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Chapter 1

Introduction

This thesis reviews the theory of global analysis, using Fréchet spaces and manifolds, as
first described in Richard Hamilton’s paper [Ham82b] on the Nash-Moser inverse function
theorem, with a particular focus on real geometry. In addition, a chapter is devoted to
applications, some of which are original work.

The inverse function theorem, smooth maps are locally invertible at regular points,
is an important and well-known tool in finite dimensional analysis. It readily general-
izes to smooth maps between Banach spaces and, accordingly, to maps between Banach
manifolds. Typical examples of Banach spaces are the C*(M) of k-times differentiable
functions on a compact manifold, while typical examples of smooth maps between Banach
spaces are partial differential operators, seen as maps C**"(M) — C*(M). The inverse
function theorem, produces solutions under some conditions, but is typically rather re-
strictive: Even if the function in the codomain is smooth, solutions are at most k+r-times
differentiable.

For Fréchet spaces, most typically the spaces of smooth functions C*° (M), the inverse
function theorem generally fails. Moser [Mos66| suggested an algorithm, or method of
proof, similar to Newton-Raphson iteration, to find solutions to PDEs. Hamilton used
this method to prove a general theorem, and a useful implicit function variant, and gave
several applications, see e.g. [Ham82b, Ham77, Ham82a].

The theorem has some disadvantages over the Banach inverse function theorem. Most
clamorously, in the Banach case it is sufficient for the map under scrutiny to just be
regular in a point. It then follows that it is invertible in a neighborhood — in particular it
is regular. While for Fréchet spaces the map is required to be regular in a neighborhood
of the point. There are examples of smooth maps whose set of singular points has regular
limit points, there is a sequence of singular points converging to a regular point, hence
this condition 7s necessary.

As an example consider the Fréchet space C*°[—1, 1] of smooth functions f : [-1,1] —
R, whose semi-norms are given by the C*-norms,

k

d
= sup |—=f(x)].
I =3 s | /)

The partial differential operator

f

P:C®[-1,1] > C®[-1,1], Pf=f —xf;l—x



is a smooth Fréchet map and its derivative is given by

df dg

DP(flg=9—xg— —af.

It is clearly invertible at f = 0, since DP(0) = id is the identity. Yet the sequence of

smooth maps g, = L + £ converges to 0 in C*°[—1, 1] and none of the g, lie in the image

of P. The latter is seen by a simple computation with formal power series. This and
more examples can be found in [Ham82b|.

The second glaring difference is that only a particular (non-full) subcategory of Fréchet
manifolds will do. The Fréchet spaces require extra structure in the form of a ‘grading’,
a choice of incremental order of seminorms generating the topology. Fittingly maps are
required to suitably interact with this grading. In addition of requiring a linear map
L : E — F to be continuous, which means one can estimate ||Lel||,, < C|le]|, if n is
sufficiently larger then m (recall that the grading is incremental), one requires an upper
bound on the difference n —m independent of m. Such maps are called ‘tame’. A similar
notion of tameness exists for non-linear maps, and manifolds are required to be tame
in the sense that the local model has a canonical grading and the transition maps are
tame. This gives rise to an abundance of technical conditions that must be checked in
applications.

The tameness condition on Fréchet manifolds is restrictive. Although in general the
space of smooth maps C*°(M,R") is a Fréchet space, there is no canonical choice of
grading if M is not compact. When M is compact however, this problem is easily solved
and the transition maps are tame. Accordingly, many applications require manifolds to
be compact.

An additional requirement on the graded Fréchet spaces is the existence of ‘smooth-
ing operators’. They are a family of linear automorphisms that allows one to ‘truncate’
the elements of a graded Fréchet space in a controlled manner. In the Newton-Raphson
itteration, a linear automorphism L : C*(M) — C¥(M) is repeatedly applied to a start-
ing element, one shows that L is a contraction and hence the resulting sequence L*f
converges. In the setting of graded Fréchet spaces, say C°°(M), one can at most prove
an estimate of the form [[Lf|, < @]/ f|,,,. As the index tends to infinity, this doesn’t
show that LFf is Cauchy. This phenomenom is named 7Toss of derivatives’ by Moser.
The smoothing operators allow for a different iteration that counters the effects of loss
of derivative. It is the main ingenuity in the Nash-Moser inverse function theorem. In
contrary to the choice of grading, it is sufficient for the smoothing operators to merely
exist — the local model of a tame Fréchet manifold must merely allow the existence of
smoothing operators.

The Nash-Moser theorem is most notably applicable in geometry. It provides an ana-
lytical tool to answer question revolving around deformations and stability. The primary
example, of the method, not the theorem, is found in Nash’ paper [Nas56] on the embbed-
ding problem of Riemannian manifolds. Hamilton gave several example applications, in
particular to embedding manifolds with positive curvature into R™, the shallow water
equations, and the stability of symplectic and contact strutctures in [Ham82b, Ham77].
In an unpublished paper, he additionally applies it to stability of foliations. The resulting
conditions for a foliation to be stable are sadly too strict to be useful. In this thesis we
apply Nash-Moser to the classical example of stability of smooth maps between mani-
folds, as first conceived and proven by Mather [Mat69], and group actions for a fixed



manifold and compact Lie group, see e.g. [Pal61]. The latter is also proven to work for
compact Lie groupoids actions with a fixed moment map.



Chapter 2

Graded Fréchet spaces and examples

We begin with a short introduction to only the most relevant parts of the theory of
Fréchet spaces and Fréchet calculus. Most statements in this section are given without
proof. For a more detailed discussion of Fréchet spaces we refer to one of the many
textbooks on functional analysis. As the main focus of this thesis is understanding, and
applying to geometry, the theory presented in [Ham82b, Mos66, Nash6|, we will quickly
continue towards the notions of gradings and tame maps. All vector spaces are assumed
to be over R.

2.1 Fréchet spaces

Recall that a semi-norm on a vector space F' is a function ||—|| : F — R, where, from
now on, R, indicates the set of r € R with r > 0, satisfying the usual norm properties

o subadditivity: || f + gl < |f] +llgll,
e positive homogeneity: || A f| = [N ||/,

except possibly failing to separate points, that is, ||f|| = 0 doesn’t necessarily imply
f = 0. A family of semi-norms {||—||,},.; induces a topology on F with a basis of
topology given by the intersection of finitely many open balls,

B (f)n...aBg(f), Bif)={ge Fllf —gll, <r}.

This topology is usually called the initial topology of the seminorms. It makes F' a
topological vector space of the locally conver kind. A sequence in F' converges if and
only if it converges with repect to each of the semi-norms, that is, f, — f exactly when
| fn — fll, — O for all indices k € I.

Definition 2.1.1 (Fréchet space). A Fréchet space is a locally convex space with the
following additional properties:

1. F s Hausdorff;
2. The topology can be induced by countably many semi-norms;

3. F 1is complete. A



Note that the first property is equivalent to: if || f||, = O for all k, then f = 0. The
second property holds if and only if the topology is first countable. Note that every locally
convex vector space I satisfying the first property is metrizable. For let the topology of
F be given by a countable family {[|—[|,}, .y of seminorms. Then

d(f,q) = 00ka Hf_ng :
(9 = 2 2 L

defines a metric on F' that induces the same topology. A sequence {f,} C F' is Cauchy
with respect to this metric if and only if for every £ € N the seminorm

”fm - ank — 0

as m,n — oo.
Next we point out some facts about differentiable caluculus on Fréchet spaces.

Definition 2.1.2. Let E and F be Fréchet spaces, U C E an open, and P : U — F a
continuous possibly non-linear map. Then P is called differentiable at e € U if the limit

DP(e)h :=lim Ple+th) = P(e)

t—0 t ’

erists for every h € E. In this case D.Ph = DP(e)h is the directional derivative of
P at e in the direction of h. P s differentiable if the limit exists for every e € U and
hekFE. A

Note that this is the usual Gateaux differential. One should emphasize that P is
assumed to be continuous in the definition of differentiability. This implies that the
notions of Fréchet differential and Gateaux differential coincide, see for example [Tay37].

Definition 2.1.3. Let E and F be Fréchet spaces, U C E an open, and P : U — F a
continuous map. Then P is called continuously differentiable, or P € C*(U, F), if the
derivative is continuous as a map

DP:UxFE — F.

By recursion, it is of class C* if DP € C*Y(U x E,F), and P is called smooth, or of
class C, if it is C* for every k € N. A

Remark 2.1.4. The directional deriwative of P : U — F' s linear in the sense that if
P is C, and e € U, then the map DP(e) : E — F is a linear map. For a proof of this
statement we refer to lemma 3.2.3 and theorem 3.2.5 of [Ham77]. The requirement that
P is continuously differential seems to be essential to the proof. A

Some caution is needed with the above definitions. A map @ : B O V — C between
Banach spaces is called continuously differentiable in the Banach sense if its derivative

DQ:V — B(B,B)



is well-defined and continuous. If ) is C? in the Fréchet sense defined above, then

1DQ(g)h — DQ(F)]| = \ / DQQ(f“(g—f))[h?g—f]dtH <Cllg= 7l 4l

for all g € V sufficiently close to f. Hence it is C! in the Banach sense. By induction on
k, Q is of class C* in the Banach sense if it is of class C**! in the Fréchet sense. On the
other hand, it is of class C* in the Fréchet sense if it is of class C* in the Banach sense.
Both notions are, however, not equivalent.

Since the space F(E, F') of continuous maps between Fréchet spaces is not a Fréchet
space in a natural way, this ambiguity isn’t as relevant in the category of Fréchet spaces.

Remark 2.1.5. In this thesis we use, both for maps between Fréchet spaces as between
finite dimensional spaces, the notation DyPh = DP(f)h to indicate the derivative of P
at f in the direction of h. Hence DP 1is seen as a map

DP:.:Ux E — F.
The tangent map of P is then the map
TP:UXFE— FXF

with TP = (P,DP). In the more intrinsic setting of Fréchet manifolds this translates,
for P: M — N, to

DP :TM— P*TN
and
TP :TM—TN.

For a map P : E DO U — R we will sometimes write dP = DP; although viewing the
derivative as a differential dP : U — E* s less useful in the Fréchet setting, since the
cotangent bundle of a Fréchet manifold doesn’t have a natural structure of a Fréchet space.

Eventhough a Fréchet space isn’t necessarily a normed space, the Hahn-Banach the-
orem still holds for Fréchet spaces. In particular, points of F' are separated by the
continuous linear functionals on F' in the sense that if f € F' is non-zero then then there
is a continuous linear functional [ : F' — R such that [(f) = 1. This can be used to
extend some basic results from real finite dimensional analysis to Fréchet spaces. First
we introduce the space C°([a,b], ') of continuous paths in F.

Proposition 2.1.6. Let [a,b] C R be a compact interval, and F a Fréchet space with
seminorms {||=||;},c;- Then the space C°([a,b], F') of continuous paths in F is a Fréchet
space with seminorms defined by

1£1l; = sup [lF(#)I];

t€la,b]

for all f € C%a,b], F).



Proposition 2.1.7 (Integration). Let [a,b] C R be a compact interval, and F a Fréchet
space. Let C°([a,b], F) denote the space of continuous paths in F. Then there is a unique

continuous linear map fab dt : C%([a,b], F') — F such that

l (/abf(t)dt) = /abl(f(t))dt

for every continuous linear functional | : F — R, and every f € C%([a,b], F). It satisfies

‘ / b F(t)dt

for every f € C°([a,b], F).
Moreover, if f € CY([a,b], F) is continuous differentiable, then

<PBal- /1|

/ F(6)dt = £(5) — f(a).

Proof. It follows directly from Hahn-Banach that there is at most one such map. To prove
existence, first note that it is obvious how to define the integral for piecewise linear paths.
Suppose that a = ag < a; < ... < a, = b is a partition of [a,b], and f € C%[a,b], F) is a
continuous, piecewise linear path in F' given by

f(t) = ant + By,

for t € [ag_1,ax], ag, Bx € F, and 1 < k < n. Then the integral should be given by

n

/ab ft)dt = (ar — ax-1) (@c + %(ak_l 4 ak)Oék> '

k=1

Note that ff dt is linear on the space of continuous, piecewise linear paths, and

b n
‘/f(t)dt <3 Jax — apal f(%(ak_l—kak))
a k=1

Since the continuous, piecewise linear paths lie dense in C%([a, b], F'), conclude that f: dt
extends to a continuous linear map on C°([a, b], F). O

<b—al-If,.

)

i

Integration along continuous paths allows one to prove many basic results about the
directional derivative of a smooth map P : E — F. For us the most essential ones are
listed below.

Lemma 2.1.8. Let E and F' be Fréchet spaces, U C E an open, and P: E DU —F a
continuous map. Then P is of class O if there is a continuous map

[:UxUxFE—F,

linear in the last component, such that

P(g) —P(f)=1(f9)(g— f)

10



Proof. The proof is the same as in Banach calculus. If P is C*, [ is given by

I(f.9)h = / DP(f +t(g— f)hdt,

and, conversely, DP(f)h = l(f, f)h. O

Corollary 2.1.9. A continuous map P : E® F 2O U — G from the direct sum of two

Fréchet spaces is smooth if and only if P(e,—) and P(—, f) are smooth for every e € E
and f € F.

Finally, Fréchet calculus shares many properties with ordinary calculus in R", such as
the chain rule, linearity of the directional derivative D;P, that higher order derivatives
D’;P are symmetric multi-linear, and Taylor’s theorem with integral remainder:

n—1

P(f+ 1) = PUP)+ Y i DPPUOR + Ra(f. 1),
k=1
where
1 ! n— n n

One proves these statements by using that the linear functionals separate the points of a
Fréchet space F'.

11



2.2 Graded Fréchet spaces

Let ||—|| and |||/ be two seminorms on a vector space F. We say that ||—| < ||—|" if
7]l < |If]l" for every f € F. This defines a partial order on the family of seminorms on
the vector space F.

Definition 2.2.1 (Graded Fréchet space). Let F' be a Fréchet space. A grading on F is
a particular choice of an increasing sequence

=llo < 1=l < ll=lly < -+

of semi-norms which induce the topology on F. A graded Fréchet space is a Fréchet space
together with a fized choice of grading. A

In foresight, the archetypal example of a graded Fréchet space will be the space C* (V)
of smooth functions f : V' — R on the closure V of a relatively compact, open subset of
R". The grading is given by the so-called C*-norms, that is, the norms

10 =2 59 | 5m (w)‘-

Each of these semi-norms is actually a norm, since it takes the supremum of f on V', and
C>(V) is easily seen to be complete and Hausdorff. It is, however, not complete to any
of the norms individually; the completions (C>(V'),||—||,) are just the regular Banach
spaces C*(V).

Every Fréchet space can be seen as a graded Fréchet space, for if {||—||, : n € N} gives
the topology of F', then the semi-norms

n
=1 = > 1=
k=0

induce the same topology and are ordered increasingly. It is, however, obvious that such
a choice of grading is highly non-canonical. The grading will turn out to play an essential
role in the statement and proof of the Nash-Moser inverse function theorem; it allows one
to define tame maps, which are, in some sense, a nice generalisation of continuous maps
between Banach spaces.

Remark 2.2.2. Any Banach space can be seen as a graded Fréchet space with the constant
grading ||—|| < |- < ...

A graded Fréchet space comes with a sequence of topologies Wi O Wy D ... of
increasing refinement.

Definition 2.2.3 (Wj-topologies). Let F' be a graded Fréchet space. Then for every

k € N the Wy-topology on F' is defined as the topology induced by the family of open balls
Bi(f) :={geF:llg—fll,<r}

forall f € F and r € Rog. For every | > k we have that W, is a refinement of Wy. A

These topologies give additional means to prove the continuity of maps between graded
Fréchet spaces. In later chapters we give a more geometrical description of the Wj
topologies in the case of the graded Fréchet spaces I'j/E of sections of a vector bundle
equipped with the C*-norms.

12



2.2.1 Tame maps

Hamilton [Ham82b]| introduces the notion of a tame map between graded Fréchet spaces.
It is a continuous map with a clear upper bound on the increase of index of the semi-
norms.

Definition 2.2.4 (Tame linear maps). Let E and F be graded Fréchet spaces. A linear
map L : E — F 1is called tame linear of base b and degree r, in short r-tame of base b, if
it satisfies the following estimates:

For every n > b there is a constant C,, > 0 such that

ILell,, < Cullell,, ..
for alle € E. Let TamelL denote the category of graded Fréchet spaces with tame linear
maps. A

In words, a tame linear map has an upper bound to the increase of index and this
bound may fail for only a finite number of semi-norms. Since this has no influence on the
convergence of sequences, not even on the topology of £ and F', we allow some leeway in
the tameness condition by means of the base. Note that, with this definition, the degree
refers only to an upper bound of the growth of index. We do not assume it to be the
smallest of these upper bounds by definition, but this can be done in practice. Note that
it also makes sense to speak of a negative degree when the index actually lowers.

We will always assume that finite dimensional manifolds are in the smooth category,
and that the spaces of sections consists of the smooth sections. Let £ — M and F' — M
be two vector bundles over a finite dimensional manifold. A map P : I'yE — I'yF
between the respective spaces of sections is said to be local if supp(Po) C supp(o)
for all o € I'y;E. A local operator is by definition a local, linear morphism of sheafs
Iy E — Ty F. The Peetre theorem |J.P59] states the following.

Theorem 2.2.5 (Peetre). Fvery local operator P : Uy E — Ty F s locally a differential
operator in the sense that around every point x € M there is an open subset U C M such
that the restriction of P to U 1is the composition

ioj* : TyE — J¥E) — T'yF
of a linear map @ and the k-th jet for some k depending on U.

Remarkably enough, no continuity conditions on P are necessary. In section 2.3.1
on page 23 we describe a graded Fréchet space structure on the spaces 'y, E of sections
given that the base manifold M is compact. In this case it follows that any local operator
P .T'yE — I'yF is a differential operator of order k for a fixed k£ € N. It is in particular
a k-tame linear map.

Definition 2.2.6 (Smooth tame maps). Let E and F be graded Fréchet spaces, U C E
an open subset, and P : U — F a continuous possibly non-linear map. Then P is tame
if there is a covering {U;} of U such that:

13



For every U; there is a base b; and degree r; so that for every n > b; there is a C' > 0
such that the following estimates are fulfilled:

A smooth map P : U — G is called smooth tame if it and all its derivatives are tame.
Let TameS denote the category of graded Fréchet spaces with smooth tame maps. A

Remark 2.2.7. For the tameness of the derivatives of P one needs to view U X E as an
open subset of a graded Fréchet space E x E. The grading on the latter space is given by
taking the sum ||e1|,, + |lez||,, for every index n € N and e1,es € E. In section 2.2.3 on
page 19 we approach this more systematically.

Note that we do not require that P satisfies the tameness estimates globally on U but
only on the open sets in an open cover of U. In later chapters we work with the notion
of tame maps between tame Fréchet manifolds, manifolds which locally look like graded
Fréchet spaces and whose transition maps are also tame. Then the notion of tameness
for continuous non-linear maps directly globalizes to these tame Fréchet manifolds.

Remark 2.2.8. We assume that P s continuous as part of the definition of tameness.
For non-linear maps continuity doesn’t necessarily follow from the tameness estimates.

Note that we allow the degree, base and the constants C to vary from open to open.
In most examples we are able to obtain a bound on the degrees r; and bases b;. In such a
case it makes sense to speak of an r-tame (non-linear) map of base b. Where possible, we
will keep track of the degree and base of a map. These computations are often not very
challenging once one has established that the map in question ¢s tame. One can make,
for example, the following observation that helps tremendously in computing degrees and
bases.

Lemma 2.2.9. Both TameL and TameS are categories. More specifically, the compo-
sition P o @QQ of an r-tame map of base b and an 7-tame map of base b respectively, with

r, 7 >0, is (r + 7)-tame of base max {b,i)— r}.

Proof. We will only look at the smooth tame maps. For k£ > max {b,lN)— r} one can
make estimates of the form

[P@QUN < X+ 1Q(U) lrr)
< Ci(1+ Co(T+ 1 flljgrss)
< C3(L+ ([ fllsrgr)- -

This leads to the usual definitions of isomorphisms in TameL and TameS.

Definition 2.2.10. A tame linear isomorphism, or tame isomorphism is a tame linear
map with a tame inverse.

Likewise, a smooth tame isomorphism, or tame diffeomorphism is a smooth tame
map with a smooth tame inverse. A

14



Clearly, by the above corollary, such tame isomorphisms do not always preserve the
notion of degree and base. If one wishes to preserve these notions nonetheless, one should
work with the notion of a O-tame isomorphism as defined below.

Definition 2.2.11 (0-tame maps). A linear 0-tame isomorphism is a tame linear iso-
morphism of degree 0 with an inverse of degree 0. The graded Fréchet spaces with the
0-tame linear maps form a category denoted by TamelLy.

A smooth O-tame map is a smooth map which and whose derivatives are all O-tame.
Consequently, a O-tame diffeomorphism s a smooth 0-tame map with a smooth O-tame
inverse. The graded Fréchet spaces with smooth O-tame maps form a category denoted by
TameS,. A

Analogously, one can give the definitions of r-tame linear isomorphisms and smooth
r-tame maps. However, they do not form a category, as per lemma 2.2.9 on the facing
page. Moreover note that a smooth r-tame map is not the same as smooth tame map
of degree r. The former requires that all derivatives are at most of degree r, while the
latter only restricts the degree of the map itself.

Remark 2.2.12. It often seems interesting to restrict our attention to the categories
TameLy and TameS,. In the next chapter we encounter several examples of tame Fréchet
manifolds. These are manifolds whose charts take values in graded Fréchet spaces, and
whose transition maps are smooth tame maps. In nearly all of these examples the tran-
sitton maps turn out to be 0-tame diffeomorphisms. This allows us to speak of the degree
of a tame map between these manifolds.

Since there are now two different definitions of tameness for linear maps, namely in
TameL and TameS, we should better argue that this gives no ambiguity. Moreover, if F'
is a graded Fréchet space, recall that W}, denotes the topology on F' induced by the k-th
seminorm. We will also give a description of the tame linear maps in terms of continuity
conditions with relation to the family of topologies {W}},y-

Proposition 2.2.13. A map L : E — F between graded Fréchet spaces is tame linear if
and only if it is linear and tame. Moreover, a linear map L : E — F is tame linear of
degree r and base b if and only if it is continuous as a map

L:(E,Wiy)— (F,Wy)
for every k > b.

Proof. Suppose L is linear and tame. Then it satisfies tame estimates, Vn > b,

ILA, < CO+flay), VfeU

for some neighborhood U C E of the origin. We may assume U = {f € E : || f||,, < ¢}
for some € > 0 and a sufficiently large b € N. Let ¢ € E and § > 0 be arbitrary, and
define f = cg/(|[gll,,, +9). Then ||f][,., < &, so the tame estimate holds for such an
f € E. Use the linearity of L and multiply on both sides with (||g[,., + )/ to get

gl +5
2ol < ¢ (F0 0 gl ) < Clgl,

15



Now use that [|g||,,, < llgll,,, and take the limit § — 0. The converse of the first
statement is trivial.

For the second statement, consider the set U = {f € E: ||Lf||, <1}. By the as-
sumption that L : (E, Wyy,) — (F,W}) is continuous, there is a ¢ > 0 such that U
contains the open {f € E: ||f||,,, <e}. Nowif g € E and § > 0 are arbitrary, define
f=c9/(l9ll,, +9). Then |[f]|,,, <9, and we have

£g
1>|L(——
H (\Ig\|k+r+5)

Hence ||Lg|, < 1(|lgll,., + 6), and we may take § — 0 to obtain the required estimate.
The converse statement is again trivial. O

3

=g 1Ll

Remark 2.2.14. Later on, in particular when we look at the proof of the Nash-Moser
theorem, we often encounter long series of estimates in which there occur repeatedly in-
creased constants. We take the habit from Hamilton to denote these constants with a
‘C'" throughout, giving no reference to the fact that these are consecutive and different
estimates. If indices occur at all, they indicate the parameters on which the C’s depend.
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2.2.2 Tame linear subspaces and quotients

Let I be a Fréchet space. If j : E — F'is continuous linear injection of Fréchet spaces,
then by completeness of E, the image is closed. Moreover, by the open mapping theorem
for Fréchet spaces, j is a topological linear isomorphism from £ onto a closed subspace
of F. A (topological) linear subspace of F' is hence naturally defined as a Fréchet space
FE together with a continuous linear inclusion £ <— F'. In the category TameL of tame
linear maps, this notion needs to be refined slightly more.

Definition 2.2.15 (Tame linear sushspace). Let F' be a graded Fréchet space. An r-tame
linear subspace of F, denoted E <, F, is a graded Fréchet space E together with an
r-tame linear inclusion E — F of base 0.

Every closed linear subspace E of F' can be seen as a O-tame linear subspace of F
by restricting the seminorms to E. Note that an r-tame linear subspace F <, F' isn’t
necessarily an O-tame linear subspace, or an s-tame linear subspace with s < r. One can,
however always define a new grading on F by

lelly := lli(e)ll;

but these seminorms might behave differently. In particular, redefining a grading like this
defines a graded space that isn’t O-tame isomorphic to E.

Definition /Proposition 2.2.16 (Quotients). Let F' be a graded space, and E <, F an
r-tame linear subspace. Then the quotient E/F is a graded Fréchet space with seminorms

If + Elly, -= mf{[[f +el,: ecE}.

The projection 7 : F — F/FE is an 0-tame linear map of base 0. It has the property that,
if L: E — G is an r-tame map of base b with E C ker L, then there is a unique r-tame

linear map L : F/E — G of base b such that
L

F G

N

E/F.

commutes.

Proof. Tt is clear that the seminorms defined for F'/E are in fact a grading of seminorms.
That 7 is 0-tame of base 0 follows from the fact that 0 € E. Next we will show that F'/F
is complete.

Let { f, + £}, oy be a Cauchy sequence in F'/E. By taking an appropriate subsequence
we may assume that

”fn - fn—l + EHn < Q—n’
so that in particular
”fn - fnfl + EHk g an - fnfl + EHn < 27”
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for every k < n. We define a sequence {e,} C F recursively. Let ¢y = 0, and choose for
every n > 1 an element e, € E such that

[(fn+en) = (foo1 +en-d)ll, <M fo = for + B, +27" <2277

Then the sequence {f, + e,} is Cauchy in F'. For suppose that k € N, [ € N, and n > k.
Then we compute

l
”(fn+l + enH) - (fn + en)”k S Z H(fn+z + en+i) - (fnJrifl + €n+i71)Hn
=1

l
S Z 2 . 2—n—l+1
=1
S 217n ZQ*I S 217n’
=1

which tends to 0 as n — oco. Since F'is complete, there exists an element f € F' such
that {f, + e,} converges to f. By the continuity of 7, the sequence {f, + E'} converges
to f+ E in F//E. Now note that if a subsequence of a Cauchy sequence converges to f,
then so does the original sequence.

Finally, we should check that L is r-tame of base b. This follows directly from

|Lt+ B, = 1L+ ol < O +ell,

for every e € E, since E lies in the kernel of L. m
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2.2.3 The direct sum

We define the direct sum of graded Fréchet spaces.

Definition /Proposition 2.2.17 (Direct sum). Let Fy and Ey be two graded Fréchet
spaces with gradings {||—H,1,} and {||—||i} respectively. We define the direct sum of E;
and Fs as the coproduct Ey & Es in TamelLy.

Hence it is a graded Fréchet space Ey & Fy together with 0-tame linear inclusions

i12E1—>E1@E2
iQIEQHEQ@EQ

such that if a : By — F and b : Ey — F are O-tame linear maps, then there is a unique
0-tame linear map

a+b:E1€BE2—>F

such that (a +b) oty =a and (a+b) oiy = 0.
The direct sum s given by the vector space Fy @ Ey := Ei X FEy equipped with the
grading

lev @ eally = lleally + llezll -

The graded Fréchet space FEy & Es s actually the biproduct in TameLy. Moreover, il
satisfies nice estimates in TamelL, as specified in the proof below.

Proof. The uniqueness of £y @ Es up to O-tame linear isomorphisms follows directly from
the usual categorical argument.

It is directly clear that the ||—||, define a grading on E; & E,, and that E; & E, is
Hausdorff and complete.

Let a: B4y — F and b: Ey — F be an r-tame and s-tame linear map of base b and ¢
respectively. Then define the map also the categorical product, hence it is the biproduct
in the category of graded Fréchet with tame maps.

a+b:E @ Ey,— F, (a+b)(eg®ey)=aler)+ ble2).
Then a + b is max(r, s)-tame of base max(b, ¢), for we can make estimates of the form

[(a+b)(ex ® e2)l), = llaler) + ble2)],
< llaten) Iy, + [[b(e2)|]
< Cllleallyr + ezl
< Cller @ el imaxrs)

for all k£ > max(b, c).
On the other hand, let a : £ — E; and b : E — FE5 be an r-tame and s-tame linear
map of base b and ¢ respectively. Then define the map

(a,0) : E — Ey ® Ey, (a,b)e =al(e) ® b(e).
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Then a @ b is max(r, s)-tame of base max(b, ¢), for we can make estimates of the form

[(a, b)ell), = llale) @ ble)][;
= lla(e)ll, + llb(e)ll;
< Cllellyyy + lellys)
< Cllellytmax(rs)

for all k£ > max(b, c). O

Remark 2.2.18. Equivalently, we could have equipped Ey & Ey with the seminorms

1 2
[(e1, e2)l, = max({[ealy , [[e2llk),
since max(r,s) < r+s < 2max(r,s) for any r,s € Ryy.

Remark 2.2.19. Note that a tamely equivalent direct sum Ey &' Ey in TameL might
fail to be O-tamely equivalent to the direct sum defined above. Therefore the direct sum
we work with is always the O-tame direct sum defined here.

Let E 9 and Fio be graded Fréchet spaces, and let a : By — F and b : By — I
be an r-tame and s-tame linear map of base b and ¢ respectively. Then by the previous
lemma the map

a®b:Ey©O B, — L ©F, (a®b)(e;®ez)=aler)®b(e)

is max(r, s)-tame linear of base max(b,c). Conversely, a and b are r-tame linear of base
bif a®bis.

The interchange map is worth mentioning at this point. The graded Fréchet spaces
E and FEj give rise to four O-tame linear inclusions, namely two into F; & Es and two
into Fr, ® F4. Since the tame direct sum is also the coproduct of 0-tame maps, it follows
that there is a O-tame linear isomorphism

TiEl@E2—>E2@E1.

Next we will discuss the tame direct summands of graded Fréchet spaces. Note that a

tame linear subspace of a graded Fréchet space F' isn’t necessarily a tame direct summand
of F.

Definition /Proposition 2.2.20. Let E and F be two graded Fréchet spaces. E is a
tame direct summand of I if there are tame linear maps
ESFLE

of degre r and degree s, and of base b and base s, respectively, such that pov = id. One
can define r-tame direct summands by stipulating that r = s.

In this case, there is a O-tame linear subspace E' — F' such that F' is max(r, s)-tame
isomorphic to E ® E'.
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Proof. Let E' := ker(p) be equipped with the grading induced by F. Since p is continuous,
E' is closed subspace of F', hence it is a graded Fréchet space. The inclusion j : £/ — F
is by definition O-tame linear of base 0, and the projection id — p : F' — FE’ is s-tame
linear of base ¢. We conclude that the map

i+j:FE®FE — F
is r-tame linear of base b, and its inverse
(p,id—p): F - E®FE
is s-tame linear of base c. O

Sometimes one might wish to measure tameness separately in either component, for
example to simplify estimates. The definition below can be extended to arbitrary finite
direct sums of graded Fréchet spaces.

Definition 2.2.21. Let U and V' be open subsets in graded Fréchet spaces, F' a graded
Fréchet space, and P : U x V. — F a continous map. Then P is (r,s)-tame of base b if:
For every n > b there is a constant C,, > 0 such that

1P 9, < O+l + 119l4s)
for all (f,g) € U x V. A

Remark 2.2.22. This definition appears not to be consistent with definition 2.2.6 on
page 13, where an open cover enters. One can give a definition of tameness of degree r and
base b like the definition above, without introducing a cover, to give a definition of ‘global’
tameness. Then one wants to use this definition locally for tame Fréchet manifolds. This
gives back an extended definition of tameness for open subsets of graded Fréchet spaces,
as in definition 2.2.6. With the latter definition it makes less sense to speak of degree
and base globally. FEven when one can find an open cover which provides a bound on
the degrees and bases corresponding to open subsets of the cover, the constants C' in
the tameness estimates might still depend on these open subsets. We mainly encounter
definition 2.2.21 in the proof of the Nash-Moser theorem. Here we are allowed to restrict
to just one open subset in the cover such that we can utilize the degree of a tame map.
On the other hand, the notion of tameness should be such that it applies to the general
setting of continuous maps between tame Fréchet manifolds.

The following proves to be useful in such situations. Its proof is completely analogous
to lemma 2.2.13 on page 15, see [Ham82b] if more details are necessary.

Lemma 2.2.23. Let U be an open subset in a graded Fréchet space, E and F graded
Fréchet spaces, and

P:UxE—F

a continuous map that is linear in the second component. If P is (r,s)-tame of base b,
then for every n > b there is a constant C,, > 0 such that

||P<f)g||n S C”(Han—i-s + ||f||n+r ||g”b+s)7
forall f e U, and g € E.
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The above lemma obviously extends to arbitrary multi-linear tame maps. We will

write down the bilinear case explicitely, since we use it repeatedly in the proof of the
Nash-Moser theorem.

Lemma 2.2.24. Let U be an open subset in a graded Fréchet space, Ey, FEy, and F' graded
Fréchet spaces, and

PIUXE1><E2—>F

a continuous map that is bilinear in the last two components. If P is (r, sy, S2)-tame of
base b, then for every n > b there is a constant C,, > 0 such that

P9, B < Co (9llns, 1Pllysy + 1l N9y + 1 N Mgl s, 1B 11,)
forall (f,g,h) € U x Ey X Es.
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2.3 Examples of graded Fréchet spaces

This section introduces the main examples of graded Fréchet spaces. Most results proven
here are used in later chapters, since these graded Fréchet spaces are the local models of
most tame Fréchet manifolds. Let £ — M be a vector bundle over a compact base. The
prototype graded Fréchet space is the space of smooth sections,

I'yE={0:M — E:pooc=id}.

The vector bundles over M form a full subcategory of the category Bund,,; of bundles
over M, that is, the surjective submersions onto M. The morphisms Bund,(E, E’) are
the (non-linear) smooth bundle maps

E d E
N A
M.
They give rise to smooth 0-tame maps by composition on the left, that is, they give a
smooth tame map

FMf = f* : FME—>FME/7

hence we may view '), as a functor Vect,; — Graded, from the category of vector
bundles over M with bundle maps to the graded Fréchet spaces with smooth tame maps.
Moreover, if f is a vector bundle map, in the sense that it is linear on each of the fibers,
these maps f, are O-tame linear.

2.3.1 Sections of a vector bundle

The following is the most important class of examples. Let M be a compact smooth
manifold and £ 2 M a vector bundle over M. The space 'y E of smooth sections is a
graded Fréchet space in the following way. It will be the generic local model of the spaces
C>®(M, N) in the sense that each connected component has a I'jy F as local model; which
are not necessarily isomorphic on different connected components.

Suppose that (U, ) is a chart on M that admits a local trivialization

Vv:Ey —UxR"

of the vector bundle E. Let V be a relatively compact, open subset such that V C U,
and ¢(U) is an open neighborhood of the origin. To simplify notation we will identify V'
with its image ¢(V'). Every section o € ')/ E can locally be represented by a function

(id,6) =Y oocop ty: V=V x R",

Now one may define seminorms on I'y; E' by choosing a finite cover of such charts {(U,, ¢a)}
and corresponding local trivializations 1, such that the relatively compact subsets V,

acA
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cover all of M. The definition of the semi-norms becomes

k

loll, = maxeeasup,cy; || D76 (2)],
j=0

where the norms on the right-hand-side are the norms induced on the space of j-linear
maps induced by the Euclidean norms.

Alternatively one can use the partial derivatives of the components of . For multi-
indexes v, € N we use the common conventions

a'y a’)’l a“/n

— )V =

or oa]t Dy
vl = Z%’;
i=1
(v +0)i =i + 4.

Note that the local representative ¢ is actually defined on the closure of V', which is
compact, so that the supremum is always finite. The seminorms are now defined by

lolly = > maxqsup,cy; |075i()].

[v|<k 1<i<n

Here we have written & = (G1,...,6,). In words, we take the supremum over all partial
derivatives up to order k for all components of 7.

Alternatively, choose Riemannian metrics on E and T'M respectively and connections
V and V respectively. Let

SF(M,E) :=T(M,S*(T*M) ® E)

denote the space of symmetric k-forms on M with values in V. Then define a R-linear
differential operator

D :¥*M,E) — "M, E)
in the following way:
D(w)(Mo, -, M) = D | Vare(eoo, My ) =3 (Mo, Myl My, M),

where [M, N]; = VN + VyM and the circumflex indicates omission of the indicated
vector field. Locally we obtain an expression of the form

D¥ Z 0o d ®...Qdr; ®
o= P ~— e X V;

I<k,I,J
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where the I run through n* = {1,...,n}" and the J through n’. The A are smooth
functions further left unspecified, as the local formula really isn’t relevant to the con-
struction. Now define semi-norms on I'y,E by

k
= DI
o], ;jgﬂgl ()],

where the absolute values indicate the norms on (S¥(T*M)® E), induced by the metrics.

Proposition 2.3.1. Let E — M be a vector bundle over a compact base. The space of
sections Iy E is graded Fréchet space with any of the above equivalent gradings. Moreover,
these are independent of the choices made in the sense that different choices give O-tame
equivalent graded Fréchet spaces.

Proof. The Hausdorffness is obvious, since the supremum norm ||—||, is already a norm.
As for completeness, take a Cauchy sequence {0, }. Locally on a ball V, it converges to a
smooth map o : V' — R”, and this convergence is uniform for all partial derivatives. For
this we just need the usual argument that the point-wise limit of a uniform converging
sequence of continuous maps is continuous; it is, after all, sufficent to check this locally.
These maps coincide on the intersections, hence collate to a smooth section o € I'),E' to
which the sequence converges.

For the second part of the lemma it is sufficient to check that for any two charts (U, ¢)
and (U’, '), and respective local trivializations ¢ and 1’, there is an estimate

0o (y)]

max max sup, -y <

0™ -1 ’ <C . _
O'QO X maxmaXbup 7
lal<k i ' (z) BI<k yevnv

for some constant C'= C(U,U’) > 0. For if {(U, ¢,¢)} and {(U’, ¢',¢')} are two choices
of coverings, then one can take the maximum of the constants C'(U,U’) over all U and
U’, since these are only finite in number.

Fix some z € o(UNU’') and let y = ¢'p~(z) € ¢'(UNU’) be the corresponding
coordinate in the other chart. Let dx; = d,x; denote the unit vector in i-th direction at
x. Note that

T dw =) c(x)dy;

J
for some smooth functions c; Moreover, introduce the notation

dx® = dx{' ... dxgm
so that the partial derivative can be written as

0°6,(z) = (T)45,)dz"
Observe the trivial identities ¥; = ;4’11 and likewise o1 = @'~ 1o/t We now have
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the estimates

0°Gi(w)] = [T} ('™ o' ™I (e )da|
SCXx)%@FHﬂPK¢ﬂWJ¢b¢“deﬂ

|
T gy (™I (W o™)dy?

= C(z) max
< (y(x) max max ’TJ""(z/z}agp’_l)dyﬂ

18l=lel
1BI=lal J

= C(x) Ig\lalxl max |05 (y)] -
=\ J

Here the constants C(x) depend continuously on « € (U NU’). Hence these constants
have a bound C(z) < C on the compact set V N p(U’). O

Remark 2.3.2. The construction of the norms on Iy E works equally well for compact
manifolds M with boundary. As it turns out, it is sometimes useful to work in such a
setting. Luckily, there are no significant complications in the proofs if M has boundary.

All of the above fails if M is not compact. Even for the trivial line bundle, where
we have 'y, E = C°°(M), there are many functions which are not bounded by the 0-th
seminorm. The construction above fails at chosing the cover {V,} . ,. One can cover M
with relatively compact open sets V,. One can find a finite cover {U,} for any manifold
M; this can be proven using dimension theory. But, clearly, one cannot find both at once
if M is not compact.

A common solution is to define seminorms |||, for every compact subset K C M
in the same way as above, but by only taking the supremum over all + € K. This
defines a Fréchet topology; it is already defined by a choosing a countable exhaustion
KyC Ky C Ky C...C M of M in the sense that all the K; are compact, K; C K

i+1
and M = U;K;. This actually allows one to define a graded Fréchet space, by taking
=l == =, x> but this cannot be done in a cannonical way. The graded Fréchet

spaces defined by choosing different compact exhaustions are not tamely isomorphic.
For define a new compact exhaustion K/ = Kj;, and define the corresponding grading
=1l = H_HK;Q .- Then one can at best obtain estimates of the form

1Al < C U flla
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2.3.2 Jet bundles and the Whitney C* topology

Let E — M be a vector bundle over a compact base. We will spend some time giving a
alternative description of the topology on I'y;E. This will aid us with identifying open
subsets, and proving continuity of maps. There is a natural topology on I'j;FE known
as the Whitney C*°-topology, see for example [Mat69]. We will give its definition for a
vector bundle £ — M with possibly non-compact base, and show it coincides with the
topology induced by the C*-norms whenever M is compact.

We begin by introducing jet bundles. For now assume that M and N are possibly
non-compact manifolds. For every k£ € N and x € M two smooth maps f : Uy — N
and g : Uy — N, defined on open subsets x € U; C M, are said to be k-tangential if
y = f(z) = g(x), and there exist charts (U, ¢) around = and (V) around y such that

D’ (o fop ) (0)=Di(o foyp ) (0)

forall 1 < j < k. A k-jet of M into N with source x and target y is an equivalence class
of smooth maps U — N with x € U. In particular, given a smooth map f : M — N,
the k-jet of f at z is denoted by j*(f)(x). Let J*(M,N),, denote the set of all k-jets
with source = and target y, J*(M, N), = UyenJ*(M, N),,, the k-jets with source z, and
JE(M,N) = Ugerr J¥(M, N), the set of all k-jets of M into N. There is an obvious map

7 JY(M,N) — M x N,

projecting onto the source and target of a k-jet. We will show that this makes J*(M, N)
a fiber bundle over M x N. Moreover, the obvious maps my; : J*(M,N) — M and
7n : J¥(M,N) — N, and for [ < k the map

o JH(M,N)— J' (M, N)

that forgets the last (k—[)-derivatives are fiber bundles. In particular note that J°(M, N) =
M x N, so that = = wf.

Let U be an open subset in R™ and V' an open subset in R". One easily makes the
identification

JFUV)=UxV x SHR™*@R" x ... x SKR™)* @ R,

where the S7(R™)* @ R™ are the spaces of symmetric multi-linear maps, by choosing a
representative f of z € J*(U, V), and evaluating the first k derivatives in the point z,

(, f(2), D' f(2),..., D" f(x)).

This is independent of the representative, and defines a bijection. This identifies J*(U, V)
as a finite dimensional manifold.

Suppose that M’ and N’ is a second pair of manifolds, with 2’ € M’ and 3/ € N'. Let
© be a diffeomorphism from an open neighborhood of ' onto an open neighborhood of
x, and, likewise, ¢ a diffeomorphism from an open subset around y onto an open subset
around y’. The former map induces a bijection

" JF(M,N)yy— J"(M',N)p
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by ©*(7*(f)(z)) = j*(f o v)(z), and the latter a bijection
Uyt JHM,N) gy — TN (M, N )y

by . (7*(f)(z)) = j%(¢ o f)(x). Both maps are obviously independent of the chosen
representatives, hence well-defined. Now if (U, ¢) is a chart around = and (V,¢) is a
chart around y, then the composition

bule™h)*  THM, N)gy — J5(p(U), (V)

defines a chart for J*(M, N). It is easy to check that these charts coincide and all the
maps mentioned above are fiber bundles.

Moreover, for any smooth map f : N — N’, the map f, : J*(M,N) — J¥(M,N")
defined by composition on the left is a smooth fiber bundle map. In particular we can
identify J'(R, N)o with the tangent space TN and f, : TN — TN’ is just the tangent
map of f.

We are now ready to define the Whitney C* topology of C*°(M, N).

Definition 2.3.3 (Whitney C* topology). Let M and N be two manifolds. For every
k € N and open subset U of J*(M,N), define

M(U) = {f € C*(M, N) : j*(f)(M) C U}.

Then M(U)NM(V) = M(UNV), so the M(U) form a basis of topology. This corre-
sponding topology is the Whitney C* topology on C°°(M,N). Whenever no confusion
arises, both the topology and this basis of topology are denoted by Wi.

Since Wy C W, for every pair k < [, the union Wy, = UpyWy s also the basis of a
topology. The corresponding topology is the Whitney C* topology on C*°(M, N). A

For every k € N, the Whitney C* topology can actually be defined on the space
Ck(M, N) of k-differentiable mappings. Of course, one needs to adjust the definition of
the jet bundles accordingly to account for all the C*-maps. In particular, the topology
Wy on C°(M, N) contains the compact-open topology: for every compact set K C M
and and open set U C N, the sets

M(K.U) = {f € C%M,N) : f(K) C U}

form a basis of the compact-open topology on C°(M, N). Each of these sets M(K,U) is
open with respect to the Wy-topology. Namely, the set V = K x U Um; (M — K), with
m : M x N — M the projection, is clearly open in M x N, and we have M (V) = M(K,U).

The compact-open topology and the Wy-topology are obviously equivalent if M is
compact. However, if M is not compact, then the Wy-topolgy is strictly finer then the
compact open topology. One can for example take M = N = R. The set

A= {f e COM,N) : |f(z) <e™ Vze R}

is an open subset with respect to the Wy-topology. However it cannot be open in the
1

compact-open topology. The sequence of constant maps {fi},cy defined by fi(z) = ¢
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for x € R is fully contained in the complement of the set A. Yet f; tends to the constant
zero map with respect to the compact-open topology while the zero map is contained in A.

We will give an alternative description of the topologies W}, by describing a local
basis around an arbitrary member of C*°(M, N). Its similarities to the Fréchet topology
on ')/ E are unmistaken.

Let (U, ) and (V1) be charts of M and N, K a compact subset of U, € > 0, and
f: M — N asmooth map such that f(K) C V. Let N(f, K, ,1,€) denote the set of
all smooth maps g : M — N such that g(K) C V and

[vofop™ —vogop™ | s, <e

where [|—|[, ), is the regular C*-norm, but only taking the supremum over the x € K.
More generally, let {(Ua, @a)},cq is a cover by charts of M, {(Va,a)},cq @ cover by
charts of N, K = {K,} alocally finite cover of M by compact subsets such that K, C U,,
and € = {e, > 0} a family of constants. Let f : M — N be a smooth map such that
f(K,) CU, for all @ € A, then set

N(f Ko, 0€) = (), N(f, Kar 9o Vas €a).

Lemma 2.3.4. Let M and N be two manifolds. For any k € N, the collection {N(f, K, p,,€)},
running over all families of positive numbers € = {e, > 0} is a basis of the Wy topology
around f.

Proof. Let m : J*(M,N) — M denote the projection. It is straightforward to see that
for each o € A there exists an open subset U, of 77'(K,) such that

N(f, Ko, $a,Var€a) = {g € C®(M,N) : j*(9)(Ka.) C Un} .
The intersection
W = Naea (Wo Un (N — K,))
is open, since the family {K,}, ., is locally finite. The equality
N(f, K ¢, €) = M(W)

folows directly. The converse is even simpler. Let U C J¥(M, N) be an open subset such
that f € M(U). For every a € A we must find a constant ¢, > 0 such that

N(f, Koy Pas Yas €a) C {g € C*(M,N) :jk(g)(Ka> C U}.

But since K, is compact, and the fact that J*(M, N) is trivial over any product of charts
U, x V, this can be done easily. O

Let E — M be a vector bundle and consider again the space of sections I'y,E. If M is
not compact, the topology W, seems to be too fine to allow a grading of seminorms. In
fact, ')y F isn’t even a R-linear topological vector space if it is equipped with the Whitney
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C* topology. For suppose that ¢ € I');E is an arbitrary section. Then the sequence
Op = %a should converge to the zero section. If we choose a vector bundle metric g on
E, then we can define an open subset

U={e, € E:d(0,,¢,) < p(x)d(0,,0(x))}

of £, where ¢ : M — R a smooth map, ¢ > 0, that tends to zero at infinity. Now M (U)
defines an open neighborhood of the zero section in I'y; E, yet none of the %a lie in M (U).

Remark 2.3.5. Let E — M be a vector bundle with a compact base. As for any fiber
bundle one can also define the k-th jet bundle J*(E) by only considering the k-jets of
sections of E. This is a submanifold of J*(M, E), hence the topologies on Ty E induced
by J¥(E) and J*(M, E) coincide.

Lemma 2.3.6. Let E — M be a vector bundle over a compact manifold. Then the
Fréchet topology on 'y E from proposition 2.5.1 on page 25 coincides with the Whitney
C® topology. Moreover, if U C E is an open, then

M(U):{O'EF]V[EO'<M)QU}

Proof. This follows directly from lemma 2.3.4 on the previous page by using local trivi-
alizations of £ — M. O
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2.3.3 Basic properties of I'y/F

The following lemma contains useful observations about graded Fréchet spaces of the
form I'y, E.

Lemma 2.3.7. Let £y — M and Ey — M be two vector bundles over the same compact
base.

o If B\ ~ E5 are isomorphic vector bundles than Iy Ey and Iy Es are O-tamely linear
isomorphic.

o The natural map
Pyv(Ey @ Ey) Ty Ey @ TwEs
15 a 0-tame linear isomorphism.
o If Ey is a sub vector bundle of Fs, then Iy Ey is a 0-tame direct summand of Ty Fs.

Proof. The first statement follows directly from the definitions.
For the second statement one can choose local trivializations of the Whitney sum
FE| ® E5 such that for

U (Fy & Ey)|ly — U x RF x RF2

the first k£ coordinates trivialize £ and the latter ko trivialize E5. Hence this specifies a
grading for which
E1QFE E E
=1 =M=l + =11
For the third statement one can choose a vector bundle metric on Es. Then the

decomposition Fy = E; & ElL implies that 1"y, Fy is O-tamely isomorphic to 'y, E; &
F]V[Ef'. ]

Remark 2.3.8. FEvery vector bundle on a second countable Hausdorff manifold M is the
direct summand of a trivial vector bundle M x R? for sufficiently high dimension d € N.
In particular, if E — M 1is a vector bundle with compact base, then I'y E is a O-tame
subspace of

Dpr(M x RY) = C®(M,R?) ~ C>®(M)“.

Hence one can define the graded Fréchet space structure on Uy E by starting from the
structure on C°(M).

This can be used in combination with lemma 2.3.7 to simplify some estimates. Suppose
that M and N are compact manifolds and f : M — N 1is a smooth map. One can consider
'y as a functor between the cateqory of vector bundles on N with vector bundle maps and
the category of graded Fréchet spaces with tame linear maps. Likewise, one can consider
Ly f* as a functor on the category of vector bundles on N with vector bundle maps by
first pulling back along f and then applying I'yr. Now suppose that o = 'y f* — T'y is a
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natural transformation, which in particular implies that every component ag s a tame
linear map. If E — N 1is a vector bundle, then the tameness estimates for

afp . FMf*E — FNE

follow directly from the estimates for apxg @ C°(M) — C*(N). This for example
happens in lemma 2.5.12 on page 38.

The vector space C*°(M) = 'y (M x R) hence also plays an important role in the
category of graded Fréchet spaces. It is a smooth 0-tame ring in the sense that point-wise
addition and multiplication are O0-tame bilinear maps. We will state this in a more general
result.

Lemma 2.3.9. Let E — M be a vector bundle over a compact base manifold, then I' yy E
is a 0-tame C°°(M)-module in the sense that point-wise addition

+p: TyE®Tp—TyE, (0c+7)(x)=0(z)+7(x)
and point-wise multiplication

p:CM)eTyE—TyE, (f-0)(x)=f(x)o(x)
are 0-tame bilinear maps of base 0.

Proof. The addition is O-tame bilinear by the definition of the tame direct sum, and the
fact that 'y, E is a topological vector space. Note that this is a slightly stronger statement
than just saying that addition is continuous, as it depends on the choice of grading on
the direct sum.

For the product, note that there exists a fiber-wise product

pw:(MxR)Y®E—FE: (f,e)— f-e,

forall f € R, e € E,, x € M. This map is a smooth fiber-preserving map. Hence, by
proposition 2.3.11 on page 34, the map

Mo - FM<(M X R) D E) — F]\/[E

defined by left-composition by p is a O-tame bilinear map. Now note that Iy, (M xR)&E)
is O-tame isomorphic to C*°(M) & 'y E. O

The following lemma is trivial, yet it is still worth mentioning. Recall that a compact
region R C M is the closure of a relatively compact open submanifold, such that R has a
smooth boundary. As noted in remark 2.3.2 on page 26 the spaces sections I'r E/, where
E — R is a vector bundle, are also graded Fréchet spaces. The norms are defined in
exactly the same way as for compact manifolds without boundary.

Lemma 2.3.10. Let E — M be a vector bundle over a compact base manifold and
N C M either a closed submanifold or a compact region in M. Then the restriction map

p: FME — FNE|N

18 O-tame linear.
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In fact, one can show that if f : N — M is a smooth map with N compact as well,
then the map

defined by composing a section on the right is a O-tame linear map as well. We will not
prove this, as it will be a consequence of proposition 3.2.16 on page 72.
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2.3.4 Left composition by a fiber preserving map

We will prove the smooth tameness of a the collection of useful non-linear maps between
graded Fréchet spaces of the form I'y,E. Consider two vector bundles £ — M and
E' — M with the same compact base. Let Bundy,(F, E’) be the set of bundle maps

E — E’ over M, that is, the smooth maps E I, B such that

commutes; in other words, these are smooth maps that map fibers into fibers over the
same base point, but are not necessarily linear when restricted to a fiber. Such bundle
maps induce a particularly useful class of smooth tame maps, since they will function as
the coordinate charts of all of our examples of Fréchet manifolds.

In the statement of the following lemma we identify the sections v € '), E with the
vertical vector fields X € XV (F) that are constant on the fibers of E via the formula

d
Xe= — W),
e dtt:0(6+u)

for e € F,,, and m € M.
Let U C E be an open subset. Recall from definition 2.3.3 on page 28 and lemma 2.3.6
on page 30 that the set M (U) C 'y, F is defined by

MU):={cel'yE:0(M)CU}.

Proposition 2.3.11. Let E — M and E' — M be vector bundles over the same compact
base, and f : U — E' a fiber preserving map defined on an open subset U C E. Then the
map

[« :MU)—>TyE 0w foo

is a smooth 0-tame map. Its tangent map at o € M(U) is given by
T.f :TyE —-TyE :ve—Tfou.

If f is a vector bundle map instead, then the map f, is O-tame linear.

Proof. Without much loss of generality we may assume that U = E.
First we will show that f, is a continuous map. The induced map

f o INE) — JHEF)

defined by pushing forward k-jets is smooth. Hence any open in U C JF(E) gives rise to
an open subset f~1(U) C J¥(E) and the sets

M(FHU) = {g e TwE - Ho)(M) € FHO)}
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and f7'(M(U)) coincide. This shows that the preimage f,'(M(U)) is a Wy-open, and
thus that f, is continuous.

Next we will show that f, is a smooth map. Around any point x € M one can choose
an open subset U C M such that there are local trivializations

Y Ey = U xR™,
V' Eyp S U xR

of both vector bundles. The bundle map f is now locally represented by
Vo foyp™t=(id f): UxR™— U x R",

where f U x R™ — R"™ is the appropriate map. Since the latter is a smooth map, there
exists a continuous map

[:UxR™xR"™xR"™—R",

linear in the last component, such that

f(xayl) - f(I7y0) = i(x,yo,yl)(yl - yO)‘

It is a well-known principle that such a map can be defined as

1
Uz, yo,y1)2 = / Df (z,y0 +t(y1 — yo)) zdt
0

and that it satisfies Df(x, Y)z = Z(:U, y,y)z. In the global picture this defines a continuous
bundle map

ly :1/)/_10(id7l~)0(1/}a1/}7¢) :Ey® Ey ® Ey — Ej)

that is a vector bundle map, that is, linear on each fiber, in the last summand. The open
subsets U cover M and by choosing a partition of unity {xy} with respect to a locally
finite subcover {U} we obtain a global continuous bundle map

l:E®eFEpFE—F

(o, 91,2) = D> xv (p(2)) L (o, 1) 2.
p(z)eU

Each summand (xy o p)ly defines a continuous map Ey & Ey & Ey — Ej; that vanishes
on the fibers above the boundary of U. Hence it extends by zero to a continuous bundle
map on the entire vector bundle. For every point z € M, the map [ is a finite sum of these
bundle maps on the fibers above an open neighborhood of x, hence [ is also continuous.
If Ap: E — E & FE is the diagonal map of F, then the composition

lo(Axid): E®FE — F
is given by {(y,y)z = Df(y)z, hence it is actually a smooth bundle map.
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Moreover, it has the property

(Yo, yo)(y1 — ¥o) ZXU v (Yo, y1) (Y1 — Yo)

= ZXU (y1) — f(v0))
= f(y1) — f(vo)

for every pair yp,y; € R™. Hence we found a continuous bundle operator map
L:TyExXTyExTyE~Ty(E®E®FE)—TyFE,
(00,01,¢) — Lo (00,01,()
for which f.(o1) — fi(09) = li(00,01) (01 — 00). This implies that f, is continuous differ-
entiable with derivative given by
(Dfi(o)v) (x) = U(o(z),0(2))v(2) = To@ fr(z).

Since the derivative D f, = (lo (Ag x id)),, with Ag : E — E & E the diagonal map of
E, is itself a bundle operator map, we conclude that f, is smooth. Note that for this part
of the proof the compactness of M isn’t directly necessary.

Next we proof the tameness of f. following the proof of Hamilton [Ham82b|. Note
that this proves that all its derivatives are tame as well, since these are also given by
composition on the left. Recall that all seminorms on I'y/E and I'y,E’ are of the form

Z max sup HD]UH

7j=1

hence it sufficient to check tameness in local coordinates and then to take the maximum
over a finite cover of local trivializations. Hence fix a local trivialization (U, ¢, ,1’) and
an open subset V' C U with its closure VCcU compact.

Given a fixed section ¢ € ', E, let N be an open neighborhood of the image of o
with compact closure. Then the local representatives

f:UxR"—R"

of f and all their partial derivatives 88[; 5;; f (x,y) are bounded when restricted to N. Let

M(V, N) be the set of sections 7 € ['y E for which 7(V) € N. Then M(V, N) is an open
neighborhood of . For any 7 € M(V, N) we let

7. V—R™

denote its local representative in relation to (U, ¢, 1, ¢').
By the Leibniz-rule we have

0° av | e
0" f =250 DI
ﬁ 7 i,k Z
ox 8y”f pletaien dx7”
where 7; is the i-th component function of 7 and the sum runs over all multi-indices

B+Y 1 =a
ik
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We can choose a constant Cy > 0 such that ||7]|, < C and such that

for all 7 € M(V, N) and all indices as described above. So we get an estimate

\ <o Il Il
0

where the sum runs over iy + ... +ix < |a|. Now by the interpolation estimates (which
we will prove in the next chapter),

9% o -

@Tgﬂf@’%(w» < Cy

0

a oz
dx™

(z,7(x))

Il < Cliel lIzlle™ < Clill,

we obtain the estimate |7/, < C HTH:L/H for all @ < n. Which leads us to the required
estimate,

£l < 3 maxsup

z€V

o f(w, ()|

loe|<n

<O+ il - lirll,)

ity
<C+ lirl, )
<C+rl,)

for all 7 € M(V,N) and n € N. Here we use that 27 < 1+ 2 for all § € [0,1] and
z > 0. ]

The results can be summarized as follows. Let M be a compact manifold. Then by
the above proposition we can consider I'y; as a covariant functor

'y - Vecty, — Tamel,

where Vect,, is the category of vector bundles over M with vector bundle maps, and
TameL, was the category of graded Fréchet spaces with O-tame linear maps. Alterna-
tively we may consider it as a covariant functor from the category of vector bundles over
M with bundle maps to the category TameS,.

In the case of the former, I'y; preserves the biproduct of Vect,,;. Moreover, I'); maps
a subbundle £ < F — M to a 0O-tame direct summand I'y;E of I'y/F. Since every
vector bundle is the direct summand of a trivial vector bundle, I'); maps Vect,, into the
category of O-tame projective modules over C'*°(M).
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2.3.5 Integration of sections

In this section we show the tameness of integration. Let M and N be compact manifolds
and f : M x N — R a smooth function. Then one can define a smooth function
I(f) : N — R by taking the integral [, f(z,y)dxz for every y € N. The resulting map
I:C®(M x N)— C*°(N) is proven to be tame linear. In fact, this is done in a slightly
more general setting. This will be needed later on an application of the Nash-Moser
theorem, in proving the tameness of certain ‘homotopy operators’ in sections 5.2.1 on
page 112 and 5.2.2 on page 115.

Suppose that M is a compact manifold of dimension m. Recall that the density line
bundle DM of a manifold M is the bundle whose fiber above x € M is given by the
functions 6, : A"T, M — R satisfying

0.(cv) = |c] 0. (v), VeeR,ve AT, M.

A density on M is a smooth section of DM. Given a diffeomorphism ¢ : M — N between
manifolds, every multivector v € I'y(A"T'N) can be pulled back along . By conjugation,
every density can be pushed forward; we will write (.6 for the push-forward of 6.

A density 6 is called positive if each of the 6, is a strictly positive function. For
example, the normalized Haar measure du on a Lie group G is a normalized positive
density. It can be defined by choosing a G-invariant Riemannian metric g on G.

Any oriented Riemannian manifold M has a cannonical volume form given by

vol(g) = +/|gldz* A ... Ada™,

where the dz!,... dz" form a basis of Q'(M), and |g|, is the absolute value of the
determinant of g, : TxM — T, M for every x € M. Most importantly, the absolute value
of vol(g) defines a positive density du = |vol(g)| on M. Since M is compact, it can be
normalized by dividing it by the integral [ A Ldp.

Lemma 2.3.12. Let M be a compact manifold and 60 a density on M. Let E — N be
a vector bundle over a compact base and 7™ FE — M x N the pullback bundle along the
projection M x N = N. Then the integration map

I@ : FMXN<7T*E) — FNE, ]9(f>(.7}) = f(—,ﬂf)e
M

15 a O-tame linear map.

Proof. Let us first give a more precise description of what it means to integrate a section
[ € Tyun(m*E). We will make some peculiar choices, such that this description of
integration to aid us in the tameness estimates. Choose an atlas {(Ua, ¢a)},cq of M,
and a cover {K,} of M by precompact open subsets such that K, C U, for every a € A.
This can be done such that A is finite. Moreover, choose a partition of unity {x.}
subordinate to {K.}. Also choose an atlas {(Vs,¥p)} 4.5 of N that locally trivializes £
by vector bundle maps

(projg, kg) : Elv, — Vs x R”.

38



Let {Ls} be a cover of N by precompact open subsets with Lz C Vj for all 3 € B, and
{pp} a partition of unity subordinate to this cover. B can be chosen finite as well. Note
that 7 E' trivializes over M x Vj by the obvious map

T Elvxv, = M x Vg X B, Fgle) = (x,v,k5(v, €)),

where e € (1*E),, = E,.
For every o and 3 define a smooth map f, 5 : U, x V3 — RF,
fa,ﬁ = Xa© 90;1 "Rp© (idV,g X (f ° (90;1 X idVB))'

This map has support in ¢,(K,) X Vs. The push-forward ¢,.0 defines a density on
©a(Uy), so that we can surely integrate f, s over ¢,(K,). This gives a smooth map
Vs — R*. By multiplying this map by the partition function ps, we may extend it to a
section of E. Summarized, we define integration of f by

Iy(f) = Zaﬁpg : /451 O/

(Ko

) fa,ﬁ Spa*e-

The integral denotes Lebesgue integration on ¢, (K,). One can check that this definition
of Iy doesn’t depend on the choices made. Moreover, it has the property that

MﬂWZAﬁFmM Vn e N,

where the right-hand-side is defined as one usually does. From the above description it
is directly obvious that Iy(f) is a smooth section of E.
Suppose that F' — N is another vector bundle over N. Denote integration by

IE . FMXN(W*E) — FNE,

and similarly for F' and £'® F. From the linearity of the integrals and the x3, we deduce
that, if we choose the correct charts for Igqr, we have

This implies that Iy is tame linear if Ipgp is. For if B 4 Ea F L E are the inclusion
and projection of vector bundles, then Iy = p, o Iggr 0 7.. The maps 7, and p, defined
by left composition are known to be tame, hence it suffices to check that Igsp is tame.
Conversely, [gep is tame linear if both Iz and I are. This follows from the computation

psr(e + Al = 1sle) + Ir(HIF"
< e(@)lF*" + I11r ()"

<C (H]E(e)uf + ||IF(f)||If)

E F E®F
< C (Nlelify, + 17154,) < Clle+ FIRET
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Since every vector bundle is the direct summand of a trivial one, we conclude that we may
assume that F is the trivial line bundle, and rid ourselves of all the local trivializations
ko in the definition of the integral. In other words, I is given by

Iy : C®(M x N) — C®°(N Z/ a0 pat - fo(py! xid) paud.
Ka

Recall that the C*-norms on C°°(N) are given by

IIfIIkZZngX sup |07(fovz)(y)],

yevs(La)

where v € N* with n = dim(N). Likewise, the C*-norms on C®°(M x N) are defined by

£l =32, max  sw [07(f o (og x 05w,

(z.y)EKaxLg

where now v € N™ with m = dim(M). From now on v € N" denotes a multi-
index, which can be seen as v € N™" by being 0 in the first m entries. We have, for
feC>®(M xN),

oDl =3, max sup

a7 / XCMO()O;I'.]C ( X¢ﬁ )Soa*
¥5(Lp) Za $a(Ka)

For each of the summands of the inner sum we can take the differential into the integral,
and, since , o ¢, ' is compactly supported in ¢(K,) make the estimates

0”/( )xawal'fO(soaxwl)soa*G
Pa Ko

< / Yo 0 95+ |07 F 0 (931 X 07Y)| @t
‘Pa(Ka)

< / Xa © 0" il - sup |07 fo (0" x ")
Yo (Ka) va(Ka)
<C sup ‘(‘Wf o (! x wgl) )

@a(Kﬂ)

So that we can estimate

oAl <CY  omax  sup (7o (e xup)| < CIfly- =

ISk aB o (Ra)xws(Ls)

Suppose that B 2 M is a compact fiber bundle. In the same spirit as the density
bundle of a manifold, one can associate a vertical density bundle DY**B — B to B. Let
k = dim(B) — dim(M) denote the dimension of the fiber of B. Then the fiber at a base
point y € B consists of the functions 6, on /\kT;’ertB such that

,(cv) = |c|b,(v), VeeR,ve /\kTyvertB.

A vertical density 6 on B is a section of DY B — B. We call 6 positive if the function 6,
is strictly positive for every y € B. 6 can be seen as a smooth family of positive densities
on the fibers of B, simply by restricting 6 to these fibers.
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Lemma 2.3.13. Let B % M be a compact fiber bundle, E — M a vector bundle over
M, and 0 a positive vertical density of B — M. Then integration defines a tame linear
map

Ig : FB(p*E)—>FME, ](f)(m) = fGBm.

B m

Proof. First note that, by arguments similar as in lemma 2.3.12 on page 38, we may
assume without loss of generality that F is the trivial line bundle over E. Hence we will
prove that the integration map

ly: C*(B) = C*(M), I(f)(m)= [ [0,

Bm

is tame linear. We will procede in a similar way as the lemma above. We give an explicit
description of how to perform the integration, and then we deduce the tameness estimates
from this.

Let I denote the fiber of B. Choose an atlas {(Vs,v5)} 4.5 of M such that it also
trivializes B with fiber bundle maps

K}gIB‘Vﬁ iFXV/g.

Moreover, choose a cover {Lz} of M by precompact open subsets such that Lz C Vj for
every § € B, and let {pg} be a partition of unity subordinate to this cover. Likewise,
choose an atlas {(Ua, @a)},cq of the fiber F, a cover {K,} of I be precompact open
subsets with K, € U, for all & € A, and a partition of unity {y,} subordinate to this
cover. Both index sets A and B can be chosen finite, since both F' and M are compact.

For every 3 € B one can push forward the vertical density 6 along ks to obtain a
vertical density k.0 on the trivial bundle F' x Vj. Fix a positive density 6 on the fiber
F, then it defines a vertical density 07 on F' x Vj by 07 (f,n) = 67 (f). It is a vertical
density that is constant in the horizontal direction. The vertical density bundle is one-
dimensional, and both vertical densities are positive, hence there exists a positive smooth
map gs : I’ X Vg — R such that

/{5*0 =4g- QF

The smooth function f o /4;51 - gs defined on F' x V3 can now be integrated along I’ using
the density 0. Recall that this is given by the expression

Z / Xa © @;1 (fo ’f/gl “gp) © (90;1 X idVg) @MQF:
« ‘Pa(Ka)

and defines a smooth map on V3. One can multiply it with a partition function pg, and
extend it by zero to a smooth function on M. To summarize, the integration of f is given
by

Iy(f) = Zaﬁpﬁ/ oy X pal- (forzt-gs) o (pat x idy,) padt.
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One should check that this expression doesn’t depend on the many choices that were
made. Note that, because of the partition of unity {pg} and the change of variables rule
for integration, this definition of Iy satisfies

Io(f)(m) = : /0B,

We are ready to look at the tameness estimates. Recall that the C*-norms on C°(M)
are given by

£, =" max sup |0°foyy'(m),

[6|1<k BeB m6¢ﬁ(zﬁ)
where § € N4™(M)  On the other hand, the map
Parpry = (Pa X ) 0 Ky 651 (Ua x (V3N V,)) = 9a(Ua) X 1, (Vs N V,) € RI™E)
gives a chart of B for all a € A and 3,y € B. The open Ko, := k5 (Ko X (LgN L))
is precompact, the closure [_(am lies in the domain of the chart, and the entire family
{Kap~} covers B. Hence the C*-norms can be computed as

||f||k=Z|6‘<kmgx sup [0 f oyt o (it Xzt

25y geKa,B'y

where now 6 € N4m(B)  Hence we have

11 < ZW max sup

& py/ Xao@a'fow s gyvolert x ") pab”
1 « o a,f3, Y « Jé] Qk
vs(Ls) 2 o (o) !

a”y

< max sup / Xa ol |p, Fowprl g0 (pat x ¥zh)| pad”,
Z";Kk 0B y5(Lg) J palKa) ‘ ! s ’ ‘

by interchanging integration and differentiation, and taking the absolute value inside the
integral sign. Then by the Leibniz rule we have
0°py - fopnls, - gvo(0a' xvzh)
Y Py |0 o |12, 0 (it X W)

01<92<68

o’ -1
< 02‘6 fogoaﬁﬂ ’
0'<s

since p, is compactly supported, and g, is a smooth map on ﬁ;l(Ka7ﬂ77), hence their
derivatives are bounded. The integrals f(p (k) Xa © 0ot paxt are also bounded by some
constant. We conclude that

1 -1
Al <CY, >, jmax  swp [0 foirl,

9€Pa. 8,y (Ka,p,~)

<l .

Remark 2.3.14. In the setting of the lemma above, right-composition by p : B — M
defines a O-tame linear map

p":TyE—Tg(p'E)

such that Iy o p = id. This follows from lemma 3.2.16 on page 72 below. Hence by
lemma 2.2.20 on page 20, Ty E is a tame direct summand of Tg(p*E), with tame com-
pliment given by the smooth sections whose integral vanishes.
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2.3.6 Concrete examples of graded Fréchet spaces

A particular examples of graded Fréchet spaces that come to mind are the vector fields
X(M) =Ty (TM), or anti-symmetric k-vectors X*(M) = Ty (A*¥T'M), and the smooth
k-forms QF(M) = Ty (AFT*M) on M.

The differential defines a 1-tame linear map sending a smooth function to a 1-form,

d: C®(M)—QYM).

It is easily seen to be a 1-tame linear map, as it locally just involves taking the first
derivative of f. Alternatively, one can apply proposition 3.2.16 on page 72 by considering
the differential as d = i, o j1. Here j' : C°(M) — I'p;J*(M,R) is the map that sends
a function to its first jet. The map i, is the left-composition by the vector bundle map
i JY(M,R)— T*M.

On the other hand, the composition

com : Q' (M) x X (M) — C=(M)

is O-tame bilinear, see proposition 3.2.16 on page 72. Together they define a smooth tame
map

X (M) x C®(M)—C®(M) : (v, f) — df (v)

that realizes the vector fields as tame linear maps C*°(M) — C*(M); of course, these
are the derivations. One can now see that the commutator bracket

[—,—]ZX(M) XX(M)—>X(M) : (U,w)Hvow—on

is tame linear as well. Hence the vector fields form a tame Lie algebra (X(M),[—,—]).
It is the Lie algebra of the tame Lie group Diff(M) of diffeomorphisms.

Parts of this generalize to arbitrary vector bundles £ — M. A connection V defines
covariant derivative

by the usual Koszul-formula, and this map is 1-tame linear as well. This will recur in the
chapter on applications.

The above are all examples of differential operators. Let £ — M and F' — M be two
vector bundles over a compact base. A differential operator of order k£ can be seen as the
composition of the k-th jet

" Ty E — Ty JME),

which maps a section o to its k-th jet j¥o : M — J¥(E), and a O-tame linear map
Ly JH(E) — Ty F. It is straightforward to see that j* should be a k-tame linear map, so
that the differential operator of order k is k-tame as well.
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2.4 Smoothing operators and interpolation estimates

In some of the proofs above we have encountered certain interpolation estimates, and
have used them without proof. Recall that, given a graded Fréchet space F, these are
the estimates of the form

L < CUFI LA™

with | < m < n and C' > 0 a constant depending only on [,m and n. Such estimates
turn out to be a useful tool, but one cannot expect them to hold for any graded Fréchet
space.

In this chapter we prove that interpolation estimates hold for all our examples of
graded Fréchet spaces. In fact, we introduce the concept of smoothing operators as defined
in [Ham82b, Nas56| and show that smoothing operators imply interpolation estimates.
These smoothing operators are a even more useful tool than the interpolation estimates
and are essential to the proof of the Nash-Moser theorem. We will show that all our
examples allow for these smoothing operators.

2.4.1 The definition

Definition 2.4.1 (Smoothing operators). Let F' be a graded Fréchet space. A smoothing
operator on I is a family of linear maps {S, : F' — F},_, with two integers 3 > 0, the
base, and 0 > 0, the defect, such that

1. For everyn > (3 and r > 0 there is a C' > 0, depending on n and r, such that the
estimate

1Sef lsr < CEF NS,
holds for all f € F;

2. For everyn > (B and r > § there is a C' > 0, depending on n and r, such that we
can estimate

If = Sefll, < CE N f sy -

If such a family exists we say that the graded Fréchet space F' allows smoothing operators.
When the defect vanishes, 6 = 0, we will call the smoothing operator strict. A

In a sense, the maps S; are tame linear of degree —oo, but the constant in the estimate
increases exponentially in 7. Also note that the second estimate implies that S;f — f as
t — oo; f is approximated by the better behaved, ‘smoother’, points Sy f in F.

Let us sketch the motivation behind smoothing operators as how they were introduced
by Nash [Nas56]. Recall that the inverse function theorem holds for smooth maps between
Banach spaces without problem. Suppose we wish to prove the inverse function theorem
in the setting of Banach spaces, that is, to solve an equation P(f) = ¢g with f,¢g € B.
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Assume that DP(fy) is invertible for some fy € B, then so this is the derivative DP(f)
for f near f;. We may define a smooth map R by

R(f,9) = f = DP(f)"(P(f) +9)

for f near fy and g near P(f;). We can now make an estimate of the form

|R(f1,9) — R(f2,9)[| <Ol fi— fall, 0<O<1,

for f; and f; near fy, using the Taylor formula with integral remainder. This allows us
to apply the contraction mapping principle to the sequence f, = R(f,_1,9). Finally,
one needs to check that the resulting inverse P~! is again a smooth map. This trick
is essentially the Newton-Raphson method applied to the map f — —P(f) + g. This
method is also similar to proving the existence of solutions for ODEs, if one works with
the Banach spaces C*[0, 1] of k-differentiable functions, hence one might also call it Picard
iteration.

Suppose we wish to apply this method to our situation. From maps between graded
Fréchet spaces we can at best expect an estimate of the form

1B(f1,9) = B(f2, 9)ll,, <N fr = falloy s

and subsequent iteration causes the norm index to tend to infinity. This means the
estimates are insufficient to use the contraction mapping principle. Hence there is no easy
proof to the inverse function theorem for graded Fréchet spaces even if we assume the map
is smooth tame. Nash and Moser referred to this phenomenon as ‘loss of derivatives’.

Remark 2.4.2. Smoothing operators appear often in the literature, but often differ slightly
in their definition. In Nash [Nas56] the family S, depends smoothly on t > 1 and there
s an additional estimate of the form

d
—Sif

<ot .
= <ct |l

n—+r

In combination with the point-wise convergence S; — id ast — 0o, this implies property

(2).
In [Mos66] the smoothing operators depend on an additional parameter | € N, writing
Sl F — F, and the estimates are of the form

IS, < CENFNL,, forr >0,

1f = Sefll, < COT M s for 0.< k< min(i,n).

The extra parameter leads to an easier proof of existence, but makes iteration processes
more cumbersome, as there is yet an extra variable to keep track of. The Nash-Moser
wwverse function theorem works equally well with this definition.

Conn [Con85] uses yet another variation. In his proof the iteration process deals with
smooth functions on closed balls B, C R™ of radius 0 < r < 1 around the origin. The
smoothing operators are maps

St C*™(Bgr)— C>=(B,)

for1 > R >r >0andt > 1/(R—71), and are otherwise as described above. These
variations seem to be part of the same phenomenon, although the version used in Conn
allows one to work with a large family of graded Fréchet spaces.
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2.4.2 Basic properties and interpolation estimates

Definition /Proposition 2.4.3 (Interpolation estimates). If a graded Fréchet space F'
allows smoothing operators, then the interpolation estimates hold: for all 6 <1l <m <n
with n —m > ¢ there is a constant C' > 0, dependent on |, m and n, such that

LA < e flly ™", Yf € F.

Proof. Note that if || f||, = || f||,, the estimate is trivial, so we may assume strict inequality,
that is,

Ll < 1 £l, -

By the assumption [ > (3 the previous lemma implies that || f||, # 0. Since we assumed
that n —m >4,

1 Ly < USef o+ 1 = Sef oy < CE S + e N £1])-

Now choose ¢ such that these two summands are equal, this is when

= =1f[L, /11l > 1

In particular, ¢ > 1, hence such a choice is allowed. This leads to the estimate
n—l m— n— n—l m—Il+6 n—m—4§
11" < ottt fIEt < CLAI T AL :
as required. N

The smoothing operators that appear in all of our examples are of the strict kind; this
suggests one could remove the defect ¢ from the definition. Yet in the abstract setting of
graded Fréchet spaces and tame manifolds it is more natural to allow a strictly positive
defect. This is best illustrated by the following lemma.

Lemma 2.4.4. Let E and F' be graded Fréchel spaces which are tamely linear isomorphic.
Then E allows smoothing operators if and only if F' does.

If the spaces are 0-tamely linear isomorphic, then the one allows strict smoothing
operators if and only if the other does.

Proof. Let Sy : F' — F be a smoothing operator for F' with base § and defect . There
exists a tame linear isomorphism ¢ : E — F. Hence there is a s > 0 so that for all n > b
there is a C' > 0 such that we have estimates

leell, < Cllells, o7 fll, < C Al

for all e € F and f € F. Now choose a new base 3 > max(f + s,b) and §' > § + 2s.
Then for all n > ', and r» > 0,

le™ Siells < ClISipelpre < CU2 lgell,_, < CFH ],
and foralln > g, r > ¢,

< O e <Ot le]

n+r—s —

He - 90_1516906”” < Clpe — Sype|

n+s n+r

give the required estimates. If s = 0 one can take 9’ = J; this proves the second statement.
m
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The above lemma motivates why we keep track of the degree of tame maps between
graded Fréchet spaces and, later, tame Fréchet manifolds.

Remark 2.4.5. [t seems likely that all natural (linear) isomorphisms between the relevant
graded Fréchet spaces are 0-tame. Moreover, the transition maps of all our examples of
smooth manifolds are smooth O-tame. Hence it might really be sufficient to work with
strict smoothing operators.

The following lemma is useful in finding smoothing operators on graded Fréchet spaces.
Recall that F is a tame direct summand of F' if there is a linear subspace E’ of F' such
that ' ~ F @ E’. In particular, there exist tame linear maps ¢ : £ — I, the inclusion,
and p : I — E, the projection, so that p o7 = id. Conversely, if such maps exist then
E' := ker(p) defines a tame compliment to E; the inclusion £’ < F and projection
(id — i o p) of E are also tame.

Lemma 2.4.6. A tame direct summand E of F allows smoothing operators if F does.
Moreover, if i and p are O-tame, E allows strict smoothing operators if F' does.

Proof. Let S; : F' — F' be a smoothing operator for '. The new grading on £ defined
by inclusion,

lelly, = lli(e)l,

is tamely equivalent to the original grading on E and the composition p o S; o4 defines a
smoothing operator for this grading. Namely, take 0’ = § + s, where s > 0 is the degree
of i o p, then for n > § and » > 0 we have

nir = |lipSiie]

S C ||St,ie”n+7“+8
S Ctr+6+s HleHn
<t el

IpStie nir

and for n > 3 and r > ¢’ we have
le — pStieHil = ||ipie — ipSiiel|,,

< C'||ie — Syie||

< Ct—r+5+s ||Z€||

< Ot el -

n—+s

n+r

In particular, if the degree of i o p is zero, then we may take 0’ = 0. If, in addition, 7 and
p are of degree zero, then ||—||, is O-tamely equivalent to the original grading on E. This
proves the second statement. Il

Remark 2.4.7. In [Ham82b] Hamilton defines the notion of a tame Fréchet space. It is
a graded Fréchet space that is the tame summand of X.(B). Here X(B) is the space of all
sequences f = {fx} in a Banach space B such that the semi-norms

oo

11l =D €™ 1l

k=0
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are finite. This is a graded Fréchet space, and it is particularly easy to check that %(B)
allows smoothing operators. For let s : R — Ry such that s(r) =0 ifr <0 and s(r) =1
if r > 1. Then one defines smoothing operators by

(Sef)i = s(t — k) fr,

one simply cuts off all terms fi, in the sequence for k > t. Hamilton then argues that the
above spaces, for which we constructed smoothing operators, are tame direct summands

of some X(DB).

The following property of smoothing operators tells us a lot about whether a graded
Fréchet space allows smoothing operators.

Lemma 2.4.8. If a graded Fréchet space F' allows smoothing operators of base (3, then
the seminorms ||—||,, are norms for all n > (.

Proof. Suppose that || f||, = 0 with n > 3, then [|S,f||,,, = 0 for all » > 0. Now the
convergence Sy f — f as t — oo implies that | f||,,, = 0 for all » > 0, hence also f = 0
by the assumed Hausdorffness. Il
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2.4.3 Existence of smoothing operators on '), F

Let us now look at the existence of smoothing operators for the graded Fréchet spaces
'y E.

Proposition 2.4.9. Let E — M be a vector bundle with a compact base. Then I'y E
allows smoothing operators.

The approach is to first construct a particular example and then deduce the general
result. Note that for K C R? a compact set the space C5°(R?) of smooth maps RY — R?
with support in K is a graded Fréchet space with the usual C*-norms. The Schwarz
space S(R?) can be equipped with the same grading of C*-norms. We will construct
‘smoothing operators’

Sy : C2(RY) — S(RY)
in the sense that the S; are linear maps satisfying the two necessary estimates. This will
be the starting point for producing actual smoothing operators on graded Fréchet spaces.

Remark 2.4.10. Note that the C*-norms aren’t well-defined on C°°(R?) since R? is not
compact. One needs to work in at least the linear subspace of all smooth functions for
which it and all its derivatives are bounded. This is in particular true for all Schwartz
functions. The smoothing operators are constructed using the Fourier transform and con-
sequently take values in the Schwartz spaces. Although one could take a bigger codomain
for the Sy above, the current codomain suffices while C*°(R?) does not.

Lemma 2.4.11. For every compact set K C R? the graded Fréchet space C2(R?) allows
strict smoothing operators in the sense described above.

Proof. Define a smooth function with compact support ¢ : R — R with
p(x) =1, foraz <1,
p(x) =0, foraz>2,

and ¢ monotone decreasing on [1,2]. One could, for example, take

o1/ (1—a)

ole) = "=

on the interval 1 < z < 2. We then define maps x; : R? — R by designating their fourier
transforms as

x:(&) = (il /6)

for all t > 0 and & € R%. y, is a Schwartz function, it and its derivatives vanish at infinity
faster than any given polynomial on the coordinates of R?. As t tends to infinity, y;
becomes more concentrated at the origin, but its integral remains constant. This follows
from the following, easily derived, formula

xi() =/ e o(1E] /t)de
Rd

) —27mi(€, tx) d

o [ e e

= 9y (tx).
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From the above formula we also obtain
aaxt(x) _ td+|a\X§a) (th),

where x\*(tz) indicates the partial derivative %—aaxl (y) at the point y = tz. Now define

the smoothing operators S; : C2(R%) — S(R?) by convolution with yy,

aﬂm=wm*ﬁ@»:/“M@vw—yMy

Rd

The equalities above imply

8Q(Xt * f)(ﬁ) = (aaXt) * f(x)
= ¢l /R ) X (ty) f(x — y)dy

::ta'j/ V) (@ — y/t)dy,
Rd
hence from

0 x @) <2111, [

R4

()| dy < cel g,
we can conclude that

1Sefll < G flo -

The observation that 0“(x; * f) = x: * (0*f) now completes the first strict smoothing
estimate by applying the above to 0 f instead.

Note that x; is smooth in the parameter ¢ > 0. We obtain an expression for the
derivative via its Fourier transform,

—_—

9 xie) = 226 = Sotlel /1) = Ll o,

where ¢’ is the derivative of ¢ : R — R; it satisfies
¢'(u) =0, foru<1oru>2.

By replacing ¢ with ¢ (u) = u¢'(u) in the computation above, we also deduce the equation

. Xt) (tx).

We can compute the convolution of %Xt with f € C(R?); first we make a change of
variables tx — x, and then we apply partial integration in the y-variable, using that f is

d aa(d
%Xt(@ =1 (E
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compactly supported, to obtain

—x¢ * flz) =t (i
t=1

. (% xt) () % f(a/1)

= [ el D) £ - vy

=i [ ] (emytemen B e oo - ynande

=t [ ([ iyt ”5” Plelhas ) 0~ v/t

The inner integral is well-defined since ¢’ is compactly supported and vanishes at a
neighborhood of the origin. It can be bounded by some constant C' > 0 independent of
y € R? since |(—i)~1*le=2€4)| < 1. Hence we obtain an estimate of the form

) (t2) 10

d
s f@)| ek [ Clor - yynldy
Ra
< ¢l / Cdy sup [0 f ()]
yeK rER
< ot~ sup 0% f(2)] .

zCRd

By applying the above estimates to the partial derivatives 9° f(x) of f instead, we obtain

H— Sif Xt * f

<C 1 e -

=[]

To obtain the second estimate for smoothing operators. Note that

Stf=xexf—f
as t — oo uniformly for all f € C%(R?), hence

f—Stf:/tood%szds.

So we conclude that, for ¢ > 1,

> d
/t Eszds

oy

Wf—&ﬂuz‘

k

ds
k

<C [ sl ds
t
S Ctir |’f”k+7‘7
where i : C2(RY) — S(RY) is the inclusion. O
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Suppose that M is a closed compact manifold. We will first show that C>°(M,R")
allows smoothing operators. Note that

C®(M,R") = C®(M) & ... ® C(M)

is a O-tame direct summand, hence it suffices to construct smoothing operators on
C>(M). For this, embed M into some Euclidean space R? such that it lies in the open
unit ball B;(0). Now define a linear map

e: C%(M) — CF ) (RY)

as follows. Choose a tubular neighborhood of M in R¢, which will remain fixed during
the construction. The tubular neighborhood may be taken small enough such that it still
lies inside B;(0). Also choose a (fixed) smooth bump function y : R¢ — R that is 1 on
an open neighborhood of M and vanishes outside the tubular neighborhood around M.
To define ¢, first extend the maps f € C°°(M) to be constant along the fibers. Then cut
it off with the bump function and extend it by zero to a smooth map on R?.

The map described above is O-tame linear. We've already seen that multiplication by
a smooth function is 0-tame, while both smooth extensions are easily bounded by the
original map.

On the other hand, the restriction map

p: S(RY) — C=(M)

is O-tame linear for trivial reasons. Moreover, via the O-tame inclusion, both spaces use
the same semi-norms,

i: OF (R — S(RY)

we have that the composition pic = id is the identity. Hence C*°(M) allows strict
smoothing operators of the form

poSioe: C®(M)—C>®(M).

Finally, any vector bundle £ — M is a summand of a trivial vector bundle,
MxR'"=FE®F,

for a large enough n € N. We obtain I'); F as a 0-tame direct summand
C*(M,R") =Ty E @ TyF,

hence it also allows strict smoothing operators. This completes the proof of proposi-
tion 2.4.9 on page 49.
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2.4.4 Smoothing operators when M has a boundary

In [Ham8&2b] a method is given to obtain smoothing operators for a compact manifold with
boundary; it goes along the following lines. If M is a compact manifold with boundary,
its double M7, that is, the manifold consisting of two, originally disconnected, copies of
M glued smoothly along the boundary, is a compact manifold without boundary. The
vector bundle £ — M naturally extends to one on £ — M#, and I'y;# F allows smoothing
operators. We will now construct tame linear maps

FME L F]yj#E £> FME,

with poi =id, so that I'j; E can be seen as a direct summand of I'j;#FE, and hence also
allows smoothing operators. The choice of p is obvious; it should be the restriction map
to the compact region M of M#, and it is already shown to be tame linear.

For the map ¢ we have to describe a uniform method of extending a smooth section
o € I'yE to one on M#. We can first define this extension in local coordinates and
then patch it together with a partition of unity. After all, we can cover M with local
trivializations {(U, ¢, 1)} whose closures are compact regions, say open balls, and which
are the restriction of some covering {U} on M#. Then the simultanuous restriction

TwE —>@UQM Iy Ey,

is a tame linear map. And so is multiplication with a partition function subordinate to
{U} and the subsequent summing of all sections. For the latter we actually use that the
sections, after multiplying with the partition functions, lie in I'y o F, the graded Fréchet
space of smooth sections on U that vanish at the boundary. Those sections extend to
I'y#E by zero, and this extension is obviously tame linear. Only after this can the
sections be summed, and the sum

> @U CysE—Ty+E

is obviously a tame linear map. We now only need to describe how to locally extend a
section beyond the boundary of M.

In local coordinates we end up with a smooth map & : Ry x R*"™! — RF. It extends
to a smooth map on R” by defining

5=, y) = / o5 (tey)dt, (2,y) € Ry x R™,
0

where ¢ : R — R is a function satisfying

/Ooo t"o(t) dt = (—1)"

for all n € N. A typical example of such a map is

62\/5

_ — (M Ay . /4 ym1/4
—W(1+t)e sin( ).

o(t)
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The integration converges since ¢ is a Schwartz function, and a simple estimate of the
form

Bafomw(t)(tx,y)dt‘ S/Ooow(t)dt sup  [f(z,y)|

(z,y)ER+ xRn—1

shows that such an extension by integration gives a tame linear map. The identity
pot=1id is now obvious, hence we have produced smoothing operators on '), FE.
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Chapter 3

Tame manifolds and examples

This chapter consists of two parts. First we discuss the basic definitions of tame Fréchets
manifolds, which boils down to a Hausdorff manifold whose local model is a graded
Fréchet space, and for which all transition maps are smooth tame. Next we discuss the
different examples of tame manifolds that are directly related to differential geometry,
and prove tameness conditions for several associated maps. Although the Nash-Moser
theorem is essentially a local result, many sets of geometric objects of interest, such as
foliations, and the like, lie in certain Fréchet manifolds, and it is conceptually clearer to
describe the entire manifold instead of just particular neighborhoods.

3.1 Tame Fréchet manifolds

We have discussed the definition of Fréchet spaces, the direct consequences and some
basic examples. Moreover, we have defined differentiability for maps between Fréchet
spaces. This gives rise to the notion of a Fréchet manifold.

Definition 3.1.1. A Fréchet manifold is a Hausdorff space M with an atlas of coordinate
charts

{(Umgszz_)E)ZEI}7

where each F; is a Fréchet space and the transition functions p;o ;" are diffeomorphisms
wi(U;NU;) — ¢;(U;NUj). As usual, an equivalence class of atlases can be represented
with a mazimal atlas, and we assume that a Fréchet manifold is equipped with its mazimal
atlas. The notion of smooth maps between Fréchet manifolds is also analogous to the finite
dimensional case.

Let FrMfd denote the category of Fréchet manifolds with smooth maps. The finite
dimensional manifolds are a full subcategory of FrMfd. A

Note that we do not assume second countability, as is usual with finite dimensional
manifolds. This is necessary, since Fréchet spaces are already not always second countable;
this would be equivalent to seperability. As a consequence, FrMfd also contains the, often
pathological, examples of non-second countable manifolds found in the finite dimensional
case.
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Remark 3.1.2. Note that M has a fixed local model, up to isomorphism, on any of its
connected components since the derivative at m € M,

D(pje; ) (m) - F; — Fj,

is a continuous linear isomorphism for every m € ¢;(U; NU;). In contrast with the con-
ventions of finite dimensional manifolds, we do allow the local model to vary on different
connected components. One of the main examples of Fréchet manifolds will exhibit this
property.

Next we wish to extend our definition of a Fréchet manifold to include the concepts
of grading and tame maps.

Definition 3.1.3 (Tame Fréchet manifolds). A tame (Fréchet) manifold is a Hausdorff
space M with an atlas of charts

{U; ¢ : Uy — F),i € I}

such that the F; are graded Fréchet spaces and the transition functions are tame diffeo-
morphisms. We assume a tame manifold is equipped with its maximal tame atlas.

A smooth tame map between tame manifolds is defined in the same manner as a
smooth tame map between graded Fréchet spaces. That is, a map P : M — N is tame
if for every m € M there are open neighborhoods m € U C M and P(m) € V C N
contained in charts such that: there is a degree r,, € N, a base b,, € N and for every
k > by, a constant C = C, , > 0 such that

1P < CQ+ [y, ), Vil €U

The map P is smooth tame if it and all its derivatives are tame. Let Tame denote the
category of tame manifolds with smooth tame maps.

Likewise, a 0-tame manifold has an atlas with only smooth O-tame transition maps,
that is, all transition maps

pioer ! @i(UNU;) — ¢;(U;NT;)

are smooth, 0-tame and all their derivatives are O-tame as well. A 0-tame manifold is
assumed to be equipped with its mazximal 0-tame atlas.

Let 0Tame denote the full subcategory of 0-tame manifolds. In this category it makes
sense to speak of the degree r,, of a map P : M — N in a point m € M. There might,
however, be no common bound r,, < r for allm € M. A

An (embedded) submanifold N of M is a subset that can be covered with an atlas of
the form

{Ui,o:U; = E;®F,)}

of M. Here we impose that the local model E; & F; is the direct sum of two graded
Fréchet spaces, and ¢;(N NU;) = ¢(U;) N E; x {0}, the submanifold corresponds to the
first summand. This is the usual notion of embedded submanifold for finite dimensional
manifolds. Note that one must enforce that the F; are direct summands of Fj, since not
every tame linear subspace is a direct summand. Note that this definition also works in
Tame and 0Tame, except that the described atlas should be tame respectively 0-tame.
From this the following is evident.
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Corollary 3.1.4. The product M x N of two (0-tame) Fréchet manifolds is a (0-tame)
Fréchet manifold. Both components M and N are embedded (0-tamely) into M x N.

There are some difficulties with defining injective immersions as submanifolds, due to
the lack of a ‘immersion theorem’. One can only work with the conclusion of the usual
immersion theorem. As such, an immersed submanifold is a Fréchet manifold N together
with a smooth injective map i : NV — M such that for every n € A there is an open
subset n € V. C N and a chart (U; — E; & F}) as above so that

is an open subset of F; C E; & F;.

The same difficulty arises with defining submersive maps. Hence define a submersion
as a smooth map p : N' — M such that for every n € N there is a chart (U,p : U —
E & F) around n, and there is a chart (V,1 : V — E) around p(n) such that p(U) =V,
and the square

p PTE
V E

commutes. Here prg : E ® F — F is the projection onto the first component, which is
a continuous linear map since Fj is closed in E; @ F;. In Tame and 0Tame the direct
sum should be tame and 0O-tame respectively. Note that the derivative of a submer-
sion is everywhere surjective, but that the converse doesn’t always hold. The condition
that o;(U;) is a closed subspace of v;(p~'U;) is, moreover, a weaker condition than the
described splitting in a direct sum.

We will also refer to submersions as bundles over M with total space N'. Then a bundle
map from p : N — M to p' : NV — M’ is then a pair of smooth maps P, : N' — N and
Py : N — N’ satisfying the usual bundle map condition

NN

lp lp/
M

More specified, a Fréchet fiber bundle with fiber F' is a bundle p : N' — M for which
there is an open covering {U;} of M and for every i a diffeomorphism ¢; : Ny, — U; X F,
such that the transition maps are of the form

Qﬂjoiﬂi:(id,wij‘)IUiﬂUjXFHUimUjXF,

as usual. In Tame and O0Tame these transition maps should be tame respectively O-tame.

A Fréchet vector bundle with fiber F are defined in the same spirit as fiber bundles.
Namely, it is a fiber bundle p : N' — M such that its fiber is a fixed Fréchet space F
and the transition maps ;; : F — F are continuous linear isomorphisms. A particular
example is the tangent bundle of a tame Fréchet manifold. Tt is the usual set of velocities
of curves.
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Definition 3.1.5 (Tangent bundle). Let M be a tame Fréchet manifold and p € M a
fixed point. Two smooth curves

0,7 € C*((—¢,e), M), 0(0) =~(0) =p,
through p are equivalent if there exists a tame chart (U, ) of M around p such that

9 . _9
ot Yo7 o

In this case, by the chain rule, the above equality holds if v is replaced by any other chart
(V,4) around p. The set T,M of equivalence classes of smooth curves through p is the
tangent space of M at p. The tangent bundle is, as a set, the disjoint union of all T, M
with p € M.

Every chart (U, ¢) around the point p € M endows 7, M with the structure of a graded
Fréchet space, and these structures are all tame linear isomorphic. The above definition
can also be formulated for O-tame manifolds; in which case the graded Fréchet structure
on T, M is uniquely determined by a chart (U, ¢) up to a O-tame linear isomorphism.

por.
t=0

t=0

Corollary 3.1.6. The tangent space T'M is a vector bundle over the Fréchet manifold
M. If in addition M is tame (0-tame) then T M is tame (0-tame).

Proof. To better illustrate the O-tameness of the tangent bundle, we will give a short proof.
Recall how the tangent bundle is defined: There is map C*°((—1,1), M) x C>*°(M) — R
defined by

d

<0t7f> = %
=0

Two smooth curves o; and 6; with oy = 7y are equivalent if

(o1, f) = (0, f), VfelC?M)

and the tangent space at g is the set of equivalence classes. Any chart (U, : U — F)
at oy induces a map

fOO't.

d

TU = o(U) % F s o] = (olon), 3|

(poay).

And for any other chart (V) the transition function
UNV)XF—-ypUNV)xF

sends the vector %‘t:o (pooy) to %‘t:o (Y 00t) = Dyoe) (V™) %‘t:o (pooy). Hence the
transition function is just 7' () ~!), which is tame (O-tame) if )~ is tame (0-tame). [

A Fréchet Lie group can be defined as expected as a group object in the category
of Fréchet manifolds with smooth maps. More concretely, it is a Fréchet manifold G
together with a specified element e € G and two maps m : G x G — G, multiplication,
and ¢ : G — @, inversion, satisfying the usual group axioms. Of course, for a tame Lie
group the corresponding maps need to be smooth tame. The most prominent example of
a tame Lie group is the space of diffeomorphisms of a compact manifold. Likewise, a tame
Lie algebra is a graded Fréchet space g with a tame bilinear Lie bracket [—, —] : gx g — g.
The main example of a tame Lie algebra is the space of vector field X (M) on a compact
manifold M, with the usual commutator bracket.
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3.2 Examples of tame Fréchet manifolds

With the basic definitions out of the way, we may have a closer look at the quintessential
examples of tame manifolds. First we have a direct generalisation of the fact that '), F,
with £ a vector bundle with compact base, is a graded Fréchet space. Namely, the
smooth sections of any surjective submersion p : B — M with compact codomain form
a tame manifold. Its local model is of the form I'y;F, hence it locally allows smoothing
operators.

As a consequence, the spaces of maps C*°(M,N) are tame manifolds, and allow
smoothing operators, if M is compact. Of particular interest is the open subspace
Diff(M) of diffeomorphisms and the fact that this forms a tame Lie group.

In the last sections we extend our list of examples, in particular to include the spaces
of bundle maps between any pair of surjective submersions. This gives a more flexible
way of identifying tame manifolds and maps.

3.2.1 A tubular neighborhood lemma

Let B L M be a surjective submersion. Let o € I'yyB be a section of B. We will
prove the existence of a tubular neighborhood around the image of o in B such that the

exponent map preserves the fibers of p as described in the paragraphs below.
The vertical bundle TV*B of B is the linear subbundle of T'B defined by

T, B = ker(dyp) = T, By

for every y € B. Vectors in TV B are called vertical vectors.
Let A C B be any submanifold of B. With N A we denote the normal bundle of A in
B. 1t is given by the quotient

N,A =T,B/T,A

for every x € A. The zero section z € I'yNA gives a canonical embedding z(A) of A
into NA. By choosing a Riemmannian metric on B, the tubular neighborhood theorem
gives an open subset U C NA around A, an open subset V C B around A, and a
diffeomorphism

exp: U — V.

This gives the open V around A the structure of a vector bundle on A by stipulating
that exp should be an isomorphism of vector bundles. This construction is known as a
tubular neighborhood, and exp is called an exponent map.

Let 0 € I'yy B be a section of B. The image o(M) of o describes M as an embedded
submanifold of B, and we tacitly identify o(M) = M. We wish to described a particular
type of tubular neighborhood of o(M) in B. A regular tubular neighborhood gives a
smooth map

exp, : U, = v(oc) C B

with U, C No(M) and v(o) an open subset of B around o(M). The restriction of p is
already a surjective submersion, since v(o) contains (M ). The exponent map completely
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ignores this, and defines an alternative bundle structure on v (o). In this section we define
a tubular neighborhood such that exp, does preserve the fibers. The essential part of
the proof is that the vertical bundle TV B restricted to M = (M) is isomorphic to the
normal bundle of o(M). This follows from the observation that o(M) N B, = {o(z)} is
just a single point for all x € M.

Lemma 3.2.1 (Vertical tubular neighborhoods). Let B L2, M be a surjective submersion,
and o € I'yyB a section of B. Then there exists an open subset v(o) C B around the image
a(M), an open subset U, C o*T""B around M, and a fiber preserving diffeomorphism

U, \:"p“/u(a)
M.

More generally, let A C B2 M be a subbundle of B and g a Riemannian metric on
B. Let (TA)* denote the orthogonal complement to T A in T B| 4, such that (TA)* ~ NA.

Then there exists an open subset v(A) C B around A, an open subset Uy C (TA): N

T""B|4 around A, and a fiber preserving diffeomorphism
exp 4

UA V(A)
M,

where the diagonal arrow on the left-hand-side is the composition Uy — A — M.

Proof. We will only do the first part and give a sketch of the second part.

First assume that B = M x Fis a trivial bundle. Choose a Riemannian metric g on
B, and let gr be its restriction to TF ® T'F. Let np : M x F — F denote the projection
onto F. Let U' C TF an open subset around F' in T'F such that the exponent map

exp: U — F

induced by g is a diffeomorphism onto its image whenever it is restricted to a fiber
U, =UNT,F,z € F. Let 0 € C®°(M,F) be a section of B seen as a smooth map
M — F. Define an open subset around its graph by

U:= (W}U,”graphg CT™'B ‘graphg'
If we identify M = graph, C M x F, then the required map is given by
exp, = (id, exp o7 p)|graph, C TvertB\grapha.
Now assume that B = M is an arbitrary surjective submersion, and o € 'y B is

a section of B. Choose a Riemannian metric g on B. Cover the image o(M) by open
subsets W, for which V,, :== p(WW,,) is open, and there are fiber preserving diffeomorphisms
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Moreover, assume that every V,, contains a relatively compact open K,, with K, C V,,
and that the family {K,} still form a locally finite cover of M.

For every index « let g, be the Riemannian metric on V, x F, such that v, is an
isometry. Let

Ua:¢aoa|Ua

be the local description of 0. Apply the previous paragraph to o, and g, to obtain an
exponent map

exp, : Uy — vy TV, X F,

with U, C Tv"*(V,, x F,) an open subset around V,, x F,, and v, = exp,(V,) an open
subset around the image o, (V).

Let d denote the distance metric on M introduced by g. Now choose a smooth map
€: M — R, such that the open

v(o) :=={b€ B:d(b,o(p(b))) <e(p(b))} € B
satisfies
v(o) € va't ),
and for every m € M
v(0)m €[ {¢a' (va)lk, : Ko contains m} . (3.2.1)

The local finiteness of {K,} ensures that the right-hand-side of (3.2.1). The relative
compactness of the K, ensures that € can be chosen nowhere zero.
For every index a define

U, = Ttba 0 expy oty (v(0)lk,) € Ti' B
to obtain a fiber preserving diffeomorphism
exp), := g 0 exp, TP UL, — v(0)|k,

over K,. Let § be another index such that K, N K3 is non-empty. Condition (3.2.1) on
v(o) ensures that the map

Vg oty (Ko x Fo) Nha(v(0)|x,) = (Ks x Fp) N1s(v(0)|x,)

is an isometry on each of the fibers over K, N K. Hence the exp], coincide on the inter-
sections of the K, and they glue together to the desired fiber preserving diffeomoprhism

exp, : Uy — v(0).
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For the second statement, one takes a cover {W;} of A with the analoguous properties
instead. The roles of the V,, interpreted as V, = W, N o(M), are replaced by the
intersections W, N A. Moreover, use the metric g on B to define a normal bundle

(TA)* C TBq,
and work with TV* B4 N (T'A)* instead of TV B. O

Remark 3.2.2. The first statement of the lemma gives the submersion p : B — M
locally” around o (M) the structure of a vector bundle. It is now clear how this will lead
to charts for I'yyB. Similarly, the second statement gives p : B — M ’locally’ around A
the structure of a tower

FE—A—-M

of a vector bundle over a submersion.
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3.2.2 Smooth maps and sections of a submersion

We will discuss the main examples of tame manifolds. Let B % M be a surjective
submersion with compact codomain. We will show that the space of sections 'y, B is
a O-tame manifold. Let N be another finite dimensional manifold. By considering the
trivial bundle M x N — M, we deduce that C*°(M,N) = I'yy(M x N) is a O-tame
manifold as well.

Recall that the vertical bundle TV*"*B — B of B is defined as the subbundle of T'B
whose fibers are

T, B = ker(dyp)

for all y € B. Suppose that £ = B — M is a vector bundle over M, and let z € I'\, F
denote the zero section. If one considers

T"E 5% E— M
as a fibered manifold over M, then each for each m € M we have a decomposition

(TY"E)p = {(e,X) :e € By, X € T)"E}
~ mEBTZ(m)EmZ m D En,.

This decomposition is natural, and hence induces a decomposition
T""E~ExyE=E®E,

in the following way. Let e € F, and let
T.:E—FE:f— f—e

denote linear translation by e. Its tangent map 7T'7, : TFE — TFE depends smoothly on
e € I, since it is just a partial derivative of the map

T:EXE—E:(e,f)— f—e
Hence the map
TVertp D Z*T"ertE ~FpFE:v— (TE(U)a TTWE(U)U)

is the desired isomorphism of manifolds fibered over M.

Recall the definition of the Whitney C* topology W, from definiton 2.3.3 on page 28.
We assume that 'y, B is equipped with this topology. As mentioned in remark 2.3.2 on
page 26 before, one can work with a manifold M with boundary as well.

Remark 3.2.3. Let B 5 M be a surjective submersion with compact codomain. The
vertical bundle T""* B =2 B is a vector bundle over the total space B. On the other hand
the composition

"B ™% B 5 M
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15 again a surjective submersion with compact codomain. In the proposition below we
show that the space of sections I'yyB 1s a tame manifold. Consequently, so is the space

Ly (T*"B) := {0 € C®(M,T""B) : pong oo = id}

of smooth section of T'"*B over M. It comes with the obvious map
(78)s : Taf(T""*B) — 'y B

that sends o € Ty (T B) to g oo.

Proposition 3.2.4. Let B 2 M be a surjective submersion with compact codomain. The
set of smooth sections 1"y B with the W -topology can be given the structure of a O-tame
manifold. Its tangent bundle is O-tame isomorphic to the 0-tame vector bundle

TT B =~ Ta(T""B),
whose fibers are Ty (T B), = Ty (6*T""B) for o € Ty B.

Proof. Fix a section o € 'y, B, and let
o*TV"*B D U, Z2% y(0) C B

be a vertical tubular neighborhood around the image o (M) in B, as defined in lemma 3.2.1
on page 60. As the domain of a coordinate chart around o we take the set of sections
that stay v(o) close to the image of o, namely the W ,-open

Mv(o)) ={rel'yB:7(M) Cv(o)}.
We will call the map

Qo = (exp,)u : M(vy) — Tar(Us)

defined by left-composition by exp,' a typical chart around o on T'yB. Clearly, ¢, is

a homeomorphism if the space I'y(U,) is also equipped with the Whitney C* topology.
The latter is an open neighborhood of the zero section in the graded Fréchet spaces
Ly (oTV"B).

Let 7 € ')y B be a second sections such that v(o) Nv (7). Then the sets exp, !(v(o) N
v(7)) and exp;!(v(c) Nv(r)) are open in U, and U, respectively. This gives rise to a
fiber preserving map

exprt o exp, 1 exp; ! (v(a) N v(r)) — expy ! (v(a) N v(r)).
This describes the transition function
Y 0t = (exp;1 o expg)>k c 0o (M(v(o) Nv(r)) — . (v(o) Nv(r)).

as the left-composition by a fiber preserving map. In lemma 2.3.11 on page 34 we have
proven that such a map is smooth 0-tame. This shows that the typical charts form an
atlas for I'y/B.
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For Hausdorffness, fix two different sections o, 7 € I'j); B and fix a Riemannian metric
on B. Let r = max ey d(o(x), 7(x)) be the maximal point-wise distance between o and
7. Here d is the metric on B induced by the Riemannian metric. We can now find vertical
tubular neighborhoods v(o) of o(M) and v(7) of 7(M) with the extra restriction that

Ao/ (@), 7(x)) < r

for every o’ € M(v(0)), and similarly for v(7). It is now easy to see that the correspond-
ing open subsets in M (v(c)) and M (v(7)) are disjoint.

We will now compute the tangent bundle of I'y;B. Let og € I'); B be a fixed section.
Any smooth path o, : (—¢,¢) — ')y B through o( can also be seen as a smooth map

o:(—e,6) x M — B,

for which o(t,z) € B, for all x € M and t. Hence its partial derivative at ¢ = 0 gives a
smooth map

0

5 c: M —TB

t=0

for which

0

a U(JJ) - Tgo(x)Bx = (O*TvertB)x;

t=0

It defines a section of o3 T"*"*B. This in turn defines a natural map

TPy B — Ty (0T B) a

” 0
Cdt t

— — o,
0 ot

t=0

which is clearly linear and bijective. This describes the tangent space of I'y;B at oy
as the graded Fréchet space 'yl TV"*B. We will show that there is actually a 0-tame
isomorphism of O-tame vector bundles TT ;B ~ I');TV*"* B, as described in the statement
of the lemma.

Let 0 € I'y/ B be a fixed section, and fix a vertical tubular neighborhood exp, : U, —
v(o) around o(M). The tangent map of the chart ¢, induces a O-tame isomorphism

T(exp, ). : TM(v(0)) = TT U, =~ TaU, ® Tyo* T B,

Let z € I'y(U,) denote the zero section of o*T" B. By the remarks prior to this lemma,
there is a natural isomorphism between vector bundles

TvertUg ~ Ua EB Z*TvertUo ~ Uo EB O_*TvertB.
This induces a natural O-tame isomorphism
FMUJ D FMO_*TvertB ~ FMTvertUa'

Hence the tangent bundle of I'y;B is O-tame isomorphic to I'y/TV"* B. O]
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Remark 3.2.5. Note that we can identify the smooth curves into I'yyB as
Co([-11], Ty B) — T (77 B) =y = () = (),

where my : [—1,1] x M — M is the projection onto M. Moreover, it maps the derivative
along t to the partial derivative along t in the sense that

C*([-1,1,TyB) —— T'i_11xm (7" B)

il e
dt |,—g Ot |4—o

TT B ~ Ty (T B),

commutes. It follows that a continuous map P : Ty A — I'nB is C*-differentiable if there
exists a continuous vector bundle map TP : Ty (T""A) — T'n(T""B) such that

P,
Fio1xm (7 B) —— I'i_1jxm (7% B)

2 ’ 2
It |4—p It li—o

F]V[ (TvertA) TP FN (TUEMB)7

commutes. Likewise, one can make the analoguous statement for differentiability at a
point. This can be helpful when computing derivatives.

Corollary 3.2.6. Let M and N be manifolds with M compact. The set of smooth maps
C®(M,N) equipped with the W.-topology has the structure of a 0-tame manifold. Its
tangent bundle is 0-tame isomorphic to the 0-tame vector bundle

TC®(M, N) ~ C*(M,TN)
whose fibers are C°(M,TN)y =Ty (f*T'N) for every f € C*°(M,N).

Proof. Given two manifolds M and N with M compact, there is a natural bijection
between C'* (M, N) and the smooth sections of the bundle

MxN— M
by identifying a map f with its graph
(id, f): M — M x N.
It is straightforward to check that this identification is a homeomorphism if
L'y (M x N)CC®(M,M x N)
is equipped with the Whitney C'* topology. Obviously we have
T (M x N) =M x TN,

and T ((id, f)*(M x TN)) = Ty f*TN. 0
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3.2.3 Sectionsof F - B — M

In the previous section we observed that the tangent bundle of I'y; B is 0-tamely ismorphic
to Iy (T B). The latter 0-tame manifold can be seen as a bundle of sets

La (TY" B) 225 Ty (B)

whose fibers are I'y (TV" B), = I'y(c*T"" B) for all o € T');B. Each of these fibers is a
graded Fréchet space but we did not yet show that the whole naturally has the structure
of a O-tame vector bundle. More generally, we can look at a fiber bundle B — M together
with a vector bundle £ — B and show that ')y F is a O-tame vector bundle over I'y;B
with its fiber at o € I'y;B naturally isomorphic to ['y,0*FE.

Lemma 3.2.7. Let B 2 M be a surjective submersion with compact codomain, and
E 5 B a vector bundle over B. Then the map

I'vE 55 TyB,
whose fibers are (I'y E), = Upyo*E for all o € Ty B, forms a 0-tame vector bundle.

Proof. Let 0 € I"'yyB be fixed. We will first construct a map that trivializes £ along
(parts of) the fibers of B in a neighborhood of the image of 0. We may cover the image
o(M) with finitely many local trivializations (U,, ¢,) of E, with

Pao = <Q7wa> : E‘Ua = Ua X Eo(m)'

Define a partition of unity {x.} subordinate to the cover {U,} that is constant on the
fibers of B. This can be done by first choosing a partition of unity on (M) subordinate
to {Ua|a}. Now let U = U,U, and define a map on E|y by

p=(¢,¢): Ely »Uxyo'E: e (q(e)azxa(q(e))wa(eo :

It is a smooth vector bundle map and it has an obvious inverse. Note that for any m € M,
the space U X s 0*E seen as a vetor bundle over U trivializes when restricted to U|y(m).

Note that a section of U x ; 0*E — M is just an element of I'y,U x I'j;0*E and that
this identification is tame linear. Any section v € I'y;7*E above 7 € I'j;U can be seen
as a smooth map M — FE and is mapped to such a section p ov € 'y (U X 0*E) by
composition on the left. This map ¢,, composition on the left with ¢, is hence a valid
candidate for a local trivialization of I'y;E — I'j;B. One only needs to verify that the
transition maps are tame linear.

Let 019 € I'yy B be two fixed sections, Ujo = Uy NUs, and ¢; : Ey, — U; X 07 E the
respective maps defined above. Assume that I'y;U;5 is non-empty, then the transition
map is a map

(id, p) = @50 (o1 1) : TpUsy X Tppot B — TpUry x Typos B

defined by sending a pair (7,v) to p(v) = @3 0¢; ' ov, since the to middle maps, induced
by identifying an element I'y,07E with a map M — E over o;, cancel out. This map p is
a vector bundle operator, hence it is tame linear. Il
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The following is a nice application of the above lemma. Let A — M and B — N be
two finite rank vector bundles, for which M is a compact manifold. We wish to consider
vector bundle maps between these to bundles. Recall that the smooth maps M — N can
be regarded as the space of sections 'y (M x N).

One can define a vector bundle

Hom(A,B) - M x N

whose fiber over a point (m,n) € M x N is the space of natural transformations L : A, —
B,,. This defines a tower of bundles Hom(A, B) — M x N — M as in lemma 3.2.7 on
the previous page. Given a smooth map f : M — N, the vector bundle maps A — B
with base map f are exactly the sections I'y; f*Hom(A, B): these form a smooth family
of linear maps A,,, — By(,. Hence the total space I'y;(Hom(A, B)) is the smooth tame
manifold of all vector bundle maps A — B.

Corollary 3.2.8. Let A — M and B — N be two vector bundles over compact bases,
and let

Hom(A,B) — M x N
denote the vector as defined above. Then
I'yyHom(A,B) — C*(M,N)
is the 0-tame vector bundle of vector bundle maps A — B.

This approach doesn’t seem to extend to the space of fiber bundle maps between to
arbitrary fiber bundles in any straightforward way. Perhaps a direct proof is possible,
but I haven’t succeeded in doing this so far.
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3.2.4 Basic properties of I'y;B

Lemma 3.2.9. Let A — M and B — M be surjective submersions with the same compact
codomain, and let A X B be the fibered product. Then the natural map

s a 0-tame diffeomorphism.

Proof. For any pair (o,7) € I'yyA x I'yy B we have the pull-back

The obvious map

that sends p € T'y(A xyr B) to (ma.(p), m5<(p)) is a smooth tame map since 4, and
T« are. It is in fact a bijection of sets. We will see that it is also locally a tame
diffeomorphism, hence that the inverse is smooth tame as well.

For any pair of sections (o,7) € I'yyA x I'yy B, choose tubular neighborhoods along
the fibers of A and B respectively, and exponent maps

exp, : B, = v(o),

exp, : By = (1)
as done before. They also induce fiber preserving diffeomorphism
eXP(y,r) = €XDP, X exp, : B, ® E; = (o) xu (1),

with inverse exp,! @ exp;'. Now v(c) x5, v(7) is an open neighborhood of the graph of
(o, 7) seen as a section of A X B. Hence the set M (v(o) x (7)) of sections take values
in this neighborhood forms an open subset around (o, 7) in I'(A x»; B). The map

<eXp*1 >* :M(v(o) Xy v(r)) = Ty(Ey @ Er)

(0,7)

is a chart of T'y;(A X, B) around (o, 7). Hence the natural bijection is locally just the
0-tame linear isomorphism

FMEO' D FMET ~ FM(EU' D ET)

This completes the proof of the lemma. Il
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Corollary 3.2.10. Let M, N and P be manifolds with M compact. Then the natural
map

C*®(M,N x P)~C*>(M,N) x C*(M, P)
is a 0-tame diffeomorphism.

Let B — M be a surjective submersion, then a subbundle A C B of B is an embedded
manifold such that p|4 : A — M is still a surjective submersion.

Lemma 3.2.11. Let B % M be a surjective submersion with compact codomain, and
A C B a subbundle of B. Then the inclusion

rvACI'yB
s a 0-tamely embedded submanifold.

Proof. Choose a vertical tubular neighborhood exp, : Uy — v(A) C B around A in B, as
in lemma 3.2.1 on page 60. By the remark below the lemma, we may consider v(A) — A
as vector bundle over the surjective submersion A — M. Hence by lemma 3.2.7 on
page 67 we have a O-tame vector bundle

In particular, I'y;A is an embedded submanifold of T'y;v(A). The latter is an open
submanifold of I'y;B. O

Corollary 3.2.12. Let M and P be manifolds with M compact, and N C P an embedded
submanifold. Then

C*(M,N) C C*(M,P)

s a O-tamely embedded submanifold.

Corollary 3.2.13. Let p: B — M be a bundle over a compact base manifold, then
I'yB C C*®(M,B)

s a 0-tamely embedded submanifold.

Proof. Note that B can be seen as a subbundle of the trivial bundle M x B via

,id
B (i M x B
x pry
M.
This completes the corollary. Il
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Suppose that A 2 M is a surjective submersion with B compact. Then p is a proper
submersion, hence it is a fiber bundle by the Ehresmann theorem. If B % M is another
surjective submersion, then one can consider the space of sections I'4(p*B). The sections
Iy B are included in I' 4 (p* B) as the sections A — p*B that are constant along the fibers
of A. In other words, those are included via the map

p* Ty B—T4(p*B)
defined by right-composition by p: A — M.

Lemma 3.2.14. Let A & M be a compact fiber bundle, and B % M a surjective
submersion. Then Ty B is a 0-tamely embedded submanifold of T (p*B).

Proof. Let 0 € I'y/B be a fixed section, and choose a vertical tubular neighborhood
exp, : Uy, — v(o) around o(M), as in lemma 3.2.1 on page 60. The pull-back of exp,
along p, that is, the map

p*exp, : p'U, — p'v(o)

defines a vertical tubular neighborhood around the image o o p(A) of the section o op €
C4(p*B). Now right composition by p restricts to a smooth 0-tame map, see proposi-
tion 3.2.16 on the next page,

Pt M(v(o)) — M(p'v(0)),

where M (p*r (o)) indicates the set of all 7 € I'4(p*B) such that 7(A) C p*v(o). The
local representation of p* along the charts induced by the vertical tubular neighborhoods
is just the map

p* . FJW(O_*TvertB) —>FA((O' o p)*TvertB>

restricted to the open M(U,) in Ty (c*TV" B). Let 6 be a normalized positive vertical
density on A. By lemma 2.3.13 on page 41, where B in the lemma becomes A and F
becomes o*TV"* B, there exists a tame linear integration map

Ip:Ta((o o p)* T B) — Ty (a* TV B).
We have
Ig Op*(T) =T, \V/T c PM(U*TvertB),

since 6 is chosen to be normalized. The map p* hence embeds I"y(0*TV* B) as a 0-tame
linear subspace into

FA((O' o p)*TvertB) ~ FA(O_*Tvertp*B>
with its tame linear compliment given by ker(ly). O

Corollary 3.2.15. Let M, N, and P be manifolds, with M and N compact. The pro-
jection my : M x N — N defines a 0-tame embedding of C*°(N, P) into C>*°(M x N, P)
as the smooth maps M x N — P that are constant in M.
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3.2.5 Composition

In this section we discuss show that the composition maps is smooth tame. Then we look
at the diffeomorphisms Diff(M) as an open submanifold of C*°(M, M), and, lastly, we
show that taking the inverse is also smooth tame. These results are revisited in the next
section, when we look at bundle maps instead of just regular smooth maps.

Proposition 3.2.16. Let M, N and O be manifolds of finite dimension, with M and N
compact. Then the composition map

com: C*(N,0) x C*°(M,N) — C*(M,O)
is a smooth tame map of degree 0. Its tangent map at (f,g) is given by
Tipgcom :T(f*TO) xT'(¢*TN) = I'((fg)*TO),
(p,7) = pog+Tfon,

and hence is tame linear of degree 1 in the first factor and degree 0 in the second. Higher
order tangent maps TFcom are of similar form, and are tame of up to degree k in each
factor.

Proof. For the smoothness of the composition map, fix two smooth maps f: N — O and
g: M — N, and write h = f o g henceforth. Choose a tubular neighborhood v(h) of the
graph of h. Its fiber v(h), C O is an open subset around h(z) for every x € M.

Any tubular neighborhood v(f) C N x O defines a fiber bundle M x v(f) - M x N,
which can be restricted to a tubular neighborhood v(g) € M x N of choice. This defines
an open subbundle

(M x v(f))ug — vig) = M

of M x N xO — M. Its fiber at any point x € M is the restricted tubular neighborhood
v(f) restricted to the open v(g), C N.

On the other hand, v(h) defines an open subbundle 7(h) whose fiber at x € M is
given by

v(h), = N xv(h), CN xO.

If we can choose v(f) and v(g) such that (M x v(f)),() is contained in #(h), which
implies that for every x € M

V(f)y g V(h)xvvy 6 V(g)ma
we have succeeded in restricting the composition map to typical charts, that is,
com : U,,(f) X U,,(g) — Uy(h).

This can actually be done only assuming that ¢ is proper (apparently without assum-
ing that M and N are compact). One can cover N with open subsets y € V' such that
there is a natural local trivialization

(f*TO)V i V x Tf(y)O.
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In fact, one can choose open subsets y € V'’ such that V' C V, V' is compact, and the V’
still cover N. In particular the V' cover N, hence the ¢g='V’ cover M. The above map
gives a local trivialization

(K*TO) g1y = g~ (V') x TjO.

Now surely the g=}(V’) are mapped in V by g. And since the former are compact, it
is possible to choose a tubular neighborhood v(g) such that

v(g)g-1ony S g (V) x V.
Hence we now have two inclusions of bundles over g=1(V’), namely,

o (M x f*TO)ug), 1 € (M X f*TO) 10y = g~ (V') x V x Ty, O,
o D(h)g—l(f//) — N X (h*TO)g—l(V’) = g_1<‘7,) X N x Tf(y)07

and the second gives a open neighborhood of the zero-section of h*T'O. Now we must
choose a tubular neighborhood v(f) C N x O such that if we include

M x v(f) — M x f*TO,

its image under these identifications is contained in the image of the second inclusion of
bundles. This can be done since g~*(V’) is compact.

One can compute the tangent map of the composition map directly. For any pair of
vectors

(p,7) € TfC*(N,O) x T,C>(M, N)
one can choose representations of the form
o o= 4| _, fiwith fi: (=1,1) = C*(N,0) and f, = f,
° = %{t:[] gt, with g, : (=1,1) - C*°(M,N) and go = g.
Now the composite can be seen as a map of the form
fiog: (—1,1) x M — O
and its partial derivative at t = 0 can be computed by the usual formula

0

a foo g:.

t=0

0
ftogo+a

0
fiogi = a

t=0 t=0

Hence the tangent map at (f, g) can be computed as

d 0
T _ ¢ _9
(raycom{p, v} il . com(f, gi) 5|, fio g
frogo+ Thoo &
—_ — (@) o —
dt|,_," go °7dt|,_, 9t
=gpog+Tfor.

Now for the tameness of the composition map perform the following process.
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e Consider all products of charts V,, x V, C N x O such that the closure V, x V,
is compact and contained in the tubular neighborhood around f. Moreover, as-
sure that V, C f~1(V,). There are many such charts, since V, x V, can be taken
arbitrarily small, and the V, cover N.

e Next consider all products of charts V,, x Vi, € M X N, where V), is one of the above,
and the closure V,; x Vp is compact and contained in the tubular neighborhood
around g. Also assure that V,, C ¢g7*(V,).

e Choose finitely many of the triples (V, V;, V) such that the V, x V, cover the graph
of h and the closure V,, x V. are contained in the tubular neighborhood of h.

For a pair (V,, V) we have an open subset given by
WV, Vo) = {f € C=(N,0) : f(V;) S V.}.

And since there are only finitely many such pairs, this gives an open neighborhood around
f of the form

Wy =YWV, Vo) N Uiy

Likewise, we have open neighborhoods W, of g and W), of h. The composition map now
restricts to a map

com: Wy x W, — W,

Now the seminorms on W}, may be computed as

lg'll, = Z max sup || Dh(a) |

j=1

if the charts are taken small enough. If we restrict the open subsets W; and W, even
further such that || f||,, [|¢'|| < ¢ for a constant ¢ > 0, f" € Wy and ¢ € Wy, the argument
is reduced to the following lemma, c.f. [Ham82b].

As for the tameness of the tangent maps, note that it is combination of compositions
and derivatives. Hence one can give similar arguments. O]

Lemma 3.2.17. Let g : U — V and f : V — W be two smooth maps between bounded
open subsets in Euclidian spaces such that they extend to smooth maps on the closures U
and V respectively. Assume that that there is a constant k > 0 such that || f|,, g, < k-
Then for every n > 1 there is a constant Cy,, > 0 such that

1 o9l < Crn(+[If1, + llgll,)-

Proof. For n > 1, repeated application of the chain rule gives

D”fg Z Z Ck,j17,,,7jkD§(z)f (D?g’ o ,Di’“g) ’

k=1 ji+..+jr=k
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where the ¢ ;, ., > 0 are suitable constants. Hence we may estimate

ID*fogly<Cd > Iflllgly, - lgll, -

k=1 j1+...+j=k

By the interpolation estimates

1A < CUART A
B . -
A1 < CllgllT ™ gl
each of the terms in the double summation can be estimated by

1A lgll, - lgll, < € NI/ g E00 g e g ==
k—1 n—k)/(n—1 k—1)/(n—1 k—1)/(n—1 n—k)/(n—1
< Clglly™" (IS DD g {0/ g o/

k—1 k—1)/(n—1 n—=k)/(n—1
< Cllglly™ Ulglly 1£1) S f 1 gl ey
k—1
< Cllgly ™ Ulglly (171, + 111 gl -

Hence in general we obtain an estimate

1D*f o glly < Cllgly™" (gl 11, + 11 Ngll) < CA+ 1L, + lgll,),

since we assume that the | f||, and ||g||, are bounded by a constant. Since the maps f
and g are bounded, we also have ||f o g||, < C and the lemma follows. O

Suppose that M, N and O are arbitrary manifolds, not necessarily compact. In
[Mat69]|, Mather proves that the composition map is continuous as a map

C*(N,0) x C¥(M,N)—C*(M, 0)

with the appropriate Wiy-topologies for all £ € N, and hence also for the case k = oo.
Here C]f(M, N) denotes the space of proper maps M — N. In the case that M and N
are compact, this provides an alternative proof of the tameness of composition.

Remark 3.2.18. It is necessary to restrict the composition map to the proper maps
M — N. For suppose that p: M — N denotes the constant map with value p € N. Let
gn : N — O be a sequence of smooth maps that converge to g in C°(M,N). Then if M
15 not compact the sequence g, o p doesn’t converge to g op. For one can construct an
open neighborhood U of M x{g(p)} in M x O such that the graph of no constant function
other than g op lies in U. Obuviously this problem is mood as soon as M is compact or
we restrict to proper maps.

For the following corollary let I = [0, 1] be the unit interval, and let mp, : M x I — M
denote the projection on the first component.

Lemma 3.2.19. Let B — M be a bundle over a compact manifold M, and o € I'y/B a
fized section. Then there is an open neighborhood U C 'y B of o such that every section
7 € U 18 smoothly path-connected to o, and there is a smooth tame map

Yo : U—Tyrx1(myB)

that sends each T € U to such a path and o to the constant path.
If M is not compact, then v, is still continuous with respect to the Wy-topologies on
both sides for every k € NU {oo}.
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Proof. Since I'y/B is a closed submanifold of C*°(M, B), it is sufficient to prove the
analogous statement for the latter Fréchet manifold and show that 7, maps sections to
paths of sections.

For any manifold B one can choose a geodesic v : V x I — B, that is, one can find
an open neighborhood of the diagonal ép in B x B and a smooth map v:V x I — B
such that v(x,y,0) = z, y(x,y,1) =y and y(x,z,t) = x for all (z,y) € V and t € I. For
example, choose a Riemannian metric on B, and define v by following the geodesics of
the corresponding Levi-Cevita connection.

Now let U be the set {T € C°(M, B) : (¢(m),7(m)) € VVm € M}. It is straightfor-
ward to see that this set is open in C*°(M, B). Define v, by

Yo (T)(m, t) = y(o(m),7(m),t), Y(m,t) € M x 1.

This is map is defined by composition on the left by v and composition on the right by
the map (,id) : M x I — M x M x I that sends (m,t) to (m,m,t). By proposition 3.2.16
on page 72, this map is smooth tame.

To ensure that v, maps into the space 'y 7 (75, B) it suffices to make sure that if x
and y lie in the same fiber B,,, then so does y(z,y,t) for all ¢ € I. This condition can
easily be satisfied.

For the last statement of the lemma we only need to ensure that the map (d,id) is
proper, but this holds trivially. O
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3.2.6 The group of diffeomorphisms

The diffeomorphism group Diff(M) is an open submanifold of C*°(M, M). We will recall
the proof from Guillemin [MGT73] here for the sake of completeness. In fact, we prove the
following slightly adjusted result, which we will use in the next section. In what follows
we say that a smooth map f € C°(M x N, N) is a diffecomorphism in the N-variable if

f(z,—): N— N € Diff(N, N)
for all z € M. We aim to prove the following about such maps.

Proposition 3.2.20. Let M and N be compact manifolds. Then the subset of maps
f€C>®M x N,N) that are diffeomorphisms in the N-variable lies open.

If O is another manifold of finite dimension and dim(/N) < dim(O) then consider the
set of smooth maps f € C®°(M x N,O) where

f(z,=): N — O € Imm(N, O)

is an immersion for all x € M. Call such a map f an immersion, or immersive, in the
N-variable. We will show that this set lies open in C*°(M x N, O) as a first step towards
proving the above proposition. For if O = N is compact, any injective immersion N — O
is a diffeomorphism.

Lemma 3.2.21. Let M,N and O be manifolds of finite dimension, with M and N com-
pact, and assume dim(N) < dim(O). Then the subset of maps f € C°(M x N,O) for
which

f(x,—) € Imm(N,0), VYreM
lves open.

Proof. Let R™™ be the space of n X m-matrices, topologized as Euclidian space, where
m = dim(N) and n = dim(O). Then the set of maximal rank matrices lies open in R™*™.
For let k = (ky, ..., kn_m) denote a (n — m)-tuple of distinct integers with 1 < k; < m.
Suppose that, for a particular matrix A € R™™, we let Ay denote the matrix obtained
by omitting rows k; through k,_,,. Then the map py : R"™*™ — R defined by py(A) =
det(Ay) is polynomial in the coordinates of A, hence continuous. Now the set of maximal
rank matrices is given by

Ukplzl(R —{0})

and hence is open.

Let (U, ) and (V%) be charts of M x N and O respectively. Let k = dim(M) be
the dimension of M, and U’ = o(U) C R, x R¥™~1 and V/ = ¢(V) C R" be the local
domains. Then a typical chart of the first jet bundle J'(M x N, O) is of the form

Upy = (o ) JYUV) S JHU V) 2 U x V! x R,

Elements of R™*(#*™) can be written as (A|B) with A € R™* and B € R"™ ™, separating
the first k& columns from the latter n. The set O’ of matrices for which B is of maximal
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rank is open, hence so is U’ x V' x (', and it defines an open subset of J*(U,V). In
turn, the union of all such open subsets over all typical charts defines an open subset
O C JY (M x N,O). 1t is easy to see that this open is independent of the chosen covering
of charts; maximality of matrices is invariant under conjugation.

A smooth map f: M x N — O is immersive in the N-variable if and only if its first
jet maps into O, that is, if

i (f)(x) € O, VreM,
hence the subset is a typical open for the compact-open topology on C*°(M x N,0). O

Lemma 3.2.22. Let M, N and O be manifolds of finite dimension, with M and N
compact, and assume dim(N) < dim(O). Suppose that f € C°(M x N,O) is an im-
mersion in the N-variable. Let (xo,y0) € M x N be arbitrary points, then there are open
neighborhoods

(z0,90) EU' x U* C M x N
and
feWwW CC®M x N,O)
such that g(z,—)|y2 is an injective immersion whenever g € W and v € U'.

Proof. Adopt the notation f(z) = f(x,—): N — O for all = € M, so that the notation
is less cumbersome.

Begin by choosing open subsets zo € U' C M, yo € U* C N and f(zo,y0) € V3 C O,
together with chartings (U?, ¢) and (V},1). Now choose smaller open subsets U* C U°
with compact closures U’ still contained in U, for i = 1,2. We may assume that the
open subsets are chosen such that f(U! x U?) C V; and ¢(U?) is convex.

For any map g € C*(M x N, O) such that g(U! x U?) C V; let

g=vogo(lxe):U" xpU? —R"

define its "local representative’. Then for every z € U' we define a constant k(x) > 0 by
the expression

k(x) := min inf H (dy f H

y€p(U?) [[v]=1

Note that k(x) > 0 because dyf(x) is injective for all y and ¢(U?) is compact. Moreover,
the map k : x — k(x) is easily seen to be continuous.
Now let W be the set of all g € C*°(M x N,O) such that

g((jl X UQ) g Vf

s (Ao f (@) = 3(@)) o] < 52 vy € p(0%), w e U

¢ SUP|y|=1 ‘
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The first is an open C° condition because U' x U? is compact. The second can be
rephrased in a way similar to the former, and is an open C' condition since ¢(U?) is
compact as well. Hence W is an open neighborhood of f € C*(M x N, O).

Now let ¢ € W and = € U' be arbitrary. Then for all y;,y, € ©(U?) we have the
estimate

o)1 =) < 3@, m0) = 3l o)

| (A F @ = 3. 0)) = (dof @) = 3. 10)) |

and by the first order Taylor formula with integral remainder there is some y € [y1, 3] C
©(U?) such that the final term is bounded by

(Ao F@) = 3@l — vl < 22y — gl

sup
floll=1

Hence from the estimate

_ k@)
2

k(z)
T ||?Jl - yz”

dcpyof(x)(yl ) v — yel >

96, 31) = (a2 | > |

we conclude that g(z) is injective on U2 for all € U!. Since we already shown that the
immersions in the N-variable form an open subset, we have completed the proof. O

Proposition 3.2.23. Let M, N and O be manifolds of finite dimension, with M and N
compact, and assume dim(N) < dim(O). Then the subset of f € C°(M x N,O) such
that

f(l’, _) : N — O
is an injective immersion for all x € M lies open in C°(M x N, Q).

Proof. Fix an f € C*°(M x N, O) as described above. Now choose finitely many points
(0,90) € M x N such that the U(lxo ) X U(on w) = U' x U? from the previous lemma

cover M x N. Let W, ., be the corresponding open W C C*°(M x N, O). Then define
two open subsets

W= Nao,90) Wiao,p0)
._ 2 2
V= U($07y0)U(xo,yo) X U(onyo)‘
Now the map g(z,—) is an immersion for every ¢ € W and = € M. Note that the
diagonal A of N x N is fully contained in V. Moreover, if (y1,42) € V — A and = € M,
then (y1,y2) € UZ, 0y X Ul oy and @ € U(, .\ for some pair (zo,y0) € M x N. This

(w0,y0
holds because there should be a pair (g, o) such that (z,y;) € U} ) X U(2xo,yo) for both

(0,30
i=1andi=2,and (y;,y2) € V implies that these pairs should coincide. Since y; # ys,
we conclude that g(x,y1) # g(x, y2).

We complete the proof by contradiction. Suppose there is no suitable open neighbor-

hood of f. Since we already saw that C*°(M,Imm(N, O)) is open, the failure must lie
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with the injectivity condition. Take a sequence g, € W converging uniformly to f such
that for every n € N there are triples (z,, yn,n,) € M x (N x N — A) with

Gn(Trs Yn) = Gn(Tn, ).

Since g, € W, we must have (y,,n,) € N x N —V by the arguments above. The set
M x (N x N —V) is compact, it is closed in M x N x N, hence we may assume without
loss of generality that z, — z, y, — y and 1, — n converge. Clearly (y,n) € N x N -V
still holds, so in particular y # 1. Yet by the uniform convergence we still have f(x,y) =
f(z,n), which gives a contradiction. [

Corollary 3.2.24. Let M be a compact manifold. The space of diffeomorphisms Diff( M)
is an open submanifold of C°(M,M). Its tangent map at the identity of M is 0-tame
1somorphic to

TigDiff(M) ~ X (M),
the space of vector fields on M.

Proof. We have just shown that Diff(M) is an open subset of C*°(M, M) with respect to
the Whitney-C™ topology and that this topology and the Fréchet topology on C*°(M, M)
coincide. Furthermore, the tangent space at the identity of M is canonically 0-tame
isomorphic to I'y,(id*T'M) = I'y (TM) = X(M), as was proven in proposition 3.2.4 on
page 64. O
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3.2.7 Inversion

We will now show that the map that sends a diffeomorphism to its inverse is a smooth
tame map.

Proposition 3.2.25. Let M be a compact manifold then the inversion map
inv : Diff(M) — Diff(M)
is a smooth tame map of degree 0. Its tangent map at [ € Diff(M) is given by

Trinv: T(f*TM) — T((f )" TM),
pr—Tflopof

Moreover, it is 0-tame in an open neighborhood of the identity map.

Proof. There are three things to prove here. We need to show that inv is a continuous
map, inv is a smooth map with the tangent map as described above, and all derivatives
of inv are tame maps.

Let us begin by showing that inv is a continuous map. Note that this is necessary
because we have only defined differentiability for continuous maps between Fréchet man-
ifolds. Recall that if U C J¥(M, M) is an open subset of the k-th jet bundle, then

M(U) = {f € Diff(M) : j*(f)(M) C U}

defines an open subset of Diff(M ), and the family of all such open subsets forms a basis
of the topology on Diff(M). Hence it is sufficient to check that the inverse image of such
an M (U) along inv is again an open subset of Diff(M).

Suppose that k = 0, then we have J°(M, M) = M x M as a trivial bundle over M.
For any f € Diff(M), the 0-th jet j°(f) corresponds to graph; C M x M, the graph of
f. The interchange map,

T:MxM—MxM:(x,y)— (y,z),

has the property that graph,. = 7(graph;) for every f € Diff(M). Suppose that
U C M x M is an open subset . Then graph,—, C U if and only if graph, C T HU),
because 7 is a homeomorphism. This implies that

inv ' (M(U)) = {f € Diff(M) : graph; « C U}

is an open subset of Diff(M). Hence inv is continuous with respect to the Whitney C°
topologies on both the domain and codomain.

Next we will show that inv is a smooth map. Fix a diffeomorphism f € Diff(M).
We have already shown that the composition map com, and both f, = com(f,—) and
f*=com(—, f) are smooth tame maps. Since we can always write

inv(g)=g ' =f"o(gof ) =(fNoinvo (f ) (g),

it is therefore sufficient to prove differentiability at the identity element id € Diff(M) in
order to prove that inv is C*. For the higher derivatives we note that the first derivative
is again a combination of compositions and inversions.

81



Let v € T;yDiff(M) = X (M) be a tangent vector at id. Its flow ¢ : (—=1,1) x M — M
is complete, because M is compact. In particular, it satisfies g = id and %| 0Pt =1,

hence it can be seen as a smooth curve in Diff(M) that represents the tangent vector
v € TiDiff(M). Tt follows that

d inv(p,) 0 !
— \ = — = —v
dt tzo gpt at tZO ()Ot )
since
0 0 0
0 = — d = — —1 = + —_ 71’
o), ot| 0 T T e,

where we use the chain-rule and that ¢y = ;' = id. Hence inv is differentiable at id and
(Tiginv)v = —v by remark 3.2.5 on page 66. Recall from proposition 3.2.16 on page 72
what the tangent maps of (f~!)* and (f~!), are. For any f € Diff(M) and tangent
vector v € [y (f*T'M) we have

(Tyinv)o = Ty((f ). oinv o (f71)")v
= Tiqcom(f ™', —) o Tiginv o Tycom(—, f~')v
— T ovo f,

hence inv is also differentiable at f. The tangent map of inv is a combination of com-
positions, inversions, and differentials, hence it is again a differentiable map. The same
observation holds for higher order tangent maps of inv. We conclude that inv is a smooth
map.

Finally we will show that inv is actually a smooth tame map. Because the tangent
map of inv up to any order is again a combination of compositions, inversions, and
differentials, it is sufficient to check that inv is a tame map. By the translation trick

gl=fTo(gofH

it is sufficient to check that inv is tame in an open neighborhood of the identity. We will
do this by reducing the proof to a lemma by Hamilton.

Let m be the dimension of M, and let B, C R™ denote the open ball of radius
r € Rsg around the origin. Cover M by finitely many charts {(Ua, ¢a)},c4 such that
¢0a(Uy) = Bs for all @ € A, and that the open subsets U := ¢! (By) still cover M. Also
define U2 := ¢, (Bs) for a € A. We will first show that there is an open neighborhood
V' of the identity in which every f satisfies

Ul C f(U?) CU,. (3.2.2)
Note that the set A is finite, and the set
M(UZ,U,) = {f € Diff(M) : f(U7) C Ua}

is open in Diff(M) for every a € A. Hence the set Naea M (U2, U,) is open as well. This
enforces the right-hand-side of (3.2.2). The continuity of inv implies that also the set

inv (M (U}, U2)) = {f € Diff(M) : f~(U}) C U2}
= {feDiff(M): U} C f(U2)}
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lies open in Diff(M). Hence the set Nyeainv™ (M (U}, U2)) is open as well, and this
enforces the left-hand-side of (3.2.2). The definition of V' is now obvious.

Secondly we will choose two charts of Diff(M) around the identity and give descrip-
tions of the corresponding gradings to clarify why we want to prove lemma 3.2.26 below.
We begin by choosing a chart in the codomain of inv. Let £ = v be a tubular neigh-
borhood around the diagonal A along the fibers of pr; : M x M — M. Take this tubular
neighborhood small enough such that v C U,eaU! x U2. Then the U, provide local
trivializations of E, such that Ey, — U, x U2, for all « € A. If g € T'yv, then let
g“ : By — B, denote the local representative of g|y1 along all the trivializations and
charts. Since the family {U!l} already covers M, the C*-norms on 'y, are of the form

_ « _ Yo"
lolle = masa llg*l = 3 >, mae sup |07 ()

for every g € I'yv.

Likewise, let E = & be a tubular neighborhood around A along the fibers of M x M.
Moreover, assume that 7 C V Ninv ™' (I'yv), so that all f € Iy satisfy (3.2.2), and inv
maps ['y,7 into I'yv. Let f¢: By — Bs denote the local representative of f|U§ along all
the trivializations and charts. Then the C*-norms on I';# are of the form

Il = maxa 12 =30 0 maxg sup [07 7).

€ B
To make tameness estimates it is now sufficient to compare || f||, with ||(f*)7'|,. O

The following lemma and its proof are copied directly from [Ham82b|, except for a
correction in the estimates, and a few comments and clarifications of the arguments. I
have included the proof for the sake of completeness.

Lemma 3.2.26 (Hamilton). Let B, C R™ denote an open ball of radius r € Rso around
the origin. Let [ : By — Bs be a smooth map wich extends to a smooth map f: U — R™
on an open subset U of the closure By. If € > 0 is sufficiently small, and if || f — id||, <e,

then f=': By — By exists, and for every k € N there is a constant C > 0 independent of
f such that

1 < O+l
for all such f.

Proof. In the previous proposition we already showed that the inverse of f exists and
maps B into By if f is C%-close to the identity. We will write g = f~!, so that D,g =
(Df—l(x)f)_l. This implies that if ¢ > 0 is sufficiently small, there is constant C' > 0
independent of g such that

HDQHO <C.
Here we have used that we can make estimates
[Dflly <CA+IDf —idlly) <CA+[f —id|,) <C,

and the fact that ||A|| = ||A~Y| for any linear map A : R™ — R™.
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For n > 2 we have D"(f o g) = D"id = 0, hence we obtain an equation

0=D}(fog) =Dy foDig+> > rjjiDiwyf(Dlg,... . Ditg),

k=2 j1+...+jk=n

where the ¢, ;, are suitable constants. We can solve this for D7 g to get the equation

Dlg=— ﬁgz > gD f(Dig, ... Ditg).

k=2 j1+..+jr=n

This leads to the estimate
n
ID"glly <C> > fllllglly, -+ gl
k=2 j1+...+jr=n
By interpolation we have estimates
1 —k k—1
£ < CIFR Il
lgll?™ < Cllglly ™ llgllh )

Moreover, we can estimate || f||,, |l¢]|; < C, and k > 2 and j; + ...+ ji = n implies that
Iy -5 g <n— 1. This leads to the estimate

n k—1)/(n—1 n—=k)/(n—2
1D glly < O3 [ FYV D g )

We complete the proof by induction on n. For n = 1 the lemma holds. Now suppose that
n > 2 and

191l < C A+ fll,y)-

Then by the interpolation estimate

-1 -2
1= < W1 A1

we have that

(L4 1£ll,y) < CA+]f]],) /0D
if we ensure that || f||; < C. Hence we need to take C' > 1+ ¢. This implies that

1D glly < C S ANV (1 4 1 £],) R 0D < e+ | £]],)

k=2

The one in (1 + || f]|,,) on the right-hand-side is necessary. we cannot estimate

1AL <

because k£ — 1 might be smaller than n — 1, but we can make an estimate
1717 < e+ £,

and continue our estimates using this. Now use that

191l < Ngll—y +11D0"gllg < CC+ (1 f1l, -y + [[f]l) < CA+[111,)- O
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Remark 3.2.27. At the end of the proof of proposition 3.2.25 on page 81 we apply
lemma 3.2.26 on page 83 once for every f*. In the lemma we impose an open condition
| f* —id||, < eq for every a € A. Since the index set A can be chosen finite, these
conditions define an open subset {f € V i || f* —id||, < €4,V € A} of V.

Recall that the composition map is not O-tame, its tangent map is at best tame
of degree 1 in the first component. With the translation trick used here it cannot be
avoided that g appears once in both components of the composition map, hence this
proof doesn’t imply that the inversion map is O-tame. Moreover, the formula for the
tangent map suggests that it is highly unlikely that the inversion map is 0-tame, even
though it is O-tame in a neighborhood of the identity map.

We finish this section by summarizing a part of the results in a corollary.

Corollary 3.2.28. Let M be a compact manifold, then the diffeomorphism group Diff(M)
is a tame Lie group. Its tangent space at the identity is the graded Fréchet space X (M)
of vector fields on M.
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3.2.8 Bundle maps A — B

This section provides more examples of tame manifolds, smooth tame maps, and, in
addition, examples of tame fiber bundles. It generalizes the results from the previous
section to maps between fiber bundles. We will do this in the two steps described below.

First we will consider two bundles A — M and B — M over the same base manifold.
We will typically assume that A, and hence also M, is compact. Then we consider bundle
maps of the form

A ! B

N

M

in other words, the smooth maps f : A — B that map fibers into fibers over the same
base point. These are the usual arrows in the category Bund,; of bundles over M, hence
we will denote the set by Bund,(p, ¢) or if no ambiguity arises by Bund,,(A, B). We
will show that it naturally becomes a tame manifold and the natural maps remain smooth
tame as well. In particular we have the open submanifold

of fiber preserving diffeomorphisms over M and show it is also a tame Lie group.
As to be expected, the previous section returns to us as the special case where M = {*}
is the one-point set and to sections of a fiber bundle via the bundle maps

F]\/[A = Blll’ldM(M, A)

We show that Bund,;(A, B) is a closed submanifold of C*(A, B); in a sense they are
not more general than smooth maps.

We begin with two bundles A £ M and B - M over a compact manifold M and
assume that A is compact. There are at least three equivalent descriptions of the space
of bundle maps. The first is just the subspace of C*°(A, B) of smooth maps

A d B

N

M

as described above. For the second description, consider the pull-back bundle p*B as in
the diagram below,

p'B

p

B

p.b. q

p

A M.

The fibers of p*B are of the form p*B, = B4 hence a smooth section of p*B also defines
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a smooth bundle map via composition on the left with p/,
p.:Ta(p*B)—Bundy (A, B):0+— p'oo.

This is just the restriction of the map p, : C*(A,p*B) — C*(A, B) to the closed
submanifold T'4(p*B), hence it is continuous if we induce Bund,;(A, B) with the subset
topology.

On the other hand, a bundle map f : A — B defines a smooth section o; € I'4(p*B)
simply by defining o¢(a) := f(a) € Bp(,). This defines a map

oy : Bundy (A, B) —T4(p*B) : f — oy,

which is clearly the algebraic inverse of p/. It is straightforward to check that this maps
is also continuous. Hence Bund);(A, B) may be equipped with the usual smooth tame
structure on I'4(p*B). We should make certain that if Bund,, (A, B) can be considered
as a submanifold of C*(A, B), this coincides with the smooth tame structure defined
above.

Proposition 3.2.29. Let A% M and B %5 M be bundles over the same base manifold
and assume that A is compact. Then the space Bundy (A, B) ~ I'a(p*B) of bundle maps
is a tame submanifold of C*(A, B). Its tangent space at f € Bundy (A, B) is given by

TfB’U,’nd]w(A, B) = PA(f*Tvertp*B>'

Proof. We only need to check that p/, embeds I'4(p*B) into C*°(A, B). The local model
at f of Ta(p*B) is given by T'a(f*TV*"* B). We have an inclusion of vector bundles

Tvertp*B N p/*TvertB N p/*TB

defined by
Tvert p* B Tp'
I \K‘
;/*Tvert B Tvert B
e p.b. B
prA - B,

where T'p' maps between vertical vectors into vertical vectors since dg o Tp' = T'p o d¢/,
and p' o myp = mp o T is obvious. The fact that this map is injective is easily checked
by writing down its explicit formula.

Note that the local model of C*(A, B) at p.(f) = p'f is just Ta((p'f)*T'B). The
above gives an inclusion of vector bundles

©: f*Tvertp*B SN (p/f)*TB
The composition on the left map ¢, coincides, up to some isomorphisms, with the map

F(f*Tvertp*B) —>F<<p/f)*TB)
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induced by p. and the chosen charts by virtue of it being defined as a universal arrow.
Now one can choose a metric g on T'B and choose an orthocomploment E C (p' f)*T' B
of p(f*TV*"* p*B). This gives a tame direct sum

La((P'f)TB) ~ Tale* (fT"p"B)) & T(E). =

In section 5.1 on page 97 on the stability of mappings we will expand this setting
further by considering bundle maps between two bundles A — M and B — N with
possibly distinct base manifolds.

Suppose that B is compact as well and C' — M is a third bundle over M, not neces-
sarily compact. Then by the above it immediately follows that the fiber-wise composition
map

com : Bund (B, C) x Bund (A, B) — Bund (A, C)

is a smooth tame map of degree 0. Its tangent map at (f,g) is given by the familiar
formula

T(ﬂg)com : (go,”y) —pog+Tfon.

The space of invertible bundle maps of A — M is of course just the intersection Diffy; A =
Bund,,; (A, A)NDiffA, and hence is an open submanifold of the space of all bundle maps.
Its tangent space at the identity is the space of vertical vector fields of A, commonly
denoted as XV**(A). Lastly, the inverse of any bundle map preserves fibers itself, so the
restriction of the inversion map,

inv : Diﬁ.MA—>Diff]\/[A,
is a smooth tame map of degree 0. Its tangent map at f is given by
Trinv :n— —Tftono f,

where, as with the tangent of the composition map, one must interpret 7 as a tangent
vector of C*(A, B) at p.(f).

The third description begins by defining a tame fiber bundle over M whose smooth
sections will describe the bundle maps A — B. Fach of its fibers consists of the space of
smooth maps A, — B,. In defining this bundle there is no need to assume M is compact.
We do need that p is a proper map such that each of the fibers is a tame manifold. Then
p is automatically a fiber bundle by the Ehresmann theorem, and for the construction of
C*(p, q) we will assume that ¢ is a fiber bundle as well.

Lemma 3.2.30. Let AL M and B35 M be fiber bundles over the same base manifold
M and let p be proper. Then the bundle C*(p,q) — M whose fiber at x € M is given by

Coo(p’ Q)Jc = COO(Am Bx)

15 a tame fiber bundle over M.
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Proof. For an arbitrary point € M one can choose an open neighborhood U C M and
two local trivializations

wA : AU i) U x A:E7
Vp: By = U x By,

so that we obtain a trivialization of the large bundle,
U:C®p,q)u—U x C*(A,, B,),

defined as follows. If y € U then f € C*°(A,, B,) is send by VU to

(V5ls,) 0 fo (dala,) " € C®(A,, B,).

Any other open U’ C M around a point 2’ € M with corresponding maps v/, 1z and W’
yields a transition map

Vol L UNU x O%(A,, By)—UNU x C%(Ay, By).
Fix a point y € U C U’, then ¥'¥~1(y, —) maps a function f € C*(A,, B,) to

Vo Uy, £) = (v, Wsls,) o (Walp,) " o fo (Wala,) o Wila,) ™),

which is just a combination of pre- and post composition by certain maps. Hence ¥/'¥~!
is smooth tame in the second component.

Now fix a function f € C*(A,, B,) and vary the first component of the transition
function. If we write

(p1,04) = a7 :UNU x A, —UNU x A,
(p1,08) = VY :UNU' x B,—UNU" x By,

then the ¢4 and g define smooth tame maps
oa:U0UN U/—>COO(A;37AJ:> Y= @A(yv _)’
¢p: UNU —C®(By, B) 1y — o5y, —),

respectively. Now W'¥~1(—, f) is the smooth tame map UNU'— U NU' x C*(A., B.)
whose first component is the identity on U N U’ and whose second component is given by

VU (—, f) = como (id x com(f, —)) o (?p, Pa) © Aprur.
Hence the transition maps are smooth tame. Il

Assume once again that M is compact, so that we are working with two compact
(fiber) bundles A and B over M. A bundle map f : A — B gives rise to a section 74 of
C>(p,q) by restricting f to the appropriate fiber of A, that is, by the formula 7¢(x) =
fla, : Ay — B,. This section is in fact smooth, for consider an open neighborhood
x € U C M on which both A and B trivialize, as in lemma 3.2.30 on the facing page.
the trivialization of f,
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BZ 2
f

Ay By,

defines a smooth map U — C®(A,,B,) : y — f(y,—). The latter map is the local
trivialization of 7y, hence 7; does indeed define an element in I'y;C>(p, ¢). We also need
to show that 7y : f +— 7 is a continuous map if I'y,C*(p, q) is equipped with the
compact open topology. Its inverse is the map

foy : TwC=(p,q) — Bundy (A, B) : 7 — f,,

where f;(a) = 7(p(a))(a), and this map is continuous for the same reason. We conclude
that the natural maps between Bund (A, B) and I"),;C*(A, B) give homeomorphisms,
hence the smooth tame structure on Bund,,(A, B) carries over.

It is perhaps possible to prove that I'y;C>(p, q) is a tame manifold in a more direct,
and possibly more natural, way, although this might actually result in reordening the
above construction. On the other hand, it does not seem likely that I'j;3 can be given
a tame Fréchet structure for any tame fiber bundle over M. The charts for I'y;B, with
B a finite rank fiber bundle, where constructed via a choice of Riemannian metric and
the resulting exponent map. Following this approach, one has to construct a Riemannian
metric on B and a exponent map, which is typically defined using the existence and
uniqueness of solutions to ODEs. Both constructions are non-trivial for Fréchet spaces.
However, in this case it is not necessary, and we might as well avoid it; such manifolds
would become even more cumbersome to work with.

This discription does have at least one advantage: it suggests that the tangent space
should be of the somewhat more conceptual form

T.TyC>(p, q) = Ta (7" T C>(p, q)).

In particular, this heuristic will lead to the following, rather nice, description of the
tangent space of Diffy;(A). Let X'(p) — M be the vector bundle whose fiber at x € M
is the Fréchet space of vector fields on the fiber A,, X(p), = X(A;). Then the tangent
space of Diffy;(A) at the identity should be the space of sections I'y; X (p).

Proposition 3.2.31. Let A % M be a proper fiber bundle over a base manifold M with
boundary. Then the bundle X (p) — M whose fibers at x € M are given by

X(p)ac = X(Am>7
the vector fields on the fiber A,, forms a 0-tame vector bundle.
Proof. The proof is essentially analogous to lemma 3.2.30 on page 88 with the addition

of checking that the transition maps are linear. O

Now the space of vertical vector fields is easily seen to be homeomorphic to I'p; X (p)
by the map that sends v € X¥'*(A) to o,(x) = v|a,. In fact, there is a natural Fréchet
grading on '), X (p) which makes the above map a tame linear isomorphism. Going into
more detail on this grading, however, doesn’t seem to add anything to the discussion at
this point.
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Chapter 4

The Nash-Moser theorem

In this chapter we state the Nash-Moser inverse function theorem and a variation, the
Nash-Moser theorem for non-linear chain complexes. We will prove that the latter implies
the inverse function theorem, yet a converse is not so easily obtained. Chapter 5 treats
several applications where mainly the version for chain complexes is applied. It is only
in chapter 6 that we get to proving this theorem.

Theorem 4.0.32 (Nash-Moser-Hamilton). Let P : M — N be a smooth tame map
between tame manifolds with smoothing operators. If there is a smooth tame vector bundle
map

VP : P*TN — TM

that is the point-wise inverse of the derivative of P in the sense that for every x € M we
have

D,P o VP, = idr,
VP, 0 D, P = idg, 1,

then P s locally invertible in the sense that around every x, € M there is an open
neighborhood x, € U C M on which P has a smooth tame inverse P~'. Naturally, in
this case the derivative of the inverse is D(P™') = VP on U.

Before stating the version for non-linear chain complexes, we will first introduce the
needed terminology. A tame non-linear complex is a triple of smooth tame maps

P R
M —=N=0
S
such that Ro P = S o P. Such a complex is tame exact at a point o € M if there exist
neighborhoods x, € Y C M and P(z,) € V C N and a smooth tame map
Q:V—-Uu

such that if y € V satisfies R(y) = S(y) then PQ(y) = y. In other words, @ is a local
right inverse of P when restricted to the equalizer set of R and S,

eq(R,S) ={y e N: R(y) =Sy)}.
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Such a set is generally not a submanifold of A/, but the smooth tameness of Q still makes
sense on open subsets of A/ around points in eq(R, S). The chain complex is locally tame
exact if it is tame exact at every point of M and tame exact if the map ) can be chosen
globally. Clearly, tame exact implies locally tame exact.

Note that R and S both coincide on the image of P, yet their derivatives might still
differ. The defect can be measured by

0.R : P*TN — (RP)*TO = Dp()R — Dp)S

since both maps on the right map into the same fiber of (RP)*T'O. The linearization of
a tame non-linear complex is the sequence of vector bundle maps

™™ 2L prrn 2 (RP)TO.

It satisfies the usual condition 6 R o DP = 0 of linear chain complexes.
Such a linear chain complex is tame exact if there are smooth tame vector bundle
maps

(RP)TO & PN 2 T
satisfying the homotopy relation
DPoVP+ VRodR =idpry.

The maps VP and VR will be called homotopy operators.
The version for non-linear chain complexes can now be formulated as follows.

Theorem 4.0.33 (Hamilton). A tame non-linear complex is locally tame exact if its
linearization is tame ezact.

Corollary 4.0.34. The inverse function theorem follows from the non-linear chain com-
plexes theorem.

Proof. Suppose that P : M — N satisfies the hypothesis of the Nash-Moser inverse
function theorem. Take O = N and let R = S both be the identity on N to obtain the
chain complex

b id
M = N=N.
id

The equality R(y) = S(y) is trivially satisfied for all y € N and we are allowed to take
VR = idrp such that
DPoVP +VRo§R = idpy + idya 0 0 = idpyr.

Hence there are open subsets z, € Y C M and P(x;,) € V C N and a smooth tame map
@ :V — U sothat Po(@ =id on V, that is, P has locally a right inverse.
Now consider the chain complex

o . id
YV =U=U.
id
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Let VQ : Q*TU — TV be defined by
VQy = Doy P

and let VR be the identity map of Q*TU. V() is a smooth tame vector bundle map over
V. Then we have

DQoVQ+VRodR=DQoVQ =idg-ru,

since the identity Dg, P o DyQ = id from above implies that
Vow) P = Vo) P o Doy P o D,Q = D,Q,

so that
DyQ o V,Q = Vo) P o Do) P’ = idg-ru.

Hence there are open subsets P(z,) =y, € V C V and Q(y) = x5 € U C U and a smooth
tame map Q : U — V so that Q o Q = id on U.

By restricting the open neighborhoods we conclude that () : &/ — V has a smooth tame
right inverse Q and is injective, hence it has an inverse. We deduce that Q=PQQ="P
on U, hence P is locally invertible. O

4.1 A version with group actions

Let G be a tame Lie group and let M and N be two tame manifolds, such that M,N,
and G all allow smoothing operators. Suppose that G acts smooth tamely on the left on
both M and A in the sense that the maps

p:GxXM—=M,
V:GxXN =N

are smooth tame. Now let R, S : M — N be two smooth tame maps equivariant under
the actions of G.
Suppose that x € M satisfies y = R(z) = S(x), then by equivariance any element z’
of the orbit G(x) through x satisfies R(2’) = S(z’). Define a smooth tame map
P:G—M:g—g-x

and consider the resulting non-linear chain complex (P, R,S). We wish to apply the
Nash-Moser theorem to this situation. This will provide conditions under which the orbit
G(z) lies open in the equalizer set eq(R,S) induced with the subset topology.

Assume that the linearization at the unit e € G, which we define as

0="7.6 % T.ML TN

with dy = T,P and d; = T, R — TS, splits tamely in the sense that there are tame linear
maps

TNHTM
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such that the homotopy relation
d00h0+h1 Od1 :ldTIM

is satisfied. We wish to prove the hypothesis of the non-linear chain complexes theorem
from this assumption.
Note that the action ¢ : G x M — M induces a smooth tame map

Vs 1 G X TxM— P*TM

by taking the tangent map at x € M in the second component. It maps a pair (g,v),
with ¢ € G and v € T, M, to the vector Tp(g)v € Tyg)eM = Tpy)M and hence is a
vector bundle map over G. Its inverse, the map

o PPTM—G x T, M

defined by sending v € Tp(,)M to the pair (g, T¢(g ")v) is easily seen to be a smooth
tame map as well. For recall the maps associated to the pull-back bundle P*T)M, as
indicated in the pull-back square

Q

P*TM ™M
aMm p.b M
G L M

Then * is the composition of smooth tame maps
= (id x TMp) o (id x i x id) o (Ag x id) o (g, Q),

which takes values in the tame submanifold G x T, M of G x T!M. Hence the vector
bundle P*T'’M is tamely isomorphic to the trivial bundle G x T, M over G.

The same can be said about the multiplication m : G x G — G, seen as a left action
L = m of G on itself, and the action ¢ : G x N' — N. We obtain that TG ~ G x g and
(RP)*IN ~ G x T,N tamely.

This allows us to define vector bundle maps over G by

VP : P"TM—TG, VP =L,ohgoy",
VR : (RP)*TN — P*TM, VR = ¢, 0h;ot*.

These maps satisfy the identities

%Po%P—TPoEM@O%OﬂwWWI)
g)oT.PohgoTpye(g")
1

= p(
= Txgo(g) o doho o Tpyp(9™ ),
VR0 0,R = Typ(g) © hy 0 Trpg(g™") 0 6, R
=T,o(g)ohidy o Tp g)SO(g 1)
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so that the required homotopy relation is satisfied,

T,P o VP(g) + VR(g) o §R(g) = Tup(g) o (doho + huidy) o Tpye(g™)

= idrp M

for every g € G. Hence the hypothesis of the non-linear chain complex theorem are
satisfied. The results of this section can be summarized in the following theorem.

Theorem 4.1.1. Let G be a tame Lie group acting tamely on the left on two tame
manifolds M and N, all of which allow smoothing operators. Let R, S : M — N be two
smooth tame equivariant maps and let

P:G—-M:g—g-x
be the action on x € M. If the linear exact sequence

splits tamely, then there are open neighborhoodse € U C G and x € ¥V C M and a smooth
tame map g : V — U such that g, - v =y whenever R(y) = S(y). In particular, the orbit
G(z) of x € M forms an open subset of

eq(R,S) ={ye M:R(y)=5S)}.
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Chapter 5

Applications

This chapter discusses some applications of the Nash-Moser theorem, in particular of
the version with group actions. Most, if not all, applications in the literature follow the
concept

infinitesimal stability = stability.

Typically one studies a collection of geometric objects on a fixed compact manifold M
whose defining property can be expressed by an algebraic relation. As an example,
regular foliations are the distributions that are involutive, or group actions are maps
a: G x M — M satisfying the associativity condition (gh)-m = g-h-m. Next one lets a
group of diffeomorphisms act on a fixed object; for example, the pull-back of distributions,
or conjugation of group actions; which yields an equivalence relation on the geometric
objects. The conclusion of the Nash-Moser theorem then gives a statement of the form
(stability)

‘The orbit of said object lies open in the space of all such geometric objects,’

while the hypothesis of the theorem gives a technical condition on the fixed object and the
base manifold. Lastly, one looks for more natural conditions under which the hypothesis
is satisfied (infinitesimal stability).

Most of these applications concern global results. Yet it does seem likely, for exam-
ple from Conn’s proof [Con85| of the normal form of Poisson form around a singular
point, that the theory can also be fitted to resolve questions about local stability: the
deformation of germs at a point in M.

This approach has one major drawback. In all applications one has to carefully check
all smooth tameness conditions are met. This often makes the Nash-Moser theorem a
cumbersome technical tool. This thesis aims to give an overview of applications and
examples such that it becomes more readily applicable.
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5.1 Stable maps

Let M and N be manifolds of finite dimension with M compact and consider the space
of smooth maps C*°(M, N). First we introduce the concept of stability for smooth maps,
as given in [MGT73,Mat69]. The product of diffeomorphism groups Diff(M) x Diff(V)
acts on the smooth maps M — N by a change of coordinates, namely

Diff(M) x Diff(N) x C**(M,N)—C*(M,N) : (¢, f) = o fop .
Two smooth maps f and g are called equivalent if there are ¢ and v such that

g=tvofop .
A smooth map f is called stable if there is an neighborhood of f in C*(M, N) in which
all functions are equivalent to f. This is clearly equivalent to saying that the orbit of
f under the action of the topological group Diff(M) x Diff(N) lies open in the smooth
functions.

Proposition 5.1.1. Let M and N be manifolds, with M compact, then f : M — N 1is
stable if it is infinitesimally stable.

Clearly not every smooth map is stable. The change of coordinates preserves the
rank of the tangent map T,—1(,) (¢ fo™!) at every point x € M. As a particularly simple
example, consider the map

f[-1,1]—=R:zw—2*

and approximate it with the one-parameter family of maps f; : # — a® — tx with the
parameter ¢ € [0,1]. None of the f; for £ > 0 is equivalent to f since the number of
critical points differs from f.

Mather gave the following conditions for infinitesimal stability. A smooth map f :
M — N is infinitesimally stable if for every w € 'y (f*T'N) there are v € X(M) and
v € X(N) such that

w=Tfou+wvo f.

Guillemin and Golubitsky mention that the statement of the theorem was motivated by
heuristics with Fréchet manifolds, without knowledge of an inverse function theorem.
Nonetheless, Mather’s proof is more direct, without mention of Fréchet manifolds, and
in addition works for any proper map f: M — N.

The Nash-Moser theorem obviously cannot be applied directly to this setting, as
Diff(N) is not a tame manifold, hence let us assume that N is compact as well. The
spaces Diff(M);q x Diff(V);q, the connected component at the identity, and C*°(M, N)
are now all smooth tame manifolds. Fix a smooth map f € C°°(M, N) and define the
map

Diff(M)ld X Diff(N)ld F

O (M, N)
(inv x id) com

lef(M)ld X Diﬂ(N)ld m COO(M, N) X lef(N)ld

Diﬂ"(N)ld X COO(M, N),

T

in other words,

P =como 7o (com(f,—) x1id) o (inv x id),
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where 7 is the interchange map and com and inv are composition and inversion. More-
over, tangent map

T(id,id)P : X(M) X X(N) —>F]V[(f*TN)
is given by

TaiayP(u, v) = Tia peom o Tiia py7 0 (Tacom(f, =) x id)(—u, v)
= Ttia,pycom o T{yq)7 (=T f o u, v)
= VO f — Tf oU.

In other words, let ¢, : (—1,1) x M — M and ¢, : (—1,1) x N — N be smooth curves
of diffeomorphisms, with ¢y = id and ¢y = id, representing the vector fields u € X (M)
and v € X(N) respectively. Then we may compute the tangent map of P at (id,id) as

d _
TidiayP(u,v) = i (Yrofoph)
=0
d d
— (= T — 1
Gl ) oremre (G L)
=vof—Tfou.

From the Nash-Moser theorem with group actions applied to the chain complex
Diff(M) x Diff(N) & C®(M, N)={x}

we conclude that f is stable if there exists a tame linear right inverse to the map Tliq iq) P
described above. We arrive at the following proposition.

Proposition 5.1.2. Let M and N be compact manifolds. Then f € C*(M, N) is stable,
and the maps ¢ : g — @, and ¢ : g — P, such that g =140 f o ap;1 are smooth, if and
only if for every w € Ty (f*T'N) there are u € X(M) and v € X(N) such that

w=vof+Tfou.

Proof. We must show that the above hypothesis can produce a suitable tame linear map
w +— (u,v). Choose a finite covering {Ua} ., of M by local trivializations of f*T'N,
and let z¢, ..., z% be the corresponding frame of f*T'N|y for every a € A. Let {xa} be
a partition of unity subordinate to {U,} whose square root is still differentiable. The
VXazi extend by zero to the whole of M, and for every o € A and 1 <7 < n we find a
pair u$ € X(M) and v € X'(N) such that

Xazi = v o f +Tfou.
Now for an arbitrary w € Ty (f*T'N), we have that w|y, = >, wzY for certain smooth

functions w’, : U, — R, and we may define u = Y. /Xaw,ud and v =Y _ . /XaW, v
Then the map w +— (u,v) is clearly tame linear, and

vOf—l—Tfou:Zai\/%wé(vf‘of—l—Tfouf‘):Zizax(xwgzia:w.

98



For the converse, let w € Iy (f*T'N) = TyC*®(M,N) be a vector at f. Choose a
representative f; : (—1,1) x M — N of w, that is, a smooth map such that fy = f and
%|t20 ft = w. Then the compositions ¢y, and vy, where we see ¢ as the map g — ¢
and likewise for v, are smooth maps and represent the required vectors v € X(M) and
v € X(N), respectively. O

With this approach to stability it is unavoidable that M should be chosen compact,
but it is desirable to at least prove that the restriction on N can be dropped. This can be
done as follows. Let N be non-compact and f : M — N smooth. Since the image f(M)
is compact, we may choose a compact region R, a compact submanifold of codimension
0 with smooth boundary, such that f(AM) C R°. Moreover, suppose that f : M — N is
infinitesimally stable, then so is f : M — R. The set M (M, R°) of smooth maps M — N
that map into the interior of R form an open neighborhood of f in both C*°(M, N)
and C*(M, R). For g near enough to f there exist diffecomorphisms ¢ : M — M and
Y : R — R such that g = 1o foypl In fact, by assuming that ¢ is smoothly path
connected to f, which we can since C*°(M, R) is locally path connected, we can find
a smooth curve ¢ : [0,1] x R — R of diffeomorphisms such that Y1 = 1. Choose a
smooth bump function on N that is constantly 1 in an open neigborhood of f(M) and
vanishes beyond the boundary of R. Let & € X(R) be the infinitesimal generator of ;.
Then one can cut ¥ off with the bump function and extend it by zero to a v € X(N).
Since it is supported in a compact set, it has a global flow ¢, : N — N, and we see that
g =10 fop . Hence we conclude that f: M — N is stable.

A few additional details of Mather’s approach are worth mentioning. Aside from
working with non-compact manifolds, he obtains a slightly more general ‘“nfinitesimal
stability implies stability’ theorem. It takes the form of the proposition below. Note that
in [Mat69] he assumes that all manifolds may be manifolds with corner. Manifolds are
allowed to locally look like a quadrant in R™ defined by a finite set of linearly independent
linear inequalities [y > 0,...,[; > 0. The spaces of smooth maps M — N are equipped
with the Whitney C*°-topology described earlier.

Proposition 5.1.3. Let M and N be manifolds, and let f : M — N be a proper smooth
map. Then f is infinitesimally stable in the sense that for every w € Ty (f*T'N) there
are u € X(M) and v € X(N) such that

w=Tfou+wvof

of and only if [ is stable in the sense that for every smooth g : M — N close to f there
are p, € Diff(M) and ¢, € Diff(N) such that

g:¢gofo¢g‘

Moreover, the mappings g — 4 and g — 1, are continuous for the Wy, topology.
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5.1.1 More stable maps

Note that submersions are examples of stable maps. For if f : M — N is a submersion
between with M a compact manifold. Then its tangent map T f is locally a projection
Uy x R™ — U, x R" x {0}. Hence there exists a smooth bundle map u, : f*T'N|y, —
T M|y, that serves as a right inverse of T f|y,. Now the u, can be patched together with
a partition of unity to a right inverse u : f*I'N — T'M of T f. The corresponding tame
linear map w, : Iy f*T'N — X (M) is a right inverse of T'f,. Hence by the Nash-Moser
theorem there exists an open neighborhood V- C C*°(M, N) of f and a smooth tame map
¢ : V — Diff(M, N) such that

g=fops VgeV

Recall that the submersions form an open subset of all smooth maps M — N, and
the space of diffeomorphisms Diff(M) acts on the submersions by multiplication on the
right. Hence in particular this discussion shows that the orbits of this action lie open in
C>°(M, N). Moreover, it leads to the following observation.

Proposition 5.1.4. Let M and N be compact manifolds, and f : M — N a submersion.
Then for every g : N — N close to the identity there is a ¢, such that

gof=1rfogpg,
and p;q = id. Moreover, the map g — ¢, is smooth tame.

Proof. Let V and ¢ be as in the discussion above. Composition on the right by f defines
a smooth tame map

com(—, f) : C*°(N,N) — C*(M, N).

Hence we may choose an open U C C°°(N,N) around idy small enough such that
com(U, f) C V. Then the composed map ¢ = ¢ o com(—, f) does the job. ]

Michor [Mic84] gives some additional applications of the Nash-Moser theorem to
spaces of smooth maps. I would like to highlight one particular example. Consider a
compact fiber bundle B £ M. The space of fiber-preserving diffeomorphisms Diffy;(B)
is a tame Fréchet submanifold of all diffeomorphisms Diff(B) by proposition 3.2.29 on
page 87. It acts smooth tamely on the left on I'y; B by the map

P:Diffy(B) x I'yB—TyB, P(p,0)=¢poo.

Recall that for ¢ € Diff)/(B), the tangent space of Diff,,(B) at ¢ is given by T,,Diff,(B) =
L(p* T p* B). In particular, the tangent space at the identity is just the space XV'*(B)
of vertical vector fields on the total space. For o € I'y/B a fixed section, consider the
map

P, : Diffy,(B)—TyB, P,(p)=poo.
Its tangent map at the identity is the map

TvidPJ . Xvert(B) —>FM(O'*TvertB), ﬂdpa(y) —voog = O'*(V).
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Note that there is a natural vector bundle isomorphism ¢*TV'"*B ~ TV*"'B|,;). Any
section of TV*"'B l-(m) can be extended to B by a partition of unity, and the resulting
extension map I'y(ar) (T Blo(ar)) — T'sTV" B can be chosen to be tame linear. This de-
fines a tame linear right inverse to Tiq P,. Hence we have shown the following proposition,
which, in particular, implies that the orbits of Diff);(B) lie open in I'y;B. Michor then
concludes that o is stable in the space Iy, B in the sense that for every nearby section 7
there is a fiber preserving diffeomorphism 1, : B — B such that 7 = 1, o 0. However,
with a little extra work we can give a better result.

Proposition 5.1.5. Let B 2 M be a compact fiber bundle, then every section o of B is
stable in C*°(N, B) in the sense that for every smooth map T : N — B close to o there
s a diffeomorphism 1, : B — B such that

TZ%OU,

and the mapping v : 7 — 1, is smooth tame. The diffeomorphism 1, is fiber-preserving
if T is a section of B, and 1, = id.

Proof. Let o € I'y; B be a section of B. By proposition 5.1.4 on the preceding page there
is an open neighborhood V' C Diff(M) around the identity, and a smooth tame map
¢ : V — Diff(B) such that gop =po g, for all g € V. Since poo = id, there is an open
neighborhood U C C*(M, B) of ¢ such that p, maps into the diffeomorphisms of M.
The map inv o p, is smooth tame as well, hence the open U can be chosen small enough
such that (po7)~! € V for every 7 € U. Then for every 7 € U we have

PO Pper-10T =(por)lopor =id.
Hence we can define a smooth tame map
¢ :U—Diff(B) : T — @por)1

that approximates any 7 € V by a section ¢, o 7 of B. Note that ¢, = id whenever
poT =id.

By the discussion above this proposition there is an open neighborhood W C I'y,B
around o and a smooth tame map 1; : W — Diff);(B) such that 7 = 12700 forall T e W.
Now choose U small enough such that ¢ maps into W. It is Then

¢ : U — Diff(B) : T+ 1g,0r 0 @5
is the desired map. O

As another example of stable maps, a map M — R is stable if and only if it is a
Morse function whose critical points all have distinct values. Hence in a sense the theory
of stable mappings generalizes Morse theory. For a overview of the classification of stable
mappings and related results we refer to [MGT3].
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5.1.2 Bundle maps as a tame fiber bundle

We will apply the result from the previous section to the setting of bundles maps between
surjective submersions, as mentioned in section 3.2.8 on page 86. Suppose that A = M
and B 5 N are surjective submersions with A compact. We wish to consider the obvious
map

Bund(A, B) — C*(M, N)

which associates to a bundle map A — B its base map M — N as either a tame
Fréchet fiber bundle or at least a surjective submersion between Fréchet manifolds. To
the author this seems to be the most general and flexible setting for applying the Nash-
Moser arguments to questions of rigidity in differential geometry. It doesn’t seem to be
true in general but at least the following can be said. First consider the smooth tame
map

¢ : C®(A, B) — C=(A,N)

defined by left composition by ¢. Its fiber above a smooth map f : M — N can be
cannonically identified with the tame Fréchet manifold I'4(f*B). Think of it as a set-
theoretical bundle over C*°(A, N) with fibers C*°(A, B); = I'a(f*B). It is the space of
all sections of B along smooth maps A — N.

Proposition 5.1.6. Let A 5 M and B 5 N be submersions with A compact. The
restriction C*(A, B)|subm(a,n) to the space of submersion A — N is a tame Fréchet fiber
bundle. Moreover, if B is compact as well, then its restriction C*°(A, B)|stab(a,n) to the
stable mappings s a tame Fréchet fiber bundle.

Proof. Let f : A — N be a submersion. Then there is an open neighborhood U C
C®(A,N) of f and a smooth tame map ¢ : U — Diff(A) such that g = f o ¢, * for all
g € U. This means that if ' € C*°(A, B) is a bundle map with base map g € U, then
F o, is a bundle map with base map f. Hence the map

C*(A,B)ly—U XxTaA(f*B) : F (q*F,Fogpq*F)

is a smooth tame map. Its inverse is given by sending a pair (g, F') € U x I'4(f*B) to
Fo gog_l.

Now suppose that B is also compact, and f: A — N be a stable map. Let ¢ : U —
Diff(A) and ¢ : U — Diff(V) be the corresponding maps. Since ¢ is a submersion, there
exists an open V' C C*°(B, N) around ¢ and a smooth map p : V — Diff(B) such that
r=gqop, forall r € V. The open U C C*(A, N) can be chosen small enough such that
com(—,q) o1 maps U into V. Define a map

U : U—DIff(B), by = py,oq
so that ¢, 0q = qop, for all g € U. Observe that
¢=qodyou,t =1vgoqou,!
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implies that w;l oq=gqo zﬂg*l. Now if F': A — B is a bundle map with base map g € U,
then we have
qoi)g—loFocpg:zﬁg—loquogpg:@z;g—logogpg:f.
Hence we may define a tame diffeomorphism
C*(A,B)ly = U XTa(f*B) : F = (¢.F, 0, o F o gy, r),
whose inverse is given by sending a pair (g, F) € U x T'4(f*B) to ), 0 F o @, O

If M = N, then we recover the bundle maps Bund,, (A, B) over M as the fiber
C>(A, B),. It is a submanifold of C*(A, B).
The surjective submersion p : A — M defines a smooth tame map

p": C*(M,N)— C*(A,N)

whose image is the set of all smooth maps A — N which are constant along the fibers of
A. Clearly this map p* is a bijection onto its image. We can restrict the set-theoretical
bundle C*(A, B) — C*°(A, N) to the image p*C*°(M, N) to obtain the space of bundle
maps A — B. We wish to consider it as a (set-theoretical) bundle

Bund(A, B) := C*(A, B)

p*C°°(M,N) — COO(M7 N)
by identifying C°(M, N) with its image.

Proposition 5.1.7. Let A % M and B 5 N be surjective submersions with A compact.
The space of bundle maps A — B with submersions as base maps form a tame Fréchet
fiber bundle

Bund(A, B)|subm(v,n) — Subm(M, N).

If B is compact as well, we obtain a tame Fréchet bundle
Bund(A, B)|stab(m,n)y — Stab(M, N)

above the stable maps M — N instead.

Proof. The proof is identical to proposition 5.1.6 on the preceding page. We will only
prove the second statement.

Therefore suppose that B is compact, and let f : M — N be a stable map. Let
¢ : U — Diff(M) and ¢ : U — Diff(N) denote the smooth tame maps such that
g=1g0fo gp;l for all g € U. Since p is a submersion we may find an open V' around p
and a smooth tame map p : V — Diff(A) such that r = po p, for all » € V. Similarly,
we find a smooth tame map p’' : V' — Diff(B) corresponding to g.

Note that ¢ and ¥ map f to the identity. Moreover, both com(—,p) o ¢ and
com(—, q) ot are smooth tame maps, hence we may choose U small enough such that
they map U into V and V' respectively. This allows us to define smooth tame maps that
lift © and ¢ to diffeomorphisms of the total spaces A and B. These maps are defined by

¢ : U—Diff(A) : g +— py,op;
Y : U—Diff(B) : g — Pryyoq-
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We have that ¢, 0p =po g, for all g € U, and by
p=poggop, =pzopod,’t

we have that ¢ ' op =po@ ! for all g € U. The analoguous statements hold for . For
any bundle map G : A — B with base map g € U we have that

qoi}g_loGo@g:@bg_loquo@g
=y, ogopog,
=1, ogop,op=fop,

so that @Eg*l o G'o ¢, is a bundle map with base map f. This allows us to define a local
trivialization

Bund(4, B)ly—U xTa((fop)*B), G (¢"G, Uz 0 G o gea). O

Let C' — P be another surjective submersion, and assume that B is compact. Note
that the composition of bundle maps defines a smooth tame map

com : Bund(B, C)‘Subm(N,P) X Bund(A, B)’Subm(M,N) —>B1111d(A, C)‘Subm(J\/LP).

It is just the restriction of the composition map between smooth maps A — B and
B — C'. Likewise, diffeomorphisms are submersions, hence we may consider the inversion
of bundle maps,

inv: lef(A, B) |Diﬂ-‘(M7N) — lef(B, A) ’Diﬂ‘(NJw),

as a smooth tame map.
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5.2 Stability of groupoid actions

Let G be a Lie group and N a manifold. Recall that a left action of G on NV is a smooth
map a : G x N — N, for which we will write g - m = a(g)(n) = a(g,n), such that the
usual

e (gh)-n=g-(h-n),
o 1l-n=n,

holds for all g,h € G and n € N. Alternatively, one could consider them as smooth
group homomorphisms G — Diff(N), and this is the description we will be using. The
Lie group actions form a subset A(G, N) of the space of all maps C>°(G x N, N).

Two actions a and b are said to be equivalent if they are conjugate by a diffeomorphism
of N, that is, there exists a diffeomorphism ¢ of N such that

b(g) =poalg)op ", Vgeq.

An action a is stable if there is a neighborhood of a in A(G, N), with the induced topology
of C*°(G x N, N), in which all actions are equivalent to a. In [Pal61] it is proven that all
actions are stable given that G and N are both compact. In [RP63| a counterargument
is given for N = R", hence compactness of N is necessary. It should be noted that this
counterargument only shows that not all actions G x N — N can be stable.

We will prove the stability of group actions using Nash-Noser arguments. An adapta-
tion of Mather’s proof, or a careful search for a possible tame Fréchet manifold structure
on Cx*(G x N, N), might allow one to prove the stability of actions of a non-compact
group under some extended conditions. We haven’t been successful with this so far.

In fact, we extend the result to actions of compact Lie groupoids on a compact man-
ifold with a fixed moment map. Recall the definition of a Lie groupoid. A Lie groupoid
G=M consists of

e two manifolds G, arrow space, and M, object space;
e two surjective submersions s,t : G — M, the source and target map, respectively;

e a smooth multiplications map m : G X5, G — G on the manifold of composable

arrows G X: G ={(g,h) € G x G :5s(g) =1t(h)};

e a smooth u: M — G of both s and t indicating the unit elements, we identify u(M)
with M;

e a smooth inversion map 7 : G — G.

These maps should satisfy the usual diagrams for an internal groupoid object. The only
difference between a Lie groupoid and an arbitrary internal groupoid object in Mfd is
that the source and target map of the latter do not need to be submersions. For the
latter it is, for example, sufficient if they are transversal.

A Lie group G can be seen as the Lie groupoid G={%} over the one-point set. A
Lie groupoid is called proper if the map (s,t) : G — M x M is proper. In particular,
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compact Lie groups are proper Lie groupoids, and, as a general principle, whatever holds
for compact Lie groups has an analogue for proper Lie groupoids. Although one can prove
that the differential cohomology of a groupoid action, which we define in the next section,
vanishes for any proper groupoid, the Nash-Moser argument presented here requires us
to work with a compact Lie groupoid instead. It is as of yet unclear to us whether actions
of proper Lie groupoids are stable.

Let G = G=M be a Lie groupoid and j : N — M a surjective submersion, which is
usually called the moment map of the action. We will write

g(k) =0 Xgp... X1 G

for the set of k-tuples g = (g1, ..., gr) of composable arrows,
g1 92 9k
t(g1) s(gr.)-

Each G has a source and target map, given by s(g) = s(gx) and t(g) = t(g1) respectively.
Correspondingly, the fibered product G®) x ; N is the set of all (g,n) with s(g) = j(n).
By convention we have G = M.

An action of G on N with moment map j is a smooth map

a:Gxs; N—N,
for which we will write any of the three notations g - n = a(g)n = a(g,n), satisfying
* jlg-n)=tyg),
° (gh) - n=g-h-n,
e u(m)-n=n,

for all (g,h) € G® and n € N,,. Let A(G, N, j) denote the set of Lie groupoid actions
with fixed moment map j; they form a subset of C*°(G xs; N,N). In particular, we
retreive group actions if we take M = {x}, and j : N — {x} the unique map.

Our notion of stability of a Lie groupoid action is defined as follows. For any groupoid
action a and any arrow g € G, the expression a(g) defines a diffeomorphism Ny — Ny(g).
Now two actions a and b are equivalent if there is a diffecomorphism ¢ € Diff,(N), that
is, a bundle map

N ’ N
M

over M which is also a diffeomorphism, such that

b(g) = ¢ug) 0 alg) 0wy V9 EG.

As usual, an action a is stable if there is a neighborhood of a in A(G, N, j) of only
equivalent actions. In this section we prove the following proposition.
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Theorem 5.2.1. Let G= M be a compact Lie groupoid, N a compact manifold, and
7 : N — M a surjective submersion. Then every Lie groupoid action a of G on N with
moment map j is stable in the sense that if b is Lie groupoid action with moment map j
near a, then there is a fiberpreserving diffeomorphism

op: N — N

over M such that b(g) = pi(g) © @ © sy for every g € G. Moreover, the map b @y is a
smooth tame map between tame manifolds.

As noted before, it is necessary that N is compact. But this doesn’t seem to imply
that G should be compact as well. One might be tempted to take the group G from [RP63|
and form the action groupoid G x R"==R" to give a counter example for non-compact
groupoids. However, the chosen action then becomes the trivial action over the moment
map given by the identity id : R® — R™. Since no other Lie groupoid action has the
identity as moment map, this action is trivially stable. This leaves the issue whether
actions of proper groupoids are stable still unsettled.

To apply a Nash-Noser argument, we will first rewrite the definition of groupoid
actions somewhat. Note that the map s*N = G x,; N =5 G, given by mapping (g, n),
with s(g) = n, to g, is a compact fiber bundle over G; it is a surjective submersion with
compact domain. Likewise, there is a compact fiber bundle

'G =G x,; N—5
sending (g,n), with t(g) = j(n), to g. The first condition on a Lie groupoid action a,

namely that j(g-n) = t(g), is equivalent to stating that a is a bundle map,
g Xs,j N 2 g Xt,j N

A

[t can be seen as a point in the tame manifold Bundg(s,t;); even in Diffg(sq,t), if
one wants. This alternative definition induces the same topology on A(G, N, j) as the
topology induced by viewing Lie groupoid actions as smooth maps G x,; N — N.

More generally, we introduce the bundles

sN =GW x,; N-26®,
N =G® x,; N2g®

and consider the manifolds Diff;u) (s* N, t*N) = Diff;u (s, tx) of diffeomorphisms over
G®_ for all k > 0. In other words, they are the spaces of smooth families

{a(g) : Nowy = Nig) [ &= (91, . 0) € GV}
Note that, by convention, for £ = 0 we have

Diﬁ.M(So, to) = Diff]u(N),
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which is the space of diffeomorphisms of N that preserve fibers. These tame Fréchet
manifolds, in particular for £ = 0,1 and 2, will occur in the non-linear chain complex
of the Nash-Moser argument we are about to give. In the case of group actions these
definitions lead to

Diff i (51, 1) = Diffr (GF x N) = C®(G*, Diff(N)),

and Diff;o(sg, tg) = Diff(V), where G* is just the k-fold Cartesian product of the group
G.

Next we will describe the tangent spaces of the tame Fréchet manifolds Diff;w) (s, tx).
Let a be a fixed groupoid action and let my, : G¥) — G denote the combined composition
of k composable arrows. One can consider a as an element of Diff;w) (sk,t) by pulling
it back along my, that is, one can identify it with the image of a along the map

my, : Diffg(s1,t1) — Diffgu) (my(s1), my(t1)) =~ Diffgu) (sk, tr),
mzb(gb g2, ... 7gk>n = b(gl g2 gk)n7

for every b € Diffg(s1,t1), n € N ,and k-tuple (g1, ...,gx) of composable arrows with
s(gr) = j(n). Here mj(s1) and mj(t;) denote the pull-back of the bundles s; and ¢; along
my. They are easily identified with s, and ¢ respectively, and left- and right- composition
with the resulting isomorphisms yields a tame diffeomorphism between the tame Fréchet
manifolds Diffgu) (mj (s1), mj(t1)) and Diffgu (sk,t,). When there is no ambiguity, we
will just write a € Diffgw) (si, tx) instead of mja.
In turn, this allows us to define the tame diffeomorphism
com(—, CLil) : Diffg(k) (Sk, tk) — Diffg(k) (tk, tk),
com(—,a"")b(g) = b(g)a(g) ™",

where b € Diff;u) (sk, i), and g is a k-tuple of composable arrows. Its inverse is obviously
given by the analogously defined map com(—,a). Its tangent map allows us to simplify
the description of the tangent space at a € Bundgw) (si, tx) as follows. Let

an TN — N
denote the vertical tangent bundle over N and u the smooth section of the bundle
GW % N — t5(G™ x,; N)

representing the identity id € Bundgw) (t,tx). Then the tangent space of Diff;w) (sk, i)
at a is computed as

TaDiﬂg(k) (Sk, tk) i idDiffg(k) (tk, tk)
= Tg00, N (W T 5 (GH x5 N))
~ T, ,n(GH Xpjny T*N).

An element v in the latter graded Fréchet space takes values v(g,n) € T""*N = T, N;(n);
as such, they can be interpreted as smooth sections of the bundle

X (j) — g"®
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whose fiber above g € G is the space of vector fields X (Nyg)) on the corresponding
fiber of N. In words, they are the vertical vector fields of the bundle obtained by pulling
N — M back along t;, : G Xt; N — M. This description of the tangent space is only
relevant to us for £ = 0,1 and 2.

For group actions we obtain a simpler description of the tangent space,

T.Diffci (G* x N) ~ Ty n(GF x TN)
~ C=(G*, X(N)),

where G* x TN — G* x N maps (g,v) to (g, 7x(v)). An element v in the tangent space
really assigns a vector field v(g) € X'(N) to every k-tuple g of group elements.

Recall that the group of fiber-preserving diffeomorphisms of the bundle N — M acts
on Diff;u) (sk, ) via conjugation, namely by

(¢ a)(g) = vig) 0 alg) oy, V& EGH.

It is a smooth tame action, since it is the composition of a series of smooth tame maps.
Hence also the map

P : Diffy(N) — Diffg(s1,t1),  P(#)(9) = @i 0 alg) o 905_(2)

is smooth tame. It will be the first map in the non-linear chain complex. Let

P =com(—,a ') o P,
then the tangent map of P at the identity is given by

T.qPv = Tiq(com(—, a~)com(id x com(a, —))(id x inv)(t* x s*)A)v
= Tiiaa)(com(—, a™")com(id x com(a, —))(id x inv))(t*v, s*v)
= Tiia,a)(com(—, a ")com(id x com(a, —)))(t*v, —s*v)
= Tiia.0)(com(—, a”)com)(t*v, —Ta o s*v)
= T,com(—,a ") (t'voa — Tao s*v)

=t'v—Taosvoa "

In other symbols, we have TiqPv(g) = v(t(g)) — a(g).v(s(g)).
Next we define the maps which identify the groupoid actions out of all bundle maps

s; — t1, that is, the maps R and S defined on Diffg(sq,t1) such that A(G, N, j) is exactly
the set of b such that R(b) = S(b). Let

R, S : Diffg(s1,t1) — Diff5e) (s2,12)
be defined by R(b)(g,h) = b(gh), and S(b)(g,h) = b(g)b(h). The second requirement for
groupoid actions, that (gh)-n = g- (h-n), follows directly from R(b) = S(b), while u(m)-

n = n follows from taking ¢ = u(m) and h = u(m) in turn. The equation R(b) = S(b)
simply expresses that b is a groupoid morphism between G=M and the groupoid over
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M whose arrows from m € M to n € M are the diffeomorphisms Diff(N,,, N,,). These
maps are alternatively described by

R=m",

S =como (p; x p3) o A.

Here p;,m : Go — G are the projections and multiplication, and their counterparts with
an superscript asterisk are the induced maps

pi = Diffg(s1, t1) — Diffg, (pi(s1), pi(t1)) ~ Diffg, (s, pi(t1)),
py : Diffg(s1, 1) — Diffg, (p3(s1), p5(t1)) ~ Diffg, (pi(s1), t2),
m*: Diﬁ.g(Sl,tl)—>Diﬁ.g2(82,t2).

Again we use the obvious fiber bundle isomorphisms pj(s;) ~ sy and to ~ ph(t;) to
induce tame diffeomorphisms by left- and right-composition respectively. As we did with
the map P, redefine the maps R and S as R = com(—,a') o R o com(—,a) and S
analogously. The tangent map of S at the identity is computed as follows. Introduce the
notation a; := pfa and v; := pjv, then

T:aSv = Tig(com(—, a~Y)com(p} x p})Acom(—,a))v
= T(a.0)(com(—, a~)com(p; x p3))(va,va)
= Tay,a0)(com(—, a Y ecom)(viay, vaas)
= T,com(—, a71)<vla1a2 + (T'ay)vaaz)

=1 + (Tay)veay

where in the last step we have used that (ajas)(g, h) = a(g)a(h) = a(gh) = a(g, h), since
a is already a groupoid action. Hence we find

TiRv(g, h) = m*v(g, h) = v(gh),
TiaSv(g, h) = v(g) + a(g).v(h).

In conclusion, we wish to apply the Nash-Noser theorem to the non-linear chain complex
. P oan. R_.
DIHM(N> — lefg(Sh tl)leﬁg(2) (SQ, tz)
s

given by the maps P, R, and S described above. For this we must prove that the linear
chain complex

Tia P

ﬂdDiﬁ'M(N> E— TaDng(Sl, t1> M

il TaDng(Q) (SQ, tg)

splits tamely. Instead, by interposing the tame diffeomorphisms com(—,a™!) and com(—, a)
repeatedly, we it suffices to prove that the linear chain complex

ver d ver d ver
FN<T tN) — FQXt,jN(g Xtjmn T tN) — FQQXt.jN(QQ Xtjnn T tN)
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given by

dov(g) = v(t(g)) — alg)«v(s(g)),
div(g, h) = v(g) + a(g)«v(h) — v(gh)

splits tamely. For group actions this linear chain complex somewhat simplifies; namely,
it becomes

D, 0°(G, X(N)) L 0 (G2, X(N)), (5.2.1)
with coboundary maps

dov(g) = v —a(g).v,
dyv(g,h) = v(g) + a(g)sv(h) — v(gh).

This is the first part of the standard complex computing the differential cohomology of
the Lie group G with coefficients in the smooth module of vector fields on NV, as described
in the next section.
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5.2.1 Homotopy operators for group actions

We start by constructing the homotopy operators for group actions, as this is the classical
example, and hence deserves special attention, and by far not all mathematicians are
actually interested in Lie groupoids. Let G be a Lie group and (E, p) a (finite dimensional)
representation of G. Then the space of k-cochains is by definition the space of smooth
maps G* — F,

C*(G;E) := C>(G*, E).
Define a coboundary map
CHG E) & 0GB

by means of the formula

dv(gla s 7gk+1) = (_1)kv(g17 oo 7gk) - p<g1)v<927 R 7gk+1)
k

+ Z(_l)iJrlU(glv <o 9iJir 1, - - 79k+1)'

i=1

A simple computation shows that d*> = 0. The differential cohomology of G with values
in (E,p), written as H*(G; E) for k > 0, is the cohomology associated to this cochain
complex. It is a well-known result that the cohomology groups H*(G; E)) vanish for k > 1
if G is compact.

Our situation bears much similarity; the linearized chain complex 5.2.1 on the pre-
ceding page forms the first part of the cochain complex with values in the representation
(X(N),a.). Here the representation assigns to g € G the tame linear map

a(g). : X(N) — X(N)

defined by pushing forward a vector field on N. Although this picture is conceptually
preferrable for its similarity with the differential cohomology, it is more convenient to
define the spaces C*(G; X (N)) of k-cochains as the graded Fréchet spaces T'gr, v (G x
TN). For our application we require the first cohomology group H'(G; X(N)) not just to
vanish; there should be a tame splitting of the cochain complex 5.2.1 on the previous page.
We reconstruct the proof the vanishing differential cohomology and make the appropriate
additions.

Begin by defining a linear map « that sends a v € U1,y (G* X TN) to the map
described by

Oé(’l])(h,gl, <o 7gk7x) = (a(h)*v(h_lagla s 7gk))x S TwNv v(h’7gl7 R 7gk) S Gk+17x € N.

This can easily seen to be a tame linear map by considering it as a succession of tame
linear maps. Let ¢ : G — G denote the inversion map of GG. First one pre-composes v
with the map ¢ x id : (h,g,z) — (h™!, g, x). Then one discerns that a defines two maps

al:GMYx N— G x N (h,g,x) — U%gaa(h)ilx)?
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and
Ta: G x N—G*' x TN : (h,g,v) — (h,g, Ta(h)v),

where the latter is actually a bundle map over a map a : G*¥*!' x N — G**! x N defined
similarly to a=!. Now regard v o (i x id) as a bundle map over i x id,

vo (ixid

Gl x N —>)G’“+1 x TN

i X id L

Gk+1 x N —/—— Gk+1 % N,
and then pre-compose with a~! and post-compose with T'a consecutively.

Let dp denote a normalized Haar measure on G, for example [DKO04]. The actual
homotopy operators are then defined by sending v € Tgrr1y n(GFE x TN) to

h(0) (g, ) = /G a(v)(h. g, )du(h)

= / a(h),v(h™t, g)xdh.
G

The following computations show that the maps hj are indeed the desired homotopy
operators. We have

dishia (0)(8) =a(g). [ alh)oo(h " ge,....o)adh

_1)k / a(h)*v(h_lv g1 - .- 7gk—1)$dh

+

(_1)1 / a(h)*v<h_17 g1, .-, 9i9i+1, - - - 7gk’)xdha

<_1)k+1 /a(h)*v(h17 gi,--. >gk71>$dh
k
1)t B).o(h-! o dh
Z( ) a( )*U( 7917"'79291—&-17"'791@)3:
=1

— /a(h)*v(h_lg)azdh,

and by linearity of integration and left invariance of the Haar measure we have

a(gl)*/a(h)*v(h_l,gz,.-->gk)xdh=/a(glh)*v((glh)‘lgl,gz,---,gk)wdh

= /a(h>*1)(hlg1, g2, ... 7gk)xdh‘7
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so that all terms except for v(g) cancel each other out. This implies the homotopy relation
dp_1h_1 + hpdy, = id.

All that is left is to check that the process of integration is also a tame linear map. This
follows from lemma 2.3.12 on page 38.
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5.2.2 Homotopy operators for groupoid actions

Next we generalize the previous construction to the differential cohomology of a Lie
groupoid action. The notion of differential cohomology extends to Lie groupoids. Let G
be a Lie groupoid and (E, p) a representation of G, that is, a finite rank vector bundle

E 2 M and a groupoid action
p:GXsp, B —E

for which p(g) : Eqg) — Ey) is a linear transformation for every arrow g. By slight abuse
of notation, let ¢ : G®) — M denote the target of the final arrow of a k-tuple arrows.
Then the k-cochains with values in (F, p) are defined as

CHMG; E) =Tguw (t'E),
and the coboundary maps of the linear cochain complex
%G, E) & (G, E) & C*(G, BE)— . ..

are defined by the same formula,

dv(gla s >gk+1) = p(g1)'U(92, s 7gk+1> + (_1)k+1v(gl7 ce 7gk)
k

+ Z(—l)lv(gl, o GiGit 1y - Ght1)-
i=1
The resulting cohomology is called the differential cohomology of G with values in (E, p),
see for example [Cra03|. The differential cohomology with values in E can be shown to
vanish for proper groupoids in nearly the same way as in the group case. We will again
adapt this construction to our situation.

We have described the tangent space Diff;) (si, tx) at id as the set of smooth sections
of the vector bundle t*X(j) — G® whose fiber at a k-tuple g of composable arrows is
the space of vector fields X'(Nyg). Hence in our case the k-cochains take values in the
vector bundle X(j) — M, and the action a, is given by pushing a vector field forward

along a(g),
a.(g,v) = a(g)v, Vg€ G,ve X(Nyy).

This describes the heuristic picture nicely, and clearifies how the differential cohomology
of G appears as an obstruction for the stability of groupoid actions. However, we haven’t
developped the theory tame Fréchet vector bundles sufficiently to work with the space of
sections of X' (j) — M directly. Instead we will work with the more technical definition
of the tangent spaces,

TaDiffgu) ~ Doy, v (u T 5 (GH x5 N)) = D, v (G Xy jmy TV N),

while keeping the heuristics of differential cohomology with values in X'(j) in mind.
Since the formula’s for the coboundary maps are identical to those of the Lie group

case, one expects to be able to prove the tame vanishing of the cohomology using similar

methods as well, that is, we want to somehow define smooth tame maps of the form

hi(v)(g,n) = /ga(h)*v(h_l,g)ndh.
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Let 7 : G x; G x,; N — G®) x, ; N denote the obvious projection. We begin by
constructing a map

o CHl(gS X(5)) —’ngtgw)xt,jN(W*(g(k) Xty TY"N))
that sends v € C*1(G; X(4)) to the integrand in the formula of Ay,
a(v)(h,g,n) = (a(h),o(h™,g))n € TN, V(h,g) € G x,GW ne Nig)-
The inversion map 7 of G gives rise to a smooth map
txid N X G Xy g<’“)—>gk+1 X j Nt (h,g,n)— (h_ljg,n),

where N x;, G x; G® is the set of (h,g,n) such that t(h) = t(g) and j(n) = s(h).
Precomposing a (k+1)-cochain v € C*1(G; X (j)) yields a tame linear map. The resulting
vo (i x id) can be interpreted as a section of (i X id)*(Gri1 X jry TV N), and hence
seeing it as a smooth bundle map

v o (3 xid)

N X5 G % G —— (i x 1d)*(Grs1 Xp,jmy T N)
N %5 G xy GW ———c N x;,G x, G¥.

The fixed groupoid action a induces two particular smooth maps, namely
al:Gx,Gg" Xej N—N %G %y G® . (h,g,n) — (h,g a(h)"'n),

and a smooth vector bundle map
Ta

(i X id)*(Grs1 Xpjmy TV N) —— 75 (G®) Xy jry TV N)

a

N %G %, G G x; G®) x;; N,
where

a(h,g,n) = (h,g,a(h)n), Vt(h)=1t(g),n € Nyn),
and

Ta(v) = Ta(h)v € ToyuynNyny, Yv € TN = T, Nyp).

The map « is finally obtained by pre-composing consecutively precomposing v o (i X id)
with ™! and post-composing with T'a, hence « is a tame linear map.
Next we need to define an integration map

I ngtgth,jN(W*(g(k) Xt N)) —>Fg<k>xt,jN(g(,€) Xt N),

for which we need to introduce a smooth Haar system on G, see for example [Cra03,
Ren80]. A smooth normalized Haar system p on G, is a family p = {p, : @ € M} of
Radon measures ji, on the manifolds G(—,x) = t~!(z) with the following properties:
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1. smoothness: for any compactly supported function f € C'°(G), the formula

L@ = [ fointo)

defines a smooth function I,(f) on M;

2. left-invariance: for every g € G, with z = s(g) adn y = t(g), and f € C*(G(—,y))
we have

/ F(gh)dyia(h) = / £ (h)dpy ().
G(—,x) G(—y)

3. normalization: fg(f 2) dp,(g) =1 for every z € M.

The construction of smooth normalized Haar systems can be found in the literature, for
example [Ren80]), but we will recall it here since it is particularly simple in a smooth,
Hausdorff and compact setting. Note that for proper Lie groupoids the normalization is
replaced by a so-called cut-off function, see e.g [Cra03|. This is not necessary if the Lie
groupoid is compact since then the function f(g) = 1 is compactly supported on G.

For the construction of such a family p = {u,}, consider a vector bundle metric g
on the bundle «*T*G, where TG denotes the target-vertical bundle of G. Then by left
translation we obtain a Riemannian metric g on the target-vertical bundle T'G — G
whose positive densities 1, = |vol(glg(— )| for 2 € M form a smooth left-invariant
family of densities. If the groupoid G is compact, then in particular each of the t-fibers
are compact, hence one can integrate the functions 1 : G — R to obtain a smooth map
x — fg(—,x) 1du,. This allows one to find a normalized Haar system for G.

The homotopy operators are now defined by

e = [ o) D ()

They satisfy the homotopy relation by the same computations as in the previous section,
since these computations primarily rely on left-invariance, linearity, and normalization.
Finally, the integration map is a tame linear map, as per lemma 2.3.13 on page 41.
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5.3 Deformation theory of foliations

This section presents an overview of the unpublished paper [Ham82a|, ‘Deformation the-
ory of foliations’, as another demonstration of the concept ‘infinitesimal stability implies
stability’. This theory is far from complete, as it proves to be difficult to translate
the rather technical hypothesis of the Nash-Moser theorem to elegant, tangible condi-
tions. The notion of stability is again self-evident: a foliation, seen as a involutive
distribution B C TM, is stable if nearby foliations B’ are conjugate by a diffeomorphism
¢ € Diff(M)q in the sense that

B, = (T)Bly™" = {T@(b) e B;,l(m)} . Vel

There are already some typical stability results for foliations, although global stability
results are much harder to obtain. The celebrated Reeb stability theorem [Ree52| proves
local stability in a neighborhood of a compact leaf L under the condition of a finite
holonomy group. Global Reeb stability focuses on describing describing the foliation out
of information on a single compact leaf. For example, if a codimension 1 foliation on a
closed manifold contains a compact leaf with finite fundamental group, then all leaves are
compact and have finite fundemental group. Such results generally fail if the codimension
is larger than 1. For reference, we state the Reeb stability theorem in full detail.

Theorem 5.3.1 (Reeb). Let F be a foliation of codimension k on M and L a compact
leaf with a finite holonomy group. Then there is a saturated neighborhood U C M of L in
which every leaf is compact and has a finite holonomy group. Moreover, there is a smooth
retraction p : U — L such that for every leaf L' C U, the restriction

plp: L' — L

is a covering map with finitely many sheets and each fiber p~*(z), for x € L, is home-
omorphic to a k-dimensional disc transversal to the foliation. The neighborhood U with
these properties may be taken arbitrarily small.

Thurston’s [Thu74| condition of ‘infinitesimal stability’ is that the first leaf cohomol-
ogy H'(L,R) vanishes, instead. Here we see again the concept that the vanishing of
suitable cohomology groups expresses the impediment for stability.

The aim of Hamilton’s paper was the following. Let F' C TM be a Hausdorff foliation,
in the sense that the leaf space is Hausdorff, on a compact manifold M. Now if H'(L,R)
vanishes for a generic leaf L, then the foliation F'is stable. This is done via a Nash-Moser
argument. We will reproduce some parts of the argument.

For completeness, let us begin by recalling some basic definitions. A p-dimensional
distribution on a manifold M is a smooth sub-bundle B C TM of fixed rank p. Equiva-

lently, it has a fixed codimension ¢ = dim(M) — p. Such a distribution is called integrable
if there exist local coordinates z1,...,2,, y1,...,¥y, around every point x € M such that

0 0
B, = —_— e, —
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A integrable distribution B C TM determines an equivalence relation on M, where x ~ y
if and only if p;(z) = y with ¢; the (local) flow of some vector field X € I"y;(B). Such
an equivalence class L, = [¢] C M is called a leaf of the foliation, in particular the leaf
through x € M, and carries the natural structure of an immersed submanifold such that
T,L, = B, for all y € L,.

A regular foliation of codimension ¢ on M is commonly defined as a covering of charts
{(Us, i)}, such that the transition maps are of the form

¥j° ng_l(I',y) = (¢3g($)a¢3]($ay))a

where (z,y) € RPT, ¢, : R? — RP and ¢7; : RP*? — R9. The connected component of U;
containing x € U, is called the plaque of x. A leaf of the foliation is a connected subset
L C M which is a union of plaques, and maximal under these conditions. From this
definition the 1-1 correspondence between regular foliations and integrable distributions
and their notions of leaves is clear. In the remainder we will only use the definition of a
foliation as a integrable distribution.

The famous Frobenius theorem |Fro77| identifies the foliations among distributions
via an algebraic condition on the space of sections 'y, B.

Theorem 5.3.2 (Frobenius). A distribution B C TM s integrable if and only if it is
involutive in the sense that

L'y B,I'yB] C Ty B,
where |—, —| is the Lie bracket on X(M).
Next we lift this to the setting of tame Fréchet manifolds. Let
Gr,(TM) = M
be the Grasmannian bundle of p-planes in TM. Recall that its fibers are
7 Y(x) = {B, < T,M a linear subspace of dimension p}

and that it carries the natural structure of a fiber bundle over M. Notice that a distri-
bution corresponds to a section of the Grasmannian bundle, so we define the space of
distributions as

Dist, (M) = [y (Gr,(TM)).

We have seen that if M is compact, this space is a tame manifold.
The integrability bundle is the vector bundle Z — Dist, (M) whose fiber at a distri-
bution B € Dist, (M) is given by

Iy = Q*(B;TM/B) := Ty (AN*B* @ TM/B),

the space of 2-forms on B with values in the vector bundle TM /B — M. Alternatively,
define a vector bundle I — Gr,(TM) over the total space of the Grasmannian bundle
whose fiber at B, € Gr,(T, M), with x € M, is

Ip, = N°BX @ T,M/B,,
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then we may define Zg = ['j;(B*I). The idea behind the integrability bundle becomes
clear by the following simple observation. Let R : Dist,(M) — Z be the map defined by

R(B)(X,Y)=[X,Y] modB
for X, Y € I'yyB. Note that this is well-defined by the Leibniz-rule;
FX,Y] = X Y]+ X(f)Y = fX,Y] mod B.

The Lie bracket modulo B defines a C*°(M)-bilinear map on I'y,B with values in TM /B,
hence it corresponds to an element of Zgz. By the Frobenius theorem, a distribution B
defines a regular foliation if and only if B satisfies the structure equation R(B) = 0
mod B. Hence we may define the space of p-foliations by

Fol,(M) :=ker R C Dist,(M).

Of course, this integrability bundle is only useful to the method at hand if it is tame
Fréchet.

Proposition 5.3.3. The integrability bundle T — Dist,(M) is a tame Fréchet vector
bundle.

Proof. This follows directly from the second description of Z and lemma 3.2.7 on page 67.
O

We will treat the smooth tameness of R later on. First we will consider the remaining
components of the non-linear chain complex, to provide a complete picture before delving
into further details.

The diffeomorphism group of M acts naturally on Dist, (M) by push-forwards; namely
by the map

Diff(M) x Dist,(M)— Dist,(M), ¢-B=¢.B=TpoBoy

Here the tangent map is a interpreted as a smooth bundle map

Gr)(TM) —— Gr,(TM)

M

M,

so that the composition with a distribution B € I'y,(Gr,(TM)) makes sense. It is obvious
that pre-composition with ¢! is necessary to obtain a distribution again. Note that if
B is a foliation then so is ¢ - B, since ¢, is a Lie algebra morphism:

[P X, Y] = @[ X, Y], XY € X(M).
Hence the action restricts to an action

Diff(M) x Fol,,(M)— Fol,(M)
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on foliations.
In addition, there is a natural action

Diff(M) x T —T

on the total space of the integrability bundle defined as follows. Note that, for a fixed
distribution B, the push-forward also defines a map ¢, : I'yyB — 'y (¢« B) by pushing
forward vector fields. Likewise, smooth maps C*°(M) can be pushed forward by pre-
composition with o', f — fop™!. For a 2-form w € Zp we define its action p-w € T, p
under ¢ by

¢ -w(X,Y) =g (w(e,' X, 0, 'Y)).

Note that the zero section of 7 is equivariant, since
Px

7 A

Dist, (M) —— Dist, (M)

and so is the map R : Dist,(M) — Z, since also ¢, preserves the bracket for every
diffeomorphism ¢ of M.
Now fix a foliation B on M. We obtain a non-linear chain complex

R
Diff(M) 22 Dist,(M)=1,
where Pg(p) = ¢- B, Ris as defined above, and z is the zero section. We are still required
to prove the smooth tameness of all involved maps. At least we already recover the correct
notion of stability: a foliation B is stable if there exists a neighborhood U C Dist,(M)
of B such that every foliation B’ € U N Fol, (M) is conjugate to B.

5.3.1 Linearization of the complex

In this section we fix a foliation B on M. We are to determine the corresponding linear
complex. To begin with, we saw that TiaDiff(M) = X (M) is the space of vector fields.
For the second Fréchet manifold we have

TyDist, (M) = Ty Gry(TM) ~ Ty (BT Gr,(TM)),

hence we should have a closer look at the vector bundle B*TV"*Grp(T'M) — M; our
goal is to show that it is the bundle Hom(B,V/B), whose fibers over m € M are the
linear transformations B, — V,,/B,,. For this it is sufficient to consider the following
situation.

Let V be a vector space, Gr,V its Grassmannian of dimension p, and B € Gr,V a
fixed linear subspace. Then we will show that T5Gr,V ~ Hom(B,V/B) by a natural
identification. Consider the following map from the general linear space of V,

vp: GL(V)—Gr,(V), ¢p(L) = L(B),
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where L(B) is the image of B under L. Note that ¢p(id) = B and TisGL(V) =
Hom(V,V) is the space of linear endomorphisms, so that

Tiapp : Hom(V,V)—TpGr,V.

This linear map factors through the obvious map Hom(V,V) — Hom(B,V/B),
Hom(V,V)

TiapB

Hom(B,V/B) —— TpGr,V.

One can see this, for example, by choosing a basis vq,...,v, € V such that B =
Span{v;|]1 <i < p}. The general linear group is identified with the space of invertible
(n x n)-matrices, and the map ¢p sends a matrix to the span of the first p column vectors,

wp(M) = Span {Muv;} .

Take a smooth curve of invertible matrices M;, with M, = id, representing a tangent
vector at the identity, that is, a linear transformation L € Hom(V,V). Then if {v'} is
the basis dual to {v;}, we may write

Mt = UZ'Vi + tLijUiVj + O(t2>

Here L;; denotes the matrix entry in the i-th row and j-th column. The tangent map at
the identity is now given by

d d

— M) = —
dt o SOB( t) dt

d

dt

Span {(Uil/i +tLyvp |1 < k < p}
=0

Span {vk + ZtLikviH <k< p} )
t=0 i

Obviously, only the first p columns of L matter. Secondly, whenever the sum ), L;,v; lies
in B, it doesn’t contribute anything to changing the span, we only need to look at those
terms with p +1 <+ < n. This specifies the isomorphism Hom(B,V/B) ~ TgGr,V. It
is in fact completely determined by Tiq¢p and the map Hom(V,V) — Hom(B,V/B).
We conclude that the tangent space of Dist,(M) at B is given by

TyDist, (M) ~ Ty Hom(B,TM/B).

Next we compute the tangent map of Pp at the identity. First note that both actions
of Diff(M), and hence also Pg, are smooth tame maps. Now let ¢, : (—1,1) x M — M be
a smooth curve of diffeomorphisms with ¢ = id, representing a vector field v € X (M),
and compute.

d
To,oBoyw,' =TvoB—TBow,

t=0

Pg(pi) = —
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where T'B denotes the tangent map of B seen as a section M — Gr,(M). When we keep
track of the identifications, we see that this is the map

X(M)—TyHom(B,TM/B), TaPp(v)(X)=v0oX —Xouw,
where X € I'); B and composition is by interpreting vector fields as derivations. Up to a
minus sign, this is the 0-th deffirential of the deRham cohomology of B, defined in the
next section.
Next, recall that Z = Dist, (M) is a tame Fréchet vector bundle. Let z denote its zero

section. As with finite dimensional vector bundles, the tangent bundle along z, z*T7Z,
naturally admits a splitting

Z*TT ~ T & TDist,(M) — Dist,(M).

Consider for a moment a vector bundle £ = M with zero section z : M — E. For any
point m € M, we have two maps

Tonz : T,M—1T,FE,
Tomym : Ty — T, M.

For any vector v € T () E/, we have that

Tomym(id — T5p2 0 Typym)v = 0,
so that (id — T,z 0 T.(mym)v is a vertical vector of £/ at m. Now the vertical bundle along
z, 2*T|E, is isomorphic to E, since every vector space is cannonically identified with its

tangent space at 0. Hence we can decompose z*T'E ~ E @& T'M. For T above, these
isomorphisms are readily seen to be tame. We conclude that

Finally, we must show that R is a smooth tame section of Z and compute the map
TgR —Tpz : TgDist,(M) — T Z, where R was the map measuring the involutivity of
the distribution,

R :Dist,(M) - Z, R(B)(X,Y)=[X,Y] mod B.
Note that both R and the zero section z are sections, so their tangent maps take the same
values in the second component of T, pZ ~ I @ I'yyHom(B, TM/B). The difference
TR — Tgz is called the vertical differntial of R at B; we may consider it as a map

IR : QNB;TM/B)—Q*(B; TM/B),

where QF(B;TM/B) denote the space of anti-symmetric k-forms on B with values in
TM/ B, that is, the graded Fréchet space Iy (A*B* @ TM/B).
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5.3.2 The de-Rham complex

In what follows the foliation B is left fixed. The quotient bundle TM /B naturally holds
a flat linear connection, usually called the Bott connection. It is the connection

V=V8.TyBxT'yIM/B — T'yTM/B

defined by VxY = [X,Y]. It is easily seen to be R-bilinear and, by the Leibniz-rule and
the fact that X € 'y, B, C°°(M)-linear in the first coordinate. In the second entry it
satisfies the Leibniz-rule,

VxfY = fVxY + Lx(f)Y.
Finally, one can easily check that the flatness property
VleXQ - szle = V[X17X2]

follows directly from the Jacobi-identity for [—, —].
The Bott-connection induces a covariant derivation

dp : Q°(B,TM/B) — Q**'(B,TM/B)

defined by the usual Koszul formula

A~

dpw(Xo, ..., Xp) =) _(—1)'Vx, (w(Xo,..., X, ..., Xp))

+ Z(—1>i+ju)([Xi,Xj],Xo, ce ,Xi, PN ,Xj, PN ,Xk>,

i<j
where the circumflex indicates leaving said section out of the formula. Here we have used
the notation

Q*(B,TM/B) := Zk I'(A*B* @ TM/B)

to indicate the exterior algebra of forms with values in TM/B. A simple computation
show that d% = 0 if and only if V7 is a flat connection. The de-Rahm cohomology of B
with values in the Bott representation on TM/B, its k' group denoted by H*(B;TM/B),
is the the cohomology of the cochain complex

. —QF(B; TM/B) 22 Q" (B;TM/B) — . ...

A foliation B € Fol,(M) will be called infinitesimally stable if its first cohomology
group H'(B;TM/B) splits tamely. Recall that this means the existence of tame linear
operators

02(B,TM/B) ™% QY(B,TM/B) 2% T(TM/B)

that satisfy the homotopy relation dgohg+hiodg = id. By the above we can conclude that
a foliation is stable if it is infinitesimally stable. Although the vanishing of H'(B; TM/B)
would have been an elegant condition for stability, its tame splitting is not. The existence
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of tame homotopy operators is generally not easy to check and typically depends on
explicit constructions.

Hamilton [Ham8&2a| continues by giving sufficient conditions for the tame vanishing of
the cohomology. We say that a smooth function f : M — R is constant along the leaves
of B if

df|p = 0.

Consider a Riemannian metric g on M as a metric on the cotangent bundle T'M. Then g
is said to be a holonomy-invariant metric if for every two smooth functions f,g: M — R
constant along the leaves, the inner product

(df . dg) € Q'(M)

is again constant along the leaves. Any Riemannian metric g on M induces inner products
on the vector bundles A*B* ® TM/B and a volume form 6 on M. Since M is compact,
the inner product

<%w%=AﬁM@ww»Mw,V%wGQW&TMMﬂ

is well-defined and defines an L?-norm on the Fréchet spaces Q¥(B, TM/B). Define the
adjoint dj of the differential dp by

(,dpe, ) = {p,dpv), Yo, ¢ € Q°(B,TM/B).

Hamilton has managed to deduce the following requirements (without mention of tech-
nical terms such as tameness) for the stability of a foliation.

Theorem 5.3.4. Let M be a compact manifold and B a reqular foliation. If
1. there exists a holonomy-invariant foliation g on M;

2. there is a constant C' > 0 such that the following estimates hold: for every ¢ €
Ly Hom(B, TM/B) we have

L? L? «  nL?
lel™ < € (ldsel™ + el ™)

then the foliation B is stable in the sense that every reqular distribution sufficiently close
to B in Dist,(M) is conjugate to B by a diffeomorphism.

In the case a compact manifold with a Hausdorff foliation the above requirements can
be much simplified. First of all, every Hausdorff foliation B on a compact manifold M
admits a holonomy-invariant Riemannian metric. Fiber bundles clearly admit holonomy-
invariant Riemannian metrics, and one can use generic leaves and a suitable partition of
unity to obtain one on all of M. Hamilton then derives the estimates in the theorem
above from the requirement that H'(L;R) = 0 for a generic leaf L.
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Theorem 5.3.5. Let M be a connected, compact manifold and B a reqular Hausdorff
foliation. If

HY(L;R) =0

for a generic leaf L, then B s stable in the sense that every reqular distribution sufficiently
close to B in Dist,(M) is conjugate to B by a diffeomorphism.

These conditions on M and the foliation B are very restrictive. For example, see
[7,Reeb2|, let (M, B) is a compact, connected, transversely orientable, foliated manifold
of codimension one. If there is a compact leaf L with H'(L;R) = 0, then either M is
isomorphic to L x [0, 1] as a foliated product, if one allows M to have a boundary, or M
is the total space of a fiber bundle M — S! having the leaves of B as fibers.
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Chapter 6

Proof of the Nash-Moser theorem

This chapter goes through the proof of the Nash-Moser theorem for non-linear complexes,
as originally given in [Ham77|. The proof is somewhat simplified, by producing a large
formula in the ‘preliminary estimates’ section, so that a peculiar repetition of arguments
becomes unnecessary.

We start with a non-linear chain complex,

P R
M = N=0,
S

satisfying the hypothesis of the Nash-Moser theorem: the tame manifolds allow smoothing
operators, all maps are smooth tame, and there exist smooth tame maps VP and VR
such that

DxPO‘/IP—F‘/;EQO(DP(I)R—DP(QC)S) =id, VreM

Since the theorem is of a local nature, we may replace M, N and O by graded Fréchet
spaces E/, F, and G that allow smoothing operators, respectively. Because of the now
present additive structure, we may define () = R — S. This leaves us in the following
situation.

Let P: E — F and () : F — G be smooth tame maps between tame Fréchet spaces
that satisfy Qo P(z) = 0 for every € E. Note that P may be translated by P(0) without
affecting this property. Neither does such a translation affect any identity involving only
derivatives of P and (); nor the conclusion of the Nash-Moser theorem, since translation
is an invertible map. This leads to the following local version of the Nash-Moser theorem
for exact sequences.

Theorem 6.0.6. Let P : U — V and QQ : V — G be smooth tame maps between open
subsets in Fréchet spaces that allow smoothing operators. Suppose that Q o P = 0, and
P(0) = 0. Moreover, assume there are maps VP : EXF — EX E andVQ : E x G —
E x F so that

Then there are open neighborhoods 0 € U C E and 0 € V C F' and a smooth tame map
R:V — U such that PR(y) = y whenever Q(y) = y.
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In this section we give a general outline of the proof. Define a smooth tame map
N ExXFxG—EXFxGhby

-V, P(P(z) —y)
y — VeQ(Q(y)) : (6.0.1)
z — Dp)Q(P(x) —y)

=
SIS
I

In the remainder of this chapter we prove that there is a smooth tame projection
7: W — E x F x G, that is, a map such that 72 = 7, with the same fixed point set as
I'. Since

D,PoV,P(P(z) —y) +V,Q o Dp@yQ(P(x) —y) = P(z) —y
it is easy to see that the fixed point set of I' is just the graph Graph(P) x G. Writing

m = (m, T, m3), we see that P om = my. Since P(0) = 0 we obtain open neighborhoods
0eUC FEand 0€V C F and a smooth tame map R : V — U defined by

R(y) = m1(0,y,0).
Moreover, from the iterative definition of m we conclude that my(x,y,2) = y whenever

Q(y) = 0, hence PR(y) = y whenever Q(y) = 0. This concludes the proof of the Nash-
Moser theorem.

6.1 Near-projections
Let E be a Fréchet space and U C FE a convex open subset. As Hamilton, by a smooth
tame projection we mean a smooth tame map P : U — U that satisfies P> = P. By
Taylor’s formula with integral remainder in x € U we have

P*(x) = P(x) + D, P(P(z) — ) + A(z)(P(z) — 2)?,

where A : U x F x E — FE is the quadratic error
1
Az)(v,w) = / D?*P(x + t(P(x) — 2))(v, w)dt.
0

Hence the linear term in Taylor’s formula is in fact quadratic in P(x) — x, that is,
D,P(P(z) — ) + A(x)(P(x) — x)* = 0.
This motivates the following definition.

Definition 6.1.1. Suppose that U C E is an open in a graded Fréchet space. A smooth
tame map G : U — FE is called a near projection if there exists a smooth tame map
AN:U x Ex E — E, bilinear in the last two coordinates, such that

D,G(G(x) — x) + A(x)(G(x) — x)* = 0. A

128



Again by Taylor’s formula with integral remainder this implies that
G*(z) — G(z) = —A(2)(G(z) — 2)* + A(2)(G(z) — 2)*

whenever the composition is well-defined. For G to be a projection is equivalent to image
of G being equal to its fixed point set Fiz(G) := {x € U : G(x) = x}. In the same line
of reasoning, G being a near-projection means that the error of G(x) lying in the fixed
point set can be measured quadratically in the error of x lying the fixed point set.

Lemma 6.1.2. T" defined in 6.0.1 on the preceding page is a near-projection
Proof. Writing

Ay = VaQ(Q(y)),
Az = Dp@Q(P(z) —y),
note that D, PAz+V,QAz = P(x)—y. Hence it suffices to show that D, , .)\I'(Az, Ay, Az)

is quadratic in Az, Ay, Az and P(x) — y. The remainder is a straightforward computa-
tion. ]

Given such a near-projection G we would like to find a projection P with the same
fixed point set. In the case of Banach spaces the proof is much easier. This proof will
form a blueprint for the general case.

Theorem 6.1.3. Let E be a Banach space, U C E an open subset and G : U — E
a near-projection. Then there is an open Fix(G) C V Q U and a smooth projection
P :V — V with the same fized point set as G.

Proof. Fix an x;, € Fiz(G) and let € > 0 be small enough that B.(z,) C U, G(B.(xp)) C
U, and there is a C' > 0 so that

|G*(2) = G(@)|| = [[(A = A)(2)(G(2) — 2)’|| < C||G(x) — ||

for all z € B.(zp). Such estimates can be obtained because A — A from the discussion
above is continuous and bilinear in the last two coordinates.
We aim to prove that the sequence {G"(z)}, .y of repeated compositions is well-

defined and converges uniformly for a small enough neighborhood of x;,. To this end,
define

Vii=A{z e U |lz —mll <0, [|G(2) — zll <n} C Be(w),

where 1 < %E and nC' =0 < %
For all z € Vj, we have G(x) € B.(z) and ||G?(z) — G(z)| < C'||G(z) — z||>. Now
suppose that G*(z) € B.(z;) and

|G* (@) — GM(2)|| < C |G (z) - G ()|
foralll1 <k <nandzx €V, Then

|G* (@) — GH(a)|| < CF M |G(a) — 2| < 6% M.
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Hence

|G™ () — || < Z |G*(z) — G*(2)|| + ||z — s

< ZHQk’anrn <3n<e
k=0

implies that G"!(z) € B.(x3), so that G""%(z) is defined, and G"(x) € B.(z;) gives
HG”+2(JC) . G"H(I)H <C HGn—H(l,) B G”(x)H2

By induction G™(z) € B.(x;) and above estimate holds for all = € V4. Moreover, we
have the estimate

n—1 n—1
[em(@) - ¢m@)) < 361 @) — M@l < 0" < 2%
k=m k=m

for all z € V, and m,n € N. Hence {G"} converges uniformly on Vj to a continuous map
P :V, — E. Note that P(x) € Fiz(G) and Fiz(G) NV, C Fixz(P) both hold trivially.

To prove that P is smooth note that TG : U x EF — FE is also a near projection. For
x € V, fixed, (P(x),0) is a fixed point of TG. By the above, there are open subsets

Ve ={y €U :|ly—P2)| <n,||Gy) -yl <7n} and

Woo ={(y,0) €U X E: [ly = P(z)| <1, [[oll <0, [ITG(y,v) = (y,0)|| <7}

so that G™ converges to P : Vo, — F and T(G™) = (T'G)" to a continuous map @ :
W4 — FE uniformly. Here we have taken the minimum over the two occurring values of
7. DGV, x E — FE is linear in the second entry, hence so is ()2 = pry o () whenever it
is defined. For arbitrary (y,v) € Voo X E, v # 0, we have

N N
DGy — Qa)=v,
2o 2o

so that @) extends linearly, and hence continuously, to V x E. It is now easy to show
that P : V — F is continuously differentiable and TP = ) : V,, — E. Note that for
this we had to shrink the domain of P.

Returning to our point x € V;, for m > 1 large enough we have ||G™(x) — P(x)|| <7/
and

|G () — G™(2)]| < 6" ' < 0.

Hence V., is a neighborhood of G™(z) on which P is C' with TP = Q. In turn,
(G™)~1 (VL) is a neighborhood of x on which P = P o G™ is C! with TP = Q. Since
x €V, is arbitrary, we conclude that P :V, — FE is smooth.

Running through the fixed points z, € Fiz(G) the maps P : V, — E coincide on
intersections, hence collate to a smooth map P : V — E. It still satisfies P(V') C Fiz(G),
Fiz(G) NV C Fiz(P) and, additionally, Fiz(G) C V. So it restricts to a smooth
projection P : V — V with the same fixed point set as G. O
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Theorem 6.1.4. Let E be a tame Fréchet space, U C E an open subset and G : U — E
a smooth tame near-projection. Then there is an open Fix(G) C U C U and a smooth
tame projection P : U — U with the same fized point set as G.

The above proof obviously fails in the case of Fréchet spaces. Instead, we adjust the
iteration by use of the smoothing operators S; : E — E. Let to > 3 and Py = id on F.
Inductively we define

P,z = Px+ S, (G(P,x) — Pyx),
tns1 = 22,

We hope to show that P, converges to the desired smooth tame projection P.

6.2 Preliminary estimates

We begin by recalling some estimates in order to fix notation and relevant constants.
Choose some z;, € Fixz(G). Later we will see that it is sufficient to work in neighborhoods
of every z, € Fix(G).

For 6 > 0 sufficiently small there is a b > 0 such that for all £ > b there is a constant
Cy, dependent only on k, such that for all s > 0,

zye Ni={zeU:|z—ul,,, <20},
and v, w € F the following tameness estimates hold.

IIG( i < Cr (T [12lls)
IDG(@)vlly < Cr (10llss + N2 lliss 10115 -

1A@) (v, W)l < Cr (I0llges Il + Twlles M0l + N2 ls 1011 0]l -
12(z, y) (0, W)l < Cr ([0llps lwlly + N0 llis 10l + llgs + 19 llers) Tolly )

where @ : U x U x E x ' — FE is the map defined by

O (z,y)(v,w) = /1 D*(1 —t)x + ty) (v, w)dt.
0
In addition, the smoothing operators give constants Cj > 0 and estimates
1Sl s < Cut™ [l
forall £k > band s > 0 and
lz = Sexl, < Cut™ " ||,

for all £ > b and s > 4. Hence we are allowed to choose s > § > 3 and k& > b to obtain
all the above estimates simultaneously. Moreover, by choosing 6 > 0 small enough and b
large enough, and using the fact that all semi-norms are actually norms, we may ensure
that NV is a convex open.
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Let us rewrite the iterative process as follows: Fix some tq > 3, and define t,,,; = f/ 2

and

Pgﬂx =Pr+ Ay, Anx=S, 7y, Zyov=G(P'r)— P

n

Subsequent steps of the iteration are well-defined if P2z lies in the domain of G. Some
explanation of the notation is in place: The iterative process depends on the chosen value
of g, whose dependence is indicated by the superscript in P°. If we break up the iteration
at some step m € N, we define the continued iteration P™ to be the (n —m)™ iteration
with starting ¢,, as starting ¢-value. This notation leads to the identity

P'=pmop®

whenever the composition is defined. The purpose of this practice lies in the observation
that P is a smooth tame map on it’s domain of definition; this will be useful in proving
smoothness of the projection. We will make sure that all constants C' > 0 from here on
are independent of ¢, such that they hold equally well for P.

We may now write down a recursive formula for the difference Z,x using Taylor’s
formula with quadratic remainder.

Zni1® = G(Prgﬂm) - Pgﬂx
= Z,x — Mgz + DG(PY2) Z,x — DG(Plx)(id — Sy,) Znx + ®(Prx, PY ) (Ay)?
= (id — DG(PYz))(id — S,) Znx — A(PYx)(Zyx)* + ®(Plz, PY 1 2)(A,x)?
The idea of Hamilton’s proof revolves around estimating the norm of the above equation
to show that Z,z = G(P°x) — P°x tends to 0 fast enough. For this, we make some
preliminary estimates. They involve parameters o and § which will be specified later on
in the proof.

Lemma 6.2.1. Forallk > b, o > 0 and 8 > —1 there is a Cx > 0 such that the following
estimates hold.

1Zoazll < Crty®* N1 Zn2lls arys X+ 1Z0]l) + Coty ™ (| 2ozl
+ Oty | Zawlly (3 1 Zull, + 11 Za ]y (| o]y y + ([ Prsa )

Proof. By the above we have

| Zusiall, < |[id — DG(PL))id - S,,)Zoa]
+ HA(P,?x)(an)QHk + || ®(Px, P70+1$)(An$)2Hk

The first term is estimated by
1(id — Si,) Znz||, + || DG(Plx)(id — Sy,) Zn||,
< Cy(t, ’|Zn$||k+(a+1)s +|(id = St,,) Zn |y 5 + ||P7Ska;+5 |(id — St,) Zn|,)

< Cp(t,* HZn33”k+(a+1)s + 1, HZn$Hk+(a+2)s + tr:ﬁs ||P7S$Hk+s HanHbJr(1+ﬁ)s)
S th;as Han”k+(a+2)s + th;ﬁs ||P1(1J‘I.Hk+s HanHbJrﬁs .

132



Here the estimate for 3 = —1 doesn’t follow from smoothing estimates for id — S;,, but

but from S;, instead. Note that we can estimate

[Zn2 g ys < 1St Znlly s + 1(id = St) Znlg g

S this Han”k + th;as |’an|‘k+(o¢+2)s )

hence the A-term is bounded by

Ck(HZn'THk-‘rS ||Zn37||b + HPS:UHJCJFS ||Zn35||§)

s —Qs 2
< th?z (HZn:UHk +1, ”Zn:[;”k+(a+2)s) ”anHb + Ck HPS Han”b

ka+s

Lastly, the ®-term is estimated by

CrllSt, Zuw s 150, Zazl| b+ (1P|, o, + ([ Prae ) 10, Zu )
< Oty | Zu | 1 Zazlly + Cuti (| Py + (1Pl ) 120z

completing our estimates.

O

Next we state a simple lemma allowing us to estimate G(x) — x; in terms of z —

for x € N, useful in ensuring that the iteration remains within certain bounds.
Lemma 6.2.2. ||G(2) — x|, < Ck ||z — x|, for all z € N.

Proof. Again by Taylor’s formula we obtain
1
Glz) — 2 = G(x) — Glay) = / DGtz + (1 — t)a)(x — 2)dt,
0
hence we can estimate
1
IGG@) ~aull < [ IDG(ta + (1 = )as) o — )] o
0
1
< Cllr =l + e =2+ 0l [ lta+ (1 = sl a0

and

||t]3 + (]‘ - t)'rka—i-s < Hl’ - buk—s—s + H‘rb||k+s < HZL’ - xb”k—o—s + Ck

together with the rather coarse estimates

[l — x|, (lz — 2y + Ch) < (204 Cy) || — x|,
< Gk |z = o4

completes the proof.
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6.3 The low-norm estimates

Lemma 6.3.1. For all k > b and there is a C, > 0 such that for all xt € N
[Pz = |, < Otz — ]y

whenever x,, is defined. Moreover, we have the estimate
1Znlly < City” |2 — @bl

Proof. The case n = 0 is trivial. Now suppose that P%x is defined for all m < n and
there are A,, ) so that

HPSz — mbHHS < Amvkt?f |z — :L‘b||k+8 )
Suppose in addition that P%z € N, so that Png is defined, then

HPSHx - xb”ms < HPSx - buk-{-s + 115, (Zn) |l
150, (Zn) iy < Cut™ || Zoz|ly,
< th?zs Han”k;
1Zoz]l, < [|G(Prz) = Gla) ||, + || Pow — s,
< G || Pz — |,

||k+s

Thus we have ||P), x — bukH < CrApitl ||x — x|, Hence we find the estimate

1Pz = a,,y < Anpratdi 12— 2ol
if we take
CrApitt® < Api st .

Since t,1 = o> and s > 2 we have t7563%, | = £,*% < -1 ;1 — 0 as n — oo implies

that we can choose the A, ; such that A, ; — 0, hence they are bounded from above by
some larger C} > 0.
Finally, note that

”ZnIHk < Ck HPSI - buk-m < this |z — xb||k+s'
O

Lemma 6.3.2. We can choose € > 0 and n > 0 sufficiently small such that for all tg > 3
and

zeV) = {x €N ||z — plpy06s <15 |G (2) — 2], < 5755125}
we have Pz defined for alln € N, P’z € N and the estimates

1Znzlly <t | Anlly,, < 081
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Proof. Suppose as induction hypothesis that, for all m < n, the iterative P2z is well-
defined and

1 Zmall, < et
Then

1Az llyrs = 186, Zinlly s < O | Zmall, < Cet!™,
hence

”Amxnb—l—s < Qt;zlos

if we take Ce < 6, which is possible since C' > 0 doesn’t depend on n. Now choose 1 < 6
sufficiently small such that

|z — bubJrs < |z — xb”b+263 <n<@o,

then

n
1Pz =@l , < e = llypy + D 150 (Zimn) g

m=0

<O+ 0110 <20,

m=0

Hence PY,,z € N and P,z is also well-defined. What remains is to prove that Py
also satisfies the required estimates.
Apply the big estimate in lemma 6.2.1 with £k = b and a = = 23 to obtain

1Znnrzlly £ CZ N Zut a5, (1 + 11Z0]ly) + CZ N Znt |y 0a
S 2
+ O (U + [Py, + ([ Peselly ) 120l

Now by the induction assumption we have 1 + || Z,z|, < C and

L+ [Py, + 122

+1be+s <1420+ beHb-s-s <C,

so we obtain

_ 2
| Znsazll, < Ct2 || Znlly g5, + C° || Znl;
< Ot 35428 || — T |y 065 T Ct3 set 2

by lemma 6.2.2 and the induction hypothesis. Here we have taken Ce < % and Cn < ¢/2,
which is possible since C' doesn’t depend on n. Finally, recall that t,,, = ti/ 2, hence

—18s __ 4—12s
t18s = 1% O
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6.4 The high-norm estimates

Lemma 6.4.1. With the same hypothesis as in lemma 6.3.2 we obtain for all k > b

HPSZ’:HHS < Cp(1+ H33”k+19s)
||Anx||k+s < Oktqfs(l + Hx||k+19s>
”Zn37”k < thjs(l + Hka+193)

Proof. Suppose as induction hypothesis that for all 0 < m < n we have estimates
| Zm||, < Amt;nh(l + H:UHIHJQS)?

with 1 < Ay < A; < ... < A,, dependent on m. Then by the smoothing estimates we
have

1AnT sy = 150 Zm s < Cityn 1 Zm ]l < CeAmt (14 |2l 110,):

which also shows that the second result follows directly from the third. Summing over
all m < n gives

Z ARz < Zt;{r)sckAn(l + 1% 1195)
m=0 m=0
S CkAn(l + ||ka+195)7

since the A,, are nondecreasing and t, > 3. The obvious estimates

n n
1B s + 1Py < D0 =1IAm s + 2 llps + D ARl + 2
m=0 m=0

< CrAn(1+ ||:E||k+195)

show that also the first result follows from the third. Apply the big estimate in lemma
6.2.1 for « = 16 and 8 = —1 to obtain

1Zn12lly < ity N1 Z0llg15s (1 1 Znz]l,) + Gty 120z,
+ Oty | Znwlly (3 1 Zue )y, + 11 Za ]y (| o]y y + ([ Prsals,)

Recall the low-norm estimates from lemma 6.3.2,

1 Znzll, < Ot
and from lemma 6.3.1,

1Z0 s18s < Crta |7 = @blligrgs < Crtn’ (1 (120l 110,)
and the induction hypothesis

| Zn ][, < At (14 121 19)-
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We obtain

1 Znsrzll), < Cut 2 (1 ([l y100) + Ot
+ thﬁlos(CkAnt%k?)S(l + |2 js19s) + CrAnt, (1 + 214 105)
S OkAnt;HS(l + ||x||k+195)’

SO we may estimate

| Znsrz||, < An+1tﬁﬁ(1 + 1214 105)

21

if we take Oyt A, < t, 2 A,1, or equivalently A, ; > CL A As soon as
thﬁs/Q < 1, we may take A,,; = A,, hence the sequence A, can be chosen bounded.
Note that the A, may also be chosen independent of ¢, since ¢, > 3 allows us to bound
tn*/? < 3-(3)"s/2 This gives the desired third result and, as mentioned before, the other
results follow. O

Hence on the set
Vy = {2 €U ||z = zplly406, < 1, |G () — 2|, < etg >}
the maps PV : V0 — FE are all well-defined smooth tame maps. The estimate
”Anxums < Ck:tfs(l + H$Hk+19s)

for all k£ > b from the previous lemma gives

n n
[Pin = Prnllyry < N[y < it Y175 (1 + (|24 416,)
l=m l=m

< Crty (1A |2 i) -

The sequence Pz is Cauchy for all z € V¥ hence converges to some P)x € E; this
defines a map

PSO:VbD—>E.

Moreover, the function 1 + ||—||,, 19, is bounded on every compact subset K C V;?. We
obtain an estimate of the form

| Prn — me||k+s < let;zs'
Hence the sequence of maps
By K — (B, [~ lyy):

where (E, || —|,,,) is has the topology given by the norm |[—|[,, and the topology of K
remains unchanged, converges uniformly to a continuous map

Pl K = (B[ =lls)-
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In particular, given a sequence {z"}, _ with 2" — x € V), the set K = {z"}U{z} C V}}
is compact, so P2z" — P2 x. Hence the map

PV = (B, =)

is continuous for every k > b. The open balls Byy(z,7) = {y € V' : |y — zl, ., <7}
form a basis of topology for E. We conclude that the map

P :Vy —E

is continuous. Moreover, the estimate || Pz, , < Ci(L + ||z, o,) Proves that P is
tame.
We also obtain some other properties of PY. The estimate

| Zn]], < City, (1 + 1] .4 105)

shows that G(P%x) = P2z, so that
P2 (V) C Fiz(G) C U.

Moreover, for x € V2 N Fiz(G) we have P,z = z, so that
Fiz(G)NVY C Fiz(PY).

It is only later that we conclude from this that P2 is a projection. First we prove the
smooth tameness of P.

6.5 Smooth tameness of P

Lemma 6.5.1. If G : U — FE is a near-projection then so is its tangent map
TG:Ux E— E x FE.
Proof. For (x,u) € U x E and v,w € E x E define

) AGz) (01, w1)
V000 = (D100 )+ (5 o) A )

where DA(z) is the partial derivative of A to the first coordinate. It is clearly a smooth
tame map and bilinear in (v,w) € E? x E?. Since we have

B DG(x)v,
DTGz 0)(01.10) = ( pagay o) - DGy

for (z,u) € U x E and vy, w; € E we only have to check the second component. Now
DG(z)(G(z) — ) = —A(2)(G(x) — z)*
implies, by linearity and bilinearity, that
D*G(2)(G(z) — z,u)+DG(z)(DG(x)u — u)
= — DA(2)(G(z) — 2)*u
— Az)(G(x) — z, DG(z)u — u)
— A2)(DG(z)u — u,G(x) — x).

Hence T'G is a near-projection. ]
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Our aim is to apply the previous results to T'G and show that the resulting iteration
converges to the tangent map of P2 . For this we need smoothing operators S; : Ex E —
E x E, which we define by

Si(x,v) = (Sizx, Spv)

for all (z,v) € E x E. If 2, € Fiz(G) then (14,0) € U x E is trivially a fixed point of
TG. Hence we obtain constants b, s € N and 7, > 0 and an open neighborhood W} of
(xp,0) defined by

Wy ={(z,v) €U X E : [|x — |l5 065 < 7> [V]51065 - | TGz, v) — (z,0) |5 < €65}
on which we have a sequence of smooth tame maps
P7g+1 = pS+StH(TGOPT? — Pr?)

that converge uniformly on compact subsets to a continuous and tame map Pfo.
We may prove that P> = TP for all n € N by a simple induction argument. It
trivially holds for n = 0, so assume it hold for some n € N. Then

By (x,0) = BY(z,v) + S, (TG(P)(x,v)) — PY(x,v))
=TP(z,v)+ S, (T(G o P°)(x,v) — TPY(x,v))
= (P’%z + S, (G(P°x) — P’z), DP%(x)v 4+ S, (D(G o P°)(x)v — DP%(x)v))
= (PT(L)—l-l(x)? D(PT(L) + Stn(G © Pr? - Pg))(x)v) = TPqS—H(:Ev v)

for all (z,v) € Wy. In particular, DPJ(z)v is linear in v and converges uniformly on
compact subsets of W to the second component R2, of P2 = (Q%, R ). The following
lemma is a first step towards the smoothness of PY.

Lemma 6.5.2. P2 is C' on V;? and DP?, = R°

ook

where V2 = pri(V2 x {0} N WY).

Proof. Fix a point y € V0. Let Bl(y) = {x € E : ||z — y|,} denote the open ball of radius
r around y induced by the [-norm. Then for large enough [ > b and small enough radius
r > 0 the closure of the open square B = Bl(y) x BL(0) lies completely in W2 N (VY x E).
By Taylor approximation we have

1
Pz +v) — P(z) = / DP)(x + tv)vdt
0

for all (z,v) € B. Since DPY converges uniformly on the compact set {(x + thv, hv) : 0 <t < 1},
we have for all (z,v) € Bl(y) x E and h > 0 with hv € BL(0) that

1
P (2 + hv) — P (z) = / R (x + thv)hvdt.
0

Note that DP? converges point-wise on Bl(y) x E. For suppose (z,v) € B'(z) x E, with
v # 0, then 5"—v € BL(0), hence

2[jvll,

r
2|Jv]l,

r

o A = QL@

(%
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implies that

V.

Al
DP(z)v — 'Q% (@)
r 2{Jvl],

Hence we can extend the map Q% to Bl(z;) x E and it remains linear in the second
entry. In particular we have Q% (z + thv)hv = hQ% (z + thv)v.
Now by continuity of Q% on B we obtain

1

(PR (a4 hw) = P () — RY(x)o
as h — 0. Tt is well-known that a linear map between Fréchet spaces is continuous if it
is so in a neighborhood of the origin, hence P2 is C' on B'(y). The point y € V;? was
chosen arbitrary, so the proof is complete. Il

Moreover, TPY is tame on W2 NV x E, as we have seen in the high norm estimates.
Since DP?Y is linear in the second entry, it directly follows that T'PY is continuous and
tame on all of Vbo x F. These arguments hold analogously for higher order derivatives
TrG.

The only remaining obstruction for the tame smoothness of P2 occurs if f/bo can
become arbitrarily small as we take higher order derivatives. Hence we need to show
that P2 is C' on all of V0. For this, recall the definition of the maps P™; they are just
the (n — m)™ iterative step with initial t-value equal to t,,, such that P? = P™ o P9
wherever defined. Since we ensured that all our estimates do not depend on ¢, the above
arguments hold equally well for PZ.

Lemma 6.5.3. TP (z)v is well-defined for all (z,v) € V¥ x E. Moreover, it is contin-
uous and tame.

Proof. Fix a ty > 3 and some z € V}?. By the same argument as above it is sufficient to
check that TP is continuous and tame in some neighborhood of (z,0).
Now note that

Too = P2 (2)

is a fixed point of G. Hence there are constants by, s € N and e, 7, and for every
m € N neighborhoods

Ve = {y €U ly — zoolly 1965, <Moo [1G(W) =yl < 5t;1125°°}

and W2 of points (y,v) € U x E with

ly — xOOHbOC+26500 < Moo

HU||I)OO+26500 < Moo
ITG(y,v) = (y,0)]l. < Eacly®*

as in the arguments so far. Originally the constants involved in V' may differ from
those in W but we are free to take the respective maxima and minima where necessary.
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Then TP (y)v is well-defined for all n > m and converges uniformly to T'PZ* on compact

subsets of V' x E. We continue by showing that
(P2z,0) € V" x E

for m large enough.
For suppose this holds. Recall that P? = P™oPY whenever the composition is defined.
Hence P2 = P™ o P? and by the chain rule

TP) =TPIoTP).

TP is tame and continuous on the neighborhood V™ x E of TP? (z,0) = (Px,0) and
so is TP? on its own domain of definition. Hence TPY is tame and continuous on the
open neighborhood (TP2)~1(V* x E) of (z,0).

The buo, Soo, €00 and 7)o, depend on TG and z, but not on t,,. Since Plx — x4
as m — oo we obtain two of the required inequalities. The second inequality for W2 is
trivial for v = 0. For the last two inequalities, note that

TG(Pyz,0) = (G(P)x),0),
hence it suffices to show that
|G(Poz) — P,%be < oot 175

We claim that for all ¢ € N there is a constant Ci(z) > 0, possibly depending on k, ¢ and
x, such that

HG(PS@) — P&ka < Ci(x)t,©

for all m € N, provided that k£ > 0. We still have the freedom to choose by, as high as we
like, hence this requirement is easily met. From this it is clear that (P%z,0) € V" x E
for m large enough. O]

The following addresses the claim made in the lemma above.

Lemma 6.5.4. For allx € V?, k > b and ¢ € N there is a constant C(x) = Cy..(x) such
that for all n € N,

1Znz]l), < C(z)t,°
Proof. We will proof the lemma by induction on ¢. By lemma 6.4.1 we have
1 Znzlly < City ™ (1 + (24195 < Cla)t, "™

Assume the required estimate holds for some ¢ and all n. We are still free to choose s,
and from now on we will assume s > 3. By the big estimate in lemma 6.2.1 we have

1Znzll), < Cit® 11204 (a2 L+ 1 Zally) + Oty | Zn ||y s
+ Cpt2 | Zoell, (85, 1| Zn |l + | Znlly (|| PR,y + [P, )
< Crisea(T)t, 71 4 Chgo(2)t°) 4+ Chsep(@)t, #7¢
+ Cre(@)t2 ™ (Cre(@)t ¢ + Cs(@)t, (|| Py + [P ],, )
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Recall that ||P)z|,,, < Ce(1+ ||z, 10,) < Ck(z), hence it is irrelevant for these esti-

mates. Now take a = (3 > % + %c so that we obtain

S—

_1 3
”ZnIHk < Ck,qa,ﬂ(x)tn RS Ck,S,C(I)tiS_QC
C

el
< Ck,c,a,ﬁ<x>tn+1 o+ Ck,s,C(w)tiSﬂc-

For the second summand we have

25— 4% c—1s

Ck,s,c(x>t28726 = Ck:,s,ctn+1sc < Ck,s,c<x)t;+13

whenever ¢ > 7s, and we’ve already seen that the estimates hold for ¢ = 7s

estimate

1s

|Zuall, < o)t

holds for all n > 1. For n = 0 the estimate is trivial, since

120zl = G (z) — 2l < Ci(x)

. Hence the

implies that we can choose the constant C'(x) large enough to account for n = 0. By
assumption we have s > 3, hence this proves it also holds for ¢ + 1 and completes the
proof. Note that this argument is not based on induction on n, hence all estimates remain

independent of n.

]

Around every fixed point z;, € Fiz(G) we have found a neighborhood V;? and a smooth
tame map P2 : V) — F such that P2 (V) C Fiz(G) and Fiz(G) NV C Fiz(PY).
By their definition these maps coincide on intersecting domains, hence they collate to a
smooth tame map P : V — E with P(V) C Fiz(G) and Fiz(G) = Fiz(G)NV C Fix(P).
Clearly, this map defines a projection P : V — V with the same fixed point set as G.
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