
Accelerating finite differences for
solving a barotropic ocean model

on the GPU

Folkert Bleichrodt

Utrecht University

A thesis submitted for the degree of

Master of Science

February 2011

Contents

1 Introduction to CUDA 7

1.1 Hardware layout and thread organization 7

1.1.1 Thread model . 8

1.1.2 Memory model . 10

1.2 Coalesced memory access . 12

1.3 Bank conflicts . 13

1.4 Warp divergence . 14

1.5 Performance benchmarking . 15

2 The model 18

2.1 Barotropic vorticity equation . 18

2.2 Discretization . 20

2.3 Poisson solver . 22

2.3.1 FFT-based sine transform . 24

2.4 Implementation details of the Poisson solver 26

2.4.1 Real FFT . 27

2.5 Implementation details of the spatial finite difference approximation . . . 31

3 Numerical results 32

3.1 Accuracy . 35

4 Conclusions and prospects 38

Bibliography 39

3

A Hardware specifications 42

A.1 GPU specifications . 42

A.2 CPU specifications . 43

B Tables 44

B.1 Time per iteration . 44

B.2 Speedup . 45

4

Introduction

The computer and mobile devices industry today is one of the most flourishing markets

in the world. It always has been since the introduction of the personal computer in the

late eighties. According to Moore’s Law the number of transistors of computers doubles

every two years. For the past twenty years this has largely been correct. Of course,

this effect can only be sustained with a driving force behind it: a thriving consumer

electronics market.

While the scientific community embraces the use of High Performance Computing

and has access to the fastest computers in the world, it is a relatively small user group.

Therefore the decisions and the directions of hardware companies are still largely based

on consumer revenues. Many scientists therefore rely on large clusters of CPUs connected

by a fast network. Distributed memory systems make out most of the TOP500 [1] of

super computers. Nevertheless, CPUs are not the only hardware components that are

being heavily developed.

The video gaming industry has driven the development of specialized graphical hard-

ware, the Graphics Processing Unit (GPU). Its main task is to render realistic images for

video games. To keep up with the increasing complexity of games, the GPU has turned

into a highly parallel device. With a large amount of processors it allows fine-grained

parallelism for parallel rendering of pixels and vertices.

While the GPU has a lot of potential as a parallel device, it was close to useless for

scientists. Apart from accelerated visualizations, a GPU was not suitable for general

purpose computing. Some early attempts have been made [5], but the development

efforts are huge, since all mathematical computations have to be translated in graphics

operations.

In 2006 NVIDIA provided a toolkit which extends the C programming language with a

minimal set of paradigms for parallelism which allows to use GPUs for general purpose

5

computing. This extension is called the Compute Unified Device Architecture or CUDA.

With CUDA it is now possible to create parallel programs in C for the GPU, similar to

openMP or openMPI programs.

The introduction of GPUs in science has proven to be successful. The TOP500 features

more and more clusters extended with several GPUs per node. On NVIDIA’s website

applications of CUDA are being showcased and numerous scientific papers are listed

showing moderate to impressive improvements in performance over a CPU.

In oceanography, the GPU still does not play a major role in numerical simulations.

Still, many CUDA implementations exist for Finite Difference (FD) and Finite Element

(FEM) methods for solving partial differential equations (PDEs) and some papers dis-

cuss implementations of the Navier-Stokes equation, e.g. [13], with good results. The

measured speedups, comparing the GPU with a single core of a CPU, are very satis-

factory and we may assume that ocean as well as atmosphere simulations can enjoy

performance boosts when employing a GPU.

In this thesis we will explore the possibilities for accelerating a finite difference

method for solving a model of the barotropic quasi-geostrophic vorticity circulation.

The model describes the homogeneous wind-driven ocean circulation and is one of the

cornerstone models in modern physical oceanography.

We will discuss, after a brief introduction to CUDA, the model and numerical meth-

ods in detail. Solving the model consists largely of two parts, computing the discretiza-

tion using a finite difference scheme and solving the Poisson equation using a fast Poisson

solver. Numerical algorithms in C for these methods are ported to CUDA. Implemen-

tation details and optimization steps are then discussed to show the coding style and

difficulties that may arise when programming for the GPU. The last chapters will give

an overview of the numerical results and the achieved performance increase.

6

Chapter 1

Introduction to CUDA

The CUDA programming language is tailor-made for the NVIDIA GPU and therefore

has some restrictions based on the hardware layout. This leads to the best performance,

but it undermines portability. As a result of this, it is important to understand the

hardware layout in detail.

Since the organization of threads and the hardware layout are closely connected we

will discuss both subjects at once. We refer to the CPU as the host and the GPU as the

device.

1.1 Hardware layout and thread organization

A thread is an instance of software that runs on a processing unit and can access and

modify memory. The CPU can handle several threads in parallel depending on the

number of cores and the hardware specifications. If more threads are active, they are

scheduled by the scheduler of the operating system. The scheduler activates and deac-

tivates threads, such that they appear to run in parallel, which is not the case. In this

case we say that the threads are running concurrently. If the scheduler is smart, idle

time of a thread can be hidden by deactivating it and instead activating another thread.

The building block of the GPU is a multiprocessor (MP). It consists of eight cores

each capable of running four threads in parallel. An MP can therefore handle 32 threads

at once; this is called a warp. The clock frequency of a core is in the order of 1-1.5 GHz,

which is low compared to a CPU. A GPU has multiple MPs and a modern CUDA enabled

GPU may have more than 500 cores. Figure 1.1 shows a schematic representation of the

GPU; the memory types will be discussed later.

7

With these large amounts of threads that can be run in parallel, it is possible to

assign one thread per data element. For example with matrix addition, one thread can

compute one element of the resulting matrix. By this one-to-one correspondence between

a thread and a data element you soon run out of available cores to run the threads on.

Therefore they have to be scheduled and wait for other threads to finish. For this reason

the threads have been organized into thread blocks, which is the smallest number of

threads to be scheduled on a MP.

Figure 1.1: Hardware layout of a GPU [8].

1.1.1 Thread model

A kernel is a piece of code that is executed by each thread. Since a thread has its

own threadID, we can apply the same kernel to different data. This idea is called Single

Instruction Multiple Threads (SIMT). The organization of threads helps to achieve work

balance and it defines the one-to-one correspondence between threads and data.

The first level of organization is the thread block. It has three dimensions and has

a maximum size of (512× 512× 64). Blocks are groups of threads and are the smallest

8

elements which can be scheduled to a multiprocessor. The blocks are divided among the

multiprocessors in a cyclic fashion. This results in a near-optimal work balance since

each MP gets approximately the same number of threads. Of course this does depend

on the choice of the block size and the problem size.

Threads inside a block of size blockDim.y×blockDim.x get a three-dimensional local

threadID,

threadID = threadIdx.z ∗ blockDim.y ∗ blockDim.x

+threadIdx.y ∗ blockDim.x + threadIdx.x.

The maximum number of threads in a block depends on the hardware compute capability

1. Each block has the same number of threads and these threads have the same local

numbering.

Blocks are organized into a grid which has one or two dimensions and each block

has a blockID: (blockIdx.y, blockIdx.x). A grid is used to identify threads with data

elements and it allows to compute the global index of a thread. For example, a matrix

of size 32 × 32 can be divided in four blocks of size 16 × 16. These blocks can then be

handled by a thread block of size 16 × 16. The threads have a local numbering from

0, . . . , 15, both in the x- and y-direction. Using the blockIDs we can compute the global

indices, thread (threadIdx.y, threadIdx.x) will process element aij , with

i = blockIdx.y ∗ blockDim.y + threadIdx.y

j = blockIdx.x ∗ blockDim.x + threadIdx.x.

Figure 1.2 illustrates the structure of a CUDA program. One host thread launches the

program and executes serial code. When a kernel is launched it spawns a grid of threads

on the GPU. The number of thread blocks and threads per blocks can be configured by

a special syntax,

kernel name <<< dimGrid, dimBlock >>> (parameters);

1The compute capability is a number of two digits, x.y, where x is the major revision number of the
hardware. This is only increased if a new generation of GPUs is introduced like the NVIDIA Fermi, which
has major revision number 2. The minor revision number y determines some hardware specifications.
For example, devices with compute capability x.1 or higher have relaxed conditions for coalesced memory
access.

9

Figure 1.2: Structure of a CUDA program [8].

The structures dimGrid and dimBlock contain the dimensions of the thread grid and

thread block respectively.

When the blocks have been scheduled to the MPs, the MP activates the threads

of several blocks up to 1024 threads (depending on the compute capability). These

blocks are divided in warps of 32 threads with consecutive threadIDs. The warps run

concurrently; whenever a warp is idle another warp will run.

1.1.2 Memory model

The GPU has three basic levels of memory: the global memory (or device memory),

shared memory and thread registers, see Figure 1.1. Global memory is shared among

all threads, but has a much higher latency than shared memory or registers. Shared

memory and registers both have a similar low latency, but are only visible to a subset

of the threads.

The global memory has a typical size of several gigabytes and is used to hold the

dataset of the algorithm. Its main advantage is this large size which allows to use only

GPU memory during an algorithm. This makes the need to communicate data between

10

the CPU and the GPU minimal, which is favourable performance-wise.

A regular pattern in a CUDA program is to load or create the dataset on the host,

transfer it to global memory, execute the algorithm and send the result back to host

memory. This pattern is repeated if necessary.

Communication between the host and the device is very slow since it involves the

PCI Express BUS, which has a low bandwidth compared to global memory. Therefore

communication between the host and the device should be kept at a minimum.

Shared memory is similar to a cache, but it has to be programmed manually. Each

multiprocessor has one shared memory, so it is only available to threads running on that

multiprocessor. This implies that the memory is shared by threads in a block. Shared

memory is almost 100x faster than global memory and provides a fast way to reuse data.

The size is currently 8 kB or 16 KB for compute capability 1.x and 32 kB for compute

capability 2.x.

The last type of memory are registers. These are a per-thread local memory and

are used to store local variables, such as the threadID and kernel variables. Although

this memory is very fast it should be avoided to have too many registers per kernel.

There is a limit of registers as well as the number of threads that can be simultaneously

resident on a multiprocessor and this directly impacts the number of blocks that can

be scheduled. For example, if the maximum number of threads per MP is 1024 and a

multiprocessor has 16384 registers, then we can have the following schemes:

1. 512 threads, 2 blocks

2. 256 threads, 4 blocks

3. 128 threads, 8 blocks

4. 32 threads, 32 blocks.

However, the maximum number of resident blocks per MP is eight, so only the first

three schemes are possible. With 1024 threads active on the MP, the limit for registers

is 16384/1024 = 16 per kernel.

Table 1.1 lists the lifetimes and visibility of the different memory types.

Other read-only memory types are texture and constant memory with a size of 64 kB.

These have a cache of 8 kB and can be useful for fast lookup tables.

11

Type Size Visible by Lifetime

global 4 GB every thread whole program
shared 16 kB block kernel
register NA thread warp

Table 1.1: Memory size and context for NVIDIA Tesla as used in experiments.

1.2 Coalesced memory access

With so many cores, a kernel is often memory bound, i.e., memory access time is larger

than the computation time. In such cases it is important to utilize the maximum avail-

able bandwidth. This is possible when global memory access is coalesced.

When global memory is accessed by a thread there is a latency of 400 to 600 clock

cycles. Memory requests are served for half-warps, but generally this does not result in

16 (for a warp size of 32) times the latency of one memory operation. This is because

memory access can be coalesced, meaning that the memory request of one half-warp is

served in one or two memory operations.

Full memory coalescing is achieved when the first thread of a half-warp accesses the

first data word of an aligned memory segment and each consecutive thread accesses a

consecutive data word. Global memory consists of aligned segments of 16 and 32 data

words. Figure 1.3 shows two 128-byte segments of linear global memory. All memory

addresses have been numbered from 0 to 63. This example consists of 64 data words of

4-byte width (type float). When a half-warp accesses memory only in the blue or only

in the orange part, it takes at most one memory operation of 128 bytes.

To clarify this we will look at some examples of access patterns in Table 1.2. An

access pattern can be described by the notation tk −→ dk, k = 0, . . . , 15. This means

that thread tk with local index k accesses the data word with address dk. From these

Figure 1.3: Aligned global memory segment.

examples only the first pattern is fully coalesced and all 64 bytes are transferred in a

single memory operation. This results in maximum bandwidth. In the last example,

12

also 64 bytes are transferred in one memory operation, but 128 bytes could have been

sent. This pattern uses only half of the maximum available bandwidth.

Access pattern # memory operations Note

tk −→ k 1×64B fully coalesced
tk −→ k + 1 1×128B misaligned
tk −→ k + 17 1×64B and 1×32B misaligned within two 128B segments
tk −→ 2k 1×128B access with stride of 2

Table 1.2: Access patterns for coalesced memory access, for threads of a half-warp tk,
= 0, . . . , 15. E.g., tk −→ k means that thread k accesses memory address k.

1.3 Bank conflicts

Shared memory access cannot be coalesced, instead memory can be accessed in parallel

from different memory banks. Shared memory on devices with compute capability 1.x

(first generation) have a size of 16 kB. The memory is divided among 16 memory banks,

each consisting of 1 kB. When data is written to linear memory it is arranged such that

consecutive data elements are written to separate memory banks. When data is accessed

from shared memory all memory requests for separate banks are handled in parallel. If

multiple threads want to access the same memory bank a bank conflict is created. The

memory operations on these banks are then serialized. As for global memory access,

shared memory access is handled per half-warp.

Example: matrix transposition

To illustrate this effect we discuss the example of out-of-place matrix transposition,

which also has been used in our CUDA implementation of the oceanographic model.

Suppose an n × n matrix A is stored in global memory as a linear array such that

Aij = A[i ∗ n + j]. A block size of 16 × 16 threads is chosen such that the matrix is

divided among n/16× n/16 blocks. Then row-wise memory access is coalesced.

If no shared memory is used, each thread block reads in a block of A row-wise.

This row is then written column-wise to the corresponding block of the output matrix

B. This results in uncoalesced writes with stride n. If the block is first transferred to

shared memory, the data can be read out column-wise from shared memory and written

13

row-wise to B. This makes the whole memory operation coalesced, but there are still

bank conflicts.

(a) Bank conflicts for column-wise
access.

(b) Bank conflict free access, both row-
and column-wise.

Figure 1.4: Shared memory bank conflicts can be eliminated by allocating the right
amount of memory.

To see this look at Figure 1.4(a), we assume for simplicity that a block is 8×8, a half-

warp has size eight and there are eight memory banks. This is a block of A written to

shared memory row-wise. We have coloured each element to indicate on which memory

bank it resides. It is now clear that accessing the shared memory column-wise will create

an 8-way bank conflict, i.e., the whole column resides on the same memory bank and

accessing this column will be serialized into eight memory operations.

The problem can be solved easily by allocating one column more in shared memory.

This last column is not used for storage, but it will shift the memory banks that are

accessed by the thread block. Figure 1.4(b) shows the result. Accessing a column in

shared memory is now bank conflict free.

1.4 Warp divergence

As stated previously, threads are executed in groups of warps. If threads inside a warp

are taking different execution paths we say the warp is branching or diverging. In this

case each separate branch is computed sequentially.

Consider the following example by Mark Harris [6], which is a reduction algorithm:

g l o b a l void reduce (int ∗A)
{

14

unsigned int t i d = threadIdx . x ;
int i = blockIdx . x ∗ blockDim . x + threadIdx . x ;

for (unsigned int s =1; s < blockDim . x ; s ∗= 2) {
i f (t i d % (2∗ s) == 0)

A[i] = A[i] + A[i+s] ;
s ync th r ead s () ;

}
}

The condition on ‘tid’ divides a warp in two branches, where only a small fraction of the

warp does the actual work. This problem is fixed by using a strided index:

g l o b a l void reduce (int ∗A)
{

unsigned int t i d = threadIdx . x ;
unsigned int o f f s e t = blockDim . x + threadIdx . x ;
int i = o f f s e t + t i d ;

for (unsigned int s =1; s < blockDim . x ; s ∗= 2) {
int index = 2∗ s ∗ t i d ;
i f (index < blockDim . x)

A[o f f s e t+index] += A[o f f s e t+index + s] ;
s ync th r ead s () ;

}
}

Warp branching can dramatically decrease the performance of a kernel and should be

avoided if possible. Branching of different warps does not involve a performance penalty,

so it is possible to impose conditions on the blockID. However, the runtime of a kernel

is determined by the slowest block, so all blocks should have approximately the same

runtime.

Note that the for-loop ends with a synchronization, syncthreads(). This acts as a

barrier for threads in a block and has very little overhead. Global synchronization for all

threads within a kernel is not possible, but a kernel launch acts as global thread barrier.

1.5 Performance benchmarking

Profiling and performance benchmarking are critical tools to optimize a program and

to expose the gained performance from those optimizations. In distributed memory

models the performance is split into computation time and communication time, with

15

communication often a bottleneck. The computation time depends on the parallelization

of an algorithm and the communication time on the distribution of the data.

For GPUs there is no perfect equivalent for communication, since all data is shared

between threads, if it has not been transferred to shared memory. The closest parallel

is memory bandwidth, which is the rate of data that is accessed in memory per second.

The theoretical bandwidth is the peak bandwidth that can be reached and it follows

from the hardware specifications. The GPU memory is double data rate (DDR) RAM

and has a clock rate C and a b-bit wide memory interface. The theoretical bandwidth

B∗ in gigabytes per second (GB/s) is computed as

B∗ = C · 2(b/8)/109 (1.1)

The device we will be using for experiments (Appendix A) has a theoretical bandwidth

of

B∗ = (800 · 106 · (512/8) · 2)/109

= 102.4 GB/s.

The factor two comes from the double data rate and the memory interface is divided by

eight to convert to bytes. The division by 109 is to convert the result to GB/s.

The effective bandwidth Be is the measured bandwidth and is simply a count of the

number of memory accesses divided by the time, i.e.,

Be = ((Br +Bw)/109)/time,

with Br and Bw the number of bytes read and written per kernel respectively. The time

is the wall time elapsed during kernel execution.

The ratio Be/B∗ tells us how efficient a kernel can access the memory. However, this

methods has its flaws, since the kernel execution time also includes the computation

time and therefore Be < B∗.

Maximizing the effective bandwidth is a very important step in optimizing a kernel.

In practice this comes down to designing the kernel to have fully coalesced memory

access. This limits the access pattern of the threads to a simple linear one, where each

consecutive thread accesses a consecutive data element. Usage of shared memory can

also significantly improve the effective bandwidth.

16

The choice of the algorithm is often the key to achieve high performance. Sometimes

a good algorithm can be found by working around the limitations of coalesced memory

access and warp divergence, but often it pays to find an alternative, more suitable

algorithm.

The computational performance largely depends on the work balance, which is at-

tained by the cyclic distribution of blocks to multiprocessors. It is possible that the

problem size is small and that there are less blocks than MPs. Decreasing the block size

will then improve the performance.

The occupancy of a multiprocessor should also be as large as possible. The occupancy

is defined as the number of active threads on an MP. As we have discussed earlier, this

depends on the register pressure of a kernel. Therefore it pays to have small kernels with

few registers and to find the optimal block size.

For benchmarking a CUDA program several options are available. NVIDIA has

provided a profiler, which shows the occupancy and run times of individual kernels. The

program is not very mature and the command line interface is not very usable. The

graphical user interface can be helpful, but only if one has direct access to the machine

containing the GPU. Other good profilers exist, but they are proprietary and expensive.

To measure run times one can use the standard timers provided by the C program-

ming language. Kernel calls are asynchronous, so after a kernel launch the control

immediately returns to the CPU. When benchmarking a kernel one should use the cu-

daThreadSynchronize() function which acts as a barrier for the host thread and waits

until the device has completed all preceding requested tasks.

17

Chapter 2

The model

2.1 Barotropic vorticity equation

The theory of the homogeneous wind-driven ocean circulation is one of the cornerstones

in modern physical oceanography. Consider a rectangular ocean basin of size πL × πL
having a constant depthD. The basin is situated on a mid-latitude β-plane with a central

latitude θ0 = 45◦N and Coriolis parameter f0 = 2Ω sin θ0, where Ω is the rotation of the

Earth. The meridional variation of the Coriolis parameter at the latitude θ0 is indicated

by β0. The density ρ of the water is constant and the flow is forced at the surface through

a wind-stress vector T∗ = (τx∗ (x, y), τy∗ (x, y)) where the *-subscript indicates dimensional

quantities. Flows in the basin are governed by the barotropic vorticity equation and its

dimensional form (with ψ∗ = p∗/(ρ0f0) in m2s−1) is(
∂ψ∗
∂t∗

+
∂ψ∗
∂x∗

∂

∂y∗
− ∂ψ∗
∂y∗

∂

∂x∗

)(
∇2

∗ψ∗ − λ0ψ∗
)

+ β0
∂ψ∗
∂x∗

=
f0
D
wE∗ − ε0∇2

∗ψ∗ +AH∇4
∗ψ∗, (2.1)

where ε0 = f0δE/D(s−1) is a dimensional damping coefficient and λ0 = f20 /(gD) =

1/R2
D, where RD is the external Rossby radius of deformation and AH is the lateral

friction coefficient. The Ekman upwelling velocity wE∗ is given by

wE∗ =
1

ρf0

(
∂τy∗
∂x∗
− ∂τx∗
∂y∗

)
. (2.2)

The governing equations are non-dimensionalized using a horizontal length scale L,

a vertical length scale D, a horizontal velocity scale U , a streamfunction scale UL,

the advective time scale L/U and a characteristic amplitude of the wind stress, τ0. The

18

effect of deformations of the ocean-atmosphere interface on the flow is neglected (λ0 ≈ 0).

The dimensionless barotropic quasi-geostrophic model of the flow for the dimensionless

barotropic streamfunction ψ can be written as[
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

] [
∇2ψ + βy

]
= −µ∇2ψ + α

(
∂τy

∂x
− ∂τx

∂y

)
, (2.3)

where the horizontal velocities are given by u = −∂ψ/∂y and v = ∂ψ/∂x. The param-

eters in (2.3) are the planetary vorticity gradient β, the wind-stress strength α and the

bottom friction coefficient µ, given by

α =
τ0L

ρDU2
; β =

β0L
2

U
; µ =

ε0L

U
. (2.4)

Kinematic conditions on all lateral boundaries are ψ = 0. The wind-stress forcing pattern

is prescribed as

τx(x, y) = −1

2
cos 2y, (2.5)

τy(x, y) = 0, (2.6)

which is symmetric with respect to the mid-axis of the basin (the standard double-gyre

case).

By introducing the vorticity ζ = ∇ψ we can write (2.3) as a system of equations,
∂ζ

∂t
= −µζ + Re−1∆ζ +

∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

(
∂ζ

∂y
+ β

)
− α sin(2y)

ζ = ∆ψ,

(2.7)

with Re the Reynolds number, which is inversely proportional to the lateral friction

coefficient AH ,

Re =
UL

AH
.

The boundary conditions and initial condition are

ψ(t, x, y) = 0,

ζ(t, x, y) = 0,

}
for (x, y) ∈ ∂Ω (2.8)

ψ(0, x, y) = 0, for (x, y) ∈ Ω. (2.9)

19

2.2 Discretization

To the dimensionless model we apply a finite difference method. The choice for the

discretization scheme has an important impact on the performance of the GPU program.

There are several aspects we must consider. First of all memory access needs to be

coalesced to achieve maximal bandwidth. Basically this means that the stencil should

have adjacent points in the spatial dimension.

For the reason of coalesced memory access we choose the central finite difference

scheme in the space direction, but most other schemes are suitable too. For time in-

tegration we choose the Adams-Bashforth linear multistep method [3], since this is a

regular choice for this model.

We consider a square domain Ω = [0, π]×[0, π] which is divided in a grid with Nx×Ny

grid points:

(xi, yj), i = 0, 1, . . . , Nx − 1, j = 0, 1, . . . , Ny − 1. (2.10)

In the x-direction the step size is ∆x = L
Nx−1 and in the y-direction it is ∆y = L

Ny−1 .

We choose an equal step size in both directions h = ∆x = ∆y and N = Nx− 2 = Ny− 2

which simplifies the notation, but it will also allow us to employ a fast Poisson solver

for the second equation in (2.7).

We use the following notation for the unknowns evaluated on the grid:

ψnij = ψ(tn, xi, yj) = ψ(n∆t, i∆x, j∆y).

With these coordinates the spatial discretization of the first equation of (2.7) is written

in matrix notation as:

F = (ΨB)(BZ)−BΨ (ZB + βIN) +
1

Re
(CZ + ZC) + µINZ − T, (2.11)

with boundary and initial conditions

ψ0j = ψi,N+1 = 0, (2.12)

ζ0i = ζi,N+1 = 0, (2.13)

ψ0
i,j = 0, for i, j = 0, . . . , N + 1 (2.14)

where the unknowns of the interior of the grid are contained in

Ψij = ψi+1,j+1, Zij = ζi+1,j+1, i, j = 0, . . . , N − 1,

20

with IN the N ×N identity matrix.

The matrices B and C follow from the standard central finite difference approxima-

tion with local truncation error O
(
h2
)
,

B =
1

2h



0 −1
1 0 −1

1 0 −1
. . .

. . .
. . .

1 0 −1
1 0


, C =

1

h2


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 , (2.15)

T = α

sin 2y1 . . . sin 2yN
...

...
sin 2y1 . . . sin 2yN

 (2.16)

and T is the matrix containing the discrete wind-stress forcing patterns.

For time integration, the Adams-Bashforth method is used. Given is the ordinary

differential equation (ODE) that arises from the discretization in space of (2.7):

ζ̇ = f(t, ζ), ζ(t0) = ζ0,

here fij = Fij . We use the two-step method:

ζn+2 = ζn+1 + ∆t

(
3

2
f(tn+1, ζ

n+1)− 1

2
f(tn, ζ

n)

)
. (2.17)

Note that this method uses two time steps from the past, while the ODE has only one

initial condition y0. To solve this problem we can use Euler Forward to compute y1 first

and then continue with Adams-Bashforth. For the model, we assume that ψ0 = 0, i.e.,

we assume that the wind starts blowing at t = 0. Therefore we simply define ψ−1 ≡ 0.

In matrix notation the full discretization of (2.7) is given by

Zn+2 = Zn+1 +
∆t

2

(
3Fn+1 − Fn

)
. (2.18)

These schemes are used only for the first equation of (2.7), for the second equation we

use the standard five-point stencil using central finite differences. This leads to a system

of equations that can be solved using a fast Poisson solver.

21

2.3 Poisson solver

Since we have split the PDE model in a system of two equations, only the first involves

time integration. To extract the solution ψn+1 from ζn+1 we have to solve the Poisson

equation:

∆ψ = ζ, (2.19)

if ζ = 0 we call (2.19) the Laplace equation.

The discretization of (2.19) is given by

Aψ = ζ, (2.20)

where −A is a square, positive definite, symmetric matrix resulting from the discretiza-

tion of the Laplace operator with the usual 5-point approximation (in 2D, or 3-point

stencil in 1D):

ζij ≈
ψi+1,j − 2ψij + ψi−1,j

(∆x2)
+
ψi,j+1 − 2ψij + ψi,j−1

(∆y2)
. (2.21)

Matrix A has size J × J with J = N2, so the grid is stored in a vector of length J . This

represents the data structure that is used in the implementation. The unknowns are

stored row-wise in a vector, such that grid points are consecutively in the y-direction.

For example ψ is stored as:

ψ = [ψ11, ζ12, . . . , ψ1N , ψ21, . . . , ψ2N , . . . , ψN1, . . . , ψNN].

The discretization of (2.19) is now written in block-matrix notation as

1

h2



K − 2I I
I K − 2I I

I K − 2I I
. . .

. . .
. . .

I K − 2I I
I K − 2I


ψ = ζ, (2.22)

with

K =



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


22

an N ×N matrix.

The eigenvectors and eigenvalues of A are known and we can use them to solve the

linear system. The eigenvectors are given by

ykl(i, j) = sin
ikπ

N + 1
sin

jlπ

N + 1
, (2.23)

with corresponding eigenvalues [12],

λkl = −4 + 2 cos
kπ

N + 1
+ 2 cos

lπ

N + 1
, (2.24)

for k, l, i, j = 1, . . . , N .

It can be proven that the eigenvectors form an orthogonal basis of RN , so we can

write ζ in the basis of eigenvectors:

ζ =
N∑
k=1

N∑
l=1

cklykl, (2.25)

with ckl the coefficients.

Next we scale the coefficients ckl by the eigenvalues λkl. We can then reconstruct

the solution ψ by

ψ =

N∑
k=1

N∑
l=1

ckl
λkl

ykl. (2.26)

To see that this is really the solution we multiply (2.26) by A from the left

Aψ =
N∑
k=1

N∑
l=1

ckl
λkl

Aykl

=

N∑
k=1

N∑
l=1

ckl
λkl

λklykl

=
N∑
k=1

N∑
l=1

cklykl

= ζ.

In the second step we used that ykl is an eigenvector of A.

A closer look at the eigenvectors tells us that (2.25) and (2.26) are in fact two-

dimensional discrete sine transforms (DSTs). Note that the one dimensional DST-I sine

transform {Xk} of a sequence of numbers {xk} is given by

Xk =

N∑
j=1

xj sin

(
π

N + 1
jk

)
, k = 1, . . . , N. (2.27)

23

Instead of actually computing the matrix products of O
(
N2
)

complexity we can use

a fast algorithm for computing the sine transform. Ideally this would be an algorithm of

O (N log2N) complexity as proposed by Püschel and Moura [11], but implementing these

methods requires a substantial amount of work and FFT-based (Fast Fourier Transform)

algorithms for the sine transform with the same asymptotic complexity, but with a higher

constant (2x) exist too. These algorithms can benefit from optimized implementations

of the FFT.

Solving (2.20) consists of three steps:

1. Compute the coefficients ckl using the inverse 2D DST-I applied to ζ,

2. Divide the coefficients by the eigenvalues: ckl 7→ ckl
λkl

,

3. Construct ψ by performing again a 2D DST-I on the coefficients ckl.

Note that (2.27) is unscaled, which means that its inverse is scaled by a factor 2/(N+1).

Instead of applying the inverse DST, we apply (2.27) both in step 1 and 3. The scaling

is then applied afterwards.

It is clear that most of the work of the Poisson solver consists of computing the

DST-I. Therefore we will focus on finding an efficient algorithm for the DST-I.

2.3.1 FFT-based sine transform

NVIDIA has a library that implements the Fast Fourier Transform in CUDA. It is based

on the FFTW library, The Fastest Fourier Transform in the West. Unfortunately it

only implements the Discrete Fourier Transform (DFT) and no real transforms like the

sine or cosine transforms. However, we can still use it after a pre-process, since a sine

transform contains the imaginary parts of a similar DFT.

The (non-normalized) DST-I of a sequence of numbers x0, x1, . . . , xN−1 as computed

by CUFFT is defined as follows:

Xk = 2
N−1∑
j=0

xj sin

(
π(j + 1)(k + 1)

N + 1

)
, k = 0, 1, . . . , N − 1. (2.28)

By using the complex identity of the sine,

sinx =
eix − e−ix

2i

24

we can write (2.28) as:

Xk =

N−1∑
j=0

xj
e
iπ(j+1)(k+1)

N+1 − e−
iπ(j+1)(k+1)

N+1

i

= i
N−1∑
j=0

xje
− iπ(j+1)(k+1)

N+1 − i
N−1∑
j=0

xje
iπ(j+1)(k+1)

N+1

= i
N∑
̃=1

x̃−1e
− iπ̃k̃
N+1 − i

N∑
̃=1

x̃−1e
iπ̃k̃
N+1 , k̃ = 1, . . . , N

(2.29)

using k̃ = k + 1. Now we add a zero in front of x, i.e., x̃ = [0 x]; and we drop the˜’s:

Xk = i
N∑
j=0

xje
− iπjk
N+1 − i

N∑
j=0

xje
iπjk
N+1

= i
N∑
j=0

xje
− 2πijk

2(N+1) − i
N∑
j=0

xje
2πijk

2(N+1) .

(2.30)

Another N + 1 zeros are appended to x, x = [x 0 . . . 0] and (2.30) becomes

Xk = i
M−1∑
j=0

xje
− 2πijk

M − i
M−1∑
j=0

xje
2πijk
M , (2.31)

where M = 2(N + 1).

The Discrete Fourier Transform is given by:

Xk =

N−1∑
j=0

xje
− 2πjki

N ,

and its non-normalized inverse:

Xk =
N−1∑
j=0

xje
2πjki
N .

With this information (2.31) reduces to

X = i ·DFT(x)− i · inverseDFT(x), (2.32)

(here the inverse DFT is non-normalized) this should be a real vector, since the sine

transform produces a real vector. Therefore, the imaginary terms should cancel out.

X = I [inverseDFT(x)−DFT(x)] .

25

We can use the following identity of the inverse DFT:

F−1 ({xk}) = F ({xN−k}) /N,

so we can compute the DST-I as one DFT of length M ,

X = DFT ([0 x0 x1 . . . xN−1 0 − xN−1 − xN−2 . . . − x1 − x0]) .

Note that we still need to scale the output by 1/2, for the inverse DST-I we need to scale

by 1/(N + 1).

2.4 Implementation details of the Poisson solver

The most computationally intensive part of the Poisson solver is the two dimensional

discrete sine transform. As we have seen, it can be computed using the Fast Fourier

Transform. The advantage of this is the fact that a lot of work has been put in creating

a parallel FFT for the GPU (CUFFT). In general, an implementation of the FFT is one

of the first things to be ported to new parallel platforms. This adds a certain degree of

portability to the program.

By using an FFT-based sine transform we do lose some performance. First of all, the

FFT needs an input signal of length M = 2(N + 1), which approximately doubles the

complexity of the algorithm compared to a DST algorithm of complexity O (N log2N).

Since the grid is stored in linear memory the grid needs to be copied out-of-place and

should be extended as described previously. Below is an example for a 5× 5 grid:ζ11 ζ12 ζ13
ζ21 ζ22 ζ23
ζ31 ζ32 ζ33

 7→
0 ζ11 ζ12 ζ13 0 −ζ13 −ζ12 −ζ11

0 ζ21 ζ22 ζ23 0 −ζ23 −ζ22 −ζ21
0 ζ31 ζ32 ζ33 0 −ζ33 −ζ32 −ζ31

 .

Moreover, each row should be converted to a complex vector. The CUFFT library

provides a cufftComplex type, which is simply a structure with real and complex parts

interleaved. So a real vector in complex form is the real vector interleaved with zeros.

A copy operation therefore writes the matrix row-wise to a matrix of type cufftComplex

with a stride of two. This introduces a performance penalty of approximately 50% of

the theoretical bandwidth for devices with compute capability 1.2 or higher, as shown in

Figure 3.9 of [7]. Devices with lower compute capability have an even lower performance.

This is a disadvantage when working with complex types. Fortunately, there is a way to

26

avoid copying complex data types altogether by using a real FFT algorithm. This real

FFT takes as input a complex vector of half the length that is built up as

yk = x2k + x2k+1i, k = 0, 1, . . . ,
N

2
− 1, (2.33)

where y ∈ C is the complex input vector derived from the real input vector x ∈ R.

Note that this allows us to copy the real matrix to a complex matrix of half the row-size

without strided memory writes.

2.4.1 Real FFT

From now on we will use the convention to address the DFT of a signal by a capital

letter, e.g., DFT(f) = F .

For a purely real signal f and a purely imaginary signal g the following identities hold:

FN−k = (Fk)
∗

GN−k = −(Gk)
∗

}
k = 0, 1, . . . ,

N

2
− 1. (2.34)

By computing a standard complex DFT the last N
2 − 1 coefficients are redundant. This

not only wastes computation, but it is also inefficient storage-wise. Fortunately there

exists a method to compute a DFT of a real sequence without this redundancy.

Numerical recipes in C [10] presents an implementation for combining two DFTs in

one. We will derive this algorithm theoretically and show how it can be used to speed

up the Poisson solver.

Two sequences of n purely real numbers f and g are given and we want to compute

their DFT. First we combine these signals in one complex signal, also of length n, where

f is stored as the real parts and g as the imaginary parts, i.e., the new signal h is build

up as:

hj = fj + gji, j = 0, 1, . . . , n− 1.

This is the packing phase. After packing the data the FFT is applied to h. The result is

Hk =

n−1∑
j=0

hje
−2πijk
n ,

=
n−1∑
j=0

(fj + gji) e
−2πijk
n ,

=

n−1∑
j=0

fje
−2πijk
n + i

n−1∑
j=0

gje
−2πijk
n .

(2.35)

27

From (2.34) and (2.35) we get a hint on how to proceed.

Note that

R [Hk] =
n−1∑
j=0

[
fj cos

−2πijk

n
− gj sin

−2πjk

n

]
,

I [Hn−k] =

n−1∑
j=0

[
fj sin

−2πijk

n
+ gj cos

−2πijk

n

]
.

Now we compute

R [Hk] +R [Hn−k] =

=
n−1∑
j=0

[
fj cos

−2πjk

n
− gj sin

−2πjk

n

]

+
n−1∑
j=0

[
fj cos

−2πj(n− k)

n
− gj sin

−2πj(n− k)

n

]
,

= 2

n−1∑
j=0

fj cos
−2πjk

n
.

This gives us the real part of Fk. If we repeat the above computations for other combi-

nations of the real and imaginary parts of Hk and Hn−k we find the following identities:

R [Fk] =
1

2
(R [Hk] +R [Hn−k]) ,

I [Fk] =
1

2
(I [Hk]− I [Hn−k]) ,

R [Gk] = −1

2
(I [Hk] + I [Hn−k]) ,

I [Gk] = −1

2
(R [Hk]−R [Hn−k]) .

Algorithm 1 lists the final algorithm.

This algorithm can also be used to compute one real DFT of length n as a DFT of

length n/2. We set the odd coefficients as the real part of the input signal and the even

coefficients as the imaginary parts

hj = f2j + if2j+1. (2.36)

In the implementation this is simply a cast from the float type to the cufftComplex

type, so no real packing has to be done. If this signal is transformed and unpacked as in

28

Algorithm 1 Combining two DFTs of purely real signals.

Input: Real signals f and g
Output: Fourier transforms F and G

Packing phase
for k = 0 to n− 1 do
hk = fk + gki

end for

Compute Fourier transform H of h

Extract phase
for k = 0 to n− 1 do
Fk = 1

2 (R [Hk] +R [Hn−k]) + 1
2 (I [Hk]− I [Hn−k]) i

Gk = −1
2 (I [Hk] + I [Hn−k])− 1

2 (R [Hk]−R [Hn−k]) i
end for

Algorithm 2 Real DFT

Input: Real signal f
Output: Fourier transform F

Packing phase
for k = 0 to n/2− 1 do
hk = f2k + if2k+1

end for

Compute Fourier transform H of h

Extract phase
for k = 0 to n/2− 1 do

Fk = Hk − 1
2

(
1 + ie

2πijk
N/2

)(
Hk −H∗

N/2−k

)
, k = 0, . . . , N/2

end for
with HN

2
= H0.

29

Algorithm 1 we do not get the DFT of the original signal, since we have split the DFT

in two. Therefore we need to adjust the extract phase.

The transformed signals contain more or less half of the DFT of the original signal

f ,

F ek =

n/2−1∑
j=0

f2je
−2πijk
n/2 ,

F ok =

n/2−1∑
j=0

f2j+1e
−2πijk
n/2 .

We call F e the even signal and F o the odd signal. The even signal F ek =
∑n/2−1

j=0 f2je
−2πi(2j)k

n

really contains the even part of the transform of the original signal. The F o signal does

not contain the odd parts, but it does almost. First we need to multiply it by a factor

eiθ, for some θ,

eiθF ok =

n/2−1∑
j=0

f2j+1e
iθ− 2πijk

n/2 . (2.37)

Then we want

iθ − 2πijk

n/2
= −2πijk

n

⇒

θ =
2πijk

n
.

This leads to

Fk = F ek + e2πijk/nF ok . (2.38)

Note that Hk = F ek + iF ok is the Fourier transform of the packed signal. In terms of this

transform, the original Fourier transform can be written as

Fk =
1

2

(
Hk +H∗

N/2−k

)
− i

2

(
Hk −H∗

N/2−k

)
e2πik/N , k = 0, . . . , N − 1. (2.39)

In the implementation we use a slightly different extract phase from [4] as suggested by

Ooura. The final algorithm is listed in Algorithm 2.

This algorithm has several advantages. First of all the packing phase is trivial since

it is a cast from one data type to another. Secondly, the algorithm only provides the

first N/2 + 1 coefficients of the Fourier transform. Remember that computing the DST

30

using the FFT the input signal needs to be extended to approximately twice the length.

The output holds the DST in coefficients with index 1 to N , therefore the first N/2 + 1

coefficients are all we need for the DST. This halves the amount of work.

2.5 Implementation details of the spatial finite difference
approximation

We will shortly discuss the implementation of (2.11). Again the grid is divided over

thread blocks. To improve memory bandwidth each block loads part of the grid to

shared memory, but threads on the boundary need grid points from an adjacent thread

block. Therefore each thread block should also load the halo points, see Figure 2.1. This

is done by threads on the boundary of the block.

Figure 2.1: One block writes one grid block to shared memory together with its halo.

This is similar to how distributed-memory systems handle finite differences. The

updated grid points are directly written to global memory, row-wise and fully coalesced.

The whole procedure is in-place.

31

Chapter 3

Numerical results

The numerical simulations were conducted on an NVIDIA Tesla GPU with specifications

as listed in Appendix A. Initially this device did not support double precision, therefore

simulations on the GPU use single precision. Moreover, the results for double precision

are up to eight times slower. This is because GPUs are more optimized for single precision

floating point arithmetic, which is sufficiently accurate for computer graphics.

Whenever we compare the speed of the GPU with a CPU1, we implicitly mean a

single core of the Intel Xeon also listed in Appendix A.

For the experiments, parameter values are the same as used by Berloff and McWilliams

[2]. Although we can not accurately compare our results, since they use 1.5- and 2-layer

approximations, these parameter values will yield a stable solution,

L = 3840 km ε0 = 0

f0 = 8.3 · 10−5 s−1 ρ = 103 kg/m3

D = 300 m τ0 = 5 · 10−2 N/m2

β0 = 2 · 10−11 s−1m−1 AH = 400 m2/s

U = 2.17 · 10−3 m/s Re = 20.83

µ = 0, α = 1.36 · 105

β = 1.36 · 105

1The sequential program is written in C and performs exactly the same tasks as the CUDA imple-
mentation. The difference is that the sequential program uses lookup tables for the Poisson solver. Also,
it uses double precision, since the FFT library (FFTW) was compiled with double precision on the test
system.

32

The dimensionless time is

t =
U

L
t∗.

A simulation of 10 years is enough to let the solution converge to a steady state. This

corresponds to a dimensionless time of

t = 0.1783

This leads to very small time steps for large sized grids, but it will stay well within the

range of the single precision floating-point format.

As the block size we have chosen 16× 16, such that half-warps access separate rows

of the grid. This is the minimal block size to enable fully coalesced memory access.

Moreover, shared memory has 16 memory banks, so avoiding bank conflicts will be

easier. First of all we have compared the time per iteration of the sequential program

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Grid size

T
im

e
 p

e
r

it
e

ra
ti
o

n
 (

s
e

c
/i
te

r)

CPU

GPU

Figure 3.1: Time per iteration of CPU and GPU algorithms.

and the CUDA implementation. This gives an overview of the performance and it enables

us to estimate the time needed to perform a full simulation of 10 years.

Since the time per iteration does not depend on the time step we have chosen ∆t =

10−7 and a final time of 0.001 for each grid size, which is a total of 10,000 iterations.

The time per iteration is taken as the average over these 10,000 iterations. The results

are shown in Figure 3.1. For small grids the solution diverges, since the spatial step size

33

has to satisfy

5h < 3

√
AH
β0

,

though the run times are still accurate.

For a grid size of 33 the sequential program is faster, but already for a grid size of

65 the GPU wins. From this figure we see that the GPU performs very well.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

30

35

40

45

50

S
p

e
e

d
u

p

Grid size

Figure 3.2: Speedup of GPU compared to CPU.

In Figure 3.2 we have plotted the speedup comparing the GPU with one core of the

CPU. The speedup S is defined as

S :=
Ts
Tp
, (3.1)

with Ts and Tp the run times of the sequential and parallel program respectively. A

speedup of 48 is reached for a grid size of 2049. For small grid sizes the speedup is less

impressive. If we look closely, the speedup decreases slightly if the grid size is increased

to 4097. This is probably due to the overhead caused by CUDA. At some point the

speedup should stagnate, when the total number of active threads is reached. At that

point, further increasing the number of threads (larger grid sizes) does not result in a

larger speedup, but it will only add more overhead.

We should note that all grid sizes are such that the lengths of the Fourier transforms

are a power of two. The performance of radix-2 FFTs is generally much better than

34

mixed radix transforms. In Appendix B more detailed tables are listed of the perfor-

mance. Note the large performance drop when the grid size is only one off the ideal grid

size2.

x

y

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

−3

−2

−1

0

1

2

3

(a) Contour plot of the flow at t = 0.1783

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

Time in years

ψ
m

a
x

(b) Convergence history

Figure 3.3: Numerical simulation on a 1025× 1025 grid for a Reynolds number of 10.

Figure 3.3 shows the results of a full simulation over 10 years. With a grid of

1025 × 1025 and a time step of 5 · 10−7 this takes about 40 minutes. The sequential

program would take over a day for such a simulation. Full simulations on grids of size

2049 and 4097 are also feasible with run times of 13 hours to several days respectively.

This is the great strength of GPUs. While the speedup for small grids is moderate,

simulations on larger resolutions are possible.

We have measured the run times of the Poisson solver and the grid update. The

Poisson solver makes up approximately 76% of the total runtime and the grid update

24%. From this we can conclude that the performance of the algorithm is largely based

on the performance of the FFT.

3.1 Accuracy

The NVIDIA Tesla supports only single precision floating points, which might decrease

accuracy of the algorithm. To find out if the accuracy is problematic we have to look in

more detail to the implementation of the IEEE 754 standard for floating points numbers.

2Remember that the Fourier transform has size 2(N + 1) with N the number of points in the interior
of the grid. Therefore a radix-2 FFT is possible when N +1 is a power of two (N +1 = Nx−1 = Ny−1).

35

A number is represented by a sign and mantissa or coefficient c scaled by a power of

b,

(−1)s × c× bq.

The base b = 2 for most computer systems, the sign is either s = 0 or s = 1.

Four bytes are available to store the mantissa, the exponent and the position of the radix

point. This limits the range of numbers that can be represented and the precision.

The gcc compiler presents several macros defining properties of the floating point

representation. The most important ones for accuracy are listed in Table 3.1. The

FLT RADIX 2
FLT DIG 6
FLT MANT DIG 24
FLT MIN 1.175494 · 10−38

FLT EPSILON 1.192093 · 10−7

Table 3.1: Gcc macros for floating point numbers.

macro FLT DIG defines the number of decimal digits of precision for the float type. In

this case it is 6, which means that a float has 7 significant decimal digits. FLT MIN is

the smallest positive number that is representable in type float and FLT EPSILON is the

minimum positive floating point number such that the expression 1.0 + FLT EPSILON

!= 1.0 yields true. FLT MANT DIG Is the number of digits in base-b that are used to

store the mantissa. This implies that c can be at most 224 − 1.

With 7 significant decimal digits and a local truncation error of O
(
h2
)

of the finite

difference scheme we do not have to question the accuracy if the flow is not too large.

For example on a 2049 × 2049 sized grid the truncation error is of order 10−6. From

Figure 3.3 we see that ψmax is close to 4. This implies that the last decimal digit of

the solution is probably not correct due to the numerical errors. However, if the flow

is larger (100) the solution looses ‘correct’ digits. The same holds for computing the

vorticity. Fortunately this is not the case in our simulations.

Other problems with floating point operations are the addition and subtraction of

large and small numbers. This is because the result will be written in the base of the

largest number and therefore digits might be lost. For example if we add

1450.563 + 3.141593 = 1453.705,

36

three digits of the smallest number are lost. To some extent this might be happening at

the west boundary of the basin where ∂ψ
∂x is relatively large, but only for very small grid

sizes.

37

Chapter 4

Conclusions and prospects

The speedup for this two-dimensional model is already impressive, but better perfor-

mance can be expected for three dimensional models or for the double-layer barotropic

vorticity model. When the problem size is increased, more threads can be swapped to

hide idle time of threads. This also results in a larger speedup on smaller grids.

Three dimensional models are especially interesting, since they are suitable for em-

ploying multiple GPUs. The problem with multiple GPUs is that communication be-

tween them is needed and this involves moving data from one GPU to another via the

CPU’s memory. These memory operations are very slow compared to the bandwidth of

global memory.

The main idea is to partition the domain and let each GPU do the computations of

one sub-domain. Where two sub-domains meet, data is transferred between GPUs. The

computational intensity for two dimensional models is too low to make it worthwhile to

separate the data. For three dimensional models we can simply divide the domain in

groups of adjoining horizontal layers.

GPUs can also be added to distributed memory systems to form a hybrid system.

Implementations in, e.g., openMPI of ocean models can be accelerated using the GPU.

The local computations then have to be ported to CUDA. However, the communication

time is then increased by the latency of transferring data to the device memory.

The new Fermi architecture of NVIDIA’s GPUs now has a 64 kB L1 cache per

multiprocessor and a shared 768 kB L2 cache for global memory [9]. This improves

bandwidth and reduces latency. Algorithms with low data parallelism, e.g. sparse matrix

computations , can especially benefit from the L2 cache. Furthermore, the performance

penalty of double precision is now a factor of 2 compared to a factor of 8 for devices

38

with compute capability 1.x. Another major improvement is the ability for concurrent

kernel execution.

The GPU has proven itself as a viable alternative for, or addition to, the current

HPC systems. The future of GPU computing is likely to be an exciting one where the

boundaries between CPUs and GPUs are starting to disappear.

39

Bibliography

[1] Top500 supercomputing sites. http://www.top500.org/lists/.

[2] Pavel S. Berloff and James C. McWilliams. Large-scale, low-frequency variability

in wind-driven ocean gyres. Journal of Physical Oceanography, 29(8):1925–1949,

August 1999.

[3] J.C. Butcher. Numerical Methods for Ordinary Differential Equations, pages 98–99.

John Wiley & Sons, Ltd, 2005.

[4] Márcia Alves de Inda. Constructing Parallel Algorithms for Discrete Transforms.

PhD thesis, Universiteit Utrecht, 2000.

[5] Nico Galoppo, Naga K. Govindaraju, Michael Henson, and Dinesh Manocha. Lu-

gpu: Efficient algorithms for solving dense linear systems on graphics hardware. In

Proceedings of the ACM/IEEE SC—05 Conference, November 2005.

[6] Mark Harris. Optimizing parallel reduction in cuda. http://developer.

download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/

reduction.pdf.

[7] NVIDIA Corporation. CUDA C Best Practices Guide, 3.2 edition, August 2010.

[8] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, 3.2 edition, Septem-

ber 2010.

[9] David Patterson. The top 10 innovations in the new nvidia fermi architecture, and

the top 3 next challenges. http://www.nvidia.com/content/PDF/fermi_white_

papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf, September 2009.

40

[10] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan-

nery. Numerical Recipes in C: The Art of Scientific Computing, pages 510–514.

Cambridge University Press, Cambridge, second edition, 1992.

[11] Markus Puschel and José M.F. Moura. Algebraic Signal Processing Theory: Cooley-

Tukey Type Algorithms for DCTs and DSTs. IEEE Transactions on Signal Pro-

cessing, 56(4):1502–1521, April 2008.

[12] G. Strang. Computational Science and Engineering, pages 283–288. Wellesley-

Cambridge Press, 2007.

[13] Julien C. Thibault and Inanc Senocak. CUDA Implementation of a Navier-Stokes

Solver on Multi-GPU Desktop Platforms for Incompressible Flows. In 47th AIAA

Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace

Exposition, 2009.

41

Appendix A

Hardware specifications

A.1 GPU specifications

The device specifications as displayed by the CUDA example program deviceQuery. This

information was taken from https://subtrac.sara.nl/userdoc/wiki/gpu/description.

Device: Tesla M1060
CUDA Capability Major revision number: 1
CUDA Capability Minor revision number: 3
Total amount of global memory: 4 Gbyte
Number of multiprocessors: 30
Number of cores: 240
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 16384
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
Maximum memory pitch: 262144 bytes
Texture alignment: 256 bytes
Clock rate: 1.30 GHz
Single Precision floating point performance (peak): 933 MFlop
Double Precision floating point performance (peak): 78 MFlop
Floating Point Precision: IEEE 754 single & double
Memory speed: 800 MHz
Memory interface: 512 bit
Memory bandwidth: 102 Gbyte/sec
Concurrent copy and execution: Yes
Run time limit on kernels: No

42

Integrated: No
Support host page-locked memory mapping: Yes
Compute mode: Default (multiple host

threads can use this device
simultaneously)

A.2 CPU specifications

One node from Lisa contains

• 2 quad CPU processors: IntelR© XeonR© CPU L5420 @ 2.50GHz

• Front Side Bus: 1067 Mhz

• 32 GByte memory

• 233 GByte scratch disk

• 2 NVIDIAR© Tesla graphic adapters

The IntelR© XeonR© CPU L5420 has the following specifications:

Launch Date Q1’08
Processor Number L5420
of Cores 4
of Threads 4
Clock Speed 2.5 GHz
L2 Cache 12 MB
Bus/Core Ratio 7.5
FSB Speed 1333 MHz
FSB Parity Yes
Instruction Set 64-bit
Lithography 45 nm
Max TDP 50 W
Tray 1ku Budgetary Price $380.00

Table A.2: Source: http://ark.intel.com/Product.aspx?
id=33929

43

Appendix B

Tables

B.1 Time per iteration

N GPU ms/iter CPU ms/iter

33 0.3235 0.2056
65 0.3338 0.7342

129 0.3883 3.147
257 0.7845 12.81
259 1.648 22.85
513 1.963 53.94
515 15.70 112.2
769 5.436 140.8

1025 6.646 260.5
2049 26.33 1266
4097 111.8 5337

Table B.1: Time per iteration in ms/iter

44

B.2 Speedup

N Speedup

33 0.64
65 2.2

129 8.1
257 16.3
513 27.5

1025 39.2
2049 48.1
4097 47.7

Table B.2: Speedup

45

