situations denoted by the first configuration pair, as well as part of the group of

situations denoted by the second configuration pair. Two configuration pairs together can

only denote such a group if the literals they have in common are true at the same intervals

and if their combination does not denote a group of situations that is contradictory. If for

two configuration pairs this is the case, then they can be combined.

DEFINITION 4.25 (COMBINED CONFIGURATION PAIRS)

Let and be configuration pairs. Configuration

pair is the combined configuration pair of

and , if and only if:

 is the combined temporal literal sequence of and

 , and

 If , then:

o There are and , such that and

 , and there are and , such that

 and , or
o There is and such that and

 and if , then , or

o There is and such that and

 and if , then

Below are some examples of combined configuration pairs.

EXAMPLE 4.24 (COMBINED CONFIGURATION PAIRS)

Below are temporal literal sequences, their related

configurations and their combined configurations (if they exist):

 The combined configuration pair of and
 is .

 The combined configuration pair of and
 , where does not exist.

 The combined configuration pair of and
 is .

 The combined configuration pair of and
 is .

 The combined configuration pair of and
 , where , does not exist.

 69

 The combined configuration pair of and
 is .

 The combined configuration pair of and
 , where , does not exist.

 The combined configuration pair of
 and
 is
 .

 The combined configuration pair of
 and
 , where does

not exist.

In a configuration pair, implicitly each element of the configuration is bound by the literal in

the temporal literal sequence that has the same position in the sequence. This property

arises directly from definition 4.15. If and form a

configuration pair , then we can say for each that it is bound by .

Let and be configuration pairs. Their combined configuration pair

(if it exists) contains the combined temporal literal sequence of and , viz. . The

configuration of this pair is a combination of configurations and , viz. .

According to the definition above, each element of is:

 an element of both and that is bound by a literal with is in as

well as

 an element of that is bound by a literal that is not in , or

 an element of that is bound by a literal that is not in , or

If there is a literal in that is also in , but it does not bind the same element in as in

 , then by definition it is impossible to combine and , and does

thus not exist.

From a semantic point of view the above makes sense as well. Recall that configuration pairs

denote a group of situations in the “real world” that are possible according to their temporal

literal sequences. A combined configuration pair of two configuration pairs denotes a group

of possible situations in which all literals that are in the temporal literal sequence of one or

both originating configuration pairs are true at the same intervals as denoted by those pairs.

In other words, a combined configuration pair denotes a group of situations which is part of

the groups of situations denoted by their originating configuration pairs. A group of

situations can only be part of two other groups of situations if in these groups the same

literals are true at the same intervals. If it is the case that according to two configuration

pairs the exact same literal containing the same interval set is true at different times, then

there is no group of situations that is denoted by both configuration pairs. Note that by the

definition above, these are exactly the same cases in which two configuration pairs do not

have a combined configuration pair. Note in addition that situations in which the same literal

is true and false at overlying intervals are not considered to be possible and according to

 70

definition 4.15 cannot be described by a configuration pair and thus not by a combined

configuration pair.

Multi-configuration pairs such as the ones denoting assumptions can also be combined.

DEFINITION 4.26 (COMBINED MULTI-CONFIGURATION PAIRS)

Let and be multi-configuration pairs. Multi-

configuration pair is the combined multi-

configuration pair of and , if and only if:

 is the combined temporal literal sequence of and

 , and

 If is the combined configuration pair of

and , where and , then ,

and

 If , then there are and , such that

 is the combined configuration pair of and

REMARKS

The combined multi-configuration pair of multi-configuration

pairs is the multi-configuration pair
 , which is obtained by combining with

 and combining the thus obtained multi-configuration

pair with and combining the thus obtained multi-

configuration pair with … and combining the thus obtained

multi-configuration pair with .

Below are some examples of combined multi-configuration pairs.

EXAMPLE 4.25 (COMBINED MULTI-CONFIGURATION PAIRS)

The following are multi-configuration pairs and their combined

multi-configuration pairs:

 The combined multi-configuration pair of and
 is .

 The combined multi-configuration pair of
 and is .

 The combined multi-configuration pair of
 and , where is
 .

 71

 and , is

 .

 The combined multi-configuration pair of
 and
 , is .

 The combined multi-configuration pair of
 and

 , is

 .

 The combined multi-configuration pair of
 and
 , is .

A multi-configuration pair denotes several groups of situations that are possible according to

its temporal literal sequence. The combination of two or more multi-configuration pairs

denotes all groups of situations that are part of a group of situations denoted by each of its

originating multi-configuration pairs.

Multi-configuration pairs are compatible if there is at least one group of situations that is

part of the groups of situations denoted by every one of them. If such a group of situations

does not exist, then their combined multi-configuration pair does not denote any situation.

Its configuration set should then be empty, since the number of groups of situations

described by a multi-configuration pair is the same as the number of configurations in its

configuration set.

DEFINITION 4.27 (COMPATIBLE MULTI-CONFIGURATION PAIRS)

Let be multi-configuration pairs. Let
 be their combined multi-configuration pair.

 are said to be compatible if and only if

 is not empty.

Below are some examples of compatible and incompatible multi-configuration pairs.

EXAMPLE 4.26 (COMPATIBLE MULTI-CONFIGURATION PAIRS)

The following multi-configuration pairs are compatible:

 and

 and

 and ,

 and

 and

 72

The following multi-configuration pairs are not compatible:

 and , where

 and , where

and and and

 and

 , where and

and and

Let be a temporal rule with temporal literal sequence and temporal equation

 . Its assumption is then . As discussed before, it is important that it

is possible that the assumptions in a derivation describe the same situations, as it is assumed

that the actual situation is one of them. It would for instance be nonsensical to make an

assumption that “Mary had a headache for more than 3 hours” and that “Mary had a

headache for less than 3 hours” in the same derivation11. To check that there are situations

denoted by all assumptions, it may be determined whether the multi-configuration pairs

denoting them are compatible.

Consider the following multi-configuration pairs denoting the assumption in the example

above:

1. 3 , and

2. 3

Clearly the configuration sets of 1 and 2 are disjoint. The fact that they are disjoint obviously

arises from the fact that 1 and 2 cannot denote same situations. It is impossible for to

contain an interval that has a duration that is more as well as less than 3 time units. The

combined multi-configuration pair of 1 and 2 will have an empty configuration set, since

there are no configurations in the configuration sets of both 1 and 2. The fact that the

configuration set of the combination of 1 and 2 is empty does directly arise from the fact

that they cannot possibly describe the same situations. Since the configuration set of the

combination of 1 and 2 is empty, 1 and 2 are incompatible.

Since we are able to determine what assumptions exactly may need to be made in a

derivation and we are able to determine whether it is possible to make multiple assumptions

in a derivation, it is possible to define the notion of a defeasible derivation in the proposed

logic. Assumptions are part of a defeasible derivation and assumptions that are

incompatible, as defined above cannot be made in the same derivation. Including

assumptions in derivations makes it possible to make it explicit on which assumptions they

are based. This will be of great importance later in the dialectical process.

The definition of a defeasible derivation in the proposed logic is similar to the definition in

(García & Simari, 2004). The only difference is that when temporal rules are used, their

11 Providing that the assumption is made on the same fact/literal, i.e. the assumption is

about the same time Mary had a headache.

 73

assumptions are part of the derivation and the assumptions in the derivation should all be

compatible. This makes sure that assumptions made in the derivation are consistent.

DEFINITION 4.28 (DEFEASIBLE DERIVATIONS)

Let be a de.l.p.. A defeasible derivation of a literal

from , is a finite sequence of ground literals

and assumptions and each is in the sequence because:

 is a fact in , or

 There exists a rule in or with head and body
 , and
o Every is a true temporal equation or

an element of the sequence appearing before

 , and

o If is a temporal rule, then its assumption is an
element of the sequence appearing before ,

 , and

o If is a temporal rule, then its assumption is

compatible with the combined assumptions of all

assumptions prior in the sequence

A multi-configuration pair is called the assumption of the

derivation of a literal if and only if it is the combined multi-

configuration pair of all assumptions in the derivation of .

Below is an example of a defeasible derivation.

EXAMPLE 4.27 (DEFEASIBLE DERIVATIONS)

Consider the following de.l.p. , with

 2

 2
 3

 2
 3

and .

There is a defeasible derivation for 3 from

 , viz.

 74

 3 2

 3 2

 3 2

 3 3 2

 3 3 3

.

In (García & Simari, 2004) strict derivations are derivations in which only facts and strict rules

are used, arguments based on strict derivations cannot be defeated. In the proposed logic

however, a literal that is derived on basis of assumptions may be false, since the actual

situation may be one of the situations that is not denoted by the assumption. In other

words, assumptions may be false. Therefore, a literal derived on basis of only strict rules and

facts and assumptions could also be false and should be defeasible, even though no

defeasible rules have been used. This possibility more specifically arises in case the

combined multi-configuration pair of all assumptions in the derivation does not denote all

possible situations on basis of its temporal literal sequence. Such a combined multi-

configuration denotes the assumption that the actual situation is one of the situations

denoted by it and not one of the other situations that are possible according to its temporal

literal sequence. The actual situation in the “real world” could however very well be any of

these other possible situations. Since this is a possibility, it may also be possible that the

literal that is derived is false. Therefore, in the proposed logic derivations are only

considered to be strict if only strict rules and facts are used and in addition, if the combined

multi-configuration set of all assumptions in the derivation is complete.

DEFINITION 4.29 (STRICT DERIVATIONS)

Let be a de.l.p.. Let be a literal with a defeasible

derivation from . We will say that has a strict

derivation from , if and only if:

 either is a fact in , or all rules used for obtaining the

sequence are strict rules, and

 if contains assumptions, then the combined

multi-configuration pair of all assumptions in

is complete.

Below is an example of a strict derivation.

EXAMPLE 4.28 (STRICT DERIVATIONS)

Consider de.l.p. from example 4.27 once again.

There is a strict derivation for 3 from ,

viz.

 3 2

 3 3 3
 .

 75

Literal 3 cannot be derived strictly from ,

since the third rule in has to be used to derive

 3 and an assumption has to be made to do

this. This assumption is not a complete multi-configuration pair.

In the next section, argument structures are defined on basis of the definitions of strict and

defeasible derivations above. Attack and defeat between arguments are defined as well.

4.4 ARGUMENT STRUCTURES, ATTACK AND DEFEAT

Similar to (García & Simari, 2004), in the proposed logic, the notion of a contradictory set of

rules is used in the definition of an argument structure. The definition of a contradictory set

of rules is different from the definition in (García & Simari, 2004). Complementary literals

however are defined in a similar manner.

DEFINITION 4.30 (COMPLEMENTARY LITERALS)

Let and be literals. and are said to be

complementary if and only if or if .

Below are some examples of complementary literals.

EXAMPLE 4.29 (COMPLEMENTARY LITERALS)

The following literals are complementary:

 and

 and

 3 and

 3

The following literals are not complementary:

 and , where

 and , where

 3 and

 3

In the proposed logic there are two kinds of literals, temporal and non-temporal ones. In

(García & Simari, 2004) a set of rules is contradictory if two complementary literals can be

derived. For non-temporal literals this definition remains valid. Temporal literals however do

not necessarily contradict each other if they are complements. Normally a contradiction

arises when it can be derived that something is true as well as false. Temporal literals take

temporal information into account. When temporal information is taken into account, there

is a contradiction if something is true and false at the same time. A temporal literal

containing a temporal term denoting an interval set with multiple intervals expresses that it

 76

can be true at any of the intervals in its temporal term. This means that if there are two

temporal literals that are complements, one of the groups of situations they denote may not

be contradictory.

As an example, let and be temporal literals, where and

 are not overlying. Clearly these literals are complementary. On basis of the information in

these literals, the following four groups of situations can be described:

1. The relation between and holds at interval and does not

hold at interval

2. The relation between and holds at interval and does not

hold at interval

3. The relation between and holds at interval and does not

hold at interval

4. The relation between and holds at interval and does not

hold at interval

Clearly the situations described in 1 and 4 are contradictory and thus are not possible. The

situations described in 2 and 3 clearly are possible on basis of the information in the

complementary literals. and thus do not only describe

situations that are contradictory and a set of rules deriving them should not be considered

contradictory as long as no other contradictions can be derived from them. Note that the

multi-configuration set is

complete.

Two temporal literals are contradictory if all situations they denote are contradictory. In that

case, there are no possible situations on basis of the information in those temporal literals.

This means that if two temporal literals are contradictory, then any multi-configuration pair

containing these temporal literals in their temporal literal sequence has an empty

configuration set, even if they are complete.

As an example, let and be temporal literals, where

overlies with . The following groups of situations can be described:

1. The relation between and holds at interval and does not

hold at interval

2. The relation between and holds at interval and does not

hold at interval

Clearly both groups contain only situations that are contradictory and thus not possible. It

follows from definitions 4.15, 4.17 and 4.18 that multi-configuration pair
 is complete. The fact that the configuration set is

empty follows directly from the fact that all situations that can be described on basis of the

information in it are contradictory.

In some cases, a set of more than two temporal literals is contradictory, while any subset of

this set is not. As an example, let , and be

 77

temporal literals. Let and not be overlying. The following groups of situations can be

described:

1. The relation between and holds at interval and does not

hold at interval and interval

2. The relation between and holds at interval and does not

hold at interval and interval

Clearly all situations described above are contradictory and multi-configuration pair
 is complete. Any complete multi-

configuration pair containing a subset of the temporal literal sequence in the multi-

configuration pair above contains a non-empty configuration set. It may therefore be

concluded that contradiction may arise from more than two temporal literals.

The definition of a contradictory set of temporal literals is below.

DEFINITION 4.31 (CONTRADICTORY SETS OF LITERALS)

A set of literals is contradictory if and only if:

 There are two non-temporal literals and and

 are complements, or

 contains a subset of temporal literals and

multi-configuration pair is complete.

Below are some examples of sets of literals that are contradictory.

EXAMPLE 4.30 CONTRADICTORY SETS LITERALS

The following sets of literals are contradictory:

 , where and overlie

The following sets of temporal literals are not contradictory:

 , where

 , where and not

overlie

A set of rules can now be defined as contradictory if the set of literals derived from it is

contradictory.

DEFINITION 4.32 (CONTRADICTORY SETS OF RULES)

 78

A set of rules and facts is contradictory if and only if there exists

a defeasible derivation for a set of literals from it that is

contradictory.

Below is an example of a contradictory set of rules.

EXAMPLE 4.31 (CONTRADICTORY SETS OF RULES)

Consider the following set of facts and rules:

 2 3 2 3

From this set the literals , ,

 2 3 2 3 and may be derived.

The complete multi-configuration pair of a temporal literal

sequence containing these literals has an empty configuration

set. The set of rules and facts above is thus contradictory.

Argument structures in the proposed logic are defined similar to the argument structures in

(García & Simari, 2004). There are however some differences. While argument structures in

DeLP contain a set with only defeasible rules, argument structures in the proposed logic

contain a set with defeasible as well as strict rules. This is necessary since defeasibility in the

proposed logic does not only arise from the use of defeasible rules, but also from the use of

interval sets and assumptions.

In (García & Simari, 2004), there is a convention that the set of strict rules and facts in a

de.l.p. is not contradictory, since only indefeasible literals may be derived from this set. In

the proposed logic this would not make a lot of sense since it is possible to make

assumptions when using strict rules. The replacing convention in the proposed logic will thus

be that the set of literals that have a strict derivation from a de.l.p. is not contradictory. In

(García & Simari, 2004), the union of the set of rules in an argument structure and the set of

strict rules and facts is not allowed to be contradictory, to prevent the creation of argument

structures that are self-defeating. This requirement is adopted in the proposed logic in a

form that is adapted according to the new convention.

Argument structures are used to attack and defeat each other. In (García & Simari, 2004), an

argument structure can attack another argument structure if their conclusions are

complements. As shown before, in the proposed logic contradiction may arise from literals

that are not complements or from more than two literals. Attack is in principle a binary

relation and to not unnecessarily complicate the argumentation process, it should be kept

 79

that way. The way in which the new notion of contradiction between literals is incorporated

in the proposed logic is by defining argument structures to have a set of literals as their

conclusion instead of a single literal. In that way, most of the argumentation process defined

by (García & Simari, 2004) stays intact, while attack between argument structures still is only

possible if their conclusions contradict each other. In addition, it provides the possibility to

put restrictions on the sets of argument structures that attack each other. One of the

restrictions may be that the assumptions on which they are based need to be compatible

(the third requirement in the definition below). If needed, these restrictions can be easily

adapted by adding or removing requirements from definition 4.33.

DEFINITION 4.33 (ARGUMENT STRUCTURES)

Let be a non-empty set of literals. Let

 be a de.l.p.. Let the subset of facts in be denoted

by . Let the set of literals that have a strict derivation from

be denoted by . We say that is an argument structure

for the literals in , if is a set of defeasible and strict rules of

 and , such that:

1. There exists a defeasible or strict derivation for each of the

literals in from , and

2. The set is non-contradictory, and

3. The assumptions of the temporal rules in are

compatible, and

4. is minimal: there is no proper subset of such that

the literals in can be derived from and satisfies

conditions 1., 2. and 3..

REMARKS

The conclusion of an argument structure does not need to

contain all literals that can be derived by the rules in its

argument as long as 1., 2., 3. and 4. are satisfied and the

conclusion is not empty.

EXAMPLE 4.32 (ARGUMENT STRUCTURES)

Let be a de.l.p. with

and

 .

There are strict derivations for literals and

 from . Their argument structures are

 80

 and

respectively.

There is in addition a strict derivation for ,

its argument structure is

 .

There is also a strict derivation for from

 . Its argument structure is

 .

There is a defeasible derivation for . There is

however no argument structure for this literal, since a set

containing this literal and the literals that are derived strictly is

contradictory.

The following are additional argument structures:

Subargument structures are defined the similar as in (García & Simari, 2004).

DEFINITION 4.34 (SUBARGUMENT STRUCTURE)

An argument structure is a subargument structure of
 if .

EXAMPLE 4.33 (SUBARGUMENT STRUCTURES)

Consider the argument structure for literal

in example 4.32 once again. The argument structure for

 is a subargument structure of it.

Disagreement in the proposed logic is between two sets of literals instead of between two

literals. In addition, in the definition below, the set of strict rules and facts has been replaced

by the set of literals that have a strict derivation. This has to do with the changed convention

that the set of literals that have a strict derivation is not contradictory instead of the set of

strict rules and facts. The definition is otherwise equivalent to the corresponding definition

in (García & Simari, 2004).

DEFINITION 4.35 (DISAGREEMENT)

 81

Let be a de.l.p.. Let be the set of all literals that

have a strict derivation from . A non-empty set of literals

and a non-empty set of literals disagree if and only if the set

 is contradictory.

REMARKS

An extra requirement to rule out cases in which one of the

disagreeing sets by itself is contradictory is not necessary, since

disagreement is used to define which arguments attack each

other and the conclusions of arguments cannot be

contradictory according to the second requirement in definition

4.33.

Counterarguments are defined similar as in (García & Simari, 2004). The only difference is

that argument structures have a set of literals as their conclusion.

DEFINITION 4.36 (COUNTERARGUMENTS)

We say that counterargues, rebuts or attacks

at the literals in , if and only if there exists a subargument
 of such that and disagree.

It is possible to base a preference criterion on how strong the assumptions made in the

derivations of the literals in the conclusion of an argument structure are. Let be a

temporal rule with temporal literal sequence and with temporal equation . Let
 be a complete multi-configuration pair. The temporal constraint of is and its

assumption is . As discussed before, the number of groups of situations denoted

by a multi-configuration pair is the same as the number of configurations in its configuration

set. Let the cardinality of be denoted by the natural number and let the cardinality of

 be denoted by the natural number . This means that there are groups of possible

situations in the “real world” on basis of the temporal literals in and of them meet the

constraints.

Consider now a case where . In that case, there are no configurations in , which are

not in , i.e. all configurations in meet the constraints. This means that all possible

situations in the “real world” meet the constraints. This furthermore means that there is no

chance that in the actual situation the constraints are not met. Therefore, the assumption

made when deriving the head of the rule is as strong as possible. The assumption strength in

this case would be

 , which is indeed the highest number for assumption strength

possible. When the assumption strength of a rule is , this means that actually no

assumption needs to be made since it is sure that constraints are met.

Now consider a case in which In that case, there are configurations in , that are not

in , i.e. there are configurations in that do not meet the constraints. This means that

there are possible situations in the “real world” in which constraints are not met. Therefore

 82

the assumption strength should be lower than in the case where all possible situations meet

the constraints. The assumption strength in this case would indeed be lower than 1, since if

 , then

 .

The strength of the assumption made when the head of a rule is derived, should depend on

the number of groups of possible situations in the “real world” relative to the number of

groups of possible situations that meet the constraints and are thus in the assumptions. If in

a rule the number of groups of possible situations is much higher than the number of groups

of possible situations that meet the constraints, then in general the chance that the actual

situation meets the constraints is low. Therefore the assumption made in the rule is weak

and the rule has a low assumption strength. If in a rule the number of groups of possible

situations is a bit or not at all higher than the number of groups of possible situations that

meet the constraints, then in general the chance that the actual situation meets the

constraints is high. Therefore the assumption made in the rule is strong and the rule has high

assumption strength.

Since assumptions are expressed by multi-configuration pairs, the assumption strength of a

rule is defined as the assumption strength of the multi-configuration pair that is its

assumption. Assumption strength of argument structures is defined as well. A preference

criterion is subsequently based on these definitions.

DEFINITION 4.37 (ASSUMPTION STRENGTH OF MULTI-CONFIGURATION

PAIRS)

Let be a multi-configuration pair. Let be a

complete multi-configuration pair. The rational is said to be

the assumption strength of if and only if

.

Let be a temporal rule and let be its assumption. is

said to be the assumption strength of .

REMARKS

Assumption strength is in no way implied to be an exact

measurement of the chance that an assumption is “true”, since

in an interval set some intervals may have a higher chance of

being the interval at which a predicate is actually true in the

“real world” than others. This information is however not taken

into consideration in the system and therefore assumption

strength cannot be seen as anything more than a rough

estimation of the chance that the actual situation is as in the

assumption.

EXAMPLE 4.34 (ASSUMPTION STRENGTH)

 83

The following are assumptions of rules and their assumption

strength:

 2 3

 2 3
 and

 3 2 2

 3 2 2

and

 2 2 3 3
 2 2 3 3

and

To derive literals, multiple assumptions may need to be made. The assumption strength of

an argument structure for a set of literals should be based on all assumptions of the

temporal rules used to derive them. The situations denoted by all assumptions of all

temporal rules in an argument structure can be denoted by their combined multi-

configuration pair. The assumption strength of an argument structure is thus the assumption

strength of this combined multi-configuration pair.

DEFINITION 4.38 (ASSUMPTION STRENGTH OF ARGUMENT

STRUCTURES)

Let be an argument structure. Let be the set

of all temporal rules in . Let be the

assumptions of respectively. Let be the

combined multi-configuration pair of . Let

 be the assumption strength of . is said to be the

assumption strength of .

On basis of definition 4.38 a preference criterion is defined. Using this preference criterion,

argument structures are preferred that are based on stronger assumptions. It can freely be

adjusted and augmented to prefer for instance sets of argument structures based on more

strict rules or more facts.

DEFINITION 4.39 (PREFERENCE CRITERION)

Let and be argument structures. is

preferred over , denoted if and

only if the assumption strength of is greater than the

assumption strength of .

 84

Proper and blocking defeat in the proposed logic is defined the same as in (García & Simari,

2004). The only difference is that argument structures have a set of literals as their

conclusion.

DEFINITION 4.40 (PROPER DEFEATER)

Let and be two argument structures.

is a proper defeater for at the literals in , if and only if

there exists a subargument of such that

counterargues at the literals in and
 .

Corresponding to (García & Simari, 2004), an argument structure is a blocking defeater of

another argument structure if it attacks it and the argument structures are unrelated by the

preference order.

DEFINITION 4.41 (BLOCKING DEFEATER)

Let and be two argument structures.

is a blocking defeater for at the literals in , if and only

if there exists a subargument of such that
 counterargues at the literals in and

is unrelated by the preference order to , i.e.
 , and .

In accordance with (García & Simari, 2004), a set of argument structures defeats another set

of argument structures if and only if it is its proper or blocking defeater.

DEFINITION 4.42 (DEFEATER)

Let and be argument structures. is a

defeater for , if and only if either:

 is a proper defeater for ; or

 is a blocking defeater for .

In the next section, the dialectics of the proposed logic are defined and discussed.

4.5 DIALECTICS

The argumentation process in the proposed logic is very similar to that of (García & Simari,

2004). There are no major differences between the definitions in the proposed logic and the

definitions in (García & Simari, 2004). Most differences that do exist stem from the fact that

argument structures have a set of literals as their conclusion and do not interfere with the

way the dialectics in DeLP work. A difference of another nature occurs in the definition of

concordance. This definition is the only one in this subsection that has been adapted to a

 85

greater extent. While the similarities between the argumentation process in the proposed

logic and the argumentation process in DeLP are great, all definitions were still included to

make the proposed logic complete.

The definition of an argumentation line is the same, except for the conclusions of

arguments.

DEFINITION 4.43 (ARGUMENTATION LINES)

Let be a de.l.p. and an argument structure obtained

from . An argumentation line for is a sequence of

argument structures from , denoted

 , where each element of

the sequence , , is a defeater of its predecessor
 .

The notions of supporting and interfering argument structures have not been changed in the

proposed logic.

DEFINITION 4.44 (SUPPORTING AND INTERFERING ARGUMENT

STRUCTURES)

Let an argumentation line,

we define the set of supporting argument structures

 , and the set of interfering

argument structures .

The notion of concordance was introduced by (García & Simari, 2004) to avoid circular

argumentations in which arguments are reintroduced in an argumentation line, making it

infinite. In (García & Simari, 2004) argument structures are concordant if their sets of rules

together with the set of strict rules from a de.l.p. is not contradictory (see page 31). As

mentioned before, using only strict rules, arguments may be constructed for literals that

should be defeasible. Therefore, in the definition of concordance the set of literals that have

a strict derivation are used instead.

DEFINITION 4.45 (CONCORDANCE)

Let be a de.l.p.. Let be the set of literals that have

a strict derivation from . Two arguments and

are concordant iff the set is non-contradictory

and their assumptions are compatible. More generally, a set of

argument structures
 is concordant iff

is non-contradictory.

The notion of an acceptable argumentation line is again similar to (García & Simari, 2004).

 86

DEFINITION 4.46 (ACCEPTABLE ARGUMENTATION LINE)

Let be an argumentation

line. is an acceptable argumentation line iff:

1. is a finite sequence

2. The set , of supporting arguments is concordant, and the

set of interfering arguments is concordant.

3. No argument in is a subargument of an

argument appearing earlier in .

4. For all , such that the argument is a blocking

defeater for , if exists, then
 is a proper defeater of .

Dialectical trees are again defined similar to (García & Simari, 2004).

DEFINITION 4.47 (DIALECTICAL TREE)

Let be an argument structure from a program . A

dialectical tree for , denoted , is defined as

follows:

 The root of the tree is labeled with .

 Let be a non-root node of the tree labeled ,

and the

sequence of labels of the path from the root to . Let

 be all the defeaters for
 .

For each defeater , such that, the

argumentation line

 is

acceptable, then the node has a child labeled

 .

If there is no defeater for or there is no

such that is acceptable, then is a leaf.

The nodes in a dialectical tree are marked exactly as described in (García & Simari, 2004).

PROCEDURE 4.1 (MARKING OF A DIALECTICAL TREE)

Let be a dialectical tree for . The corresponding

marked dialectical tree denoted
 , will be obtained marking

every node in as follows:

 All leaves in are marked as “ ”’s in
 .

 87

 Let be an inner node of . Then will be

marked as “ ” in
 iff every child of is marked

as “ ”. The node will be marked as “ ” in
 iff

it has at least a child marked as “ ”.

At the end of the dialectical process, it is of course necessary to obtain an answer on a query

for a literal. In (García & Simari, 2004) a literal is warranted if the root of its associated

marked dialectical tree is marked as “ ”. This stays the same in the proposed logic. For a

user it may in addition be important to know on what assumptions the warrant of a literal is

based. If literals are warranted, then this does not only include the assumptions on which

the derivations of the literals are based, but also the assumptions on which their supporting

arguments are based. If literals are not warranted, then this is based on the assumptions of

the interfering arguments in the path in the tree in which the argument structure with the

literals in its conclusion is defeated.

DEFINITION 4.48 (ASSUMPTIONS OF NODES IN A DIALECTICAL TREE)

Let be an argument structure and let
 be its

associated marked dialectical tree. Let be a node in

 . The supporting or interfering assumptions of are

the following:

 If is a leaf, then its supporting assumption is the

assumption of itself, and

 If is not a leaf and it is marked “ ”, then its

interfering assumption is a disjunction of the supporting

arguments of its children that are marked “ ”.

 If is not a leaf and it is marked “ ”, then its

supporting assumption is a conjunction of the assumption

of itself and the interfering assumptions of each

of its children

Argument structures in the proposed logic can have multiple literals in their conclusion. This

provides an extra advantage, namely that a user can query multiple literals. These are

warranted together if they together are in the conclusion of an argument structure that

emerges undefeated from the argumentation process. One query for multiple literals will

only be warranted if they can be derived based on compatible assumptions. This is a

consequence of the fact that literals derived using incompatible assumptions cannot be in

the same argument according to definition 4.33. If one query is used for multiple literals and

these literals together are not warranted, then it may be the case that they each (or some of

them) are warranted if multiple queries are used, since in that case their assumptions do not

necessarily need to be compatible.

DEFINITION 4.49 (STRICTLY WARRANTED LITERALS)

 88

Let be an argument structure and
 its associated

marked dialectical tree. The literals in are warranted under its

supporting assumptions if and only if the root of
 is

marked as “ ”.

In (García & Simari, 2004) a query for a literal is answered if is warranted and if

its complement is warranted. As discussed before, a complement of a temporal literal does

not necessarily contradict it. The definition of an answer to a query is adapted accordingly.

DEFINITION 4.50 (ANSWER TO QUERIES) (GARCÍA & SIMARI, 2004)

There are four possible answers for a query of a set of literals :

 under assumption , if is warranted under

assumption

 under assumption if a set of literals is warranted

under assumption and is contradictory

 , neither , not a set of literals , such that

 is contradictory, is warranted

 , if contains one or more literals that are

not in the language of the program

 89

5 PROOF OF CONCEPT IMPLEMENTATION

To demonstrate the feasibility of the proposed temporal argumentation logic, a proof of

concept implementation was made using SWI-Prolog. Prolog was chosen as the language of

the implementation since it is a high-level language in which it is possible to describe

complex and abstract things and thus is very suitable for rapid prototyping (Blackburn, Bos,

& Kristina, 2006). The properties stated above make it possible to translate the definitions in

this thesis reasonably direct into the language of the implementation, which is of course an

advantage in a proof of concept implementation.

The sole purpose of this implementation of the proposed logic is to demonstrate the

feasibility of the proposed logic in a medical diagnostic system. This means that no effort

was made to make the implementation efficient or fast. In addition, the program is not

complete. The argumentation process of the proposed logic was not included in the

implementation, since it is based on and very closely resembles the argumentation process

of DeLP. García and Simari already made a fine implementation of DeLP and thus

demonstrated the feasibility of the argumentation process. The proposed logic is

implemented up until the point it can be determined which of two counterarguments is

stronger according to the preference criterion.

Functions on interval sets and intervals are defined in the proposed logic as being equal to

their outputs, e.g. 2 3 . It is however not possible to define a function

in this way in Prolog. In Prolog, the implementation of the function on an interval set

should have two arguments, one being its input and one being its output. The same

problems appear when functions are used to define a temporal criterion in a temporal rule.

These problems are clearly caused by the choice of Prolog as the language of the

implementation and not by the proposed logic itself. They may also indicate that Prolog

should not be the language of choice for an implementation of the proposed logic in a

medical diagnosis system. The purpose of implementing the proposed logic is to

demonstrate its feasibility and not to solve the issues Prolog has with functions. Since the

functions on interval sets denote interval sets, all temporal arguments of temporal literals

are interval sets and they are not functions on interval sets. The same is the case for

temporal constraints; they are configuration sets in the implementation and are not defined

by functions on intervals.

In the implementation for each of the definitions in this thesis, a Prolog-predicate was made.

In some cases additional predicates had to be written to support the predicates

implementing the definitions. It was tried to translate the definitions as literally as possible

into Prolog, which succeeded in most cases. In the example below, such a literal translation

of definition 4.8 into a Prolog-predicate is shown.

EXAMPLE 5.1 THE PROLOG-PREDICATE FOR STRICT RULES

The prolog-code below is used to implement definition 4.8.

 90

% strict_rule(+Rule) is true if Rule meets the

% requirements of a strict rule as defined in

% definition 4.8.

strict_rule(Literal1<-[Literal2]):-

 literal(Literal1),

 literal(Literal2).

strict_rule(Literal1<-[Literal2|T]):-

 literal(Literal2),

 strict_rule(Literal1<-T).

In the proof of concept implementation, it is possible to include rules containing variables as

long as these variables are not part of the temporal equation of a rule. This is due to the

aforementioned problems with Prolog and the way functions are defined in the proposed

logic. There is no way to make a function equal to its output and thus there is no way to

define temporal constraints by using functions on intervals or to define a function

determining the configuration set of the complete configuration pair of the temporal literals

in a rule. There are probably various ways to circumvent this problem, it was however

decided not to use them, since this would again just be the solving of the problems Prolog

has with functions and this would not contribute to demonstrating the feasibility of the

proposed logic.

Each definition implemented in the proof of concept implementation was tested using their

corresponding examples from the section above. In cases there were not enough examples

available to test an implemented definition, additional examples were made. The tests of

each of the implemented definitions resulted in the desired and expected outputs. The proof

of concept implementation thus demonstrated the feasibility of the proposed logic.

 91

6 THE PROPOSED TEMPORAL ARGUMENTATION LOGIC AND THE

REQUIREMENTS

In section 2 some requirements for a medical diagnosis program were established. In this

section, the fulfilling of each of these requirements by a system that contains the proposed

logic is discussed. Each section in this chapter treats one of the corresponding requirements

described in chapter 2.

6.1 INCOMPLETE INFORMATION

As discussed in chapter 2.1, incomplete information is one of the most important things a

medical diagnostic program should be able to handle. The proposed logic is an

argumentation logic. In argumentation logic, when information is incomplete literals are

derived on basis of the information that is available. If some of the missing information

becomes available later, the derived literals may be defeated. Missing information is

essentially handled as in the Tweety-example at page 12. If information is missing that

Tweety is a penguin, then it will be derived that Tweety flies, since this is generally the case

for birds. If the missing information that Tweety is a penguin becomes available, then

“Tweety flies” may be defeated.

Consider a defeasible rule stating that “if someone sneezes, then they generally have a

cold”, a defeasible rule stating “if someone has a high fever then they generally do not have

a cold” and a defeasible rule stating that “if someone sneezes and has a fever, then they

generally have the flu”. Suppose that Mary sneezes and that information on whether she has

a fever is missing. In that case, it may be derived that she has a cold, which is the most

probable in case nothing is known about whether Mary has a fever12. If information that she

has a high fever becomes available, then “Mary does not have a cold” may be derived,

defeating “Mary has a cold”. Furthermore, it may be derived that Mary has the flu. If it is not

feasible to have rules such as the second rule in the program, both “Mary has a cold” and

“Mary has the flu” may be derived. Then a choice has to be made between whether Mary

has only a cold, only the flu, both or none of both. This is the problem of multiple or single

diseases stated in section 2.3, a way of choosing one of the alternatives is proposed in

section 6.3.

Another way in which incomplete information can be handled is by using negation as failure

more explicit. When negation as failure is used, it is assumed that a literal is not true when it

cannot be derived that it is. Again, when more information becomes available from which it

can be derived that the literal is true, this conflict is taken care of by the argumentation

process. García and Simari propose an extension of DeLP in which negation as failure may be

used. There are no obvious obstructions to extending the proposed logic with negation as

12 If it is not the case that it is the most probable that someone has a cold if they sneeze and

no information about whether they have a fever is available, then the rule should be

adapted to state “If someone sneezes and does not have a fever, then they have a cold”.

 92

failure in the same way. Further research should however establish whether this is in fact

possible.

It may be possible to extend the proposed logic to deal with incomplete information even

better. To do this, all unknown facts may get a default value assigned; the value they are

most likely to have if they are unknown. Subsequently a preference criterion may be defined

in which the defaults and literals derived on basis of these defaults may be defeated when

contradictions arise with literals that are known facts or derived on basis of (more) known

facts. García and Simari propose an extension of DeLP with presumptions. These

presumptions may be used as defaults. Again, there are no obvious obstructions to

extending the proposed logic in the same way, but further research should establish

whether this is really the case.

A system implementing the proposed logic can in addition be extended with a feature that

computes the informative value of missing information and that subsequently requests the

most informative missing information from the user. Though such a feature may be very

useful, logic probably will not be the most suitable way to realize it. The proposed logic may

however be used by the program to gain information about how informative certain missing

information is. Whether and what changes need to be made to the proposed logic to serve

this purpose may be investigated in future research.

The way in which completely or partially missing temporal information is handled in the

proposed logic is discussed in section 6.5.

6.2 CONTRADICTIONS

Argumentation logic in general is very well suited to deal with contradictions. If a

contradiction is derived in an argumentation logic one of the contradictory literals is

defeated by the other, depending on the preference criterion. How well a system

incorporating the proposed logic handles contradictions does thus depend on the choice of

the preference criterion.

The proposed logic does not distinguish contradictions that arise due to mistakes. It is

however possible to make the argumentation process clear to users. If necessary, they can

identify contradictions due to mistakes and correct them by adding additional facts and rules

or change them. When a contradiction arises because of disagreement in the medical

domain, then the preference criterion may be adapted to suit the preferences of the user of

the program.

6.3 SINGLE OR MULTIPLE DISEASES

In the proposed logic, it is possible that argument structures have multiple conclusions. This

means that a user may make a query for multiple literals or a single one. A user may

determine on basis of the order the argument structures for multiple or single literals have

according to the preference criterion which of the argument structures is “stronger”. This

may aid them in determining whether it is more probable that a patient has multiple

 93

diseases or suffers just from a single one. The preference criterion may for instance be based

on the strength of assumptions, specificity or the strength of the rules used in the derivation

of the literals. In addition, the preference criterion may be adapted to prefer argument

structures having certain combinations or numbers of literals in its conclusion. Additional

facts and rules may be added to the system if more certainty is needed.

In the example in section 2.3 three possibilities were considered. The first was that the

patient has only , the second was that the patient only has and the third

was that the patient has both diseases. In the proposed logic for each of the possibilities an

argument structure can be constructed, let them be , and
 respectively. The third argument structure of course can only be

constructed if the assumptions on which and were derived are

compatible, otherwise, this could indicate that the patient probably does not have both

diseases (see section 4.3). The argument structures above can be ordered according to some

preference criterion. As mentioned above, this preference criterion could be based on

several relevant factors and the choice of preference criterion clearly is vital in this case.

Users could then use the order on the arguments above to determine which argument

structure is “stronger” (i.e. is preferred according to the preference criterion). This in turn

could help them determining whether it is more probable that the patient has ,

 or both diseases. It is important to remark here that the preference criterion does

not give an absolute probability of whether a patient has multiple diseases or a single one,

when it is chosen right it just gives a rough indication. In addition, the user of course

ultimately has the responsibility of choosing the right diagnosis and the order on argument

structures can just be supporting in making that choice.

It may be possible to automate the process of choosing between multiple or single diagnoses

by treating their argument structures as if they attack each other. How this exactly should be

realized may be subject to further research.

6.4 EXCLUSIONARY CRITERIA

In the proposed logic, it is possible to use exclusionary criteria to rule out certain conditions

under certain circumstances. Exclusionary criteria can be formulated in the form of strict or

defeasible rules in which the antecedent contains the exclusionary criterion and the

consequent contains the negation of the literal that should not be derived in case the

exclusionary criterion is true. Using such rules, if a literal that should be excluded is derived,

its negation may also be derived, resulting in two counterarguments. In the argumentation

process, the one of the two counterarguments may be defeated. In case the preference

criterion is chosen correctly, this should be the argument structure for the literal that should

be excluded.

Consider the example in section 2.4 once again. There may be two rules in a system

implementing the proposed logic. The rule by which cholecystitis may be may be derived,

viz. and the rule by which cholecystitis may be

 94

excluded, viz. 13. In the case the antecedents of both

rules are true, two argument structures can be constructed in the proposed logic, namely
 and . Clearly these argument structures are

counterarguments of each other, therefore or is defeated. If

the preference criterion is chosen correctly, will be preferred over

 and will be defeated.

As mentioned in section 2.4, exclusionary criteria may also be included in the antecedent of

a rule. This is also not a problem since negations in the antecedents of rules are allowed.

6.5 TEMPORAL INFORMATION

It is possible in the proposed logic to formulate criterions on the temporal aspects of the

literals in the antecedent of a rule. The relationships between intervals as described by

(Allen, 1983) may be used for this purpose. These relationships describe all possible

relationships between intervals, however if for some reason it is needed to describe

additional criterions on temporal aspects of literals, there are no obvious obstacles to adding

the appropriate functions to the language of the logic.

The proposed logic distinguishes itself from other prior existing argumentation logics by

incorporating a way to express partial temporal information and by providing the possibility

to reason with this partial information.14 Partial temporal information can be expressed in

complex ways if necessary and may depend on partial or complete temporal information

about other literals. In addition to the functions on interval sets already defined for this

purpose, there are no obvious obstructions to defining supplementary functions, such as

 or , where denotes an interval set.

The dependency of the description of partial temporal information about a literal on the

temporal information of another literal may however in some cases cause difficulties.

Consider the following facts: and , where

 and . For these facts, it may not be immediately possible in the

proposed logic to determine which intervals are exactly in their temporal literal sequences.

There are several solutions to such a problem. The first is to consider it as a mistake in the

input of a system incorporating the proposed logic and not as a problem of the logic itself.

The second solution could be to redefine the functions on literal sets in such a way that if the

above occurs in the set of facts of a de.l.p., the result of the functions is a temporal literal

13 For the sake of clarity, the rules are kept as simple as possible and no temporal terms are

used.

14 To my knowledge, at this time no other argumentation logic exists that can do the same. It

may however be the case that such an argumentation logic did exist prior to my thesis and

that I missed it during my research. In that case, this claim should be considered defeated.

 95

sequence containing all intervals in the time span considered by the system 15. The best way

to detect cycles such as the one described above and the best solutions to them should be

determined by future research.

A direct consequence of reasoning with partial temporal information is that assumptions

may need to be made in the derivation of a literal. In the proposed logic “real” assumptions

are only made if necessary and the exact assumptions on which the derivation of a literal is

based can be made visible to a user (see section 6.7). A user can thus verify whether certain

assumptions are reasonable from a medical point of view and in case they are not, or in

cases additional temporal information has become available, users can adapt incorrect rules

or add and change facts. One obvious disadvantage of making assumptions in the derivation

of a literal is that there are greater chances that things are derived that are not true. It is

however possible give an indication of the “strength” of an assumption to the user by using

the notion of assumption strength of an argument structure (definition 4.38). Furthermore,

uncertainty is inherent to reasoning with partial information, it is better to make this explicit

than implicit. Uncertain information in most cases seems to be better than no information at

all.

As discussed in the introduction of section 4, temporal information may not only be partially

available or completely missing, it may also be the case that it is imprecise. In the proposed

logic, imprecise temporal information may be reckoned with by making the temporal literal

sequences of literals larger, i.e. by adding intervals. This may be done automatically by a part

of a system incorporating the logic or by the user. Future research, (possibly in the domain

of psychology) may focus on determining in which cases patients are imprecise in reporting

temporal information and what intervals need to be added to an interval set in that case.

6.6 CHAINING RULES

In the proposed logic, clearly rules can be chained to derive a literal. In addition, there is no

obstruction to using literals denoting diseases in the antecedent of a rule, since literals

denoting symptoms and literals denoting diseases or other information are not distinguished

from each other.

6.7 CLARIFYING THE REASONING PROCESS

The argumentation process of argumentation logic in general is very intuitive to users. In

most cases, it is possible to clarify the argumentation process to users in some graphical

way. The argumentation process in the proposed logic very closely resembles the

argumentation process of DeLP. In the implementation of DeLP by García and Simari, the

argumentation process is clarified to users graphically. Below is an example of the dialectical

tree from their implementation for the query from example 3.1.

15 Except for for instance the last interval for the function and the first interval for

the function .

 96

FIGURE 7 GRAPHICAL FRONT-END OF THE IMPLEMENTATION OF DELP BY GARCÍA AND SIMARI
(AVAILABLE AT HTTP://LIDIA.CS.UNS.EDU.AR/DELP_CLIENT)

Different options for viewing the dialectical tree are available in the graphical front-end of

the implementation of García and Simari, such as showing the complete argument of a

structure or hiding it. This makes it even easier for users to understand the reasons of why

certain literals are defeated or not. Since the dialectical process of the proposed logic is

based upon the dialectical process as defined in (García & Simari, 2004) and does not deviate

much from it, it should be possible to make the dialectical process of the proposed logic

clear in a similar way.

In the proposed logic, the making of assumptions in a derivation and their contents are

tracked very precisely and therefore it can be determined exactly on which assumptions the

derivation of a literal is based. The syntax of a multi-configuration pair with its numerous

brackets is suitable for a computer to reason with, it is however very unattractive to look at

for a human. This problem could be solved by supplementing an implementation of the

proposed logic with a component that presents the assumptions in a graphical way that is

easier to understand by humans. Designing such a component should not be very hard since

 97

all assumptions have the exact same form. Which graphical representation of assumptions is

the most appropriate can be subject to further research.

 98

7 CONCLUSION AND SUGGESTIONS FOR FURTHER RESEARCH

7.1 EVALUATION OF THE PROPOSED ARGUMENTATION LOGIC

As discussed in section 6, the proposed logic meets all requirements stated in section 2 to a

greater or lesser extent. There are, however, some additional advantages of using the

proposed logic in a medical diagnosis system. One of these advantages is that it is possible to

use it not only as a temporal argumentation logic, but also as just a temporal logic, just an

argumentation logic or just as a logic. The first can be accomplished by using only strict rules

and interval sets containing just one interval. The logic can be used in the second way by not

including temporal rules and temporal literals. The last option can be accomplished by doing

both, namely not including temporal rules and literals and using only strict rules. These

different options make it possible for an implementation of the proposed logic to serve

different purposes in a medical diagnostic system that is modular, such as a multi-agent

system that incorporates multiple reasoning agents.

The most apparent disadvantage of the proposed logic is that an implementation probably

will not be very efficient. In the proof of concept implementation described in section 5, no

attention was paid to efficiency. It became however apparent quickly that the

implementation is not very efficient. In cases, there is not much temporal information

available and the time span considered by the system is great, interval sets may become

very large, computing the output of functions on them and their intersections may then

require a lot of computations. This is also the case for the computations of other things, such

as the complete multi-configuration pair of a temporal literal sequence. In addition, the

obtaining of the set of ground rules instead of using schematic rules is not efficient.

The size of an interval set does directly depend on the amount of temporal information that

is available. The more information that is available, the smaller the interval sets are. In that

light, needing to do more computations may just be considered a price to pay for reasoning

with partial information. There may however be some other ways to reduce the number of

computations. Heuristics may for instance be used to compute the output of functions on

interval sets, to make interval sets smaller or to reduce the number of time points in the

time span considered by the system. Since the emphasis of this thesis has not been on the

efficiency of algorithms there may exist many more ways to reduce it. In addition, ways may

be found to use schematic rules instead of ground ones. In the proof of concept

implementation, schematic rules could be used when functions were not used in rules or

facts. Since there is a problem with implementing functions in their usual way in Prolog, it

may be the case that schematic rules containing functions may be used when another

language is used to implement the proposed logic.

Overall, the proposed logic seems suitable to use in a medical diagnostic system. It meets

many important requirements that should be met by a logic in a medical diagnostic system.

The fact that partial temporal information can be expressed and reasoned with in the

proposed logic is considered its most important and distinctive feature. A medical diagnostic

system implementing the proposed logic is feasible as demonstrated by a proof of concept

implementation. The computational complexity of an implementation may get high quickly

 99

when less temporal information is available. Ways to lower this computational complexity

have not been investigated in this thesis and could be subject to further research.

7.2 SUGGESTIONS FOR FURTHER RESEARCH

In addition to the suggestions for further research given in sections 6 and 7.1, some other

important and interesting matters could be investigated. The most important subject of

further research that already has been mentioned is the computational complexity of an

implementation, since this may be the weakest point of the proposed logic.

An additional interesting subject to investigate would be the suitability of the proposed logic

in other domains than the medical domain. As described in section 6, the preference

criterion of the proposed logic is crucial to how well a system incorporating it performs. It

may therefore additionally be important to determine what the best preference criterion is

from a medical point of view and whether this is different for different medical domains.

In the proposed logic, only temporal information may be partial. It would be very interesting

and probably useful to see if it is possible to extend the proposed logic such that other types

of partial or imprecise information can be reasoned with as well. It may also be interesting to

see whether these other types of partial information can be incorporated in the logic the

same way as is done with partial temporal information. An example would be a case in

which it is unclear whether the blood pressure of a patient is normal or high (due to for

instance an imprecise measurement). There is no obvious reason why a fact

 representing this information could not be

expressed in the proposed logic and reasoned with. From my point of view, this is the most

interesting subjects to investigate further.

 100

8 REFERENCES

Aldo, A. G. (2010). Non-monotonic Logic. (E. N. Zalta, Editor) Retrieved August 1, 2011, from

Stanford Encyclopedia of Philosophy (Summer 2010 Edition):

http://plato.stanford.edu/archives/sum2010/entries/logic-nonmonotonic/

Allen, J. F. (1983, November). Maintaining knowledge about temporal intervals.

Communications of the ACM, 26(11), 832-843.

Berlin, A., Sorai, M., & Sim, I. (2006, December). A taxonomic description of computer-based

clinical decision support systems. Journal of Biomedical Informatics, 39(6), 656-667.

Berner, E. S., & La Lande, T. J. (2007). Development and Evaluation of Clinical Decision

Support Systems. In E. S. Berner, Clinical Decision Support Systems Theory and

Practice. New York: Springer.

Blackburn, P., Bos, J., & Kristina, S. (2006). Learn Prolog Now! (7 ed.). College Publications.

Bochman, A. (2007). Nonmonotonic reasoning. In D. M. Gabbay, & J. Woods (Eds.),

Handbook of the History of Logic (Vol. 8, pp. 557-632). Elsevier.

Chesñevar, C. I., Maguitman, A. G., & Loui, R. P. (2000). Logical Models of Argument. ACM

Computing Surveys, 32, 337-383.

García, J. A., & Simari, R. G. (2004, January). Defeasible Logic Programming An argumentative

Approach. Theory and Practice of Logic Programming, 4(2), 95-138.

Garg, A. X., Adhikari, N. K., McDonald, H., Rosas-Arenallo, P., Devereaux, P. J., Beyene, J., . . .

Haynes, B. R. (2005). Effects of Computerized Clinical Decision Support Systems on

Practitioner Performance and Patient Outcomes. The Journal of the American

Medical Association, 1223-1238.

Gartner, J., Swift, T., Tien, A., Damásio, C. V., & Pereira, L. M. (2000). Psychiatric Diagnosis

from the Viewpoint of Computational Logic. In Proceedings of the First International

Conference on Computational Logic (pp. 1362-1376). London, UK: Springer-Verlag.

Patel, V. L., Shortliffe, E. H., Stefanelli, M., Szolovits, P., Berthold, M. R., Bellazzi, R., & Abu-

Hanna, A. (2009, May 1). The coming of age of artificial intelligence in medicine.

Artificial Intelligence in Medicine, 46(1), 5-17.

Prakken, H., & Vreeswijk, G. (1998, April 9). Logics for Defeasible Argumentation.

Reichgelt, H., & Vila, L. (2005). Temporal qualification in artificial intelligence. In M. Fisher, D.

Gabbay, & L. Vila, Handbook of Temporal Reasoning in Artificial Intelligence (pp. 167-

194). Elsevier.

Schlechta, K. (2007). Nonmonotonic logics: a preferential approach. In D. M. Gabbay, & J.

Woods (Eds.), Handbook of the History of Logic (Vol. 8, pp. 451-516). Elsevier.

 101

The Merck Manual. (2007 (1), December). Choledocholithiasis and Cholangitis: Gallbladder

and Bile Duct Disorders. (E. A. Shaffer, Editor) Retrieved July 27, 2011, from The

Merck Manual:

http://www.merckmanuals.com/professional/sec03/ch031/ch031e.html

The Merck Manual. (2007 (2), February). Treatment of Pain: Pain. (R. K. Portenoy, Editor)

Retrieved July 20, 2011, from The Merck Manual:

http://www.merckmanuals.com/professional/sec17/ch219/ch219c.html

The Merck Manual. (2008 (1), March). Chronic and Recurrent Abdominal Pain: Approach to

the Patient with Upper GI complaints. (N. J. Greenberger, Editor) Retrieved July 20,

2011, from The Merck Manual:

http://www.merckmanuals.com/professional/sec02/ch007/ch007b.html

The Merck Manual. (2008 (2), May). Idiopathic Interstitional Pneumonias: Interstitial Lung

Diseases. (T. E. King, Editor) Retrieved July 25, 2011, from The Merck Manual:

http://www.merckmanuals.com/professional/sec05/ch059/ch059b.html

The Merck Manual. (2009, March). Reye's Syndrome: Miscellaneous Disorders in Infants and

Children. (E. J. Palumbo, Editor) Retrieved July 20, 2011, from The Merck Manual:

http://www.merckmanuals.com/professional/sec20/ch304/ch304f.html

The Merck Manual. (2010, March). Clinical Decision Making Strategies: Clinical Decision

Making. (D. L. McGee, Editor) Retrieved July 27, 2011, from The Merk Manual:

http://www.merckmanuals.com/professional/sec23/ch348/ch348c.html

Vreeswijk, G. A. (1997, February). Abstract argumentation systems. Artificial Intelligence, 90,

225-279.

Wright, A., & Sittig, D. F. (2008, October). A four-phase model of the evolution of clinical

decision support architectures. International Journal of Medical Informatics, 77(10),

641-649.

 102

9 APPENDIX: OVERVIEW OF LOGICS CONSIDERED FOR A MEDICAL

DIAGNOSTIC SYSTEM

In the search for a logic that could be used as a basis for a medical diagnostic system, several

types of logic have been evaluated. Most of these types of logic have not been investigated

into great depth, since in many cases it already appeared very early in the process that the

type of logic did not have the required properties for a medical diagnostic system. In most

cases, several logics of the same type were studied. For each type of logic a summary of its

syntax and semantics was made, furthermore, ideas were sketched on how the logic could

be used in a medical diagnostic system. Additionally, the advantages and disadvantages of

each logic for a medical diagnostic system were described.

It was decided that it is not a good idea to include the complete output of these

investigations in this appendix, since this would make this appendix far too massive. In this

appendix, a very short description and a short summary of the evaluation of each of the

types logics that have been investigated is provided. Only the most important properties

that make a logic suitable or unsuitable for use in a medical diagnostic system are given.

Nonmonotonic logic and argumentation logic are already discussed elaborately in this thesis

and are therefore not discussed here.

The information in the descriptions of the types of logics in this appendix was obtained from

the online version of the Stanford Encyclopedia of Philosophy16.

HYBRID LOGIC

SHORT DESCRIPTION

In hybrid logic, additional expressive power is added to modal logic. While in normal modal

logic it is only possible to say something about the world you are in now (at a given moment

in the reasoning process) and the worlds accessible from it, in hybrid logic it is possible to

denote and reason about specific worlds that are not directly accessible from the world you

are currently in.

ADVANTAGES AND DISADVANTAGES

Hybrid logic does not provide a direct way to express or reason with incomplete information

conveniently. There are some ideas on how to change the logic, such that it is possible to do

this. These ideas all are not very practical and require a lot of information about diseases

and their probabilities. In addition, almost all ideas require the combination of hybrid logic

with other types of logic.

There is not a straightforward way to deal with contradictions in hybrid logic, the fact that it

is possible to denote specific worlds may however be used to find a way to do this. There is a

version of hybrid logic, called hybrid tense logic in which it is possible to reason with

16 See: http://plato.stanford.edu

 103

temporal information. This may be an advantage of this logic. Hybrid logic and modal logic in

general seems to be harder to understand for humans than for instance classic logic, it may

thus be harder to make the reasoning process of a medical diagnostic system that is based

on this logic clear to users.

DEONTIC LOGIC

SHORT DESCRIPTION

In deontic logic, concepts as permissibility, obligatory and optionality can be expressed and

reasoned with.

ADVANTAGES AND DISADVANTAGES

Several deontic logics have been investigated and were evaluated. Most of these logics did

not have properties that are beneficial for a medical diagnosis program that for instance

classic logic does not have. The most interesting was standard possible world Kripke

semantics for standard deontic logic. In this semantics, a world is accessible from a world

if everything that is obligatory in is obligatory in . When every symptom and property of a

patient that is known is considered obligatory, then it would be possible to use this

semantics to determine which worlds (and thus diseases) are possible according to the

known symptoms, providing a way to incorporate a way of reasoning with incomplete

information.

It is also possible that for diseases, certain symptoms have to be present (obligatory), while

others may be present (optional) or may be impossible to occur with a disease

(impermissible). Deontic logic could be used to model this. This would allow for a very

intuitive way to include for instance exclusionary criteria.

In the case a contradiction is derived and one of the contradictory sentences is obligated and

the other is not, this could be used to determine which of the sentences should be rejected.

It is however not possible to deal with all kinds of contradictions in this manner.

Furthermore, this would mean that the logic should be modified severely to be able to reject

the right sentences.

MANY-VALUED LOGIC

SHORT DESCRIPTION

In many-valued logic, sentences can have more or other truth-values than only and

 . The truth-value of a compound sentence is determined by the truth-values of its

component sentences.

ADVANTAGES/DISADVANTAGES

Sentences in many-valued logic may not only get assigned the value or , but also

the value . This may provide a way to define a reasoning process in which

incomplete information can be dealt with in a sensible manner.

 104

Contradictions in this logic may arise less often if more than the three truth-values

mentioned above are used. It is however not clear what the semantics of a logic with these

multiple truth-values should be and how these relate to the “real world” in which patients

either have a symptom or a disease or do not17. Furthermore, this would probably make the

logic very counterintuitive. Using multiple truth-values would thus probably make it harder

to explain the reasoning process to users.

RELEVANCE LOGIC

SHORT DESCRIPTION

In normal logic, it is possible to make very counterintuitive inferences. An example of this is

that in normal logic, from a premises , the consequent may be derived. In relevance

logic, it is attempted to avoid some of these counterintuitive paradoxes of implication. More

specific, in relevance logic, inferences in which consequents have completely different topics

as their antecedents are excluded.

ADVANTAGES AND DISADVANTAGES

The main advantage of relevance logic is that inferences in it are more intuitive. This may

make it easier to explain the reasoning process to users. On the other hand, it may make it

impossible to derive things that are true and useful but just counterintuitive to humans.

PARACONSISTENT LOGIC

SHORT DESCRIPTION

In a paraconsistent logic, even when contradictions are derived, the inference relation does

not explode into triviality. In a paraconsistent logic several principles of classic logic are

abandoned, making the logic propositionally weaker than classic logic.

ADVANTAGES AND DISADVANTAGES

It is of course not desirable that inferences in a medical diagnostic system explode into

triviality. This logic does not seem to have any other advantages for medical diagnostic

systems.

FUZZY LOGIC

SHORT DESCRIPTION

Sentences in fuzzy logic have a degree of truth, classically on a continuous scale between

and .

ADVANTAGES AND DISADVANTAGES

17 Many valued logic is not directly suitable to use to reason about probabilities.

 105

It is possible to use truth degrees to denote the certainty that a patient has a certain

symptom or a certain disease. This may provide a way to reason not only with in complete

information, but also with information that is only partially missing.

The reasoning process of fuzzy logic is not very easy to understand and it is a very

controversial logic.

FREE LOGIC

SHORT DESCRIPTION

In free logic, terms may denote objects outside the domain of discourse of a logic and may

denote non-existing objects.

ADVANTAGES AND DISADVANTAGES

Free logic does not have any clear advantages over for instance classic logic to use in a

medical diagnostic system.

SECOND AND HIGHER ORDER LOGIC

SHORT DESCRIPTION

Second and higher order logics are extensions of first order logic. In first order logic,

variables and quantifiers range over elements of the domain of discourse. In second and

higher order logic, variables may range over sets of such elements and sets of such sets and

so on.

ADVANTAGES AND DISADVANTAGES

Second and higher order logics are more expressive than first order logic. There however

seems no need for this kind of larger expressivity in a logic for a medical diagnostic system.

Furthermore, the semantics of second and higher order logic seems to be more complicated

and this makes it harder to make the reasoning process of a program implementing second

or higher order logic clear to users.

LINEAR LOGIC

SHORT DESCRIPTION

In linear logic, certain formulas are marked by modals. The usual structural rules of

contraction and weakening are only applicable to formulas marked by certain of these

modals. Linear logic is a refinement of classic and Intuitionistic logic in which the emphasis is

on formulas as resources.

ADVANTAGES AND DISADVANTAGES

Linear logic has many well-described applications in the field of AI, especially in the domain

of knowledge representation. From that perspective, this logic could be interesting. The logic

 106

does however not seem to meet any of the requirements defined for a medical diagnostic

program specifically.

EPISTEMIC LOGIC

SHORT DESCRIPTION

Epistemic logic is a modal logic in which notions as knowledge and believe can be reasoned

with. In epistemic logic, it is possible to model scenarios about individuals and groups of

individuals that know or believe certain things.

ADVANTAGES AND DISADVANTAGES

Epistemic logic would be suitable to use to reason with uncertain information. It may for

instance be believed that a patient has a certain symptom, while this is not known for

certain. This way of dealing with incomplete information does however not seem to be the

most appropriate in the medical domain. There is no way to determine how certain or

uncertain information is and the logic is more about the individuals that believe or know

information than about the information itself. Epistemic logic seems not to have any other

advantages for a medical diagnostic system.

PROPOSITIONAL DYNAMIC LOGIC

SHORT DESCRIPTION

Propositional dynamic logic is a modal logic that is mainly used to study the properties of

computer programs. Propositional dynamic logic is concerned with the executions of

programs and whether these programs do or do not derive certain formulas when they are

in a certain state.

ADVANTAGES AND DISADVANTAGES

This logic does not seem to help meeting any of the determined requirements for a medical

diagnostic program. It could be used to model the working of the human body and help

determining what disease a patient has from that point of view, since it is concerned with

the execution of programs and the human body could be modeled analogous to that. This

idea is however very far-fetched and still many of the requirements are not met.

PROVABILITY LOGIC

SHORT DESCRIPTION

Provability logic is a modal logic in which reasoning about mathematical theories and what

can be expressed in them is conducted.

ADVANTAGES AND DISADVANTAGES

 107

Provability logic seems more suitable to use in research on the fundamentals of

mathematical theories than to conduct more practical forms of reasoning. This logic does

not seem to have any advantages when used in a medical diagnostic program.

INFINITARY LOGIC

SHORT DESCRIPTION

In infinitary logic, formulas are identified as infinite sets. In this logic, connectives such as

disjunction and conjunction can be of infinite length.

ADVANTAGES AND DISADVANTAGES

While the expressive power of infinitary logic exceeds the expressive power of first order

logic, expressive power is not increased in a way that would benefit a medical diagnostic

system. This logic does not have any advantages for use in a medical diagnostic system.

INDEPENDENCE FRIENDLY LOGIC

SHORT DESCRIPTION

Independence friendly logic is an extension of first order logic in which more dependencies

and independencies between individuals that are quantified over can be expressed.

ADVANTAGES AND DISADVANTAGES

This logic seems only to be useful in the fields of linguistics and math, it does not seem to

have any advantages when used in a medical diagnostic program.

QUANTUM LOGIC

SHORT DESCRIPTION

In quantum logic, the theories of quantum mechanics are taken into account.

ADVANTAGES AND DISADVANTAGES

Quantum logic is very complicated and controversial; this makes it very unsuitable for use in

a medical diagnosis system.

