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Abstract

A striking feature of the prices of financial assets is that their sta-
tistical properties are to some degree universal across different assets,
regions and epochs. There is a vast amount of literature on modelling
these so-called stylized facts of financial data, but relatively recently
multifractal processes have been proposed as a new formalism for fi-
nancial modelling. Their main power lies in the fact that they capture
many of the main statistical properties of financial time series in an
effective way. The goal of this thesis is to present two multifractal mod-
els, the Multifractal Model of Asset Returns and the Markov-Switching
Multifractal, and to study them in a more complete and rigorous way
than in the literature.
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1 Introduction

The random fluctuations of asset prices have a very rich and complicated
statistical structure. A striking feature of these market price dynamics is
that the statistical properties are to some degree universal across different
assets, regions and epochs. There has been a vast amount of research pa-
pers on formulating a probabilistic model that reflect these properties. In
1900, Louis Bachelier introduced Brownian motion as a model for the price
fluctuations. This was a revolutionary work and it was not until 1963 that
a new model was proposed by Mandelbrot. He studied the fluctuations of
cotton prices and established that extreme price movements are far more
present than in the Gaussian world of Brownian motion. He proposed a dif-
ferent model in which prices follow the more heavy tailed Lévy distribution.
Since then, many models were proposed to capture the properties of price
dynamics. In this thesis we will present two very promising models, which
were developed relatively recently and are based on Mandelbrot’s work on
(multi)fractals.

1.1 Empirical properties of financial returns

The interaction of thousands of individuals and institutions makes that fi-
nancial markets are uniquely complicated systems, where fortunes can be
made and lost in sudden bursts of activity. Especially the market crisis in
1987 and the recent credit crisis showed that financial markets can become
very volatile, with big implications for economic and social welfare. These
extreme events made it very clear that there was a need for better risk
models. Since the accuracy of financial risk models mainly depends on the
assumptions about the statistical properties of financial returns, it is very
important to have realistic models. To develop such models, we have to
know the statistical properties of asset price fluctuations. Although finan-
cial data has complicated structure, the result of more than half a century of
empirical studies indicates that all financial returns share the same statisti-
cal properties. These so-called stylized facts are independent of the specific
market, kind of asset and time. We will now give an overview of the most
important stylized facts:

1. Absence of autocorrelations: Financial time series display only
significant linear correlations in price increments on very small time
scales of a few minutes, and can safely be assumed to be zero for all
practical purposes. This absence of linear correlations means that the
sign of the increments is independent of the past. So whether the price
of an asset goes up or down, is not influenced by past behaviour.

2. Heavy tails: The unconditional distribution of returns has heavy
tails, which means that they have a power-law-like tail and have infinite



moments. This basically means that significant deviations from the
mean are much greater than in the case of the normal distribution.

3. Volatility clustering: High volatility events tend to cluster in time.
When absolute returns are substantial on a given day, large move-
ments are likely to follow. This clustering of volatility is apparent at
intradaily, daily, weekly, monthly, yearly, and decennial epochs. This
means that volatility clustering happens at many scales.

4. Slow decay of autocorrelations in absolute returns: The au-
tocorrelation function of absolute returns decays more slowly than
an exponential decay, and follows typically a power-like decay. This
property is usually called long range dependence in volatility or long
memory in squared returns. It means that the sizes of returns in the
past still influence current volatility, and that this dependence decays
relatively slowly in time.

5. Multifractal moment scaling: The (empirical) moments of finan-
cial returns vary as a power law in time. The power exponent of the
¢’th moment is different for different ¢ and can be described by a
strictly concave function.

6. Discontinuous changes in volatility: Financial data display sud-
den bursts of volatility, which means that volatility changes often dis-
continuously.

7. Aggregational Gaussianity: At short horizons, the distribution of
returns is very non-normal, but as the time-horizon increases the dis-
tribution looks more and more like a normal distribution.

8. Leverage effect: Falling asset prices generate more volatility than
upward movements in asset prices. A large downward move of the
price tends to increase the volatility much more than a large upward
move.

9. Gain/loss asymmetry: The unconditional distribution of asset re-
turns is negatively skewed, which means that large downward move-
ments in financial markets are more common than large upward move-
ments.

Remark that although financial time series are characterized by an ab-
sence of autocorrelations, this does not mean that price increments are inde-
pendent. Non-linear functions of the returns are highly dependent on each
other, which is resembled by the fact that financial data display volatility
clustering and long memory in squared returns. Multifractal scaling is often
not mentioned as one of the stylized facts, which is due to the fact that it
does not seem to have much practical importance. It does however give rise



to the use of multifractal models for financial modelling. For more infor-
mation about multifractal scaling in financial data, we refer to Mandelbrot
(1997¢), Galluccio (1997), Calvet and Fisher (2002a). A thorough review of
the rest of the statistical properties can be found in Cont (2001) and Pagan
(1996).

1.2 Financial modelling and multifractality

The main challenge of financial modelling is to capture all the stylized facts
in a single model. Modelling these stylized facts is however far from trivial.
To quote R. Cont: ”the stylized facts are so constraining that it is not easy
to exhibit even an (ad hoc) stochastic process which possesses the same set
of properties and one has to go to great lengths to reproduce them with a
model”. The number of existing models, continuous or discrete, that try to
capture as many of these stylized facts is wide. Models from the GARCH
family seem to be the most popular models, and their main characteristic is
that they are capable of capturing volatility clustering.

In this thesis we will present a relatively new class of stochastic pro-
cesses, which will use the concept of multifractality. These multifractal
processes form an alternative to ARCH-type presentations that in the last
two decades have been the focus of financial modelling. We will present two
models, the Multifractal Model of Asset Returns (MMAR) and the Markov-
Switching Multifractal (MSM). Both models capture thick tails, volatility
clustering, long memory in squared returns, multifractal moment scaling,
discontinuous changes in volatility and aggregational Gaussianity. So the
models contain, except for asymmetry properties, all the stylized facts men-
tioned in the previous section. Compared to the best performing models
of the GARCH family, such as GARCH(1,1) and FIGARCH(1,d,0), the
main advantage of the multifractal processes lies in their ability to generate
volatility persistence (long memory and clustering) at different frequencies in
a parsimonious way. It is showed in Mandelbrot (1997¢c); Calvet and Fisher
(2002a); Di Matteo, Liu and Lux (2008) and Calvet and Fisher (2008), that
MMAR and MSM outperform GARCH, FIGARCH and other well perform-
ing GARCH models on both short and large horizons.

The series of papers Mandelbrot et al (1997a), (1997b, (1997¢) intro-
duced for the first time the concept of multifractality to financial modelling.
Multifractal theory was originally developed by Mandelbrot in the context
of turbulence, but multifractality has been reported in many other systems
such as rainfall distribution, sea surface temperature, heartbeat dynamics,
distribution of chemical fields, etc. Multifractals model the self-similarity
and scale invariance of those systems by requiring that the statistical prop-
erties of small regions of the system are the same as those of the whole
system. So each 'subsystem’ has the same properties as the original system.
This self-similarity is also characteristic for fractals, but multifractals have



a much richer structure since they are formed by a multiple of fractal sets.
Mandelbrot argues in Mandelbrot (2005) that (multi)fractals are so effective
in modelling many different systems because they intrinsically measure the
roughness in those systems. He states that, since financial markets are also
characterized by roughness, fractals tools (and especially multifractal tools)
are an inescapable need for financial modelling.

1.3 Structure of the thesis

The main goal of this thesis is to give an overview of the properties and
theory behind the two multifractals models MMAR and MSM. In chapter
2 and 3 we will present the Multifractal Model of Asset Returns, partly
because this model is very interesting on its own, but also to give an in-
troduction to multifractal processes and their characteristic properties. In
chapter 4 we will introduce the Markov-Switching Multifractal, which is an
improvement over the MMAR. In the appendix we will include proofs that
might otherwise distract from the main ideas of this thesis. Chapter 6 will
give an overview of which proofs in this thesis are own work and which are
due to others.

Chapter 2 is devoted to introduce grid based multifractal measures and
study their properties. We will first show how these measures are con-
structed and that this construction leads to non-degenerate measures, that
are continuous but singular, and have infinite moments and long memory
features. Then we will use the local Hélder exponent to study the typical lo-
cal behaviour of these measures. We will see that grid based multifractals are
characterized by a continuum of fractal sets, satisfy the multifractal formal-
ism and have all their mass concentrated on a fractal set. Compared to the
main financial literature about these grid based multifractals (Mandelbrot
(1997a), (1997b), (1997¢); Calvet and Fisher (2002a), we prove most of the
characteristic properties of these multifractal measures in a more complete
and rigorous way.

In chapter 3 we present the MMAR and show how the properties of
grid based multifractal measures can be used for financial modelling. The
properties of grid based multifractals will be passed on to the MMAR by
compounding Brownian motion with a multifractal trading time. Although
the MMAR is successful in capturing the stylized facts of financial time
series, it is difficult to use for forecasting.

These shortcomings of the MMAR are overcome by introducing the
MSM in chapter 4. This model will have a similar construction as the
MMAR, but will now lead to a model that is very well suited for forecasting.
To provide some intuition about how the MMAR and MSM are related to
each other, chapter 4 starts by presenting a construction that is similar to
the construction of grid based multifractal measures. Then in the rest of the
chapter we will use a somewhat simpler but equivalent construction, and use



this to study the properties of MSM and derive that there exists a usefull
discretized version.

In contrast to chapter 2 and 3, we will not study the local properties of
MSM. This is partly because for MSM the multifractal formalism is much
harder to prove, but also because the MSM can be estimated with maximum
likelihood estimation and therefore does not need the multifractal formal-
ism for empirical modelling. So whereas in the first two chapters the idea
is to introduce the concept of multifractality and compounding, chapter 4
focuses more on studying some important convergence results for MSM and
its applications concerning empirical modelling.



2 Grid Based Multifractal Measures

In multifractal finance an important concept is to compound a stochas-
tic process B(t) with a time-deformation 6(t), i.e. we replace the clock time
t with a trading time 6(¢):

Definition: Let B(t) be a stochastic process and 0(t) an increasing
function. We call
X(t) = B(0(t))

a compound process with trading time or time deformation process 0(t).

The main idea of introducing this trading time is that it can speed up
or slow down the process B and therefore change the volatility and other
properties of the process. In particular when the process B is a martingale
this can be done without affecting its direction. In multifractal finance
trading time will be a (usually random) multifractal process. For the MMAR
we will define it as the cumulative distribution function of a grid based
multifractal measure, a concept that will be introduced in the next section
and studied in the rest of the chapter.

2.1 Multifractal measures
2.1.1 Conservative measures

Grid based multifractal measures are built by iterating a simple transforma-
tion, called a multiplicative cascade. The binomial measure on the interval
[0, 1] is the simplest example, and will be presented first. The cascade starts
with a uniform probability measure yo on the interval! [0,1]. Then in the
first stage of the cascade the measure p; is defined by uniformly spreading a
mass mg on the interval [0,1/2] and the mass 1 —mg on the interval [1/2,1],
with mg € (0,1/2) U (1/2,1).

In the second stage of the cascade both intervals are split into two
subintervals of equal length. The measure us is constructed as follows: the
interval [0,1/4] will receive the fraction mg of the mass u1([0,1/2]), and the
interval [1/4,1/2] will receive the fraction my of u1([0,1/2]). When we apply
the same procedure to [1/2,1], we obtain the following mass distribution for

M2t
12([0,1/4]) = momo p2([1/4,1/2]) = momy
p2([1/2,3/4]) = mimg p2([3/4,1]) = mymy

'We could also take the interval [0, T] with arbitrary 7' > 0, but for simplicity we will
take in this chapter the interval [0, 1].




We can iterate this procedure infinitely many times, resulting in an
infinite sequence of measures (). The binomial measure p is now defined
as the weak limit of this sequence as n goes to inifinity. Note that since
mo+m1 = 1 the mass is preserved at each interation step. So each measure
tn and the limit measure p have a total mass of one. This is why the
measure (4 is called a conservative measure (the mass is conserved). In this
construction we could also have allocated the mass mg randomly to the
left or right interval with equal probability. The resulting limit measure is
called the randomized binomial measure. FIG.1 shows a simulation of the
construction of such a measure.

To study the (randomized) binomial measure p we introduce the dyadic
intervals [t,t+27"] where t = > | ;27" for some 71, ...,n, € {0,1}. Next
we define the relative frequencies ¢y and ¢; of 0’s and 1’s in (71,...,7,) as
¢o = %#{z :1; = 0} and ¢ = 1 — ¢p. The measure of a dyadic interval
then becomes

p(lt,t+27") = mg®mi”!

Because the mass of the dyadic intervals ranges between mg and m7p, the
mass of the binomial measure is far from uniformly distributed (even when
mo ~ my increasingly large differences arise as n goes to infinity). In fact,
the distribution of mass of the measure behaves in such an irregular way,
that it has no density. Because next to this the binomial measure also has
zero point mass, it is a continuous but singular measure. These properties
are common to many multifractals and will be studied in section 2.4.

The binomial measure can easily be extended to the more general multi-
nomial measures, which at every stage of their construction allocate mass
over b > 2 cells. Again at each stage intervals are divided in b subintervals
of equal length, which receive fractions of the total mass of that particu-
lar interval equal to mq,m1,...,mp_1 € (0,1)\{b~1}. Mass is preserved by
imposing that these fractions, also called multipliers, satisfy Z,%;lo mg =
1. We can extent this construction by randomly dividing the fractions
mg, M1, ..., My_1 over the subintervals. Another extension is achieved by
defining the multiplier of each cell as a discrete random variable Mg, which
takes values mg, my, ..., my_1 with probabilities pg, p1,...,pp—1. In this way
a random measure is generated, where again mass is preserved by imposing
that 35— Mg = 1.

Instead of sampling from a discrete distribution, we can also consider
nonnegative multipliers Mg drawn from an arbitrary distribution M. In
this construction it is assumed that the multipliers at different stages are
independent. However, the multipliers at the same stage will be highly
dependent on each other as we will again impose that they have to satisfy
the mass conservation constraint E%_:lo Mg = 1. To ensure that we won’t
get a trivial uniform measure, we exclude the case M = b~ ! a.s..

To be able to write the increments of the measure u as a function of the
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random binomial measure after respectively 1, 3, 6 and 10 stages, with mo = 0.6.
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multipliers M, we define a b-adic interval of length At =b~" by [t,t + b "]
with ¢t = >0 n;b~" and n1,...,7n, € {0,...,b— 1}. The measure of this
interval is the product of n random multipliers:

p(A) = M(m)M(ni,m2) ... M1, ..., 1)

where we used the notation p(At) = u([t, t + At]).

2.1.2 Canonical measures

Canonical measures are constructed in the same way as multinomial
measures, except that the random multipliers do not have to satisfy the
strict mass conservation constraint, but will only have to conserve mass
on average. This means that the nonnegative random multipliers are now
independent and have to satisfy E Z%_:lo Mg =1, or equivalently EM = 1/b.
Since we also still exlude M = b~! a.s., a major consequence is that the total
mass of a canonical measure does not have to be equal to one, but is now a
random variable denoted by € = £([0,1]) > 0. More generally, the measure
of a b-adic cell of length At = b~ becomes

pw(A) = M ()M (n,m2) - M1, mn) 20150+ -5 M) (1)

Note that each b-adic cell is also subjected to the same procedure as has

been described for [0, 1], so Q(n1,...,7,) 20

As in section 2.1.1, the canonical measure p is defined as the weak limit
of the measures p,. We will now show that p is well-defined, in the sense
that this weak limit indeed exists:

Proposition 2.1 For both the conservative and canonical construction, the
sequence of measures p, has almost surely a unique weak limit .

Proof. Let us first introduce some notation: define the b-adic intervals

Jn(nly cee 77771) = [Znib_i, Z nib_i + b_n}
i=1 i=1
and for each n the collection of b-adic intervals

Tn={In(m,....,m) :mi €{0,1,...,b—1}}

Furthermore define

() = M(m) ... M(n1,...,nn) forxe Ju(m,...,0n)

Now we can write i, in the following way:

tn(dx) = pn([z, 2z + dz]) = ¢p(x)b"dx  for dx such that [z, x + dz] C J,

12



Note that this also confirms that pu, is indeed a measure, because u, is a
finite sum of Lebesque measures A:

tn(B) = Z / On(x)b"dx  for arbitrary Borel sets B
Jn€Tn BNJn

In order to show the weak convergence we will have to show that for all
continuous and bounded functions f there exists a measure p such that the
integral fi,(f) = [ fdu, converges to the integral [ fdu. We can write

fn(f) as
Z ) fin () Z ()b da
In€Tn In€Tn

If we use the natural filtration F,, of u,,, defined by F,, = a({M(n1,...,n) :
ni € {0,1,...,b—1},1 < k < n}), we can show that fi,,(f) is a L' martingale:

Effin(H)IFaa] = [ 3 [, @t o d|Foi
= Z 2)b"E ¢y ()| Fr1]dz
Jn€Tn
= Z 2)b" 1 (x)dz = fin—1(f)
Jn€Tn

where the use of the conditional Fubini’s theorem was allowed, because
f is bounded and we integrate over a compact interval. It also follows
immediately that fi,,(f) € L'. Note also that since f is bounded we can
assume without loss of generality that f is nonnegative. It follows that
in(f) is a nonnegative martingale and hence we obtain from the martingale
convergence theorem that there is a ji(f) such that fi,(f) converges almost
surely to a(f).

Since the operators fi,, are linear ( fn(f + g) = fn(f) + fn(g) ), the
limit operator g is also linear. Now we can use the Riesz Representation
Theorem, which states that for a compact metric space X and a linear
functional 7 : C(X) — R which takes nonnegative values for nonnegative
functions, there exists a unique finite measure p defined on the Borel o-
algebra B(X) such that 7(f) = [ fdup for all f € C(X). See for a proof
for instance Sunder (2008). Now applying this theorem to the functional
gives that there is a unique measure p such that

pf)= | fle)dp(z)
[0.1]

So we conclude that there is indeed a unique measure p such that [ fduy,
converges a.s. to the integral [ fdu for every continuous and bounded func-
tion f, and hence we have established that there exists a measure u such

13



that u, converges weakly to u a.s.. o

Now we have proved that the limit measure p indeed exists, we will
study in the rest of this section the limit random variable p([0,1]) = €.
We will prove that this random variable is non-degenerate in the sense that
EQ > 0, which means that the sequence of measures pu,, don’t degenerate to
a trivial measure with zero mass. In proposition 2.2 it is proved that this
doesn’t happen as long as EM logy M < 0. First we will introduce some
notation and a recursive equation for u,([0,1]).

We denote the total mass at stage n of the construction by the random
variable €, = ([0, 1]). Then Q,, satisfies:

Qu=> MOp)...M(n1...1) (2)
MNs--5Mn
Let F,, denote the natural filtration of €2,,, then it’s easy to see that €2, is a
positive martingale:

E[Qn|Fo1]l= > M(m)... M. .00 1)EM(n1 ... 1)
MN1y---3Nn

=0EM > M(m)...M(m...0n-1) = Qo
771’~~-777n71

It follows that EQ, = EQ; = EYY_ M(i) = 1. It also follows, as
a consequence of the martingale convergence theorem, that €2, converges
a.s. to the random variable 2 with EQ2 < co. So, in addition to the weak
convergence, we have also almost sure convergence of €2, to a tight limit
random variable €.

Besides being a nonnegative martingale, €2, also satisfies a stochastic
equation. As a consequence of the recursive nature of the construction of
the measures (u,) (and as also can be derived directly from (2)), it holds
that €2, satisfies the following recursive relation:

b
Q£ > M0 1(j) (4)
j=1

where Q,,Q,-1(1),...,Q,-1(b) are independent random variables and the
Q,—-1(j)’s have the same distribution as €2,,_.

Now we will prove that under EM log, M < 0 the random variable €2 is
non-degenerate.

Proposition 2.2 If the multipliers M satisfy EM log, M < 0, then EQ2 > 0.

Proof. First we introduce some more notation. We define the function? 7:

7(q) = —logy EM? — 1 (5)

2This function will play a central role in multifractal analysis and will be formally
introduced in section 2.2

14



Note that this function is well defined on the interval [0, 1], because for
all h € [0,1] we have EM" < 1+ EM = 1+ b"! < co. Furthermore,
in Mandelbrot et al(1997a) it is proved that this function is concave. It
follows that the left- and right-hand derivatives exist, hence we can take the
left-hand derivative in the point h = 1:

7 (1) = —=bEM log, M > 0 (6)

We will also need the following inequality, which will be proved in the
appendix.

h
2

(z+y)" >+ =20 —h)(zy)2 Y2 >0,y >0,0<h<1

If we apply this result b times and use that the function z” is subadditive:

(Zb x; )h/2 < Z] ; ]/ for nonnegative z;, we get for 0 < h < 1:

=t "]
b h b h b h/2
(Za:j) > :c?—i-(z:xj) —2(1—h)(xlzxj)
=1 =2 =2
b h b
> st (Do) -2 -1 )
=2 =2
b h b b
> af b+ (Z%) —2(1—-h) (Z(ﬁzfﬂj)m + > (@)
j=3 =3 =2
> .
b b—1 b
> Yo -2 -h)) " Y ()
j=1 i=1 j=i+1

If we apply this inequality to ), 4 Z;’;é M;€Qy,—1(j) and we use the notation
Tjp1 = M;Qy,_1(j) we get:

b

Qh 4 <§Mj9”1(j)>h: (Z%)h > zb:$?2 - Z Z zi;)M?
=0

Jj=1 Jj=1 i=1 j=i+1
—1

b—1
=3 MM, ()" —2(1 — ) MM 3 (D)2, 1 (5)

And taking expectations gives:
EQL > BEMPEQ! | — b(b— 1)(1 — h)(EM"/?)2(EQL)? (7)

where we usedz Z] —inl Zf;g(b—i—l):b(b—l)—@:%.
Aboves inequality can be rewritten as

EQ), — BEMEQ), | > —b(b — 1)(1 — h)(EM"/) Q)

15

)



Jensen’s inequality applied to the concave function 2 gives that QF is a
supermartingale and hence EQ! < EQ! If we apply this to aboves in-

n—1-*

equality we get:
EQ! (1 — bEM™) > —b(b — 1)(1 — h)(EM"/2)2(EQ? )2
If we use that b=7(") = PEM" we can write aboves inequality as

hy2 EQ! b —1

(EQ,5)° > b(b—1)(EMH/2)2 1—h

Now we want to take the limit & 1 1. First note that since Q! < 1+, and
EQ, = 1 < oo we can use the Dominated convergence theorem to obtain
limyp,1q EQ" = EQ,. In a similar way we also have limyp,1q EQZ/ - IEQ}/ % and
limpyy EM™? = EMY/2. Now taking the limit & 1 1 and using 'Hopitals

rule gives:

EQ! b—7(h) 1
EQY2)2 > lim
EQS)S 2 nt1 b(b — 1)(EMH/2)2 1—h
_ b= (h)
i 1 In(b)7 (h)b
ht1 b(b — 1)(EMN/2)2 -1
1 (1
n(b)r (1) > 0

b(b — 1)(EM1/2)2

So we have established that there is a € > 0 such that EQ}/ %S eforall n. If
we could show that EQ}L/ 2 converges to EQY/2, then this would imply that
EQY/2 > e. Then by applying Jensen’s inequality to the convex function z2
we obtain the required result EQ > (EQ'/2)2 > 0. So we need to show that
lim,, o EQY? = EQY/2.

To obtain the required convergence we first need to show that the col-
lection {Q,l/ ine N} is uniform integrable. To do this we use a theorem
due to De La Vallée Poussin, which states that a subset {X, : « € A} of L'

is uniformly integrable if there is a function G with lim;_, & = o0 and

sup{EG (| X4|) : @ € A} < co. If we take G(t) = ¢, then ( ) goes to infinity

and sup{EG(Q oy //?):n e N} =1 < oo, hence V2 s umformly integrable.
Now we can use Vitali’s convergence theorem, which states that if a

sequence of random variables X, in L' is uniformly integrable and con-

verges almost surely to a X, then it also converges to this X in L'. By

the continuous mapping theorem we have Q}/ 208 01/2,

So we can ap-
ply Vitali’s theorem, and obtain that Q}/ 2 converges in L' to Q/2, hence
lim,, o EQL? — EQ1/2. o (7)

The implication in the other direction, EQ2 > 0 = EM log, M < 0, does
also hold (Guivarc’h (1987)). So when this condition on M is not satisfied,

the measures u, converge indeed to the trivial zero measure.
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To provide some intuition on why this happens, consider for instance
the products %% = ?%, %% = %. Here the factors represent the multipliers
in the construction of the binomial measure at the second stage. Note that
although in both cases the sum (and thus the average) of the factors is equal,
the product with the largest difference between its factors is significantly
smaller than the other one. Now note that EM log, M > 0 only occurs when
M can take values above one, and because EM = b~! these high values of
M have to be compensated by a high probability of taking values below b~1.
As can be seen in aboves example, these low values have more effect on the
product than the values above one, in the sense that they 'take away’ more
mass than the large values contribute. So we can interpret EM log, M < 0
as the critical condition which prevents the described effect from becoming
so significant that the cascade will die out. Because in that case we would
get the trivial zero measure which is not interesting, we assume in the rest
of this thesis that the condition EM log, M < 0 is satisfied.

We have established that ES2 > 0, but because E€2,, = 1 it is natural to
expect that EQ2 = 1. Kahane and Peyriere (1976) proved, as a corollary of
proposition 2.2, that this is indeed the case. The result E€) = 1 also means
that next to the a.s. (martingale) convergence of €, to €2, we also have
convergence of the expectations EQ,, to EQ (convergence in L').

We will end this section by remarking that the total mass €2 of grid based
multifractal measures is characterized by an interesting stochastic equation,
which can be used to improve on proposition 2.2. The fact that the random
variables 2, satisfy the stochastic equation (4) implies, together with the
weak convergence of €2, to €2, that Q satisfies the asymptotic version of (4),
the so-called star equation:

b
QLN M0
j=1

where Q,Q1, ..., are independent and the €2;’s have the same distribution
as (). The unknown in this equation is the distribution of 2, and its far from
trivial to find the distribution of €2, given the distribution of M. However,
in section 2.3.2 we will show that the fact that {2 satisfies the star equation
implies that €2 has thick tails, but first we will use it to improve on the result
of proposition 2.2:

Corollary 2.1 P(Q > 0) =1 if and only if P(M > 0) = 1.

Proof. First assume P(M > 0) = 1, then we get:

b
pi=P(Q>0) = IP’(ZMij > o) = P(MQ > 0)° = P(Q > 0)"
j=1
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Since p = 0 or p = 1 are the only two possible solutions of the equation
p = p® (with b > 2), and p = 0 can not hold since EQ2 > 0, we obtain that
p=1

To prove the implication in the other direction we also use the star
equation:

b
P(QzO)zP(ZMij:0> <P(M; =0,..., My =0) = P(M = 0)"

j=1
So P(M = 0) > 0 implies P(Q2 = 0) > 0. It follows that P(Q2 = 0) = 0
implies P(M = 0) = 0, from which the result follows easily. o

2.2 The scaling function

In this section we will introduce a global scaling relationship and the scal-
ing function for multifractal measures. First note that the measures we
have constructed so far are grid based, in the sense that the relationship
w(At)y = M(n)M(m,m2) ... M(n1, ..., m0)2n1, - .., np) only holds for b-adic
intervals. A major drawback of this is that grid based multifractals are not
stationary. To solve this problem of nonstationarity we can consider grid
free multifractal measures. These measures will be introduced and studied
in chapter 4.

Since for grid based measures the way in which mass is distributed is the
same for all stages of the construction, grid based measures satisfy a form of
scale-invariance, which can be described by a moment scaling relationship.
This scale-invariance is present at all stages, and as such will prove to be
very important for the local properties of multifractals. However, we will
first study the effect of scale-invariance on a more global property: scaling
in the moments of the measure.

If we define the deterministic function 7 : R — R by

7(q) = —log, EM? — 1

then grid based multifractal measures satisfy the following global scaling

relationship
Ep(At)? = ¢(g)(At)T@OH (9)

for b-adic intervals of length At and ¢(q) also a deterministic function. The
relationship follows immediately from (1), with ¢(q) = EQ4, ¢(q) = 1 for
canonical, conservative measures respectively.

The most important feature of the moment scaling relationship is the
function 7(q), which is called the scaling function. It will prove to play
a central role in the analysis of multifractals and therefore we will in this
section study some properties of this function. We can immediately see, by
setting ¢ = 0, that all scaling functions have the same intercept 7(0) = —1.
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We will now prove that, under the conditions EMY? < oo V ¢ € R and
P(M > 0) = 1, the scaling function 7(q) is twice differentiable.

Proposition 2.3 Assume EM? < co for allqg € R and P(M > 0) = 1, then
the scaling function 7(q) = —logy EMY? — 1 is twice differentiable with the
following derivatives:

(q) = —(Inb) Y EMI)TEMIn M (10)
(q) = (Inb) Y EM)2(EM?InM)?> - EMIEM?In* M) (11)

Proof. We have to show that we can interchange integration and differenti-

ation: 5 oo © g
el q — Y a
aq/o x1dFy () /0 qu dFy(x)

o [ 9
z ‘e dFy(z) = | —a9lna dF,
a0 ), x¥Inz dFy(z) /0 aqw nx dFy(z)

We will use the following differentiability lemma, which is proved in R.Schilling
(2005):

Let (¢,d) C R be a bounded interval and let f(q,z) be a differentiable
function in q on (¢,d) x R, which satisfies

and

o E|f(q, M)| < oo forall q € (¢,d) and

e there is function g(x) such that \%f(q, x)| < g(x) forall q € (¢,d) and
Eg(M) < oo

then [~ f(q, x)dFyr(x) is differentiable on (c,d) with derivative:

o [ 9
5 | Haarue) = [ paaaPut)

Take an arbitrary interval (¢, d). Since we want to prove twice differentiabil-
ity of 7(q) we have to use this lemma twice. First define f : (¢,d) xRy — R
by f(q,z) = 2. Then E|f(q, M)| < oo is obviously satisfied, and if we take
the function g(z) = (1 +2°+2%)|Inz|, then |8@f(q,x)| = |z9Inz| < g(z) for
all ¢ € (¢,d) and, as we will show now, E|g(M)| < co. We will use the loga-
rithmic inequalities |Iny| <y '—1 <y lfor0<y<landlny<y-1<y
for y > 0, which are both proved in the appendix.

Elg(M)| = E(14 M+ M%)|InM[Lpcy +E(L+ M+ M| In M[1s1y
< EQ+ M+ MYM +E(Q+ M+ MM < oo

We can conclude that the conditions of the lemma are satisfied. Thus,

SREM? = [ La9dFy(r) = EM?InM V g € (c,d). Then (10) follows

easily by straightforward differentation.
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To also prove the twice differentiability and (11), we have to show that
a% JoS 2t na dFy () = [3° a%a:q Inx dFy(x). First note that we have al-
ready established the first condition E|MY1n M| < co. The second condition
of the lemma can be proved in a similar way as above: since the derivative
of z91In z is equal to 27 1n? z, we can use the same logarithmic inequalities to
prove that gq:nq In z is bounded by a L' function. Now, given that we can in-
terchange the integration and differentation, it is again some straightforward
differentation to show that 7”(q) is given by (11).

Since the above results hold for arbitrary intervals (c,d), we complete
the proof by letting ¢ - —oco and d — 0o, and obtain that the results hold
on the whole of R. o (11)

(12)
Now we have established the twice differentiability of the scaling func-
tion, it can be shown that the second derivative is strictly negative:

Proposition 2.4 Assume EM? < co for allqg € R and P(M > 0) = 1, then
7 (q) < 0.

Proof. Since EM? < oo for all ¢ and P(M > 0) = 1, the second derivative
exists and is given by:

7"(q) = (Inb) " (EM?)2((EM?In M)? — EMIEM?In* M)

To obtain 77(q) < 0 we will have to show that (EM91n M)? < EMIEMY1n? M.
To prove this we will use the well-known Cauchy-Schwarz inequality:

(13)

Let f,g € L?. Then ||fglly < Ifllol9lly- Equality occurs if, and only if,
1£115 lglly = 0 or f2/11f15 = ¢°/ llgllz a-e.  (14)
(15)

If we use the functions f(z) = 292, and g(z) = 2%/? Inz we get:
1 1
EMIIn M < (EM9)? (EM9In* M)?

This implies (EM?1n M)? < EMYEM?1n? M. Since we want this inequality
to be strict, we will consider the case that the equality holds. According to
Cauchy-Schwarz’s result, the equality occurs only if either

(M3/2)2 (M9/21n M)?

/2| = 1/2 - =
E|MY4 =0, EIM¥*In M| =0 or E(M2)2  B(MY2In M) a.s.

holds. Because EM = b~! > 0 and M is nonnegative, the first two options
can not hold. Therefore we will consider the third option, which can be

rewritten as: )
EM?1n* M
2 _
In“ M = T a.s.
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This implies that M has to be almost surely equal to a constant. Since
EM = b~! this means M = b~! a.s., but this option was excluded (since
this would give a trivial measure). So the equality can not hold and hence
we have a strict inequality, and thus 7”7(¢q) < 0. o

An immediate corollary of aboves result is that the scaling function is
strictly concave.® Another important corollary is that the Legendre trans-
form of 7(q) is also strictly concave, which will be proved and used in sec-
tions 2.6 and 2.7. In the rest of this thesis we will assume that the conditions
EM? < 0o Vg € R and P(M > 0) = 1, under which the concavity properties
hold, are satisfied. Note that according to corollary 2.1 the second condition
also guarantees that €2 > 0 almost surely. These assumptions exclude some
possible distributions for M, but it will turn out that they leaves us enough
freedom to choose distributions which are effective for empirical modelling.

2.3 Properties
2.3.1 Continuous but singular

Grid based multifractal measures have, due to the recursive nature of their
construction, besides scaling properties, some other very special properties.
The measures are different from commonly used (probability) measures in
the sense that they do not have a density, but also have no point mass.
The fact that they don’t have a density means that they are not absolutely
continuous with respect to the Lebesque measure, and thus are singular
measures. In fact, it will turn out that all the mass of a multifractal measure
is concentrated on a set of Lebesque measure zero. The proof of this last
statement will have to wait until section 2.8. In this section however we
will make it intuitively clear why multifractal measures have no density and
prove that they have zero point mass.

In the familiar case where a measure p has a continuous density u/(¢),
an approximation of this density is given by pu([t,t + At])/At. As At — 0
we expect the approximate density to go to the true p/(t). For multifractal
measures, however, this behaviour it totally different. Due to the recursive
nature of the construction, we have that all time scales At the mass distri-
bution over the intervals [¢,t + At] is approximately as irregular as in Fig.1.
So as At goes to zero, the value of the approximate density p([t,t+ At])/At
keeps changing dramatically. For example if At is halved, the sharing of
the mass u([t,t + At]) between the two halves is often very unequal. So
as At — 0 the approximate density will remain to behave very wiggly and
hence does not become an increasingly close approximation to some density
function. It follows that the measure fails to have a density and is thus not

3In Mandelbrot et al (1997a) it is showed that the scaling function is concave. We
improve on this result by showing that the scaling function is strictly concave, which will
be used in the proofs of proposition 2.6 and 2.7, and theorem 2.1.
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absolutely continuous with respect to the Lebesque measure. This implies
that the mass of the measure is at least partly concentrated on a set of
Lebesque measure zero. This is for instance also the case for discrete mea-
sures as their mass is concentrated on a countable set. However, multifractal
measures have no point mass, as we will show now:

Proposition 2.5 u({z}) =0 a.s. for all x € [0,1].

Proof. Take x € [0,1). Define k,, = k,(x) = [2b"|, where |y| is defined as
the largest integer smaller or equal to y. Then k,, is the unique integer such
that

2 €I = [kpb ™", (kn + 1)b™"] for all n

The sets I ,i:) form a sequence of nested intervals, which will be proved in the

appendix. The intersection of these intervals is equal to : (-, I ,g:) = {x}.
Furthermore, note that k,b™" is a dyadic number, i.e. there is a sequence
My-ooymn € {0,1,...,b— 1} such that k,b~" = > m;b~*. This all leads
to:

) = (Vb G+ 7))

n=1
= lim p([knd™", (kn + 1)b7"))

= lim M(m,...,m) QM1yeeymn)

Tl

First remember that E) < oo, hence 2 < 0o a.s.. So we need to show that

lim,,— o0 H?Zl M; is almost surely equal to zero. We will use the following

result from measure theory: Let X, X1, Xo,... be random variables. If for

all € > 0 the series > oo | P(|X,, — X| > €) is convergent, then X, 3 X.
By an application of Markov’s inequality we have:

ZP(‘HM—O‘>6)7 EH’ 1 Mi Zb_

n=1

This holds for all ¢ > 0, so we conclude that lim,_, H?:l M; = 0 almost
surely. This gives the result for € [0,1). For z = 1 everything can be
proved similarly with &, (z) = [2b™] and the intervals [(k,—1)b~", k,b~"].c

A simple consequence of the above result is that the cumulative distri-
bution function 8 of the measure p is continuous. We conclude that a grid
based multifractal is a continuous but singular measure.
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If no mass is concentrated on sets with a nonzero Lebesque measure and
neither is concentrated in single points, one can wonder where the mass went.
The answer is that the mass is concentrated on sets with a fractal dimension
smaller than one. This makes sense because the Lebesque measure of a
fractal set with dimension smaller than one, is equal to zero. In fact, as we
will show in section 2.7, all the mass of u is concentrated on a single set
with a fractal dimension D < 1. An introduction to fractal theory can be
found in section 2.5.3.

2.3.2 Infinite moments and heavy tails

In this section we will take a closer look at the distribution of the total mass
Q. So far we have showed it is non-degenerate, it satisfies the star equation
and we mentioned that its expectation is equal to one. In addition to this
we will show that 2 has infinite moments, which reflects that 2 has heavy
tails. This is an important property of canonical multifractal measures, as
this also an intrinsic property of the distribution of asset returns.

By definition, conservative measure have a fixed mass. Consequently,
conservative measures will have finite moments of all orders. The corre-
sponding compound process will therefore also have finite moments of all
orders. Conservative measures thus generate compound processes with rela-
tively thin tails. Canonical measures, however, can generate processes with
infinite moments, and thus heavy tails. In this case the tail behaviour of the
compound process B(6(t)) will depend on the random variable Q2. Overall, it
can be seen that multifractal measures may have a variety of tail behaviours.

As mentioned, conservative measures have finite moments of all orders.
This is because 1([0,1]) = 1 and hence Eu([0,1])¢ = 1 for all ¢. But, when
mass is not conserved, there exists a q.-i; < oo such that for all ¢ > get
we have Eu([0,1])¢ = EQY = oco. We will prove this as a corollary to the
following result.

Proposition 2.6 Let ¢ > 1, then EQY < oo if and only if EM? < b~ 1.

Proof. First we assume EQ? < co. If we use that () satisfies the star equation

0L Z?’:l M;€); and that the function 2 is superadditive, which means that
(z1 4 22)? > 2f + 2, we get:

b g b
Q1 i(ZMij) >3 Mo (17)
j=1

j=1
If we can show that there is a positive probability that this inequality holds
strictly, we would get:

b
EQ! > E Z MIQ! = bBEMYEQ
j=1
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Then since EQ? < oo, dividing by bEQ¢ gives the required result EM? < b~1,
So its left to show that there is positive probability that (17) holds strictly.

In the appendix we show that the equality (Zi’:l xi)q = Zf Lz} can
only hold if there is at most one nonzero z;. This implies, together with
the fact that b > 2 and the superadditivity of x9, that there are only two

nonzero x; needed to guarantee that the strict inequality holds: x1,29 > 0
q
implies (Z?Zl xz) >3 z7. Using this we get

V

b b
q
P((;Mjgj) > ;Mfﬁj> > P(MQy > 0, MxQs > 0)
= P(M > 0)’P(Q > 0)* > 0.

As explained above, this establishes EMY < b~ 1.
Now assume EM1Y <, b~! and take the integer k such that k < ¢ < k+1.
Because the function z#+71 is subadditive, we have the following inequality:

b b .
> ay) ™ <Y art
J
Jj=1

Jj=1

If we define the sets L = {I = (I1,...,0;) € N : Y I, = k + 1} and
L*={leL:lij=k+1,i=1,...,k+1} and use the multinomial theorem,

which states that (Z?J i) = = L llk,ﬂzl, (:cl) 7 then the above
inequality becomes:

(o) = (X 47)

j=1

k+1

k+1
Zl ,H
ZHZ ’“
leL\L*l lb

If we apply this to Q,, = Z?:l M;Q,_1(j) with z; = M;Q,_1(j) and take
expectations we get:

b q
By = E|( 3 M00)) |
j=1
b k+1
< Y EMIEQI , + Z 'HEMmEm“
j=1 lEL\L* :
< PEMIEQI_, + ) k;ln EMYEQY ) F
= —1 ‘

IEL\L*
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1)!
< LEMIEQ! | + Z k+

leL\L*

= DEMYIEQY_, + (bFF! — b)b—k% (EMFEQE )

(EMEQ, \EMFEQE )T

where we used )., lf“‘,ﬂzl, = b+1 and BURT < (EU )k%l, which follows

from Jensen’s inequality and the concavity of 2F1. We also used that
[15_, EU% < EUEU* for U > 0 and ; such that 3°0_,l; = k + 1 and at
least two [; are nonzero.

Jensen’s inequality applied to the convex function x4 gives that Qf, is a
submartingale and hence EQ, > EQ? . If we apply this to aboves inequal-
ity we get:

EQI(1 — bEMY) < (051 — b)b 71 (EMFEQE )71 (18)

Note that if we assume lim,, o EQfL < 00, we obtain by taking limits on
both sides that lim, .., EQ7 is also finite, where we used the assumption
EM? < b1,
We will now first discuss the case 1 < ¢ <2 (so k = 1). Remember that

we had EQ < oo and L' convergence of €2, to €. This implies

lim EQ, = EQ < o0

n—oo
If we now take limits in (18), we obtain lim, ., EQ% < co. Since QF is a
submartingale this is equivalent to sup,, EQ)}, < oo, and hence the sequence
is bounded in L'. Since this implies that the sequence Q% is uniformly

bounded, we can use the following result (which is for instance proved in
R.Schilling (2005)):

(18)
Let X, be a submartingale that is uniformly bounded, then X = lim,_, .o Xp
exists almost surely with lim, . EX, = EX < oo (19)
(20)
This result establishes the required result EQ2? < oo for 1 < ¢ < 2, and
establishes next to this also that Q2 converges in L' to 2.
Now consider the case ¢ > 2. First note that EMY? < b~! is equivalent
to 7(¢) > 0. Since the scaling function 7(q) is strictly concave and 7(1) = 0,
the assumption 7(¢) > 0 implies that 7(I) > 0 for 1 < | < ¢q. Hence
EM? < b~ implies EM! < b~'. Using this result, we obtain by applying
the same reasoning as above, the following implications for [ = 2,... k:
lim EQZ l—EO <0 = lim EQl EQ! < 0o
n—oo n—oo
By iteratively applying this implication we obtain lim,, ., EQF = EQF < oo,
which in turn implies the required result EQ? < oco. o
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Corollary 2.2 IfP(M > 1) > 0 there exists a qerit with 1 < qepit < 00 such
that
EQY =00 V q > Qerit

Proof. Since P(M > 1) > 0 there are z > 1, € > 0 such that P(M > z) > e.
Note that ze < b~! has to hold, because if ze > b~!, then with the use of
Markov’s inequality we arrive at the contradiction EM # b~ 1:

EM > 2P(M > x) > ze > b !
Now take ¢* = —log,(eb), then ¢* > 1 because ze < b1
()P >z = —log(eb) >logx = —log,(eb) > 1

Now we will show that EM?* > p~1:

o0

EMT = / yTdPY (y) > / y"*dPY (y) > e P(M > ) > (eb) e =b""
0 T

Note that this inequality also holds for all ¢ > ¢*, hence by proposition 2.6
EQ? = co Vg > ¢*. So there is a qqi¢ < 00 such that V ¢ > g EQ? = cc.
We complete the proof by noting that since EQ2 < oo it holds that g.-i; > 1.0
(21)

In the rest of this thesis we will use the definition g.4 = sup{q : EQ? <
oo}, which is the smallest ¢ for which the corollary holds.

As mentioned earlier, the fact that €2 can have diverging moments, re-
flects that €2 can have heavy tails. This is made more precise in Guivarc’h
(1990), which shows that under the assumptions EMY < oo V ¢ > 0 and
P(M > 1) > 0, the total mass 2 has a Paretian right tail:

P(Q > x) ~cx % as © — oo

where ¢ is a positive constant.?

2.3.3 Long range dependence

Long range dependence, also called long memory, is a property of a stochastic
process related to a slow decay of the statistical dependence between differ-
ent increments of this process. For a stochastic process X; we expect the
autocovariance Cov[ X, Xy ;] to decrease when 7 increases, but in the case
of long range dependence this decrease in covariance is slower than 'usual’.
More formally, short range dependent processes are characterized by an au-
tocorrelation function which decays exponentially fast, and processes with
long range dependence have a much slower decay of the correlations. So

“The notation ~ is defined as: let f(z) ~ g(z) as & — oo, then lim, o0 f(z)/g(z) = 1
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processes with long memory will show more persistence (or antipersistence)
over long time spans than short memory processes.

If we define 0(t) = p([0,t]), then 6(t) is a stochastic process which ex-
hibits long range dependence in the size of its increments. Usually the con-
cept of long range dependence is defined in an asymptotic sense: a stochastic
process exhibits long memory when there is a power-like decay in its auto-
covariance as the time lag goes to infinity. However since 6(t) is only defined
on a bounded interval, we need to define the concept of long memory in a
slightly different way. Furthermore, because 6(t) has long memory in the
absolute value of its increments, we have to use the autocovariance of the
sizes of the increments instead of Cov[6(t),0(t + 7)]. This covariance of the
absolute values of the increments is called the autocovariance in levels and
for a stochastic process Z(t) it is defined by

0z(7,q,At) = Cov[|Z(t, At)],|Z(t + 7, At)?|] for 7 >0

where Z(t, At) := Z(t + At) — Z(t) are the sizes of the increments. In our
definition of long range dependence we will however only use the part of
the covariance function that mainly ’quantifies’ the dependence between the
size of the increments:

0z(1,q,At) =E|Z(t, At)1Z(t + T, At)Y|
This leads to the following definition:

Definition 2.1 A stochastic process Z(t) has long memory in the size of its
increments if for every q > 0 with EZ(t)? < oo there exist strictly positive
constants C1, Co, v and a strictly positive function h(At), such that for small
At the covariance function follows a power law in T:

Crh(At)T™* < 5z(1,q, At) < Coh(AH)T™ as At —0

Then for small At the decay in the autocovariance is slower than an ex-
ponential decay as 7 increases. Using this definition we get the following
proposition:

Proposition 2.7 When u is a canonical grid based multifractal measure,
the time deformation process 6(t) = p([0,t]) has long memory in the size of
its increments for 0 < q < qerit.

Proof. Consider a canonical measure in the n’th stage of its construction.
We define the intervals I1 = [t1,t; + b~ "] and Iy = [to, ta + b~ "] where t; =
S mib ™ and ty = Y1, b~ are different b-adic numbers. We assume
that the first [ > 1 terms are equal in the b-adic expansions of 1 and t5, so
m =C1,...,m = . For the (I4+1)’th stage we assume that the intervals are
at least one (I 4 1)’th stage b-adic interval apart: (41 —1 < 41 < (41 + 1.
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Then the distance 7 = |ty — t;| satisfies b=+ < 7 < b~ as we will show
now.
Observe that

‘ > (i — < Y =G

i=l+1 i=l+1
n .
< (-1 ) b
i=l+1

n !
- (- 1)(25—1’ - Zb—i)
i=0 =0
1—p-(+D)  { _p=0+D)
- (b_1)< -1  1—pt )
_ b(l o b—(n+1) _ (1 o b_(l+1)))
= bl —bp D < p!

This establishes 7 = ‘ > i1 (m Ci)b*i‘ < b=t To show 7 > b~ (1) note
that

T= ‘ > (- Ci)b_i‘ = ’(?71+1 — Q)b N (= G

i=l+1 i=142

Since |m1 — Gaa b~ > 20=(FD and | o0, Lo (mi — G)b7 < b7 we
also establish 7 >_b_(l+1).
To compute dg(7,q,b~™), we first consider the product u(l1)?u(I2)%:

P () = (L, o )My MGE )
(M7‘711,~~,771+1 : Mgh J7n)(MC1,~~-,Cz+1 T MC1,~~.,Cn)

If we take expectations we obtain:

0(7,q,b™") = Ep(L)"p(I) = (EQY)*(EM*) (M)
(EQ0)* (EMO)>" (EM3) (EA)

We can write this in a different way by noting that —7y(q) — 1 = log, EM? =
logyn (EM?)™ which gives

(EMq)n _ (bn)—Tg(q)—l _ (b—n)Tg(q)+1
With this we obtain:

59(77 a.b™") (EQq)Z(b—%)Te(Q)H(b—l)Te(2Q)+1(bZI)Te(Q)H

(EQ9)2(b~)2m0(0)+2 (=) 70(20) =27 (a) =1
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If we define a = —(719(2q) — 279(q) — 1), then a > 0 since 7y(q) is strictly
concave:

—a =19(2q) — 279(q) — 1 = 79(2q) + 79(0) — 279(q) <O
If we also use that b=(+D < 7 < b~ implies br > b~! > 7, we get:
(EQU)2(b~") D2 (br) = < by(7,¢,07") < (BQ)?(b")> (@270
So if we take h(At) = (At)?0(@D+2 Oy = (EQ9)2b~* and Cy = (EQ?)?, then

Crh(b™™) 1% < 8g(7,q,b™™) < Coh(b™ ™)1~ o

2.4 Local Holder exponents

In section 2.3 we introduced a global scaling relationship for multifractal
measures. In the rest of this chapter we will study the local behaviour of
. But first we will introduce in this section our main tool to study these
local properties, the so-called local Holder exponent. This is an important
concept that describes the local behaviour of the paths of a function.

Definition 2.2 Let g be a function defined on the neighbourhood of a given
date t. The local Hélder exponent of g at time t is:

a(t) =sup{B : |g(t + At) — g(t)| = O(JAt®|) as At — 0} (23)

This Hoélder exponent, sometimes called the singularity exponent, exists
always in [—o00,00]. Its definition can be extended to measures defined on
the real line: at a given date t, the local exponent of a measure is defined
as the local exponent of its distribution function.

We can interpret local exponents in the following way: when the function
g satisfies the scaling relation

lg(t + At) — g(t)] ~ Cy(AD)*D as At — 0

with a positive constant Cy, then this a(t) is indeed the local Holder expo-
nent of g at time ¢. From this equation, we can easily compute the local
exponents of several examples. For instance, for a point ¢t where g is dis-
continuous |g(t + At) — g(t)| will not go to zero, and hence a(t) = 0. For ¢
where g is differentiable with ¢’(¢) # 0 the local exponent is equal to one,
and for constant functions we have a(t) = co. So when the function behaves
smoothly at ¢ the Holder exponent is relatively high and when there is more
irregularity the local exponent will be smaller. So the Holder exponent can
be viewed as a sort of 'measure’ of the local regularity or smoothness of the
paths of a function.

Since Brownian motion has sample paths which are continuous but not
differentiable, it is a good example of a (random) function which has a
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local exponent between 0 and 1. In fact, the paths of Brownian motion are
characterized by a local exponent equal to 1/2, which we will show now:

P( i 1B+ AL — B(t)] OO) _ P( .y [B(AY)] >:

AE50 |At]? AtS0 At
. |AtY?|B(1)| B 1 ifg<1/2
P(Alifo N OO) T o0 ifB>1/2

From definition 2.2 it follows that «a(t) = sup{(—o0,1/2]} = 1/2 almost
surely. So the paths of Brownian motion (and therefore also all continuous-
time It processes) have a unique local exponent equal to 1/2 for every time
instant. In more generality, all continuous-time stochastic processes com-
monly used to model financial prices can each be characterized by a unique
Holder exponent. In contrast, multifractal measures contain a multiplicity
of local exponents. The distribution of these exponents within a measure
will be studied in the next sections, where we will use that local Holder
exponents can be computed in a more direct way:

Proposition 2.8 Let g be a function defined on the neighbourhood of a
given date t, then the local Hélder exponent of function g at date t is equal

to:
_In(|g(t + At) — g(t)])
1
i In(]At])

Proof. Define a(t) := limsupa,_, W and note that the a(t)

defined in (23) can equivalently be written as:

lg(t + At) — g()]
A

at) =sup {B:IM,0 >0 : Vjay<s <M} (24)

To show a(t) = a(t) we will prove the following implications:
1) B<a(t) = <alt) and 2) f>a(t) = B> at)

Since 1) implies a(t) < «(t) and 2) implies a(t) > a(t), the required result
a(t) = a(t) follows immediately.

First we will prove implication 1) by contradiction. Assume [ < a(t)
and § > «a(t). Then the latter assumption implies that for 0 < §y < 1 the

following holds:

lg(t + At) — g(t)]

3\At\<60 : |At|ﬁ > 1

Which implies
In(|g(t + At) — g(t)])

In(JAY]) (2)

Jat<sy 0>
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Because 8 < a@(t), we also have:

8 < lim sup In(lg(t + AL) — g(t)]) _ sup In(|g(t + At) — g(t)])

310 |Ar)<s In(|At]) T At|<éo In(|At])

It follows that there is no |At| < dp such that g > W. This
contradicts with (25), hence 8 < a(t) = £ < a(t).

Next we will show, again by contradiction, the second implication. As-
sume [ > a(t) and 8 < «a(t). The first assumption means that:

| In(lg(t + At) — g(t))
3 : — = lim su
e P Y (N7

Take 0 < € < 1, then there is a 0 < § < 1 such that:

In(|g(t + At) —g(#)])

0< sup — (B - <€
T (A (6= o)
1 At) —
Honce 5o sup MSCHA) gD

\At|<5 In(|At])

And we obtain:

In(|g(t + At) — g(t)])
Jo<s<1 Im>0 * Viay<s B> In(]At]) o

Now take this 8, ;. Because 3 > /3 implies ﬁ > \A},W for |At| < 1,

it follows from aboves statement that:

Vs 9EEAD —g@] gt +A) —g()] 1
|At]< |At|? |At|ln(‘g(f:(\AAtlﬁg(t)l)Jrnl |At|m

lg(t+|At)|l;9(t)|
At
also assumed 8 < «(t), according to (24) there should be such M, §. So we

have a contradiction and hence 8 > a(t) = > a(t). o

Hence there is no M, ¢ such that ¥z <5 < M. Because we

2.5 Coarse exponents
2.5.1 Coarse Holder exponents

In this section we will use the local Hélder exponent to study the local be-
haviour of multifractal measures. We want to determine the probability that
a randomly chosen point will have a given Holder exponent and proposition
2.8 suggests a way to do this. We define the coarse Holder exponent as
follows:

31



Definition 2.3 Let g be a (possibly random) function defined on the neigh-
bourhood of a given date t and let (Ant) be a sequence such that At —
0. Then the coarse Holder exponent of the function g over the interval
[t,t + Apt] is defined as:

_ In(lg(t + Ant) — g(t)])
ol = (A

Note that when lima;0In(|g(t + At) — g(t)])/In(At) exists, a,(t) con-
verges to the local Holder exponent «(t). In the rest of this thesis we
will assume that for the measure u the coarse exponents «,(t) indeed con-
verge to the local Holder exponent. Although we will be able to prove
that the coarse exponents converge, it is difficult to prove that the limit
of In(|g(t + At) — g(t)|)/In(At) exists and is often assumed in multifrac-
tal literature. So although the assumption that «,(t) converges to «(t) is
not rigorously proven, we will in the rest of the thesis assume that this in-
deed the case. Remark however that even in the case that o, (t) would not
converge to «(t), it still makes sense to speak about the limit of «,(t) as
local exponents, since we expect the limit coarse exponents to have similar
properties as the local exponents.

When we take A,t = b™", the coarse exponent of the measure u over
the b-adic interval [t;, t;+b~"] becomes oy, (t;) = In(p([ti, t;+07"]))/ In(b™").
So for each b-adic interval the coarse exponent can be computed and we can
study which values they take. To do this we define N, («a,€) as the number
of coarse Holder exponents in the interval [ — €, + €) in the n’th stage:

Np(a,e) =#{i=0,...,0" —1:an(t;) € [a —€e,a+¢€)}

The ratio N, (a, €)/b" can be viewed as the relative frequency of the coarse
exponents approximately equal to «. In the limit, as n — oo, we have the
following heuristic relation:

Np(a,€)

o ~ Planp(t) € [a —€,a+€) asn— oo (26)

If we also take the limit ¢ — 0, this ratio converges to the probability
that a randomly selected point ¢ has Holder exponent a. Note that this
probability is the same as the Lebesque measure of the set of points hav-
ing Holder exponent . To determine this probability we will study the
asymptotic statistical properties of the coarse Holder exponent.

Let u be a canonical measure, then for b-adic numbers ¢t and At = b™"
remember that we had the following equality:

p(t,t+ At]) = M(m) ... M(n1,. .., mn) 2
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Using this we can express the coarse Holder exponent as a function of €2 and
the multipliers M:

In(u((t, ¢ + A])
In(At)

1
— ——(logy M(m) + .. +logy M(n1,...,ma) +log, @) (27)

n

an(t) =

Since we are interested in the asymptotic properties of the coarse exponents,
the factor —1/nlogy, 2, which converges to zero almost surely, does not play
a significant role. Therefore we may assume that u is conservative (2 = 1),
but all results obtained in this section and the next will hold for canonical
measures as well.

In the preceeding we have implicitly assumed that we can view the coarse
Holder exponents at stage n as realisations of a random variable a,,. We
will now specify how this can be done for both deterministic and random
measures. For deterministic measures (such as the binomial) we consider
the mass of a random b-adic cell. So although the allocation of mass over
all the cells is deterministic, we can by randomly drawing 71, ..., 7, for the
b-adic number ¢, consider the coarse exponents a,(t) as draws of a random
variable o,.

When the measure is randomly generated, the coarse exponents ay,(t)
are identically distributed across al b-adic cells (since the multipliers M are
independent and identically distributed). So all the cells are essentially the
same and we can choose a fixed cell [¢t,t+ b~"]. The corresponding measure
w([t,t +b~"]) and coarse exponent o, (t) will be random. So the exponents
oy, (t) can again be viewed as draws of a random variable a,.

This random variable «, is according to (27) the sum of n independent
and identically distributed random variables. If we write — logy, M (n1, ..., n;)
as V;, then «,, becomes:

Since «, is the sum of i.i.d. random variables, there are many techniques
available to study them. One important technique is the familiar Strong Law
of Large Numbers (SLLN), but next to this we can also use the possibly less
familiar Large Deviation Theory. This theory provides information on the
tail of sums of i.i.d. random variables, and will turn out to play a central
role in the analysis of these coarse exponents.

Let us first put the Law of Large Numbers to use. According to the
SLLN, the random variable «,, converges in the almost sure sense to EV; =
—Elog, M, which will be denoted by ap. So as n goes to infinity we expect
that almost all coarse Holder exponents are contained in an increasingly
small neighbourhood of ag. This implies that the ratio Ny, («, €)/b™ collapses
and converges as n — oo and € — 0 to the indicator function 1,,(cv). So it
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follows that P(a(t) = ag) = 1 and hence the Lebesque measure of instants ¢
with local exponent «yg is equal to one: A({t € [0,1] : a(t) = ap}) = 1. This
means that we can conclude that the single Hélder exponent oy dominates,
in the sense that the set of instants with exponent «g carries all of the
Lebesque measure.

2.5.2 Mass concentration on sets of Lebesque measure zero

Since we established P(a(t) = o) = A({t € [0,1] : a(t) = ap}) = 1, it might
seem that this is the end of the story and we are done. But remember that
we argued (but not yet proved) in section 2.4.1 that grid based multifractal
measures are not absolotely continuous with respect to the Lebesque mea-
sure. This means there is mass concentrated on sets with Lebesque measure
zero. So although the exponent «q carries all of the Lebesque measure, the
other exponents do matter. In fact, as we will prove now, the mass concen-
trates on sets with local exponents that are bounded away from «ag. This
also proves that multifractal measures are not absolutely continuous with
respect to the Lebesque measure.

Proposition 2.9 All the mass of a multifractal measure 1 is concentrated
on sets of Lebesque measure zero.

Proof. First we will show that cg > 1 (which is already interesting on it
self). Since the function —log(x) is strictly convex, we can use Jensen’s
inequality and get:

ap = —Elogy M > —log, EM = —log,b~' =1

Let T, be the set of b-adic numbers ¢ such that the b-adic cell [¢t,t+b""]
has Holder exponent greater than (14 ag)/2. Since N, (ag,€)/b™ goes to one
and (14 ap)/2 < ap, "almost all” cells belong to T), for large values of n.
However, the mass of the measure concentrates on cells with local exponents
that are bounded away from ag:

1+aqg

Soultt o)=Y <Y () r <
teTy, teTy, teT,
1+ap

ag—1
V(") 2 =b""z —0 asn— oo
It follows that the mass is not concentrated on the set {¢ € [0, 1] : a(t) = o}
which has Lebesque measure 1. Hence the mass has to be concentrated on
sets of Lebesque measure zero. o (27)

Remark that the above proposition means that events that occur on
sets of Lebesque measure zero are responsible for all of the total variation
of the measure p and hence also the trading time 6(¢). This is by itself not
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that special, for instance Poisson processes or other discontinuous processes
also have this property. However, it may be a suprise that, for a continuous
stochastic process, events occuring on sets of Lebesque measure zero can
contribute all of the total variation. This is the case with multifractals.

2.5.3 Multifractal spectrum and fractal dimension

So far we have used the intuitive quantity Np(«,€)/b" to determine the dis-
tribution of the Holder exponents within a path and found that multifractals
have Lebesque-almost surely one unique local exponent. In section 2.5 we
stated however that multifractals contain a multiplicity of local exponents,
which distinguished them from unifractals such as Brownian motion. So
the method using N, (c, €)/b" fails to distinguish between multifractals and
unifractals. Somehow we have to find a method to study the other Holder
exponents, that will lie on sets of Lebesque measure zero. Mandelbrot pro-
posed in Mandelbrot (1989) a so-called renormalization which solves this
problem. Instead of studying the limit of N, (a,€)/b", we will study the
limit of this quantity after taking logarithms. This leads to a concept called
the multifractal spectrum:

Definition 2.4 The limit

represents a renormalized probability distribution of local Holder exponents,
and is called the multifractal spectrum.

Note that aboves definition is defined for multifractal measures, but may
with some minor modifications be extended to functions or random pro-
cesses. The multifractal spectrum may also be used to give a definition of
multifractality: if f(«) is well-defined (in the sense that the double limit
exists) and is positive on a support larger than a single point, then we say
that the corresponding measure or function is a multifractal.

To provide some intuition on why this renormalization is useful, con-
sider the example with N,(a,e¢) = 3™ and b = 4. Then the frequency
Ny (o, €)/b™ = (3/4)™ will converge to zero. However, the expression for
the multifractal spectrum In Ny, (o, €)/Inbd” = In3/In4 does not vanish as
n — oo. So by taking a logarithmic transform of the frequency N, (a,€)/b",
we can study events that happen at a vanishing frequency, but nonetheless
happen very many times.

Besides that we can interpret the method of taking a logarithmic trans-
form of the frequency representation N, (a,€)/b™ as a way to identify some
(otherwise) vanishing events, the multifractal spectrum has also an intuitive
interpretation as the fractal dimension of the set of points having a local
exponent «. This interpretation was introduced in Frisch and Parisi (1985),
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for a class of multifractals which satisfy f(a) > 0 (negative dimensions are
not defined). For the reader who might not be familiar with fractal sets and
fractal dimensions, we will now give an introduction.

In 1982 Benoit Mandelbrot introduced the concept of fractal dimension
in his book The fractal geometry of nature. Fractal geometry considers irreg-
ular and non-smooth structures, called fractals, which are not well defined
by their Euclidian length and the usual topological dimension. Many phe-
nomena in nature, such as mountains, coastlines, the structures of plants,
blood vessels, the clustering of galaxies and Brownian motion are better
described using a non-integer (and thus fractal) dimension.

For instance when we measure the length of a coastline we find that
the measured length might increase dramatically when the precision of the
measurement is increased. In fact, as the length scale that is used for the
measurement goes to zero, the measured length will diverge to infinity. This
means first of all that the Euclidian length is not the proper tool to compare
different coastlines. And secondly, since the length of these coastlines is
infinite on any interval, the topological dimension also does not give a good
characterization of this graph. Therefore new concepts of dimension were
introduced which are capable of taking non-integer values. One famous
dimension is the Hausdorff dimension, and fractals are usually defined as
objects which have a noninteger Hausdorff dimension.

We will give a somewhat informal definition of the Hausdorff dimension.
Consider the minimal number of N(r) balls of radius r required to cover a
fractal set or fractal curve completely. In many cases N (r) satisfies a scaling
law as r goes to zero:

N(r) ~ Cor™P

For example for the unit square in R?, N(r) grows as 7—2. When objects are
very irregular, N(r) will typically increase much faster as r decreases than
for smoother objects. Hence this D in the power law gives an indication of
the degree of irregularity. If a object satisfies the relation N(r) ~ C.r— as
r — 0, then D is called the Hausdorff dimension of this object. It is easy to
derive that we can compute D more directly by taking logarithms:

D — Iim lnNgr)
r}0 ln( )

r

The paths of a Brownian motion are a nice example of paths which
behave very roughly and have infinite length on any interval. This suggests
that Brownian motion is a fractal, which is indeed the case as its fractal
Hausdorff dimension is equal to 1,5. Another classical example of a fractal is
the Cantor set. For those who are not familiar with this set, it is generated by
removing the open middle third of the interval [0, 1], and then removing the
middle third of each of the two remaining pieces. This procedure is continued
into infinity and generates a set with some special properties. Since the
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Cantor set is a subset of the interval [0,1] and behaves very irregularly,
one can expect that it has a fractal dimension between zero and one. And
indeed, the Hausdorff dimension is equal to log2/log3 < 1. Next to this it
can also be shown that this set is uncountable, but yet contains no intervals.
So although it has the same cardinality as the interval [0, 1], it has Lebesque
measure equal to zero. In more generality, the Lebesque measure of sets in
R with Hausdorff dimension between zero and one is equal to zero.

Now we gave a brief introduction into the concept of fractal geometry,
we will make it intuitively clear why the multifractal spectrum can be in-
terpreted as a fractal dimension. Under the assumption that p contains a
multiplicity of Holder exponents, it seems very unlikely that there are inter-
vals in [0, 1] where all points have the same Holder exponent. This is because
the recursive procedure for the construction of p continues into infinity and
is the same for all b-adic intervals. It follows that one might expect that,
in this limit, the b-adic intervals which have coarse Holder exponent o will
contain only one point with local Holder exponent . So in the limits as
n — oo, the quantity N, («,€) can be considered as the minimal number
of balls N(r) with length = b~" needed to cover the points with local
exponent in [a — €, + €). Now if we take logarithms and let € and b=™ go
to zero we obtain:

In Ny, (a, €) . In N(r)
0 n—soo  Inb~™ 10 In (1)

Hence f(«) can be interpreted as the fractal dimension of the set of points
with Holder exponents a. However, this interpretation is not correct for « for
which f(«) is negative, because fractal dimensions can not be negative. So
although this interpretation is not always correct, it is proved in Frisch and
Parisi (1985) and Halsey et al (1986) that for the class of multifractals with
f(a) > 0 for all a, the fractal dimension of the sets T'(a) = {t : a(t) = a}
coincides with the multifractal spectrum f(a).

To conclude this section we mention that fractals are in general charac-
terized by some form of self-similarity. An object is said to be self-similar
when it is exactly or approximately similar to a part of itself, in the sense
that the whole has the same shape as one or more of its parts. Since the
level sets of the local exponents are fractal sets we might expect that they
also have a self-similar structure. This is indeed the case, since multifractal
measures also satisfy a form of scale-invariance: p has the same statistical
properties across all b-adic cells, and thus across all scales.

2.6 Multifractal formalism

In this section we will show that the multifractal spectrum can be directly
related to the scaling function of section 2.2. They are equivalent in the sense
that they both contain the same amount of information of the measure p
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and one can obtain f(«) from 7(¢), and 7(q) from f(«). The relation they
satisfy is called the multifractal formalism and this formalism is said to hold
when the multifractal spectrum coincides with the Legendre transform of
the scaling function:

fla) = igf[aq —7(q)]

In this section we will use a result from Large Deviation Theory to prove
the above identity. There are however other methods to do this. In fact,
there is an extensive literature initiated by Frisch and Parisi (1985) and
Halsey et al (1986), which define the multifractal spectrum directly as a
fractal dimension. Using this definition they also prove that the multifractal
formalism holds, but we will follow the proof given in Mandelbrot (1997b).
This proof uses the statistical properties of o, and renormalization, which
allows for a more intuitive understanding. In this proof some properties of
the Legendre transform will be used, which we will prove first:

Lemma 2.1 The Legendre transform g(a) = infoerlga — 7(q)] of a twice
differentiable function 7(q) with 7"(q) < 0 is continuous and strictly concave.

Proof. First note that since the second derivative 7”/(q) is strictly negative,
—7(q) is strictly convex and the first derivative 7/(q) is strictly decreasing.
To study the Legendre transform inf,cr[gor — 7(q)] we will first show that
we can write it in a more direct way. To accomplish this we have to find the
minimum of gav—7(gq). Since 7"(q) < 0, the second derivative of ga—7(q) is
strictly positive, so a minimum is attained at the point where its derivative
is zero. Since qa — 7(q) is the sum of two convex functions, g — 7(q) itself
is also convex, and thus the minimum is a global minimum. So the global
minimum of ga — 7(g) can be found by setting its derivative equal to zero:

Because 7/(q) is strictly decreasing and differentiable with 7”(¢) < 0, it has a
differentiable inverse®. So the minimum is located at the point ¢ = 7/~1(a),
the inverse of the derivative at «, which gives

g(a) =7 Ha)a - 7(7"H(a))

This expression makes it possible to compute the derivative of g(«):

Jda) = 8804 (T'_l(oz)>oz + 7 o) =1 (7'/_1(04)) 680[ (T'_l(oz))
— %(T’_l(a)>a+7’_l(a) - a%(T'_l(a))
- )

®The inverse h~'(z) of a one-to-one and differentiable function h(z) is differentiable at
points  such that h'(z) # 0.
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Since 7/(q) is strictly decreasing it follows that its inverse is also strictly
decreasing. So we conclude that ¢'(«) is strictly decreasing, which implies
that g(a) is strictly concave. We complete the proof by noting that the
continuity of g(a) follows easily from g(a) = 71 (a)a—7(7~(a)), because
7 and the inverse 7/~! are continuous. o (28)
(29)

Next to these properties the main ingredient of the proof of the multi-
fractal formalism is a result from Large Deviation Theory. In section 2.5.2
we showed that the mass of a multifractal concentrates on sets with Holder
exponents that are bounded away from the predominant exponent «g. In-
formation on these sets is contained in the asymptotic tail probabilities of
the coarse exponent «,,. This is where the Large Deviation Theory comes in
to play, since it concerns the asymptotic tail behaviour of sums of random
variables. To prove the multifractal formalism we will use the following re-
sult of Large Deviation Theory, which was established in 1938 by H. Cramér
under conditions that were gradually weakened.

Cramér’s theorem. Let {X}} denote a sequence of i.i.d. random
variables. Then for any a > EX; and ¢ > 0

k
1 1
—lo IP’(— X; > oz) — inf log, Ee?® 1) as k — oo
rlog. P(+ Zl i inf log,

There are many proofs of this theorem in the literature, including for
instance in Deutschel and Stroock (1989). Note that since the coarse ex-
ponent «, is the sum of i.i.d. random variables V;, we can apply Cramér’s
theorem to «,, to study its asymptotic tail properties.

Theorem 2.1 The multifractal spectrum f(a) is the Legendre transform of
the scaling function 7(q):

= inf —
f() = inflag = (q)]

Proof. We start by showing that the multifractal spectrum is the double
limit of 1 log, P(cy, € [ —€, a0+ €)) + 1. One can easily derive the following
equality:

In Np(a,e) 1 Np(a,e€)

A T e, 0 S

In b T

Furthermore, remember that we had the heuristic relation (26) which can
be rewritten as

+1

Np(a,€)

1
o Nglong(anE[a—e,a—ke)) as n — oo

1
—1
n 0ogy
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By combining the above two relations we obtain

f(a) =lim lim llong(an €Ela—ea+e)+1 (31)

el0 n—oon

We will study the right-hand side by conmdermg logy P, > o —€). First
assume that @ > g and take € small enough such that o — € > ay. Now
we can apply Cramér’s theorem to the above probability. Using that «,, =
1/ny ", Vi, Vi = —logy, M; and o = EV;, we obtain:

hmllogb Play, >a—¢€) = lim —logb (1Zn:‘/i>a—e>

n—oo n n—oon

= inf log, FEed(@—e- Vl)
q€R

— flog, E gla—e=V1)Inb
in o, Be

where in the last step we substituted ¢lnb for q.

For the case @ < ag and € small enough such that a 4+ ¢ < ag we will
consider 1 log, P(a, < o+ €). If we take X; = —V; and « = —(a + €), then
x> —ag = EX; and we can apply Cramér’s theorem again:

1
lim —log, P(a, < x+¢) = 11m—logb ( ZX >x>

n—oo n
= inItR; log;, Ee(*~ X1>

= inf log, Eed(ate=V1)Inb
geR

where in the last step we substituted —¢Inb for q.
This all gives that 1/nlog, P(a,, > a —€) and 1/nlog, P(a, < ac+¢) for
respectively a — e > g, a + € < g converge to:

d(a +€) := inf log, Eedlote-Vi)Inb  — pf logy Epalete=11)
q€R geR
= mf[ (v £ €) + log, EMY]
g€R

= ;gﬁ[q(a te)— T(Q)] -1 (32)

where we used that 7(¢) = — log, EM? — 1.

Let us again consider the case o > ag. Note that we already obtained
the Legendre transform expression, but we derived it for P(a,, > o — ¢€)
instead of P(aw — € < a,; < @ + €). Therefore we will also have to show the
following relation:

Pla—e<a, <a+e) ~Pla, >a—e¢) (33)
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We can write the left-hand side as follows:
Pla—e<a,<a+e) = Pla, >a—¢) —Pla, >a+e)

B Play, > a+¢)
= P(an>a_6)<1_lf”(an>a—e)>

Because P(a,, > z) = (b”)%logb Plon>2) o (57)0() we get:

Plan >a+e) (bn)2lete) _ (et —5(a—e)
Pla, >a—¢)  (bn)dla—e)

If we show that §(a + €) < d(a — €), then pOata)=d(a=)) _ 0 and we
establish (33). First we show §(a + €) < §(a — e):

.1 1
da+e) = Jim. Elogb}P’(an >a+e) < nh_)rglo Elogb}P’(an >a—¢)=0(a—e¢)
To get a strict inequality, we use that since the second derivative of 7(q)
is strictly negative. Then lemma 2.1 states that the Legendre transform of
7(q) is strictly concave. This means that for small enough € we have the
following inequality:

d(a+€) =inflg(a+¢€) —7(q)] — 1 # inflg(a —€) — 7(¢)] — 1 = d(a — ¢)

Note however that aboves inequality is only guaranteed to hold when « is
not the point of maximum of the function §. Since ¢ is strictly concave it
has a unique maximum and since 6(ag) > d(a) for a > ag, the function ¢
can not attain its maximum at any o > ag.

Now we have established (33) we can combine this with (32) and get:

1
lim —log,P(a —e < ap, <a+e€)+1=inf[g(a—¢€) —71(q)]
n—o0o N qeR
Since it is proved in the appendix that the Legendre transform of 7(q) is
continuous, we can take the limit € | 0 and use (31) to obtain the required
result for a > ag:

fla) = ;g&[qa —7(q)]

In the same way as for o« > o one can show that a similar version of (33)
also holds for a@ < ag, and thus the above results hold also for o < «g. And
finally, the continuity of the Legendre transform implies that the required
result also holds for a = ag. o

(33)
Since the Legendre transform of the Legendre transform of a function

g, is again equal to this function g, we also have that 7(q) is the Legendre
transform of f(a): 7(¢) = infaerfag — f(a)]. So we can indeed obtain
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f(a) from 7(q), and 7(¢) from f(a). This means that, since f(a) and 7(q)
describe the local and global behaviour respectively, the local and global
scaling properties contain an equivalent amount of information about the
measure fi.

In the above proof we have established that the multifractal spectrum is
the Legendre transform of 7(¢q) and thus strictly concave, but actually more
can be said. In section 2.5.3 we defined f(«) as the limit of the renormalized
histogram of coarse Holder exponents, but in the proof we showed that f(«a)
can equivalently be defined as the limit of:

1
—log, P(ay, > a)+1 if a> ap
n
1
—logy Pla, <o)+ 1 if a<ap
n

Using this definition one can easily see that f(«) increases for a < o and
decreases for a > ag. Next to this it is also easy to see that f(a) < 1,
which makes sense because we do not expect the fractal dimension of a set
on [0,1] to be larger than 1. Furthermore, since the set of instants with
local exponent g has Lebesque measure 1, and the Lebesque measure of
sets with a fractal dimension smaller than one is zero, we would also expect
that the fractal dimension of the set of points with exponent «q is equal to
one: f(ap) = 1. This is indeed the case as we will show now:
First note that 7/(0) = —Elog, M = ayp, so

flao) = f(7'(0)) = inf[q7'(0) — 7(q)]
qeR
Since 7”7(q) < 0, the second derivative of ¢7/(0) — 7(q) is strictly positive, so
the minimum is attained at the point where its derivative is zero: 7/(0) —
7(q) = 0. Since 7/(q) is strictly decreasing this equation has a unique
solution given by ¢ = 0. Now substituting ¢ = 0 in aboves expression for

f(ao) gives f(ap) = —7(0) = 1.

2.7 The carrier of the mass

In section 2.5.2 we showed that the mass of a multifractal measure concen-
trates on sets with local exponents that are bounded away from ag. In this
section we will make this result more precise, by proving that in fact all
the mass concentrates on a set characterized by a single Holder exponent
D. This result was rigorously proved in Kahane and Peyriere (1976), but
their proof was very technical. We will give a less rigorous proof, but it will
be more intuitive and relates to the concept of multifractal concentration
which we will discuss at the end of this section. To prove the statement we
will first prove the following lemma, which states that there is a set such
that its fractal dimension and its corresponding local exponent are equal.
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Lemma 2.2 There is a unique « such that f(a) = «, and all other a’s
satisfy f(a) < a.

Proof. First we will show that a = 7/(1) is a solution of f(a) = a. According
to lemma 2.1 we can write f(a) as follows:

This gives:
P () =7 )P () () = (1) - (1) = (1)
where we used the definition of an inverse and used that 7(1) = — log, EM —

1= —logyb~! —1=0. So 7/(1) is a solution.

Now assume there is another a* # 7/(1) such that f(a*) > a*. Then
the strict concavity of f implies that the derivative of f in points such that
f(a) = a can not be equal to one. However, when we look at the point 77/(1)
and use that f/(a) = 7/7!(a) (which was shown in lemma 2.1), we arive at
the contradiction f/(7/(1)) = 7/~1(7/(1)) = 1. Hence f(a) < a has to hold
for all a # 7/(1). o

It follows from aboves proof that the unique solution of f(a) = « is
7/(1) = —bEM log, M, which will be denoted by D. Using aboves lemma
we can prove the following proposition:

Proposition 2.10 All the mass of the measure p is concentrated on the set
of instants with local Holder exponent D = —bEM log, M, where this D is
also the fractal dimension of this set.

Heuristic Proof. We will consider again the coarse exponents «, and the
histogram Ny, (o, €), and define Ny, () = Ny (c,0). Then Ny () is the num-
ber of b-adic intervals with coarse exponent equal to . Since f(a) is the
double limit of In N, («, €)/Ind", we have the following relation:

Np(a,€) ~ (™)@ asn — oo and € — 0
Which can also be written for N, («):
Np(a) ~ 0@ = b=~ asn — 00

Since o, = Inpu(Apt)/In Apt with Apt = b~", we have u(Apt) = (Ayt)*.
Under the assumption that the coarse exponent «,, converges to o, we have
the following asympotic relation:

(Ant) ~ (Apt)® = (077)"

Now consider the cells that in the limit have local exponent «. If we multiply
the mass of these cells with the number of cells, we get:

lim N, (a)u(Ant) = lim (b)) = lim (5-)* /@

n—o0 n—o0 n—oo
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If f(a) = «, then (=) f(® — 1, but in all other cases we have a— f(a) >

0 and thus (b‘”)a_f(a) — 0. So the « for which the product N, (a)u(Ant)
does not converge to zero is @ = D. This means that in the limit all mass
is concentrated on intervals with local Hélder exponent D. Hence all mass
of the multifractal measure is concentrated on a set with local exponent D,
which according to lemma 2.2 is equal to —bEM log, M. o
(34)

This D can be directly related to the non-degeneracy condition of section
2.1.2. In this section it was stated that the multifractal measure 1 was non-
degenerate if and only if EM log, M < 0. Since D = —bEM log, M this
condition is actually equivalent with D > 0. Note that when the condition
EMlog, M < 0 is not satisfied, we would have D < 0. Remark however
that a strictly negative dimension does not make sense, but also D = 0 is
not a option, since this would mean that the set of points with exponent D
is differentiable, which can not be true since 1 does not have a density. The
seemingly contradiction D < 0 can easily be solved by noting that when the
condition is not satisfied, the measure y has no mass, and has thus also no
carrier of the mass.

We will finish this chapter by introducing and discussing the concept of
concentration, and especially multifractal concentration. If we consider the
increments of a certain process or measure, we say that there is absence of
concentration when the number of increments required to get a prescribed
proportion of the total sample variance is of order N'. In this case even the
largest of N increments has a negligible contribution to the overall sample
variance. Brownian motion is an example of such a process, since each
increment’s relative contribution is of order N1,

There are also processes which possess a ’hard’ form of concentration,
which means that a significant proportion of the overall sample variance
comes from a very small number of large contributions. In this case a pre-
scribed proportion of the total variance, requires a number of increments
of the order N°. An example of processes with hard concentration are the
discontinuous Lévy jump processes.

Both absent and hard concentration are not in agreement with financial
data, which display a more intermediate form of concentration. However,
it turns out that multifractals possess a special intermediate form of con-
centration, which will be called ’soft’ concentration or multifractal concen-
tration. This is a new and very flexible form, where also, as in the case of
absent concentration, the single largest contribution to the sample variance
is asymptotically negligible. However, any prescribed proportion of the total
variance is contributed by a number of increments of the order NP, with
0 < D < 1. Note that as N increases N will also increase, but the relative
number NP /N decreases to zero.
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With the proof of proposition 2.9 in mind it is easy to see that multifrac-
tal processes posses this intermediate ’soft’ form of concentration. If we take
N, = b", then the proof shows that in the limit as n goes to infinity there
are NP intervals with a mass N,; P, for D = —bEM log, M. This means that
the number of contributions NP is exactly large enough to insure that their
total mass-contribution is nearly equal to the whole mass. In this case the
relation between frequency and size is exactly right to prevent the product
of the number contributions and their masses to go to zero. For all other
powers not equal to D, the contributions are either large but too few to
matter, or very numerous but so small that their contribution is negligible
as well.

45



3 Multifractal Model of Asset Returns

In this chapter we will present the Multifractal Model of Asset Returns
(MMAR) which was introduced by Mandelbrot, Calvet and Fisher in 1997.
The MMAR will use the concept of compounding a Brownian motion® with
a time deformation 6(t), where this time deformation process will be the
cumulative distribution function of a grid based multifractal measure. The
special characteristics of the multifractal measure, such as long range depen-
dence, heavy tails and a multiplicity of local Holder exponents will be passed
on to the price process through the method of compounding. The main rea-
son for using the concept of compounding is that it allows us to model a
processes’ variability without affecting the direction of its increments.

Before we give a formal definition of the MMAR, we will define in the
next section what it means for a stochastic process to be multifractal. Then
in section 3.2 we will show that the MMAR is indeed multifractal and study
its properties.

3.1 Multifractal and unifractal processes

In section 2.2 we stated that grid based multifractal measures satisfy the
moment scaling relationship Eu(At)? = ¢(q)(At)" @+, In this section a
similar scaling relationship is used to characterize multifractal processes:

Definition 3.1 A stochastic process X (t) is called a discrete multifractal if
there is an integer b > 2 such that the following moment scaling rule holds
for all b-adic intervals [t,t + At]:

E|X (t + At) = X(8)]7 = ex(g)(Ar)@H (36)
with a nonlinear scaling function Tx(q).

The condition that 7x(g) should be nonlinear is the main feature of the
above definition. When 7(q) is linear, the corresponding process is said to
be unifractal. To give an example of such a process, consider the class of the
so-called self similar processes, which are commonly used to model financial
data. A stationary process X (t) is called self-similar if there is an H > 0
such that for all ¢, k,t1,...,tr > 0 the process satisfies the scaling relation

(X(ct1),..., X(cte)} L {HX (1), ..., X ()}

SInstead of Brownian motion we may also use fractional Brownian motion B, which
is also a continuous-time Gaussian process. The main feature of this process is that it
may have, depending on the value of H, persistent or antipersistent increments with long
memory.
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From this definition follows immediately that X (t) = ¢ X (1), and since
X(t+At) — X(¢) £ X(At) this gives:

E| X (t + At) — X(1)|? = E| X (At)]? = (At)HIE| X (1)[7

Hence self-similar process satisfy the moment scaling relation (36) with the
linear scaling function 7x(¢) = Hg — 1 and are thus unifractal. The re-
striction that 7(¢q) has to be nonlinear therefore excludes a lot of the self-
similar processes commonly used in finance, such as Itd processes and Lévy
processes. However, the processes provided by the MMAR have a strictly
concave scaling function (as we will show in the following section) and as
such form a fundamentally new class of stochastic processes for financial
applications.

3.2 The Multifractal Model of Asset Returns and its prop-
erties

The MMAR provides a new model for the price of a financial asset {P(t) :
0 <t <T}. We introduce the notation:

X(t) =InP(t) —In P(0)

This expression is called the log price or log excess return and is very com-
mon in finance. At first sight it might be more intuitive to use the so-called
simple excess returns Ry = (P(t) — P(0))/P(0), but the log returns have
some advantages over the simple returns. The main advantage for our dis-
cussion here is that the statistical properties of these log excess returns are
more tractable, but they have next to this also some convenient additive
properties.

Note that we can have a more intuitive understanding of the log price
by writing it as:

P(t) - P(O)) ~ Pt) = P

InP(t) —In P(0) = In (1 + P(0 P(0)

)
Where the approximation follows from In(1 4+ ) ~ z for small . So when
the simple excess return R; = (P(t)— P(0))/P(0) is very small, the log price
is approximately equal to R;.

The main ingredient of our model for the log-price process X (t) is the
cumulative distrbitution 0(¢) of a grid based multifractal measure p. This
may be either a conservative or canonical measure, but the best choice seems
to be a canonical measure, since these have thick tails and are therefore more
in agreement with financial data. In chapter 2 we defined these measures
on the interval [0, 1], but if we use the T, b-adic’ intervals [tT), (¢ + At)T]
instead of the b-adic intervals [¢,¢ + At], the multifractal measure p may in
a similar way be defined on the interval [0, 7] with x([0,7]) = 1. So we may
also define the MMAR process on an arbitrary bounded interval [0, T':
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Definition 3.2 Let B be a Brownian motion and (t) the cumulative distri-
bution function of a grid based multifractal measure defined on [0, T, where
the processes B(t) and 0(t) are assumed to be independent. Then the logprice
X(t) is defined as the compound process:

The trading time 0(t) is the most important aspect of the MMAR and
it might be expected that it passes its multifractal properties on to the log-
price process X (t). Next to this we also expect that the scaling function
and multifractal spectrum of both processes are closely related, and that the
multifractal formalism also holds for X (¢). These multifractal properties will
be studied and proved in the following subsections.

3.2.1 Global multifractal properties

First we will prove that X (t) is indeed a discrete multifractal according to
definition 3.2 and that the scaling functions satisfy a very simple relation.

Proposition 3.1 The process X (t) is a discrete multifractal with scaling
function Tx(q) = 19(q/2).

Proof. We assume without loss of generality that 7' = 1. We will compute
the expectation E|X (t+At)—X (¢)|? for an arbitrary b-adic interval [¢, t+At].
Conditioning on p(At) = u([t,t + At]) = u gives:

E[|X(t+At) = X(0)|7 [u(At) =u] = E[IB(0(t+ At)) — B(0(1))| |u(At) = u]
= E[B(0(t+ At) —0(1))|? [u(At) = u]
= E[IB(u(A1))|7 |u(At) = u]
= u(AnE[BO)P
This gives:
E[|X(t+At) = X(@)1] = E[R[X(t+ At) = X (1) [n(At) = u]]

= Ep(At)"PE[B(1)]¢ (37)
= cola/2)(A)WITE|B(1))
Hence the process X (t) satisfies (36) with cx(¢) = co(¢/2)E|B(1)|? and
7x(q) = 70(q/2)- o (37)

Note that in this proof we established (37) by conditioning on u(At).
In a similar way we can get

E|X(1)| = E§(t)"E| B(1)|*
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by conditioning on 0(t). It follows from this relation that the ¢g-th moment
of X (t) exists if and only if the trading time 6 has a moment of order ¢/2,
or equivalently:

QCTit<X) = QQCrit(e)

Since corollary 2.2 stated that gerit(6) < oo when the multipliers M satisfy
P(M > 1) > 0, it follows that the multifractal process X (¢) may also have
infinite moments and thus thick tails. We can however also choose the
multipliers M such that g..;+(f) = 0o to obtain a process without fat tails.
Furthermore note that since Ef(t) < oo, we have EX ()2 = E0(t)E|B(1)]? <
00. So although X (¢) might have infinite moments, its second moment will
always exist. We conclude that the MMAR can obtain a variety of tail
behaviours, but will always have finite variance.

3.2.2 Local multifractal properties

Proposition 3.1 showed that the global scaling properties of X (¢) and 6(t) are
closely related. Next we will prove that also the local multifractal properties
of both processes are related, via the corresponding multifractal spectra:

Proposition 3.2 The multifractal spectrum of the process X (t) is given by
fx(a) = fo(20)

Proof. We assume without loss of generality that 7" = 1. In this proof
we will use the following scaling relation for the normal distribution with
random variance. Let the random variable Y have the normal distribution
N(0,5?%) where S is an a.s. strictly positive random variable. Then we have

Y 2§27 with 7 & N(0,1) independent of S, as we will show now:

P(Y € B) = /mMYGES:ﬂﬂyw
0

_ /MMHZemszﬂwywzpw%eB)
0

where B is an arbitrary Borel set and we used that Y|S = o < 527
Now to prove the proposition, consider the coarse exponents of the pro-
cess X (t) for the sequence At = b~" and the b-adic intervals [¢,t + A,t]:

X (1) = (| X(t+Ant) = X(0))) _ (B0t + Ant)) — B(0(1))])
" InA,t In At
4 W(B(u(Ant))
In At
a W(u(A.t)'?|B1)])
B InA,t
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1In(u(Ant)) | In(|B(1)])
2 InApt In At

= Sal) +op(1)

Hence it follows from Slutksy’s lemma that o} (¢) i 3aP(t) asn — co. This

means that we could reproduce the proof of theorem 2.1 with

X (t) = 1/nZVi’ with V/ = 1/2V; = —1/2logy M (1, - .. ,m;)
i=1

In that proof we established that:

1
fo(@) =lim lim =log, P(ad € [a —€,a +€)) + 1

el0 n—oon

The following is proved in the appendix: provided that lim, . P(Y;,, € B) >
0, we have that X,, 2 V;, implies P(X,, € B) ~ P(Y,, € B). If we apply this
to a;X (t) 4 1/202 (t) we get:

1
fx(a) = lim lim —log,P(a € [a—e,a+€))+1

el0 n—oon

| 0
= lg%lnh_}ngo . log, P(1/2c;, € [ — €, ac+€)) + 1

1
= lim lim = log, P(a’ € 20 —€,2a +¢)) +1

elon—oco n

= f@(QOé) o

Let ozé( , ag be the predominant Holder exponents of respectively X (t)
and 6(t), then aboves proposition implies

fx(1/2a8) = fo(ad) =1  and hence  off =1/2a

Note that since af > 1 we obtain agf > 1/2. This means that the com-

pounded process X (t) = B(6(t)) has at almost every instant a local ex-
ponent that’s larger than the Holder exponent of Brownian motion. So
although the sample paths of X (¢t) = B(6(t)) have some apparent irregular-
ity, its sample paths are Lebesque almost surely smoother than the paths
of Brownian motion. This means that at infinitely small scales the trading
time runs sometimes very fast, but most often very slow.

3.2.3 Multifractal formalism and its application to empirical mod-
elling
Now we have established 7x(q) = 79(¢/2) and fx(a) = fo(2a), it is a simple

corollary that the multifractal formalism also holds for the process X (¢):
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Corollary 3.1

fx(a) = ;gﬂg[q@ —7x(q)]

Proof.

fx(a) = fo2a) = ;gﬂg[qm —719(q)]

= ;Ielug[qa —19(q/2)]

= Inflga - 7x(q)] o

The multifractal formalism does not only give us information about the
local properties of X (¢), it also presents a method for empirical modelling.
If we want to find the distribution M that best characterizes some multi-
fractal data, we can first estimate the scaling function. This can be done by
computing the empirical moments for different ¢ and fit the estimate 7x(q)
such that it satisfies the relationship (36), where the expectation is replaced
by an empirical average. Next we can obtain an estimate for the multifractal
spectrum by taking the Legendre transform of 7x(q).

In Mandelbrot et al (1997b) the multifractal spectrum is computed for
some different distributions of M (by using a different version of Cramér’s
theorem) and it is shown that the multifractal spectrum is very sensitive
to the distribution of the multipliers. So when we have an estimate for the
multifractal spectrum, we can choose the distribution M that best agrees
with this estimate. In Mandelbrot et al (1997c) it is shown that the log-
normal distribution gives good results for modelling the behaviour of the
Deutschemark and US dollar exchange rates. Remark that a lognormal dis-
tributed random variable is almost surely strictly positive, which together
with the fact that it has moments of all orders guarantees that all results of
this thesis hold. Secondly, the condition of corollary 2.2 is satisfied because
the support of the lognormal distribution is the whole of [0, 00). It follows
that the corresponding price process has thick tails.

3.2.4 Volatility persistence

In section 3.2.2 we established that at infinitely small scales, the trading
time runs sometimes very fast, but most often very slow. However, this
does not occur only in the limit, but happens at all scales, as we will explain
now. The fact that in each stage of the construction of the measure p the
multipliers take different values on each b-adic cell, makes that the mass
of the multifractal becomes very concentrated. The multipliers in the first
stage of the construction are the most important and determine more or
less the overall mass concentration. Then the multipliers in the second
stage of the construction determine the way mass is concentrated on these
first stage’ b-adic cells. Since this recursive construction continues into
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infinity, the resulting multifractal measure has mass concentration at all
scales. Because for intervals where p has much mass the corresponding
trading time 6(t) runs faster, the process X (t) = B(6(t)) has also a higher
volatility on these intervals. It follows that the concentration of mass in the
multifractal measure, results in a process B(6(t)) with volatility clustering
at all scales.

The fact that the MMAR displays volatility clustering means that the
sizes of increments that are close to each other are heavily correlated. Next
to this volatility persistence on small time scales, the MMAR has also strong
persistence in volatility on larger time scales. We will show that the MMAR
has long range dependence in absolute returns.

Proposition 3.3 The MMAR process X (t) has long memory in the size of
its increments (as in definition 2.2) for 0 < q¢ < qerit(X)/2.

Proof. Take a 0 < ¢ < qerit(X)/2. We will show that
SX(Tv q, At) = 59(7—7 q/27 At)EHB(]')|q]2

Then since 6(t) has long memory in the size of its increments the required
result follows. We compute dx (7, g, At) by conditioning on 6(t):

E|X (0, At)X (, At)[? =

E[E[| X (0, AL X (7, AD)||8(AL), (r + At), 0(7)]] =

E[E[|B(0(At) B(0(r + At) — 0(7))|10(At), (T + At), 0(7)]] =
E[0(A)Y?(0(7 + At) — (7)) ?|E[|B(1)|)?

E[0(0, At)"?6(r, At)/?|E[| B(1)|)?

0o(7,q/2, A)E[|B(1)|7]? ©

We will show in the rest of this section that although 6(¢) changes the
speed of the Brownian motion, the variance of the increments of the process
is still equal to At and thus the same as for Brownian motion. In the previous
section we showed that most innovations |X (¢t + At) — X (t)| are of order”
(At)% One might expect that the standard deviation of the process is also
of this order, but it turns out that the exponents o < o appear sufficiently
frequent to give that on average the innovations are of order (At)Y/2. Or in
other words, the standard deviation of the increments X (¢ + At) — X(¢) is
equal to (At)Y/2, as we will show now:

Proposition 3.4 Let [t,t + At] be a b-adic interval, then

Var[X(t+ At) — X(1)] = At

"The fact that almost all time points have local Holder exponent af implies that
X
increments are in the limit At | 0 of order (At)*0 .
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Proof Since E[X (t + At) — X (t)] = E[B(0(t + At)) — B(6(t))] = 0 we get:
Var[X(t+ At) — X (t)] = E(X (t + At) — X(t))?
From proposition 3.1 we obtain
E(X(t+ At) — X (1)) = ex(2)(A)XDH = oy (2) (Ao +1
where we used that 7x(q) = 79(q/2). Since
79(1) = —logy, EM — 1 = —log, b= ' —1=0

and
cx(2) =cg(1)EB(1)> =EQ =1

we obtain the required result:
E(X(t+ At) — X(t)* = At o

It can be concluded from the above result that the MMAR is a good
example of a continuous process, where the fact that the standard deviation
is of order (At)/2, does not imply that all innovations are also of the same
order, as is for instance the case for It6 processes.

3.2.5 Martingale property

The fact that the increments of a Brownian motion B have unpredictable
signs, makes Brownian motion a martingale. Since for the compound pro-
cess X (t) the trading time does not influence the direction of the Brownian
motion, we obtain that X (¢) is also a martingale.

Proposition 3.5 X(t) is a martingale with uncorrelated increments.

Proof. Let F; and F| denote the natural filtrations of {X (t)} and {X (t),0(t)}.
For any ¢, s and u > ¢, the independence of B and 6 implies that

E[B(0(t + )7, 0(t + 5) = u] = E[B(u)|F] = B(0(t))

where in the second equality we used that B(¢) is a martingale. We now
infer that

E[X(t+s)|F] = E[E[B(O(t+s)|F,0(t+s) =u]|F]
= E[B(0(2))|F]
= X(t)

This establishes that X (¢) is a martingale. Now we will show that this
martingale property implies that the increments of X (¢) are uncorrelated.®

8 Actually this property holds for all square integrable martingales.
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If we use the notation X (¢, At) = X(t + At) — X(t) and take ¢’ > t + At,
consider the covariance

Cov[X (t,At), X (¥, At)] = E[X (t, At) X (¢, At)]

where we used that EX (¢, At) = 0. The martingale property of X (¢) implies
that E[X (', At)|F,] = 0. Using this we obtain

E[X(t, At)X (¢, At)] = E[E[X(t, At)X (', At)|F]]
= E[X(t, A)E[X (¢, At)|F,]] =0
So we conclude that Cov[X (¢, At), X (¢, At)] = o (38)

0.

It follows from this proposition that In P(¢) is martingale. If we now
apply Jensen’s inequality to the convex function e” we obtain that the price
process P(t) = P(0)eX® is a submartingale and hence a semi-martingale.
The concept of a semi-martingale is very important in finance. It means for
instance that we can use the It6 stochastic integral to calculate the gains
from trading multifractal assets with price P(t). In particular, stochastic
integration may be used to develop portfolio selection and option pricing
theory. The semi-martingale property of P(t) also implies that there are
no arbitrage opportunities in a two-asset eonomy with a price P(t) and a
risk-free bond with constant rate of return.

3.3 MMAR’s performance

Since the Multifractal Model of Asset Returns incorporates fat tails, volatil-
ity clustering and long memory in volatility, it captures many of the most
important stylized facts of financial time series. It also presents a new class
of continuous-time processes that bridge the gap between It6 diffusions and
jump-diffusions by allowing a multiplicity of local Holder exponents. Next
to this the MMAR is a model where prices follow a semi-martingale, which
makes it possible to use It6 calculus for option pricing and portfolio selection.

In contrast with the earlier model Mandelbrot (1963), which used Lévy-
stable distribution with infinite variance, the MMAR has returns with finite
variance which is more in agreement with financial data. Next to this the
highest finite moment of these returns can take any value larger than two,
which means that the model has some flexibility in matching data. Because
the trading time displays more and more irregular behaviour at smaller time
scales, the MMAR also has the property that the tails of the unconditional
distribution of returns become thinner as the time scale increases. So, to a
certain extent, the distribution of returns looks at larger time scales more
and more like a normal distribution, which means that the MMAR also
captures the aggregational Gaussianity of financial returns.

Since the MMAR, accounts for most of the stylized facts, it seems very
promising in modelling financial data. This was indeed confirmed in Mandel-
brot et al (1997¢). They investigated the Deutschemark/US Dollar currency
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exchange rates and found that these large data sets exhibit multifractal mo-
ment scaling with nonlinear scaling functions as in (36). After finding this
evidence of multifractal moment scaling, the multifractal spectrum was es-
timated with use of the multifractal formalism and it was found that the
MMAR outperforms other statistical models as GARCH and FIGARCH
when it comes to simulating financial data.

Although the MMAR captures many of the main stylized facts and is
successful in modelling financial data, it has some drawbacks from a more
practical perspective. The model has, as a consequence of its combinatorial
construction, some restrictions when it comes to some typical financial ap-
plications such as volatility forecasting. The main drawback of the MMAR
is that the multipliers change at predetermined points in time, which makes
the model non-stationary. To be able to use the model for forecasting, the
distribution of the time before a new change in the multipliers occurs, should
be the same for all time points. But the fact that all changes happen at pre-
determined time points, implies that the time that it takes for a new change
to occur is in general different for different points in time. Another problem
that is closely related to this non-stationarity is that the model is also non-
causal. To able to use the model for forecasting, you would have to know
for an arbitrary point the time? that it takes for a new change to occur.
This means that you would have to know the future in order to be able to
forecast the future. We can conclude that this noncausility and nonstation-
arity is very inconvenient, since it makes it very difficult to use MMAR for
forecasting.

Next to the above mentioned problems, another drawback of the MMAR
is that it involves two arbitrary fixed parameters: the scale ratio b and the
finite horizon T'. Since these parameters do not seem to have an important
empirical meaning, but for empirical work still have to be estimated or
chosen, it would be better to have a model without these parameters. It
is however obvious that we need a scale ratio for the construction of the
trading time 6(t), so the MMAR really needs the constant b. In the rest
of this section, we will show that the MMAR also really needs the finite
horizon T, in the sense that it is not possible to define the MMAR on the
whole of [0,00) without it losing its multifractal properties. We will show
that in the limit as T — oo, the scaling function of the MMAR becomes
linear and hence the process becomes unifractal.

Proposition 3.6 Let X(t) be a discrete multifractal process on [0,T], then
if T' goes to infinity, the corresponding scaling function 7(q) becomes linear.

Proof. We will show that in the limit as 7" — oo the following holds (from

9Normally this would be the ’distribution of time’, but since the construction of time
points is deterministic this distribution reduces to a constant.
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which the linearity of 7(q) follows immediately):

Vareer Yueo,)  T(ug + (1 —u)ge) = ur(q1) + (1 — u)7(ge)

To prove this we will use Holder’s inequality:
Let pi,p2 € [L,00), f € LM, g € LP*. If =+ = =1, then ||fgl, <
1£1l, gll,p,- (39)
1
with || f]l, = (E|f(X)|P)?. Take arbitrary ¢i,¢> € R and arbitrary
€ (0,1). Define f(z) = x“ql g(m) = 219 and take p; = Lpy =,

then p1,p2 € [1,00) and - —|— = =u+ (1 —-u)=1. So we can use Holder’s
inequality and apply thls fo the measure of the intervals [t, (¢ + At)]:
Blu(Atyet0-0%] = E[s ( (a >) (u20)

IN

( <i>( At)) T ]><ﬁ>
- (E[( Atuqlﬁ])“( (uan =) =])
= (Blu(A)™])" (Elu(at)=])

Now using the notation ¢ = uq;+(1—u)gs and using Eu(At)? = ¢(q)(At)™(@+1
we get:

1—u

() (A7 < () (@07 ) (ca (207

By taking logarithms we obtain:

Inc(q) +7(q) In At <
u(lne(qr) + 7(q1) In At) + (1 —u)(Ine(qe) + 7(g2) In At)  (41)

Now we can take b-adic intervals [t, ¢ + At] such that the length At of these
intervals goes to zero. Hence we can take the limit At — 0 (along a discrete
sequence), and by also dividing aboves inequality by In At < 0 we obtain

0 = gm (3 +0)

dm (o (e rta) + (0= ) (552 ()
= ur(q1) + (1 —u)7(g2)

Hence 7(q) satisfies:

v

7(ugr + (1 —u)g2) > ur(q1) + (1 — u)7(g2) (42)

Because we take the limit 7" — oo we can also take b-adic intervals [t, ¢+ At]
such that the length At is arbitrarily large. So we can also divide expression
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(41) by In At > 0 and take the limit At — oo, which gives the reverse of
(42). It follows that 7(ugq1 + (1 —u)g2) = ur(q1) + (1 —u)7(g2) and the proof

is complete. o

We can conclude that the MMAR  is successful in modelling financial
data, but it has some restrictions: (i) it is non-stationary, (ii) it is non-
causal, (iii) it involves a fixed scale ratio b, (iv) it can not be defined on
[0,00) and thus also involves an arbitrary fixed horizon 7. In the next
chapter we will introduce the Markov-Switching Multifractal which will get
rid of (i), (ii) and (iv).
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4 Markov-Switching Multifractal

In this chapter we will present the Markov-Switching Multifractal (MSM),
which provides a causal and fully stationary version of the Multifractal
Model of Asset Returns. The Markov-Switching Multifractal will also model
the log price X (t) = In P(t) — P(0) for a financial asset with price P(t), and
will parsimoniously capture many of the most important stylized facts of
financial time series, such as fat tails, volatility persistence, jumps in volatil-
ity and moment scaling. It can be interpreted as a Markov-Switching model
where different volatility components change at different frequencies. The
stationary construction delivers a model for which a closed-form likelihood
function is available, which makes it possible to use a standard econometric
toolkit for estimating and forecasting. There are two versions of the Markov-
Switching Multifractal, a continuous-time and a discrete-time version. We
will first present the continuous version and later show that there also exists
a convenient discretized version, which as the grid step size goes to zero,
converges weakly to the continuous-time version.

The Markov-Switching Multifractal was introduced and studied by Cal-
vet and Fisher in different works. First, in their paper Calvet and Fisher
(2001), they improved on the MMAR by introducing a multifractal model,
called the Poisson Multifractal, which used Poisson arrivals to construct
the multifractal measure. They constructed a continous-time process and
showed that there was a discrete-time version that converged weakly to
the continuous-time version. Their construction was however still based
on a bounded interval [0,7] and different stages in the construction were
not independent of each other. In later works, Calvet and Fisher (2002b);
Calvet and Fisher (2004); Calvet and Fisher (2008), an improved version
of the Poisson Multifractal was introduced and studied. This model uses
Markov-Switching and was as such named the Markov-Switching Multifrac-
tal (although it still uses Poisson arrivals).

4.1 Continuous-time MSM

In this section we will introduce a grid free multifractal measure in continuous-
time. The combinatorial construction of the MMAR, will be replaced by a
construction where the instants, at which new multipliers are drawn, follow
a Poisson process. So the time that a certain multiplier lasts is not fixed
anymore (as it was in the construction of the MMAR), but will now be ex-
ponentially distributed. The fact that the Poisson process is stationary and
Markov will result in a causal process which is also stationary and Markov.
In sections 4.1.1 and 4.1.2 we will introduce and study a construction
that is similar to the construction of the Poisson Multifractal in Calvet and
Fisher (2001), but differs from this construction in two ways: we define
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the measures on the unbounded interval [0,00) and we will achieve that
the ’arrivals of new multipliers’ at a particular stage are independent of all
other stages (which was not the case for the Poisson Multifractal). Then in
section 4.1.3 we will introduce the original and simpler construction of the
Markov-Switching Multifractal and we will show that it is equivalent to the
construction of section 4.1.1.. The main reason for first presenting a some-
what more complicated construction is because this construction provides
more intuition about how the MMAR and the MSM relate to each other.

4.1.1 Construction of MSM

The Markov-Switching Multifractal also uses the concept of compounding
a Brownian motion B(t) with a trading time 0(¢) to model the log price
process X (t) = P(t) — P(0). We assume that B(t) and 0(t) are independent
and that 6(t) is the cumulative distribution function of the weak limit
of a sequence of random measures p,. In this section we will give the
construction for these measures u,, which will be defined on the whole of
R..

For the first stage measure p1, consider the infinite sequence {77 ,}7°
of independent random variables which are exponentially distributed with
intensity A\. The random variables T} j will be used to randomize the time
instants at which the multipliers change. We define the first stage random
instants {5;}72, as:

J
S0, =0, and S;=> Ty forj>1
k=1

Given these {S;}, the intervals {I; = [S;,S;41] : j € N} form a random
partition of [0, 00). We now define the measure p; by drawing independent
and identically distributed nonnegative multipliers M; for each interval I;
and uniformly spread the mass over each interval:

pa(1y) = M;L(1;)

where £ is the Lebesque measure denoting the length of a given interval:
((t,s]) = t — s. To obtain a non-degenerate limit we want to impose
that on any interval I with ¢(I) = 1 we have Eu(I) = 1. We do this
by considering the interval [0,7] and then imposing Eu([0,7]) = T. Be-
cause we look at the interval [0,7] we need to define the random variable
Np = max{m : > ;- Tix < T}. Then the random partioning of [0, 7] is
given by {[0,S1], [S1,52], ..., [SNy—1,SNy], [Sny, T]}. Note that since the
mass was uniformly spread we also have u([Sny,,T]) = My, L([Sny,T]).
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This all gives:

Np—1
E(0.7))] = E[ Y a(S; Sial) + u([Sny. T1)]

Nr—1
= EE| Y M1 — Si1) + Mug l(1Se, TDHT14 Y |
§=0

Np—1
= E|: Z Sj+1 - Sj + (T - SNT)]EM
=0
= TE]&

So to conserve mass we require EM =1

Now to comstruct pp, we consider a new sequence {75}, of ii.d.
exponentially distributed random variable, but now with intensity b\ for a
real number b > 1. So the intensity increases and it follows that the average
number of arrivals becomes denser. We assume that each 715 ; is independent
of all other random variables. Now consider the intervals I, = [S},, S, +1],
which were generated in the first stage, and define for each interval the total
number of arrivals up to time Sj, 41:

m
NI = max{m : ZTQ,k < Sj1+1}
k=1

Using this N7! we define the new random instants S, j, as follows:

(S if jo =0
NI1=14j,
Sirga = > Tox if 1< jp <N — N2 (43)
k=1
Sji+1 if jo =N +1

So every interval I, has now the random partition
{[Sjl ) 51171]7 [Sjl,l’ th?]v RR) [thle—lv Sjl:Nj1]7 [Sjl,le ) Sj1+1]}

On each subinterval I}, j, = [S}, j»; Sji.jo+1] @ random multiplier Mj, j, is
drawn and again the mass is uniformly spread:

H2 (Ij17j2) = M;, M;, ,j2€(1j17j2)

For j; > 1 we choose for the intervals [S;, 0;.5j,,1] the same multiplier as in

the previous interval. So the intervals [S; ni1;Sj, nii 1] and [Sj, 41,05 Sjy+1,1]
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are linked in the sense that they have the same second stage multiplier (but
do not share the same first stage multiplier). This somewhat complicated
construction achieves that arrivals of new multipliers at the second stage are
independent of the arrivals in the first stage and follow a Poisson process.
We can continue this construction in a recursive way: given the mea-
sure fi,—1, consider the intervals I, . ;. . =[S, .jn_15Sj1,...jn_1+1]. Here
I, ... j._, is the interval in which in the first stage of the construction the
j1’th interval is chosen, then in the second stage (when this interval is again
subdivided) the jo’th subinterval of I; is chosen, and so on. In the n’th
stage we consider the exponential random variables {7}, ;}?°, with inten-
sity 8"\, where each T, is assumed to be independent of all the other
random variables defined up to stage n. Again we define for each interval

L, .. j._, the total number of arrivals up to time Sj, . . +1:

m
Nt = max fm s 3 Tk < Sy, i1 |
k=1

With these N7t+In=1 the intervals Ij, i = [Sjy.in 13 S in_1+1) CAD
again be subdivided in the same way as in (43):

Sjlrn:jn—l if j, =0
NILsIn—1 1+]n
Sjl,m,jn = E ka if 1 < j, < NJtedn—1 _ NItsdn—1—1
k=1
[ i if i = NIvodnt 41

which for each interval I, ;. _, results in a random partitioning: {Ijl,---,jn :
0 < jp < NJtweodn-1},

On each subinterval I, ;. we draw new multipliers Mj, ;. , where
again (just as for ps) we take the n’th stage multipliers of the intervals
[Si1,in1,05SG1,...5n_1,1] €qual to the multiplier of the previous interval. So
we take Mj, i 410 = Mj,...jn1,Ny, i1 for all j,_1 > 1. This has the
consequence that the multiplier Mj, ;.\ ~; ;  also lasts for an expo-
nentially distributed time, which implies that arrivals of new multipliers at
each stage follow a Poisson process. Note also that arrivals of new multipli-
ers at a particular stage are independent from all other stages. Given the
multipliers we allocate the mass again uniformly over each interval, which
results in:

pn(Ljyog) = My oo My, 5 0Ly G)

So we have constructed a sequence of measures p,, where the instants at
which the n’th stage multipliers change are exponentially distributed, with
an intensity b” '\ that increases geometrically with n. The fact that the
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exponential distribution is memoryless implies that the process is stationary
and that the probability of an ’arrival of a new multiplier’ at any date t is
independent of past history. It follows that the process M,, ;, which is defined
as the value of the stage n multiplier Mj;, ;. at time ¢, is Markov. We can
stack the values of all these date ¢t multipliers into the infinite sequence
Zy = {M,+}°° ;. This Z; is also a Markov process (on R*°) and also does
not depend on the future, which makes it causal. Since this Z; contains
all the information about the measure at time ¢, it follows that the MSM
measures are Markov and causal, which are both major improvements on

the MMAR.
4.1.2 Martingale property

We will now show that the sequence p,(I) is a martingale:

Proposition 4.1 Let I be an arbitrary bounded interval of [0,00) and F,
the natural filtration of wy, then

E[,U«n(j)’]:n—l] = pn—1(I) (44)

Proof. We will show that the martingale property holds for the intervals
I.

le-'-vjnfl:

Elpn Ly, ju_1 )| Fn-1] =

NI Jn—1
E{ Z 'un(Ijl,---,jn) ]:n—l} =
jn:
le ----- jn—l
((Tj,.....jn)
E[ > M. -Mjl,...,jnf(fjl,...,jnfl)ﬁ fn—1:| =
Gn=0 J1yeesdn—1
NI1in—1
E(I "), n)
Mn—l(Ijl,...,jn—1)E|: Z M]i,...gﬁﬁ Fn—l] =
Jjn=0 J1seen—1

(I ) le ''''' jn—l
Hn—14j1,. . jn—1 |:
E (s, ..jn)
g(Ijla---vjnfl) Z o !

Jn=0

]:n—l}EMjl,...,jn =

Hn—1 (Ijl,---vjnﬂ) E
g(]—jlv“’jn*l)

Because in the construction of u, the mass is distributed uniformly
over each of the intervals I;, . ;. , it can be shown in a similar way that the
martingale property also holds for arbitrary intervals I. o (44)

(L, ... N Fn—1] = tn—1(Ljy,... ju_y)

In section 4.3 we will use this proposition to prove that the weak limit
of the sequence of measures p,, exists, which implies that we can define y as
the weak limit of p,.
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4.1.3 The cumulative distribution function and weak convergence

Just as in the construction of the MMAR, the main reason for constructing
the measures u, and pu, is to get the cumulative distribution function 6,
which we can use as a trading time. In this section, however, we will intro-
duce an alternative construction for the cumulative distribution functions
0, which will be simpler than the somewhat complicated construction of
the measures py,.

In section 4.1.1 we introduced the Markov process M,, ;, which gives the
value of the stage n multiplier M, . ; prevailing at date t. It follows from
the construction of the measures ji,,, that a change in M, ; is triggered by a
Poisson arrival with intensity 6"\, where at each change a new multiplier
is drawn. It is useful to stack these M, ; into a vector:

Mt = (Ml,t;MQ,t;”-;Mn,t) S Rn, t e [0,00)

This vector is called the Markov state vector and contains for a given date
t all the needed information up to stage n. Using this vector, we define the

stochastic volatility:
n
=" [ ] M
k=1

where & is a positive constant. We will now prove that the functions 6,, can
be written as an integral over the stochastic volatility o2 (My):

Proposition 4.2 For ¢ = 1 the cumulative distribution function 6, of the
measure iy, satisfies:

() = /0 o2 (M.,)ds (46)

Proof. To get an explicit expression for the function 6,,(t), assume that in
each k’th stage of the construction the interval /;, . ;, , that contains ¢, is
cut off at this date ¢. This allows us to write 6,,(t) as

N, N1 N1

On(t) = => > .. Z Mlejl,jz oMyl )

J1=0j2=0 Jn=0

Using that on each interval I, . ;. the process My ; is equal to Mj, _ ;

for k = 1,...,n, we will show that fg 02(Ms)ds also satisfies the above
expression.
t t n
/ on(My)ds = / HMk,Sds
0 0 k=1
Ny N1 NI
- Z Z Z H Mk sds
J1=0j2=0 jn=0 Ijoin =1
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= ZZ Z / . M, ... M, j.ds

Ny NJ1 NI Jn—1

71=052=0 Jn=0
So we conclude that fg 02(My)ds = 1, ([0,t]) = 0, (). o (46)

Observe that this proposition implies that we could equivalently have
defined the functions 6,, by (46). This definition has somewhat more flexi-
bility since it also contains the constant . This constant can however also
easily be added to the construction of p,, by just multiplying each measure
with 2. In the rest of this chapter we will use that 6, satisfies (46) for a
given &.

We will now use this alternative definition to show that, under the
condition EM? < b, the sequence (f,) converges weakly to a tight and
continuous random function §. The condition EM? < b guarantees that
volatility shocks are either sufficiently small or have durations that decrease
sufficiently fast.

Proposition 4.3 Under the condition EM? < b the sequence (6,,) converges
weakly to a tight and continuous function 6.

Proof. To prove the proposition we need to show that the continuous func-
tions 6,, converge weakly to a function 6 on the space of continuous functions
C([0,00)). We will first show that we have convergence on C([0, 1]) and then
extent this to [0,00). We will assume without loss of generality that ¢ = 1.

It follows from proposition 4.1 that 6, (t) = p,([0,¢]) is a positive mar-
tingale. Hence the martingale convergence theorem implies that 6, (¢) con-
verges almost surely to a limit 6(¢). Since the almost sure convergence of
each of the components of a random vector implies the almost sure con-
vergence of the vector, we have that {60, (t1),...,60,(tq)} converge a.s. to
{6(t1),...,0(tq)}. Now theorem 7.1 in Billingsley (1999) states that, in or-
der to guarantee the convergence of 6,, on C([0, 1]), it is left to show that the
sequence 6, is uniformly tight on [0, 1]. To do this we will use the following
result, which is proved in Billingsley (1999) (theorem 7.3):  (47)

(48)
Let w(0y,,6) = supjy_g<s [0n(t) — On(s)], then the sequence (6y) is uni-
formly tight if and only if the following two conditions hold:

1. Vn > 0, there exist a and K such that Yk > K P(|0,(0)] > a) <.
2. Ve > 0, lims_,o limsup,,_,o P(w(6,,6) >€) =0
(49)

The first condition is immediately satisfied since 6,(0) = 0. So we will
concentrate on proving the second condition. Since limsup,,_, ., P(w(6,,d) >
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€) is increasing in d, it is allowed to restrict the d§’s to the discrete sequence
0, with 6 = 1/k. For a given k, we partition the interval [0, 1] in equally
spaced intervals [t;,t;11] with ¢ = 0,1,...,k and ¢; = i/k. Now we can use
the following result proved in Billingsley (1999) (theorem 7.4):  (50)

(51)
Suppose that 0 = tg < t1 < ... <ty =T with minj<;<k(t; — ti—1) > 0,
then for an arbitrary function x:

P(w(z,§) > 3¢) < ZIP’( sup | (s) — x(tiy)] > e)

This result implies:

€

k-1
B(w(0,5) 2 €) < 3 P(6a(tivn) — Oults) 2 5 )
=0

Because 6, is stationary, each increment 6, (t;+1) — 0,(¢;) is equal in distri-
bution to 6(dx), and if we also use Markov’s inequality we obtain for any

q>0
3

q

=) E0G) (53)
Now we need to find a ¢ such that the right-hand side converges to zero. For
g = 1 this does not happen, but we will show that we do have convergence

for ¢ = 2. Observe that for any ¢t > 0

P(w(fp,8;) > €) < w(a((sk) > g) < k(

t t
E[0p41(t)%] = /0 /0 E[M;,, M) ... E[My My o E[Myi1.0 Myt o|dudv

Now let T;, denote an exponentially distributed random variable with inten-
sity b\, then we have the following equality for n > 0:

E[Mp+1,uMnt10] = E[Mpi1,uMni10| M1,y = Mpt1,|P(T, > |u —v]) +
E[Mn—l-LuMn—i—Lv’Mn-I-l,u # Mn-&-l,v]P(Tn < |u—vl)
_ EMQe—b")\|u—v| + (EM)2(1 - e—b"A\u—fu\)
= (Var(M)+1)e " Mumvl 41 — gm0t Al
= 14 Var(M)e V" Mul

Using this equality and E[M; ,M; ] < EM? for i = 1,...,n, which follows
from Jensen’s inequality, we obtain for n > 1

t ot
E[0p11(t)?] < E[0,(t)?] + Var(M)(EM?)" / / e V" Al qudo
0 Jo
For n = 0 we get in the same way the inequality

t gt
E[0(t)%] < t* + Var(M)/ / e M=l dudo
0o Jo
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Now we will use that for any ¢ > 0 and ¢ € [0, 1]

ol+e
—b" A|u—v|
// dudv < G )\)1 3

which is proved in the appendix. Since we have assumed that EM? < b,
there exists a real number ¢ € (0,1) such that EM? < b'=¢. Then the
integral inequality gives

otl+e
GV
2Var(M)t'+¢ <IEM2)”

Elfn1(t)’] < E[0a(t)’] + Var(M)(EM?)"

= E[en(t)Q] + Ao pl—o

oV ar (M) 1+ EM2\"1 /EM2\"
E[6,_1(t)?] + /\(1_(2 <( b1—¢> +(bl‘¢> )

2 2V ar(M)tHHe G (EM2\F
T e bl—é

IN

IN

IN

k=0

Now taking the limit n — oo gives

. 2Var(M)tH+e & (EM2\*
hrrisolip E[6,(t)%] < t* + \1=4 I;} =g ) <

It follows that lim;olimsup,,_ .t 'E[f,(t)>] = 0. This result holds also
along any sequence t; with ¢, — 0, so if we take t; = Jp we obtain
limy o0 imsup,,_, oo KE[0,,(6x)%] = limg 00 limsup,, ot "E[0 ()% = 0 and
if we use (53) we obtain the required result:

lim lim sup P(w(0,,d;) > €) =0

k—00 n—oo

So we have convergence on the space C([0, 1] of continuous functions on [0, 1].
Now theorem 16.8 in Billingsley (1999), which is an analogue of the tightness
theorem 7.3 used above, implies that the sequence is also tight on C([0, o0]),
which together with the martingale convergence implies that the sequence
0, converges to a limit process 6 with continuous sample paths. o

So we have shown that when EM? < b the functions 6,,(t) converge
weakly to a continuous random function €(¢). Therefore we will assume in
the rest of this chapter that EM? < b indeed holds. The proposition states
also that under this condition the limit function 6(t) is continuous, which
means that the corresponding multifractal measure p has no point mass,
just as in the MMAR.
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4.1.4 Non-degeneracy of 0(t)

In this section we will show that the random function 6(¢) is non-degenerate
in the sense that Ef(t) = &t2. The fact that (¢) is non-degenerate is
not obvious. Consider for instance the integrand of the function 6, () =
fg 02(My)ds. Tt follows from the Law of Large Numbers that o2 (M) con-
verges almost surely to zero as n goes to infinity:

We can write 02 (M) as

n
02(My) = 52 [ My = 52eXkr mMis = 52 (5 Xia Moy
k=1
The Law of Large Numbers and Jensen’s inequality imply that as n — oo

1 n
- § My “SElnM <InEM =0
n

k=1

So 3p with P(F) = 1 such that Vuer Inw) : Yn>n(w) %22:1 In M, , < 0.
It follows that for each w € F (e% Z32:11“]\/[’“’3)n — 0 as n — oo, and hence
2(My) — 0 almost surely.
The fact that o2 (Mj) converges almost surely to zero might suggest that
the limit function 6(t) also degenerates to zero. However, we will prove that
this does not happen:

g

Proposition 4.4 The random function 6(t) is non-degenerate in the sense
that
EO(t) = a2t (54)

Proof. We will first show that sup,, E[f,,(t)?] < co. In the proof of proposi-
tion 4.3 we established that for all n > 1

2Var(M)1+ (EM?\"
Elfn 1 (1)%) < Eff 17) + 2L M (BT (55)
And forn =0 -
2 Mt
Bloy(1)?] < 2 4 LD (56)
Al=¢
If we denote a,, := 2vm;\(1]‘,4 itlw (IE%; )n, then inequality (55) is equivalent to

E[0,41(t)%] — E[0,(t)?] < a,, and (56) gives E[0;(¢)?] < 2 + ag. We obtain

n n—1
El0,()%) = E[01(H)% + > (El(t)?] — E[6r—1(t)?]) <2+ a
k=2 k=0
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Since the ¢ in (55) can be chosen such that EM? < b1=¢, we have > r; ax <
oo and we obtain:

n—1 00
supE[0,(t)?] < sup (t2 + Z ak) =t + Z ap < 00
" " k=0 k=0

Now observe that

t n t n
E[6,(t)%] = E / 5% [ Mi.sds = / 5% [[ EMy sds = 5%t
0 k=1 0 k=1

where the use of Fubini’s theorem was allowed since the integrand &2 [y Mys
is nonnegative. To show that Ef(t) = lim,_,. E6f,(t), note that since
sup,, E[0,(t)?] < oo the sequence (6,,) is bounded in L? and hence uniform
integrable. Since martingale convergence implies 0,(t) “3 6(t) for every
t > 0, we can use Vitali’s convergence theorem to obtain that 6, (t) also
converges in L' to 6(t). Hence

EO(t) = lim Ef,(t) = %t o

n—oo

So we can conclude that although the integrands o2 (M;) converge al-
most surely to zero, the integral 6(¢) does not vanish. Apparently, on any
finite interval, large realizations of o2 (M;) appear sufficiently frequently to
guarantee that the integral (46) remains positive.

Note that by taking & = 1 in (54) we obtain Ef(t) = ¢. This means
that for the compound process B(6(t)) the trading time 6(t) can speed up
or slow down the Brownian motion B, but on average has the same speed
as the usual time function ¢. By taking another & we can change the overall
speed of the trading time 6(¢) and change the unconditional variance of the
compound process.

It also follows from proposition 4.4 that the increments of the compound
process B(#(t)) are of order (At)'/? (just as for the MMAR).

Corollary 4.1
Var[B(0(t + At)) — B(0(t))] = o*At
Proof. Since E[B(6(t + At)) — B(6(t))] = 0, we have
Var[B(6(t+ A1) - B(6())] = E[{B(0(¢ + A1) — B(6() ]

So we need to compute E[{B(0(t + At)) — B(0(t))}?]. Let F, denote the
natural filtration of 6(¢), then conditioning gives

E[{B(0(t + At)) — BOW))2|Friad] = E[B(O(+Al) —6(1))°|Frin]
= (0(t+ At) —0(t))EB(1)?
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Using this we get

E[{B(0(t+ At)) — B(01)}?] = E[E[{B(0(t+At)) — B(0(t)}?|Frial]
= E[f(t+ At) —0)|EB(1)? = 5°At o

Note that for & = 1, this corollary shows that compounding Brownian
motion with the trading time 6(¢), does not alter the standard deviation
of the increments of Brownian motion. So although the trading time 6(t)
changes the local speed of the Brownian motion, the innovations of the
compound process are on average still of order (At)l/ 2,

4.1.5 Multifractal moment scaling

In chapter 3 we defined a stochastic process to be discrete multifractal when
it satisfied a moment scaling relationship for all b-adic intervals. In this
section we will give a similar definition for continuous multifractality and
prove that MSM is indeed a continuous multifractal. In the literature it is
common to define the multifractality of a stochastic process in the following
way:

Definition 4.1 A stochastic process X (t) is called (continuous) multifractal
if it has stationary increments and satisfies the following asymptotic moment
scaling relationship:

E[lX(0)|] ~ ex (@)™ ast =0 (57)
with a nonlinear scaling function Tx(q).

Note that the above scaling relation defines the continuous multifractality
of X by considering the ¢’th power of X(¢), but since X has stationary in-
crements we could equivalently define multifractality using the ¢’th power
of the increments X (¢t + At) — X (¢) (as we did for discrete multifractals).
In the literature continuous and discrete multifractals are both just called
multifractals, but in this thesis discrete and continuous multifractality is in-
troduced to distinguish between the asymptotic moment scaling on infinitely
small time scales and discrete moment scaling on b-adic intervals.

To prove that the process B(6(t)) satisfies this asymptotic scaling re-
lationship, we will first need to prove some lemma’s, where each lemma is
actually also interesting on its own. The following lemma shows that the
critical moment gerix = sup{q : E[f(¢)9] < oo} does not depend on ¢.

Lemma 4.1 IfE[0(t)?] < oo for some instant t > 0, then also E[0(t')?] < 0o
for every t' € [0,00).
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Proof. For t' < t we know that 0(t") < 0(t), which implies E[0(¢')?] < E[6(t)]
and hence E[0(t')?] is also finite. For ¢’ > ¢t we will show that E[f(nt)] < co
for every n > 2. Note that we can write 6(nt)? as:

0 (nt)? :<Z[6’(it) —0(( - 1)t)}>

i=1

If we use that (Y1 2;)? < max(n?™1,1) 3" 2! for ¢ > 0, n > 1 and

(®1,...,2,) € R}, which is proved in the appendix, then we obtain
n
0(nt)? < max(n?!,1) Z ((1 —1)t)
=1

By taking expectations and using 0(it) — 0((i — 1)t) 4 0(t) we obtain
E[6(nt)?] < max(n?,n)E[0(t)!] < oo

Since for every t' there is a n such that ¢ < nt, we obtain in the same way
as for ¢’ <t that E[f(t')?] < occ. o

We will also need the following lemma, which shows how the total mass
of the unit interval () depends on the intensity A and how 6(t) relates to
Q).

Lemma 4.2 The trading 0(t) satisfies the invariance property
0(t) £ tQ(t))
for all t € [0,00) and A > 0.

Proof. We will first prove that this property holds for 6,,( fo =(
If we use the change of variables u = s/t we obtain

t 1
On(t) = /0 o2(M,)ds = t /O o2 (M) du

Now note that the state vector M, = M, is driven by the arrivals of a Pois-

son proces with intensities A, ..., tb" !\, Tt follows that 6,,(t) 4 tQ(tN),
where €2,,(\) is the random variable that denotes the total mass of the func-
tion 6, on the unit interval. Since the sequence 0,, converges weakly to 6 we

obtain 8(t) £ tQ(tN). o
The following lemma is consistent with the intuition that when the in-

tensity A is very low, there is a high probability that the first stage multiplier
is constant on the unit interval, which suggests EQ(\)? ~ EMIYEQ(bA)4.

Lemma 4.3 EQ(N\)? ~ EMIEQ(bA)? as A — 0.
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Proof We define the function g(\) = EQ(A\)? and define ¢ty < t1 < ... <
tn, <tnj+1 by t; = 5; for i1 < Ny and IN 41 = 1, where So,Sl, Ce 7SN1 are
the arrival times of new multipliers. Conditioning on Ny gives:

g\ = E[E[ (A N]]

— ZE NNy = n|P(N, = n)
Y )\ne—)\
= EMIEQ(bN)%e > + ZE ANy = 1]~ (58)
n=1 ’

We concentrate on E[Q2(A)?|N; = n] and observe that as in the proof of
lemma 4.1, the relation Q(\) = SSNFHO(E;) — 6(t;_1)] implies

7=1
Ni1+1
Q) < max (N1 +1)971,1) > [6(t5) — (1)) (59)
j=1

Now note that on any interval [t;,t;_1] the first stage multiplier is constant,
so E[(0(¢;) — 0(tj—1))9] < EMIEQ(bA)?. By conditioning on Ny in (59) we
get:

n+1
E[Q(NN; =n] < max ((n+1)7",1) Y E[(6(t;) — 0(t;—1))7]
7j=1
< max ((n+1)%,n + 1)EMIEQ(bA)?

= (n+ 1)mx@DEMg(bN)

Now if we apply this inequality to (58), rearrange the terms and use that
g(\) > EMIEQ(bA)9e~*, then we obtain

e < E]\/%;()b e (1 + Z (n+1) max(g,1 )) < o0

Now taking the limit A — 0 establishes N%;\()b)\) — 1, and hence EQ(X)? ~

EMIEQ(bA)? as A — 0. o

Now we are ready to prove that the trading time 0(t) satisfies the asymp-
totic moment scaling (57):

Proposition 4.5 The q’th moment of the random function (t) satisfies for
0 <q < derit
EO(t)? ~ cth"(q)+1 ast—0

where T9(q) = —logy, EMY + q — 1 and ¢, is a positive constant.!”

ONote that since the MMAR uses EM = b~! and MSM uses EM = 1, MSM has a
slightly different scaling function 7(q).
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Proof. We will first prove that

EMY
ba

EQ(t)? ~ EQ(bt)? ast—0
Lemma 4.2 implies that Ef(t)? = t9EQ(tA\)? and EO(bt)? = (bt)IEQ(tN)9,
which gives

EO(t)4 1 EQ(tA)?

EO(bt)e — b1 EQ(btN)4
Since by lemma 4.3 EQ(t\)9/EQ(btA)? converges to EMY we obtain

E6(t)?  EM?

E0(bt)1 — b ast — 0

Now note that since b(@+1 = (EM?/67)~1, the function c,t™@+! satisfies

cgt™ (9)+1 EMY

cq(bt)m(q)“ Tpe

In Calvet and Fisher (2008) it is proved that the above implies

EO(t)4
i —1 ast—0 <o
cthG(Q)"rl

Now we have established the asymptotic moment scaling of 6(t), we
can by mimicking the proof of proposition 3.1, easily establish that the
compound process X (t) = B(0(t)) also satisfies asymptotic moment scaling:

EX (1)1 ~ cgt™X @D+ ast — 0

with 7x(q) = 79(¢/2). This confirms that the log-price X (¢) is indeed a con-
tinuous multifractal process. Next to this asymptotic scaling, Calvet and
Fisher (2008) used Monte Carlo simulations to show that this moment scal-
ing also holds remarkably well for finite time increments, which is consistent
with the moment scaling exhibited by many financial time series.

The scale invariant construction of MSM and the fact that it satisfies
asymptotic moment scaling suggest that MSM has similar local properties
as the MMAR. It is stated in Calvet and Fisher (2008) (without proof)
that ”the local variations of MSM are almost everywhere smoother than the
(dt)l/ 2 variations of an Itd process”. This would suggest that the sample
paths of MSM also contain a multiplicity of local Holder exponents and
satisfy the multifractal formalism. However, to my knowledge there are no
results available in the literature about the local behaviour of MSM. So it
is still open for more research to confirm that the local variations of MSM

have the same characteristic multifractal properties as described in chapter
2.
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4.1.6 Discussion of continuous-time MSM

By compounding a Brownian motion with a trading time driven by Poisson
arrivals, MSM improves on the MMAR in several ways. First of all, MSM is
a causal process with stationary increments on an unbounded time domain
in which volatility components change at random instants generated by a
Poisson process, and not at predetermined points of time as in the MMAR.
In addition, MSM is a process with a latent Markov state vector for which
the likelihood function exists in closed form (for discrete multipliers). This
is a major improvement over the MMAR, which due to its combinatorial
constructing was not well suited to standard techniques of econometrics.

Next to these improvements, MSM has also much of the MMAR/'s ap-
pealing statistical properties. It displays (asymptotic) moment scaling and
has thick tails, as was shown by simulations in Calvet and Fisher (2008).
These simulations also showed that MSM captures long memory in volatility.
It turned out that the autocovariances of squared returns of the simulated
data decline hyperbolically. In addition to this volatility persistence on large
scales, MSM also displays volatility persistence at smaller scales. When a
multiplier changes, the volatility changes discontinuously and has strong
persistence. Since these multipliers change at infinitely many stages, this
construction results in a process with bursts of volatility at all scales.

The fact that MSM assumes that volatility is the product of multi-
frequency volatility components with different durations and discontinuous
changes, has also an attractive economic interpretation. For instance news
innovations in an economy have often a direct impact on the volatility in
that economy, and as such, jumps in volatility are needed to account for
those shocks. Furthermore, economic intuition suggests that different types
of volatility shocks in an economy have different degrees of persistence. This
idea is in agreement with the way in which MSM generates volatility clus-
tering. The lowest frequencies at which multipliers change might correspond
to business cycles and technological shocks, while higher frequencies could
correspond to for instance news shocks which often last for a shorter period
of time. So MSM captures the impact of different economic shocks with
different degrees of persistence. By contrast, most standard models treat all
volatility innovations as the same.

Next to the statistical properties, it can also be shown (in the same
way as for the MMAR) that the MSM process X (¢) is a martingale. It
follows that the price process P(t) is a semi-martingale. This has important
consequences for practical work, since the semi-martingale property makes
it possible to apply Itd calculus to obtain results for option pricing and
portfolio selection.

We can conclude that MSM is major advance over the MMAR since first
of all, it gets rid of the nonstationarity, noncausality and the restriction to
bounded intervals, secondly it has the same appealing statistical properties
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and also satisfies the martingale property, and finally it is the first multi-
fractal model that can be estimated using standard econometric techniques.
However, we might still expect to be able to improve on the MSM since it
still involves an arbitrary fixed scale ratio b. This scale parameter b does
not seem to have a clear empirical meaning, but is still an extra parameter
that has to be estimated. To solve this, some alternative multifractal mod-
els have been developed, that provide more mathematical elegance by not
requiring a scale ratio b. We will now give a brief overview of those models.

Barral and Mandelbrot (2002) introduced a multifractal model which
incorporated a continuum of time scales and in which trading time can be
represented as an integral over a cone in the space of scales and time. These
results were further generalized and extended in a series of works: Bacry, De-
lour and Muzy (2000); Bacry, Delour and Muzy (2001); Bacry, Muzy (2002);
Bacry, Kozehemyak and Muzy (2008); Bacry, Duvernet, Muzy (2010). In
these works the Multifractal Random Walk (MRW) was introduced, which
is a multifractal model that does not require a scale parameter b. But the
MRW does have the same characteristic properties as the multifractal mod-
els discussed in this thesis, since it also displays long memory in squared
returns, thick tails, volatility clustering and multifractal moment scaling.
However, MRW is less tractable than MSM in the sense that it is not based
on Markov-switching and as such does not have the advantages of those
models, including for instance a closed-form likelihood function. Whether
MRW provides meaningful empirical differences compared to MSM remains
an open question.

4.2 Discrete-time MSM

This section will introduce a discretized version of the continuous-time MSM.
The main reason for doing this is that a discrete-time model is more con-
venient to use for forecasting. The discretized model will share much of
the same properties as its continuous counterpart. By similarly defining
volatility as the product of random Markov components, the discrete model
also captures volatility clustering, jumps in volatility, thick tails and long
memory in squared returns. The components will be drawn from the same
distribution, but the transition probabilities of each component are differ-
ent. These transition probabilities will be related to each other by some
restrictions, which are inspired by the continuous-time model.

We will present the discrete-time version of MSM, by first giving a
definition of this discretized model in section 4.2.1. Then in section 4.2.2
we will show that this definition is consistent with our earlier model, in the
sense that the discrete-time MSM weakly converges to the continuous-time
MSM as the grid step size goes to zero. In the last section we will discuss
its properties and performance. Our discussion of the discrete-time model
is mainly based on Calvet and Fisher (2001), Calvet and Fisher (2008).
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4.2.1 Construction of discrete MSM

Consider the log-returns r, = In P, — In P,_1, where P, is a financial time
series on the regular grid t = 0,1,2,.... These log returns are modelled by

Tt = O'(Mt)et

where the sequence of random variables {¢;} are i.i.d. innovations with
zero mean and variance equal to one. The most common used distribution
for ¢ is the normal distribution, but we may also use a more heavy tailed
distribution like the student-t distribution (see for instance Lux, Morales-
Arias (2009)).

The innovations €; play the same role as the Brownian motion does in
the continuous model. o(M;) determines the volatility of the process 7y
and the innovations ¢, determine (more or less) the sign of the returns. It
follows that the main aspect of the product o(M,;)e; is the volatility o (M),
where My = (M4, ... 7ME,t) is again the Markov state vector of the process
with k& componenents. Just as in the construction of the continuous-time
model, the stochastic volatility o (M) is again the product of the nonnegative
components My, ;:

i
Mt:aH

Note that the discrete-time model makes use of a finite number of volatility
components, denoted by k. The multipliers M, + have the same distribution
M with EM = 1, but evolve at different frequencies. For each k € {1,...,k},
the time that a certain multiplier M} remains unchanged is geometrically
distributed with parameter 7. This means that, assuming that the Markov
state vector has been constructed up to date ¢ — 1, the k’th multiplier re-
mains unchanged at time ¢ with probability 7z. And the probability that
the multiplier Mj,;_; at time ¢ will be replaced by a new draw from the
distribution M, is equal to 1 — 7. We can summarize this as follows:

Mj, ¢ drawn from distribution M with probability vi
My = Myt with probability 1 —

The switching events and new draws from M are assumed to be independent
across k and ¢, such that the variables M}, ; and M}, are independent if &
differs from &’.

In the continuous-time MSM, the fact that interarrival times of new mul-
tipliers are exponentially distributed, implies that the stochastic volatility
process is Markov. Since the discrete model uses an geometric distribution,
which is also memoryless, we obtain that the discrete stochastic volatility
process is also Markov. Note that this also means that it is indeed justified
to call M; a Markov state vector.
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Similarly to the continuous-time construction, where the Poisson arrivals
use geometrically increasing intensities, we will introduce discretized Poisson
arrivals in the following section. These discrete-time arrivals will also have
a geometric distribution and inspired to define the transition probabilities
Y, ..., as follows:

m=1- (=N (60)
where A € (0,1) and b > 1. Note that 73 = A and that the transition proba-
bilities are increasing, but remain lower than one. Since the probabilities are
increasing, the interarrival times between arrivals of new multipliers tend to
shorten. So at higher stages the multipliers last for a shorter amount of time.
Another feature of these specifications is that they are consistent with the
geometric distribution of the discretized Poisson arrivals, as we will show in
the following section.

The resulting process is called the discrete-time Markov-Switching Mul-
tifractal, which is denoted by MSM(k). The term ’Multifractal’ refers to
the weak convergence to the continuous-time MSM. The term ’Markov-
Switching’ refers to a concept introduced in Hamilton (1989). He introduced
the so-called Markov-switching model, which was characterized by a switch-
ing mechanism that is controlled by an unobservable state variable that
follows a Markov chain. In this model the conditional mean and variance
depended on this unobservable state, and changes in their conditional distri-
butions were triggered by the underlying state variable. The fact that MSM
also contains an unobservable Markov chain that determines the conditional
variance of the MSM(k), justifies its name.

MSM imposes only minimal restrictions on the distribution of the volatil-
ity components. Since we only require M > 0 and EM = 1 we have a lot
of freedom for choosing the distribution of the multipliers. Just as for the
MMAR, a popular choice is the lognormal distribution. But also the simple
binomial model, in which M takes only two values with equal probability, is
very popular and gives already good results. As stated earlier, the MSM(k)
has a relatively easy closed form likelihood function, but this is only when the
distribution of M is discrete. For more general distributions the likelihood
function does not exist in closed form or is computationally infeasible. The
main advantage of the binomial MSM over the lognormal MSM is therefore
that maximum likelihood estimation can be used to obtain good parameter
estimates.

4.2.2 Convergence of discrete-time MSM

In this section we explain where the specifications (60) come from and prove
that a rescaled version of MSM(k) weakly converges to the continuous-time
MSM. We will first discretize the continuous-time MSM on a uniform grid.
Then we will show that this discretized model is indeed a rescaled version

of MSM(k) and converges to continuous-time MSM.
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In order to discretize the continuous-time MSM, we need to discretize
the Poisson arrivals. For each bounded interval [0,7] we will discretize the
arrival times in such a way, that the grid step size goes to zero as the number
of volatility components k goes to infinity. First we will introduce some new
notation.

Consider the sequence {f;}2° | used in the construction of the continu-
ous trading time 6(t). For this construction we used the sequences {75, 1 } 32 4
of exponential distributed interarrival times with intensity b"!\. For stage
n we define the arrival times {tn]}ooo by tho = 0 and t, ; = ch L T ke
Furthermore we denote by M, (j) the value of the multiplier over the inter-
val [tn jitn j+1]. So My(j) can be interpreted as the j + 1'th multiplier in
the n’th stage.

For each k we will discretize the Poisson arrival times {t,, };‘10 on the
uniform grid 0,7/c¥,2T/c,... T with ¢ > 2 a discrete integer. Let |z]
be the floor function (so |z] is for all x € R the unique integer such that
|z] <z < |z]+1), then we define the discretized arrival times {sn ;}72, by
letting s, 0 = 0, and

j {CETn,k /TJ +1
Snj = Z CE/T

k=1

The random variable cE(Sn,jﬂ — 8n,;)/T has a geometric distribution with
parameter v, = 1 — exp(—b""'\T/c¥), as we will show now:

P(CE(Sn,j+1 —spj)/T = m) = IP’( Lcan’j+1/TJ +1= m>
B (m—-1)T mT
= P(ck <Thjn < o

_mp o _(m—nprTIar
= — € ck (1 — € ck )

_ <6 b AT) -1 _ (e*bn;i}}AT)m
= (1—=%)"" = (1 —7)"
= 1-=)"" "

Note that this result can be rewritten as

mT) (1 - 'Yn> 1’Yn

P<3n,j+1 ~ Snj =
which means that we can interpret the above result as s, j 11 — s, ; having
a geometric distribution on the grid 0,T/c*,2T/c",

The idea is now to use the discretized Poisson arrivals {sy ; }]o-‘;o to con-
struct a discretized trading time 607 (¢) on the interval [0, 7] as follows: for
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each stage n < k the multiplier on the interval [8n,j; Sn,j+1] is set equal to
the value M, (j) of the multiplier on the interval [t, j;t, j+1] in the con-
tinuous construction. So the continuous-time multiplier process My, of
the discretized trading time, changes at the time instants {sn;}72, and if
t € [sn,j; Sn,j+1], then My, = M, (j). Now define

.k
0% (t) = /O o [ M;; ods
n=1

The result is a continuous and piecewise linear process.
Note that although 67 () is defined on [0, 7', changes of multipliers only

occur on the grid 0,7/c*,2T/ck,... T. As the number of volatility compo-
nents k goes to infinity, the grid will become more and more dense on the
interval [0, 7] and the transition probabilities v, = 1—exp(—b""'\T'/c*) will
go to zero, such that the distribution of the interarrival times will converge
to the exponential distribution. Before we show that 67 (¢) indeed weakly
converges to the process 6(t), we will show that 07(¢) is intimately related
to the discrete-time MSM(k). )

We define the function 67*(¢) on the regular grid s = 0,1,2... ¥, by
077(0) = 0 and

t
07" (t) = 0;—:“(Mn)2
n=1

where the volatility o7*(M )2 is specified by M, & and the transition proba-
bilities v, = 1 — exp(—b""1A\T/c¥) (instead of (60)). We extend the domain
of 07*(t) to the continuous interval [0, c*] by linear interpolation.

Note that this function 67*(t) can be interpreted as the linear interpo-

lated version of the original MSM (k) process on the interval [0, c*], except
for the fact that in the construction of MSM(k) the transition probabilities
(60) are used, but for 67*(t) we used the alternative transition probabilities
Y = 1 — exp(—=b""TAAt) (with At = T/c¥). However, as k goes to infinity,
and At goes to zero we have

1—exp(—=b""AAL) &~ 1 — (1 — AAH)"D

(since e™" ~ 1 — z for small x). This means that 67*(¢) has asymptotically
the same transition probabilities as the discrete-time MSM(k) with a grid
of step size At and transition probabilities 1 — (1 — AA¢)®" ™),

Now we know that the function 92*(75) is asymptotically equivalent to
the linear interpolated version of the MSM(k) process, observe that since
*(spj+1 — snj)/T has a geometric distribution with the same parameters

Yn as 077 (t), the discretized trading time 67 (¢) satisfies
02 (t) = 05" (tc"/T)
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We conclude that 67 (¢) is a rescaled version of the trading time 67*(¢), with

asymptotically the same transition probabilities as MSM(k) as the grid step
size goes to zero. So 07(t) and MSM(k) are related to each other through
the function 67*(t).

We will now show that 67 (t) converges to the continuous-time MSM as
the number of volatility components goes to infinity, or equivalently the grid
step size goes to zero. To guarantee this convergence we have to choose the
integer ¢ such that either b < ¢ or BEM? < ¢? is satisfied. The first condi-
tion requires that the number of grid points grows faster than the volatility
frequencies, which makes sure that in the limit the possibility s, ; = s, 41
won’t occur. The second condition is more difficult to understand, but note
that for b = ¢ the condition reduces to the basic assumption EM? < b.

Proposition 4.6 Let ¢ satisfy either b < ¢ or BEM? < c?, then the sequence
{9};}%’:1 of discretized trading times converges weakly to the continuous-time
process 0.

Proof We will not give a full proof, but give the main ideas. The proof is
based on the following result, proved in Billingsley (1999).

(60)
If for arbitrary p € N
{03(0),- -, 03(1)} 5 {0(0), .. 0(8,)} (62)
holds for all tq,...,t,, and if for each € > 0
%i_l}% lig:solip P(w(0;,6) >¢€) =0 (63)

with w(05,0) = supj_gj<5 |05 (t) — 07(s)], then 07 weakly converges to 0.

So provided that the sequence is tight, the convergence of the finite
dimensional distributions implies that 07 () weakly converges to 6(t). We
will first establish (62).

We assume without loss of generality that 7" = 1 and ¢ = 1. Let
H} =max{j : sp; < 1} be the highest integer j such that s,, ; < 1 in the n’th

stage of the discrete-time construction. For any ji,...,jz let A*(j1,...,Jz)
be the length of the largest subinterval of [0, 1] over which the multipliers
are given by My j,, ... ’Ml_w;;‘ Then we have the expression

Hi

Hx*
k,

(1) =Y ... ) My, ... My A, .-, )
Jj1=0 Jx=0

For the continuous-time construction we define H,, and A*(ji,...,Jjz) in a
similar way, and get

Hy Hj,
(1) =Y .. ) My, ... My A(jr, .., jg)
Jj1=0 Jx=0
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Let V,, = max(H}, H,). The intervals attached to a given set of multipliers
in the paired constructions differ in length by

Oj1rge = A%(1, -5 J5) — AU, -5 dp)

Then the difference between the discretized and the original trading time
over the interval [0, 1] is given by

|41

Vi
Or(1) = 0p(1) =D ... > Mg, ... My 65
n=0  j5=0

We will now show that either E|607 (1) — 0;(1)] or E[67(1) — 0z(1)|? con-
verge to zero as k goes to infinity. Since both imply 107(1) — 05(1)] LN 0, we
obtain @%(1) % 6(1) as follows:

4

|63(1) = 6(1)] 165(1) = 0(1) + 6(1) — 0(1)]

< 162(1) — (1) + 165(1) — B(1)] S 0

This argument can be applied equally well to all time intervals [0, t], so we

conclude that 67 (¢) 4 0(t) for all ¢.
It is left to show that the first and second moment of [67(1) — 6;(1)]
converge. We first discuss the first moment. Observe that

Vi Vfc
B0~ 60 < B2 oo D M Mg i)

Jj1=0 Jg=

Vi Vi
_ E< Sy yajl,...,jk\)

J1=0  jz=0

As in the proof of the convergence of the discretized Poisson multifractal
in Calvet and Fisher (2001), it can be shown that the average number of
nonzero mismatches d;, ;. is of order bk, with size of order 1 / c®. From this
can be inferred that E|67 (1) —60;(1)| is bounded from above by a multiple of

(b/c)f. Hence under the condition b < ¢ we conclude that E[67 (1) —0;(1)| —
0 as k — oo.
In a similar way it can be verified that the second moment E[6} (1) —

0z(1)|? is bounded above by a multiple of (EM?2b/c?)* and therefore con-
verges to zero under the condition bEM? < 2.

Now it is left to show that the sequence satisfies (63). Take § = ¢!, As
in the proof of proposition 4.3, theorem 7.4 in Billingsley (1999) implies

€

P(w(t}.6) > &) < 5'P(6;(9) > £
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Since we already established 607 (d) 4 0(0), we obtain

lim sup P(w(0%, 6) <€) < 6 'P(0(5) > ¢/3)
k—oo
Markov’s inequality implies
3\ 2

lim sup P(w(07,6) > ¢) < (f) 5 IEA(5)?
k €

By applying proposition 4.5, we obtain
6TEA(6)? ~ 267 P as § — 0

Now note that 7y(2) > 0, since 79(2) = — log, EM?+1 > 0, where — log, EM?+
1 > 0 follows from our basic assumption EM? < b. The fact that 75(2) > 0
implies that 67() goes to zero and hence condition (63) is satisfied:

%i_l;((l) li;r;s(:pl?(w(@i, 0) >e€) < %1_r)n0

(§)26_1E9(6)2 —0

€

We conclude that 67 weakly converges to 6 as k — . o

The fact that a rescaled version of the discrete-time MSM(k) weakly
converges to its continuous-time counterpart, has important implications for
volatility forecasting. The convergence implies that the discrete-time MSM
can be used for volatility forecasting, and this forecast will be consistent
for the continuous-time MSM under an appropriate sequence of increasingly
refined discretizations. This result is important, since it means that re-
searchers can move back and forth between the discrete-time model, which
is more convenient for applied work, and the continuous-time model, where
theory is sometimes easier.

4.2.3 Discussion of discrete-time MSM

Since the discrete-time MSM is intimately related to its continuous-time
counterpart, one would expect that it also captures the same important
stylized facts as continuous-time MSM. This is indeed confirmed by simula-
tions and by the fact that MSM (k) performs well in modelling financial data,
as was for the first time shown in Calvet and Fisher (2002b). They showed
that the binomial MSM (k) is consistent with financial data, and compared
it also to the commonly used GARCH and FIGARCH models. They found
that MSM(k) performs equally well as those models at short horizons, but
outperforms them at medium and long horizons (up to 50 days). At these
horizons MSM provides significant gains in forecasting accuracy over the
GARCH and FIGARCH models.

The above results were later confirmed in Calvet and Fisher (2004) and

expanded (mainly) by Lux in a series of papers. First in Lux (2006) the
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Generalized Method of Moments (GMM) was presented, which is an alter-
native for maximum likelihood estimation. Although GMM is slightly less
efficient than MLE, it can be applied in all those cases where the maximum
likelihood function does not exist in closed form or is computationally in-
feasible. This new method allowed Di Matteo, Liu and Lux (2008) to model
financial data with the Lognormal MSM. Although this new specification for
the multipliers did not provide much gains compared to the binomial model,
the alternative estimation method also allowed for modelling data with an
higher number of volatility components. In Calvet and Fisher (2002), Cal-
vet and Fisher (2004) the number of volatility components was restricted to
k = 10, because for higher k the maximum likelihood method became com-
putionally infeasible. Lux, Di Matteo and Liu (2008) however showed that
using the GMM method the forecasting accuracy of MSM(k) is in general
higher when the number of volatility components exceeds k = 10.

Next to the important accomplishment of MSM of generating better
volatility forecasts than the common used models from the GARCH-family,
it is noteworthy that it does this in a remarkable effective way. MSM(k)
uses only one single mechanism to capture volatility clustering, long mem-
ory features and thick tails. Previously it was thought that it was best
to model those aspects separately. MSM(k) shows however that a single
regime-switching approach can play all three of these roles in a very effec-
tive way. First, the multifrequency construction of MSM guarantees that
there is volatility clustering at all levels. Second, the changes in volatility
components (and especially the low-frequency multipliers) are very persis-
tent. And finally, the high-frequency volatility components generate high-
frequency switches and substantial outliers (and thus thick tails).

The fact that MSM(k) has only a few parameters that need to be es-
timated, contributes also to the effectiveness and parsimony of the model.
Apart from the choice of k, which can be viewed as a model selection prob-
lem, MSM(k) only needs four parameters. First of all, the set of transition
probabilities is completely specified by (60) and (A, b). Next to this we need
the constant &, which is the unconditional standard deviation of the returns.
It is left to choose the distribution M. As discussed before, there are two
popular choices in the literature, the binomial and lognormal. Since we as-
sume EM = 1, both distributions require only one parameter to characterize
them. So we conclude that MSM(k) is constructed in a very parsimonious
way, as it only needs four parameters to specify the whole model.

MSM(k) can be extended in two ways. First, it is showed in Calvet
and Fisher (2008) that the MSM(k) construction can be generalized to sev-
eral assets. For practical work the main advance of a multivariate MSM
will be that it can be used in portfolio selection (for instance computing
values-at-risk for portfolios). In this multivariate model the different assets
are correlated in two ways. First, the arrivals of new multipliers are posi-

tively correlated. When a market is very volatile one would expect that al
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the assets in this market display more volatility. The positive correlation of
arrivals of new changes in volatility is thus in agreement with economic in-
tuition. Second, next to the correlation in the values of the squared returns,
the ’direction’ of the returns can also be correlated by taking a multivariate
normal distribution for the Gaussian innovations. This would account for
the possibility that prices of different assets might tend to move in the same
or opposite direction.

Eisler and Kertész (2006) presented another extension of the Markov-
Switching Model. They introduced a method to also capture the asym-
metry in returns. As discussed in chapter one, it is observed that in fi-
nancial markets downward movements are in general larger than upward
movements (gain/loss asymmetry), and falling asset prices generate more
volatility than upward movements in asset price (leverage effect). Since
in the product r, = o(M,;)e; the 'amplitude factor’ o(M;) is nonnegative,
asymmetry can only originate from the ’sign process’ ¢;. Eisler and Kertész
(2006) introduced some alternative stochastic processes for €; to account for
the gain/loss asymmetry and leverage autocorrelation, but could not con-
firm whether these models provide substantial gains in forecasting accuracy
and is therefore still open for more research.

We can conclude this thesis by stating that MSM is a very promising
model for financial modelling. First of all it captures many of the main
stylized facts (and can be extended to also account for the leverage effect)
in a very effective and parsimonious way. Next to this, MSM satisfies the
martingale property and has a multivariate version, which provides possibil-
ities to develop portfolio selection and option pricing theory. But the most
promising aspect of MSM is that it performs better than existing models in
modelling financial data, and can relatively easily be used in practice since
there are several econometric tools available for estimating and forecasting.

83



5 Appendix

Lemma 5.1 We have the following two logarithmic inequalities:

1) llny| <y '-1 for0<y<1
2) Iny <y-—1 fory >0

Proof. To prove the first inequality, we will need the following inequality:
In(y) >1—y* fory >0

Define f(y) = y—e'™¥ ', then limyo f(y) = 0and f'(y) = 14y 2e=v"" > 0.
This implies f(y) > 0, and hence y > el=v"" for all y > 0. By taking
logarithms on both sides we obtain the above logarithmic inequality. Now
note that for y € (0,1) the logarithm Iny is negative, which gives:

llny|=—-lny <y '—1 forye(0,1)

To show the second inequality, we define the function g(y) = e¢¥~! — y for
y > 0. We compute ¢'(y) = e?~! — 1 and ¢"(y) = e¥~1 > 0. Since ¢”"(y) > 0
we obtain that the function g(y) is convex, and hence its global minimum
is given by the solution of ¢’(y) = 0. Now note that ¢’(1) = 0 and g(1) =0,
so the global minimum of g(y) is given by 0, hence e¥=! > gy for y > 0 . If
we now take logarithms on both sides we obtain y — 1 > Iny. o

h
2

Lemma 5.2 (z+y)" > 2/ +y" —2(1 - h)(zy)2 VYo >0,y >0,0<h<1.

Proof. First note that the above equation can be written as

L Y " z" ?/h
<\/7+\/>> 2\/7 —l—\/» —2(1—-h)
Y L Y x
Now define t = In \/% , then et = \/% . Now with the continuous function

f(t)=eh e — (el 4 e7h)"

aboves inequality is equivalent to f(t) < 2(1 — h). So we need to show that
sup f(t) <2(1 — h) for all 0 < h < 1. Note that because f is symmetric we
only have to consider nonnegative ¢. First we will show that f(t) goes to 0
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as t goes to infinity:

: Vi oth o —th _ (t | —t\h
tlgloaof(t) = tligloe +e (e"+e™)
— i e e (SR
t—o00 et
= lim (1 — (14 e 2)h)

t—o0
00
= tlim eth<1 - Z Ch’kefmk)
—00
k=0

oo
= lim & Z Ch,ke_%k
t—00
k=1

oo
= ) Chy lim eGP =g
t—o0
k=1
where we used the binomial series (1 + )" = Y72 ) Cp, x2® for |z| < 1 with
Chir = W for k> 1 and Cj o = 0.

)

Now consider the point ¢ = 0. Note that f(0) = 2 — 2", and that
f(0) < 2(1—h) is equivalent to 2" —2h > 0. Define the function v : [0,1] — R
by u(h) = 2" — 2h. Then it is easy to compute that u'(h) = 2"In2 — 2 < 0,
which together with w(0) = 1 and u(1) = 0 implies that u(h) > 0.

As a result we only have to look at the local maxima, i.e. at points
t € (0,00) such that f'(t) = 0:

f'(t) = he™ —he™™ — h(el + e )l —e7) =0
which is equivalent to
(el +e (M —e ™) — (el +e Dl —e ) =0
From this equation follows that for ¢ > 0 such that f/(¢) = 0 we have

(IRt _ (1=h)t | o—(1=R)t _ o—(1+h)t
t

(e +e ) =

e t

—_— e_
Now if we implement this expression in f(t) we get:

(eth + eith)(et _ eit) e(I+h)t _ o(1-h)t + e—(1=h)t _ o—(1+h)t

et — e—t - et — et
B (IRt _ o=(1=h)t 4 ((1=h)t _ o~(1+h)t _ (4Rt 4 (=)t _ o—(1=h)t | o—(1+h)t
- et — et
26(1—h)t e~ (1=h)t

el — et
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So for t where f(t) has a local maximum we have the expression f(t) =

9 1=yt _—(1—h)t

- . Now define e = 1 — h and consider the function

gle) =e? —e ™ —¢(el —e™)

If g(e) < 0 then it follows that f(t) < 2(1 — h) for ¢ where f(t) has a local
maximum, and hence supf(t) < 2(1—h). So to complete this proof we need
to show that g(e) <0 for all € € (0,1):

If we write the exponential function as its power series we get

gle)=e —e @ —¢(el —e7h) = i <(6t)n _ ﬂ _oa” 4 ﬂ)

n! n! n! n!
n=0

For even n, the terms in the sum are equal to 0, and for uneven n, the terms
are equal to (2(et)” — 2et™)/n! = (2t"e(e* ! —1))/n! < 0. It follows that
g(€) <0 and the proof is complete. o
Lemma 5.3 The intervals I,g:) = [knb™", (kn, + 1)b7"] with ky(z) = [20"]
satisfy I,EZH) C I,g:) for all n.

Proof. We will first show that k,, 16~ D > kb~
wan-‘rlJ b—(n+1) _ ben + xb”(b o 1)J b—(n-i—l) >
|[2b"] + [2b"] (b—1)] b~ = [zb" | b

The proof of (kn41 + 1)b~ 1) < (k, 4+ 1)b~™ is more complicated. We will
first prove the following property of floor functions:

m—1

b
= E {HJ for all positive integers k, m (64)
m
=0

To prove this we fix k,m € N. There are z1,z2 € N such that k = zym + 2o
with 21 > 0,0 < 20 <m — 1. We get:

Z VHJ — Vlm+22+zJ

1=0 1=0

m—zo—1 5 i m—1 5 i m—zo—1
2 2
= 1)
' {zq-i— J-i— E {21—1- J E z1 + E (21 +

i=m—z2 i=m—z2

=(m—-—m)a+(m—(m—2))(a+1)=am+2z==F

If we use that for y € R we have L%J = L‘%”J which was proved in

Graham, Knuth, and Patashnik (1994), then equality (64) gives:

m—1

o) = 3 [ | S

1=0 i=0




With y = xb™ and m = b this gives:

b—1 . b—1

[b"+lj+1—beb“J+1_1+Z {xbn lJ > lab™ 1] =b( [xb"]+1)

i=0

If we multiply by b~ ("*1) we get the required result:

(b + )b~ < ([2b"] + 1)
and the proof is complete. o

Lemma 5.4 Let B be a Borel set such that lim, .o P(Y,, € B) > 0, then
X, XY, implies P(X,, € B) ~P(Y,, € B)

Proof. X, 2 Y, means Xn/Yn % 1 and thus P(X,/Y, € B) — P(1 € B).
This gives:

P(Xn = Yn) = P(Xn/yn € {1}) — P(l € {1}) =1
So we established that P(X,, =Y,,) — 1 and it follows that
P(X, € B)
P(Y, € B)
P(X, € B|X, = Y,)P(X,, = Y,) + P(X,, € B| X, # Y)P(X,, #Ys)
P(Y, € B) N

P(X, € B|X, #Y,)
P(Y,, € B)

And thus P(X,, € B) ~P(Y,, € B). o

P(X, =Y,)+ (1-P(X,=Y,)) =1

Lemma 5.5 Let g > 1, then for all k > 1 and x1,...,x, > 0 the equality

<Z ) Za: (65)

=1

implies that at most one x; is nonzero.

Proof. First note that for k£ = 1 there is nothing to prove, so take k > 2. We
will show that the equality can not hold if there is more than one nonzero
x;. Define the function f : R’j_ — Ry by

Fan. ) :<ixi>q—gxf

87



Note that when there is at most one nonzero z;, then f(z1,...,z) = 0.
Now define the set G = {x = (z1,...,2;) € RE| 3;; 12 > 0,25 > 0,1 # j}.
So this is the set of x € R’i with at least two nonzero z;. Note that for all
x € G we have that for all ¢ = 1,...,k, the partial derivative with respect
to x; is strictly positive:

k q—1
af(x):q<le> _qxq_1>0 for x € G

Ox; : k
=1
Together with f(xz) =0 for x ¢ G, this gives f(z) >0 forallz € G. ¢

Lemma 5.6 The following equality holds for anyt > 0, h > 0 and ¢ € [0, 1]:

t ot t1+¢>
/ / e_hlu_v|dudv S 2T¢
0 JO h

Proof. We can compute the integral:

t ot tf ro t
//ehluvldud’u _ /(/ eh(vu)du+/ eh(uv)du>dv
0 Jo 0 0 v
t —hv hv

h
I Gt )
- h h?
2
= ﬁ(e_ht -1 + ]’Lt)

Now we will show that e — 1 + 2 < z17? for all > 0. To show this
inequality for = € [0, 1] consider the function f : [0,1] — R given by f(z) =
22 — 2 + 1 — e ®. Its first and second derivative are respectively given
by f'(x) = 2z — 1+ e ® and f’(x) = 2 — ¢ *. Furthermore note that
f(0) = f/(0) = 0 and that f”(z) > 0 for all = € [0,1]. The fact that f'(x)
has a positive derivative on [0,1] and f/(0) = 0, guarantees that f'(z) is
nonnegative on [0,1]. Since f(x) also has f(0) = 0 it follows that f(x) is
nonnegative on [0, 1].

The inequality f(z) > 0 implies e™® — 1 + 2 < 2% < 21%% for z € [0, 1].
For z > 1 we obtain (by noting that e™*—1 < 0) that e " — 142 <z < P
If we now combine the results for = € [0,1] and x € [1,00) we obtain that
e — 14z <2 for all x > 0. It follows that

t ot 2 i+
—h|u—v| & 1+¢ __
/0 /0 e dudv < 2 (ht)" ¢ = 2h1_¢

holds for all t > 0, h > 0 and ¢ € [0, 1]. o
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Lemma 5.7 For all ¢ > 0, n > 1 and (x1,...,2,) € RY the following

inequality holds
( Z l‘i)q < max(n? %, 1) Z ]

=1 =1

Proof. For q = 1 the result is obvious. For ¢ < 1, observe that max(n?~1,1) =
1 and the inequality follows immediately by the subadditivity of the func-
tion z9. For ¢ > 1 we have max(ni~!,1) = n?~! and the assertion is
somewhat more difficult to prove. We define a discrete random variable X
by P(X = ;) = 1/n for i = 1,...,n. So X has expectation EX =) " &
and since the function z?¢ is convex we can apply Jensen’s inequality:

N L
B R q q _ Zi
(Z n) — (EX)? <EX _Z .
=1 =1
It follows that
n q n
< $Z> < pat Z z! o
i=1 i=1
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6 Credits

This section gives an overview of which proofs are original work, and which
proofs are due to others.

Chapter 2

Proposition 2.1: original work.

Proposition 2.2: an extended, more complete version of the proof
in Kahane and Peyriere (1976).

Corollary 2.1: original work.

Proposition 2.3: original work.

Proposition 2.4: original work.

Proposition 2.5: original work.

Proposition 2.6: an extended, more complete version of the proof
in Kahane and Peyriere (1976).

Corollary 2.2: original work.

Proposition 2.7: an adapted and extended version of the proof in
Calvet and Fisher (2008).

Proposition 2.8: original work.

Proposition 2.9: based on a derivation in Mandelbrot et al (1997b).

Lemma 2.1: original work.

Theorem 2.1: an extended, more complete version of the proof
in Mandelbrot et al (19970).

Lemma 2.2: original work.

Proposition 2.10: original work, but inspired by Mandelbrot (2001).

Chapter 3

Proposition 3.1: Mandelbrot et al (1997a).

Proposition 3.2: original work.

Corollary 3.1: original work.

Proposition 3.3: Mandelbrot et al (1997a).

Proposition 3.4: Calvet and Fisher (2008)

Proposition 3.5: first part: Mandelbrot et al (1997a), second
part: original work.

Proposition 3.6: an adapted version of a proof in Mandelbrot et
al (1997a).

Chapter 4

Proposition 4.1: original work.

Proposition 4.2: original work.

Proposition 4.3: an extended, more complete version of the proof
in Calvet and Fisher (2008).

90



Proposition 4.4: original work, but inspired by Calvet and Fisher
(2008).

Corollary 4.1: original work

Lemma 4.1: Calvet and Fisher (2008).

Lemma 4.2: Calvet and Fisher (2008).

Lemma 4.3: an extended, more complete version of the proof in
Calvet and Fisher (2008).

Proposition 4.5: Calvet and Fisher (2008).

Proposition 4.6: Calvet and Fisher (2008).

Appendix

Lemma 5.1: original work.

Lemma 5.2: an extended, more complete version of the proof in
Kahane and Peyriere (1976).

Lemma 5.3: original work.

Lemma 5.4: original work.

Lemma 5.5: original work.

Lemma 5.6: an extended, more complete version of the proof in
Calvet and Fisher (2008).

Lemma 5.7: original work.
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