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Introduction

The field of AI has concerned itself with making computers play games for almost
as long as it exists (Schaeffer and Van den Herik, 2002). Since the initial artificial
checkers player, many games have seen their top-class human players fail to beat
an artificial opponent. Initially, many approaches to making a computer play
games focused on “brute forcing” a solution: by simply computing long enough,
one could find out all the possible ways a game could end, and pick the move
that is part of a path that ends in a win.

This approach, however, proved to be insufficient for many complicated
games. More sophisticated search and learning algorithms were then devel-
oped, leading to more and more breakthroughs. Some techniques achieved
great success for two-player perfect-information games. Games with imperfect-
information add an additional difficulty, though: one cannot see the opponent’s
cards, or the course of the game is dependent on the outcome of dice rolls, or
some other piece of information is hidden. This means that the size of the search
space increases vastly, needing to take into account many different scenario’s of
possible courses of the game. As a result, search techniques that are successful
in perfect-information games cannot simply be applied to imperfect-information
games. Nevertheless, even in the area of games with incomplete information a
lot of progress was made. For example, it is believed that the strongest Scrabble
player is now non-human (Sheppard, 2002).

One such game with imperfect information is Stratego. There has been
some research on crafting an artificial Stratego player of a reasonable skill level,
however, all research I could find hinges on a skilled player inserting his/her
knowledge of the game into a computer. In this thesis, I will try to find out the
following:

Is it feasible to apply a genetic algorithm to playing Stratego?

This research is conducted in tandem with that of Roseline de Boer, who
investigated how results generated by our artificial Stratego player can be used
by human Stratego players and vice versa: how knowledge from an expert human
Stratego player (Roseline was Stratego world champion from 2008 to 2010) can
be incorporated in the design of an artificial player.

The thesis is structured as follows. First, I will investigate the game of
Stratego, and what efforts have been undertaken before to approach the problem
of making a computer play Stratego at a reasonable level. I will then outline
the approach we took in designing our genetic algorithm Vicki and the design
decisions we took. Finally, I will evaluate the results and analyse the feasibility
of this approach to an artificial Stratego player, pinpoint weaknesses in our
approach and make suggestions on what kind of research would be logical next
steps.

1 Background

1.1 Stratego

Stratego is a game for two players played on a 10x10 board. Each player has
40 pieces with ranks varying from Marshal (0, strongest) to Spy (9, weakest).
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Table 1: Stratego board

R R R R R R R R R R

R R R R R R R R R R

R R R R R R R R R R

R R R R R R R R R R

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

B B B B B B B B B B

B B B B B B B B B B

B B B B B B B B B B

B B B B B B B B B B

At the start of the game, each player places those pieces on the four rows at
his/her own side, such that the opponent is unable to see the ranks of the pieces.
Table 1 displays a Stratego board and the positions that the pieces of the red
player (marked with R) and the blue player (marked with B) should be placed
on.

Who gets to make the first move (and play the red pieces) is decided by
chance. Once all pieces have been placed on the board, each turn a piece can be
moved either forward, backward, left or right, moving a single square at a time.
Exception to this last rule is the Scout (8), which can move as many squares
as possible provided all those squares are in the same direction and unblocked.
Pieces cannot be moved onto squares inhabited by other pieces of the same
player, or onto any of the eight squares of water in the middle two rows of the
board (marked with ∼ in table 1).

When a piece is moved to square that is already occupied by one of the op-
ponent’s pieces this is called an attack. When the player’s piece is stronger than
the opponent’s piece (i.e. has a lower rank), the opponent’s piece is removed
from the board and the player gets to finish the move as he/she would have if
there had been no piece. If the opponent’s piece is stronger than the player’s
piece, the latter is removed from the board and the opponent’s piece retains its
position. When both pieces are of equal strength, both pieces are removed from
the board.

The goal of the game is to find and attack the opponent’s Flag. Every
piece that attacks the Flag beats it, and once it is caught, the game is over
and the player that captured the Flag wins. Alternatively, one can win when
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the opponent is unable to move, The Flag itself cannot move — it has to be
protected by other pieces.

Another piece that cannot move is the Bomb. In exchange for this immov-
ability, every piece except the Miner (7) is beaten when it attacks a bomb.

The last exceptional piece is the Spy (9), which is beaten by every other
piece but wins when it initiates an attack on the opponent’s Marshal (0). This
makes it and the the bomb the only pieces that can beat the marshal.

It is undesirable to continuously move the same piece back and forth on the
same two squares; hence, the two squares-rule was instated: it is forbidden to
move back and forth on the same two squares for more than three consecutive
turns1.

1.2 Computer Stratego

In 2007, 2008, 2009 and 2010, the USA Stratego Federation organized Com-
puter Stratego World Championships that have spurred research into various
approaches to tackling the problem of making a computer play the game of
Stratego. Most of these approaches involve hardcoding specific strategies. For
example, Vincent de Boer’s bot Invincible (De Boer, 2007) revolves around a
number of “Plans” that assign values to possible moves. Some Plans are more
important than others, where more important plans have greater influence in
which move is finally decided upon.

This approach resulted in an automated player that was anecdotally better
than average players, however, constructing it required a skilled Stratego player
(De Boer was world champion in 2003, 2004 and 2007). Other attempts to
produce a skilled artificial Stratego player include a multi-agent approach where
each agent followed a set of “rules” that were activated when certain predefined
conditions were met (Treijtel and Rothkrantz, 2001), and a strategy revolving
around predefining a number of valuations of different pieces (Arts, 2010). A
more comprehensive overview of scientific approaches to computer Stratego is
also available in the latter article.

1.3 Machine learning

Since skilled Stratego players are a scarce resource, it would be more useful if
a computer could find out what strategies work well by himself. In fact, this
could even be instructive in turn to the skilled Stratego players: the computer
might find out strategies that work well but are not widely known. Likewise, it
might show strategies thought to work well to be relatively ineffective.

For example, in Sheppard (2002), it is explained that whereas experts in the
game of Scrabble believed playing extra tiles was beneficial because it allows a
player to draw new, potentially useful, tiles, the genetic algorithm did not in
fact evolve such behaviour, because it stimulates preserving bad tiles. Thus,
even though human Scrabble players are significantly outclassed by computers,
they can improve their play by drawing lessons from the computer’s behaviour.

1As per the Stratego Original rules by Jumbo: http://www.jumbo.eu
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1.4 Parameter-based approach to genetic algorithms

There are various ways to implement genetic algorithms, which for a large part
distinguish themselves in the way the problem is represented. For example, as
described in Koza (1990), complete programs can be generated using operators
to manipulate if-then clauses.

In our research, we opted to adopt the relatively simple approach of evolving
a set of parameters. Although this method is still highly dependant on knowl-
edge of the actual game and strategies that work well, as noted by De Jong
(1988) “significant behavioral changes can be achieved within this simple frame-
work”.

Solutions generated using this method sport a set of parameters, along which
all possible moves at a certain turn are evaluated. When a move satisfies the
criteria of such a parameter, the value of that parameter influences the final
valuation of that move by a certain amount. The amount of influence each
parameter has (the parameter values) is decided by our genetic algorithm.

Initially, we generate a population of potential solutions whose parameter
values are initialized to a random value. We then calculate the fitness of all
potential solutions with a fitness function (see section 2.1). Using this fitness
we can generate a new population. For each solution in the new population, we
select two “parents”: solutions from the previous population, where solutions
with higher fitness are more likely to be selected as parent (see section 2.2). Each
parameter for the new solution is copied randomly from one of the parents. This
way, parameters that play a part in making a solution work well (have a higher
fitness value) are more likely to be preserved in a new generation, leading to the
solutions converging to sets of parameters that work well.

2 The Algorithm

A high-level overview of the algorithm used to generate Vicki is as follows:

for generation = 1→ 20 do
if generation == 1 then

Initialize 200 solutions with random parameter values −0.5 < x < 0.5
else

Use the solutions generated at the end of a previous generation
end if

for each solution do
Play five matches against a randomly playing opponent
Calculate the average fitness over those matches . See section 2.1

end for

for newSolution = 1→ 200 do
Pick two solutions to use as parents . See section 2.2
for each parameter of the new solution do

Pick this parameter at random from one of the parents
end for

end for
end for
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Section 4.1 outlines the reasoning behind the specific values used.

2.1 Fitness function

Our approach hinges on being able to determine how well a solution would
perform. We chose to base this valuation on performance of a solution when
playing a number of matches against a player making random moves, due to its
being a stable opponent in that it will not suddenly get a lot better, and can
be used as early as the first generation. To calculate the performance we give
the solution a number of points depending on whether he wins the match, the
amount of pieces he has left at the end of the game, the amount of pieces the
opponent has left and the amount of moves needed to end the game.

The amount of points given defines the importance of each of these factors.
The most important factor is whether the solution actually wins. Consequently,
it provides the highest reward. Next, each owned piece left gives additional
points. This stimulates convincing wins (where the opponent’s flag is quickly
found without sacrificing many of one’s own pieces) and makes sure losses that
were the result of bad luck, such as the opponent coincidentally locating one’s
flag at the start of the game, aren’t punished as harshly as convincing losses.
Likewise, each piece the opponent has left will result in points being subtracted,
making convincing wins rank higher than accidental wins. However, we chose
to limit the effects of this factor because it might stimulate inefficient search
strategies that result in Vicki trying to beat each piece that is not the flag
before turning to winning the game. Finally, a couple of points are deducted for
each move made to punish solutions that repeatedly make the same move and
use stalling tactics — mostly to speed up the process of evolution and prevent
looping from happening.

Because an opponent making random moves could lose a game simply by
coincidentally picking the wrong moves, we pit each potential solution against
the randomly playing opponent five times, and take the average of the fitness
values of each match to determine the final fitness of the solution.

The fitness function we settled on was as follows:

f(s) = (

5∑
i=0

−0.25∗plys(s, i)+100∗ps(s, i)−20∗po(s, i)+1000∗w(s, i))/5 (1)

Here, plys(s, i) is the number of plys solution s played in match i (i.e. the
amount of moves made by the opponent and the player combined), ps(s, i) is
the amount of pieces solution s had left at the end of game i, po(s, i) are the
amount of pieces the opponent of game i had left at the end of the game, and
w(s, i) is 1 when s won game i and 0 on loss.

2.2 Breeding new generations

Having determined the fitness of each solution in a generation, a new gener-
ation needs to be bred. The way this is done is another important factor in
determining the quality of a genetic algorithm. It is especially important to
balance the influence well-performing solutions have with the desire to keep the
population diverse in the beginning. If we converge to a set of parameters that
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work well prematurely we might miss out on completely different sets that might
have worked even better (Beasley et al., 1993b). Additionally, solutions that
happen to perform well accidentally (e.g. by being pitted against opponents
whose random moves are particularly ill-chosen) might end up influencing the
final solutions far more than desired. On the other hand, stimulating diversity
too much will not result in strong solutions emerging, as they might not have
enough chance to breed offspring.

We took all this into account when coming up with a way of breeding a new
population that is best described by a simplified example (illustrated in figure 1).
Take an initial population of three solutions with fitness values 2, 2 and 3,
respectively. We now want to generate a new population of three. For each
solution in the new population, we perform the following steps to select each
parent:

Figure 1: Parent selection

1. Preserving the (arbitrary) order in the solutions, we multiply each fitness
value with itself, to exponentially increase the percentage of the cumulative
fitness being provided by better solutions (see also section 4.1.5). The
fitness values are now 22, 22 and 32, or 4, 4 and 9, adding up to 17.

2. We now take a random value between 0 and the sum of all solutions, i.e.
between 0 and 17, in this case. For this example, assume the random value
to be six.

3. The solution that is at this point in the scale is selected as parent. In this
case, the value of the first solution is 4, which is less than 6. Moving on to
the second solution though, we see another 4 which, added to the previous
4, results in a cumulative value of 8, which is higher than 6. Hence, the
second solution is the one to be chosen.

4. Repeat these steps for choosing the other parent.

For each of the parameters required for the new solution, we randomly copy
the value of either of its parents. This means we do not combine parts of
parameters of the parents, and parameters that are “next to each other” do not
have a higher chance of being propagated to the new generation than parameters
that are “far away”.
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3 Parameters

Parameters to use were determined with Roseline de Boer, Stratego world cham-
pion from 2008 to 2010. For a detailed analysis of the effects of the parameters,
see de Boer (2012).

FIRST MOVE When a piece has not moved yet, this parameter will be added
to the evaluation. As long as a piece has not moved, as far as the opponent
is concerned, it could still be a bomb. If a piece wants to trick the opponent
into thinking it is a bomb, this parameter would be a negative value so
that moves that result in moving a piece for the first time will be less likely
to be chosen.

STILL OPPONENT When a move would result in attacking an opponent,
and that opponent has not moved yet, this parameter will be added to the
evaluation. If a piece has not moved yet, it is more likely to be a bomb
(because bombs cannot move), so pieces that would prefer not to attack
bombs are expected to develop low values for this parameter.

BEAT OPPONENT When a move would result in attacking an opponent
whose rank is known, and whose rank is lower than that of the piece that
is to be moved, this parameter will take effect. It is different from the other
parameters in the sense that this value will be multiplied by a higher value
when the opponent is a stronger piece.

BIAS <direction> For each possible direction (left, right, towards the oppo-
nent and towards one’s own side), a parameter is included that specifies
a bias in a certain direction, i.e. a positive value for a certain direction
indicates a preference to move towards that direction, a negative value
indicates a preference to stay away from that direction.

EXPLORATION RATE When a move would result in attacking a piece of
which one does not know the value yet, but that has already moved (i.e.
is not a bomb and not the flag), this parameter will be added to the
evaluation. This means that a brave piece will have chosen a high value
for this parameter, whereas more conservative pieces would rather leave
the attacking to the braver pieces and assign this parameter a low or even
negative value.

WATER CORNER The squares at the opponent’s side that are diagonally
next to the water are supposedly tactical places for offensive pieces.

VALLEY EDGE The outermost squares of the two rows in the middle of the
board are supposedly good positions for defensive pieces.

RANDOM INFLUENCE The higher the value of this parameter, the more
likely a piece is to make a random move. In other words, if this value is
higher, a random valuation that is added to the valuation is more likely
to be higher/lower, thus influencing a move’s valuation more. This makes
a strategy less predictable.
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4 Results

Figure 2 shows a plot of the data in table 2: the average fitness of each generation
of a run. For an elaboration on the process of obtaining these results, see
section 4.1.

Figure 2: Average fitness by generation

A few things are worth noting:

• There is a clear upward trend. Apparently the parameters do manage to
influence behaviour enough to better achieve the goals embedded in the
fitness function.

• At around generation 12, the rate of improvement appears to flatten out.
This might seem fairly quick but, as noted by De Jong (1988), it is common
for GAs that “typically, even for large search spaces (e.g. 1030 points),
acceptable combinations are found after only ten simulated generations”.
Stratego has an upper bound of 10115 possible states, and of a game-tree
complexity of 10535 (Arts, 2010) (compare to chess’s upper bound of 1050

states and a game-tree complexity of 10123 (Allis, 1994)).

• Most of the solutions already defeat a randomly playing opponent in the
first generation; the fitness improvement is mostly the result of performing
well at the other characteristics defined in our fitness function (preserving
one’s own pieces, defeating as many opponent pieces as possible and ending
the game in as few moves as possible).

• Our implementation was incomplete: the genetic algorithm had no way
to evolve the ability to move the Scout more than one square at a time.
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Table 2: Average fitness by generation

Generation Average fitness

1 1374

2 1481

3 1303

4 1448

5 1518

6 1430

7 1506

8 1817

9 1654

10 1673

11 1864

12 2006

13 2020

14 1998

15 2077

16 2107

17 2038

18 2062

19 2088

20 2135
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Table 3: Algorithm options

Factor Value
Population size 200
Amount of generations 20
Number of parents to breed offspring 2
Number of opponents for calculating fitness 5
Likelihood of fit solutions to reproduce x2/

∑

4.1 Methodology

When developing a genetic algorithm, there are several choices to be made that
might or might not affect performance to a certain extent. An overview of the
choices made can be seen in table 3; for a description of each, see below.

4.1.1 Population size

De Jong (1988) suggests that often “GAs can rapidly locate structures with high
fitness ratings using a database of 50-100 structures”. However, in our tests, a
population of 100 solutions appeared to converge rather rapidly to an average
fitness sigiicantly lower than obtained with a larger population (see figure 3).

Figure 3: Average fitness by generation (population 100)

A larger population size means increased diversity and thus allows for more
specific strategies to be evolved. Due to our algorithm not applying mutation
(see section 6.1), the variety of our population is limited when compared to other
GA implementations that do, which might be the reason a larger population size
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is needed for ours. However, increasing the population size comes with a cost:
the time is takes to run the algorithm grows proportionally. Increasing the
population to 200 did provide enough diversity to produce the results shown in
figure 2, while achieving acceptable performance on our test machine.

4.1.2 Amount of generations

The results shown in figure 2 show the average fitness improving until about
population 12, so ending the simulation after 15 generations could well be suf-
ficient in most cases to ensure the maximum fitness growth has been achieved
while decreasing the amount of time required for a simulation to run. This is a
rather simple approach; a more sophisticated approach could have been chosen,
such as terminating evolution when the algorithm is likely to have converged
maximally. Greenhalgh and Marshall (2000)

As a compromise, we programmed the algorithm to write each generation
to disk, being able to resume a session later for as many generations as desired.
This allows us to take a rather conservative estimate with regards to the required
number of generations, and to continue evolving a number of extra generations
when deemed helpful.

4.1.3 Number of parents to breed offspring

In nature, offspring usually have either one or two parents. In a genetic algo-
rithm, however, it could be interesting to investigate an increased number of
parents. According to Eiben et al. (1995), while not having been extensively
researched, one could hold an increase in performance when using more parents
to be possible, though it might also lead to premature convergence.

As shown in figure 4, simply changing the number of parents of which pa-
rameters are randomly selected to three completely wiped away the general
improvement in fitness observed when using two parents.

This might be a case of premature convergence, with “super-chromosomes”
not being able to pass on enough of its characteristics to its offspring (Eiben
et al., 1995). Further research on the effect of changing the amount of parents
might be interesting.

4.1.4 Number of opponents for calculating fitness

When calculating the fitness, we let a solution play a number of matches against
a randomly playing opponent to see how well it does. The more matches it plays,
the more reliable it is (since a chance win will only partly affect the averaged
fitness of that solution). However, a higher number of matches means it takes
longer to calculate the fitness and hence run the genetic algorithm.

In figure 5 a typical progression of average fitness is shown for a run where
each solution would battle two opponents each time their fitness was calculated.
Though in the end the average fitness reaches a level comparable to that of our
results in figure 2, development leading towards it is a lot less stable and knows
more setbacks.

To err on the safe side, to generate our results we had each solution fight
five opponents.

11



Figure 4: Average fitness by generation (three parents per solution)

Figure 5: Average fitness by generation (two opponents per solution)
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4.1.5 Likelihood of fit solutions to reproduce

Figure 1 shows how the parents to breed a new generation are chosen: the fitness
of each solution is squared, meaning that fitter solutions have a larger chance to
be selected for breeding. This very much improved fitness; omitting the squaring
step could even lead to newer generations not really improving overall fitness,
modifying it to take the power of e.g. five instead of two increases the speed
at which the fitness improves over generations (i.e. it takes less generations to
reach the same fitness). Care should however be taken to prevent over-fitting
(Beasley et al., 1993b). As can be seen in figure 6 the quick increase in fitness
can come at the cost of a radical drop in the average fitness once the algorithm
has stabilized.

Figure 6: Average fitness per generation (fitness to the power of five)

4.2 Comparison to alternative approaches

Although other Stratego bots were hard to come by, we managed to get the
code from Arts (2010). As far as Stratego bots go, this one (“StarBot”) uses
a relatively complex evaluation function — still, this function was hand-crafted
using strategies as formulated by skilled human Stratego players.

This evaluation was coupled with a *-minimax search to allow the bot to
try to look a few turns ahead, making a guess as to the value of unknown
pieces of his opponent. We tested the performance of the bot we had evolved
after playing tens of thousands of games against a randomly playing opponent
against this bot, using different search depths. This way, even though Vicki
could only consider the next move without taking into account long-term or
even short-term consequences, we would have a certain measure of the quality
of our bot.
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When StarBot was configured with a search depth of one, the game was
played from start to finish in negligible time — and our bot won. Increasing
the search depth to two resulted in the game taking significantly longer than
a depth of one, but still very fast. Yet again, StarBot could not best our
evolved player. Subsequently, we tried a search depth of three. Waiting for the
game to finish now took some patience, though it was still a lot faster than a
game played by two human players would be. Nonetheless, even though Vicki
could think ahead two turns less than StarBot, its strategy once more proved
superior.

We then increased the search depth to four. On our machine, it now took
StarBot on average longer than it would take a human to come up with a turn,
and finishing the game required leaving the machine running overnight. At the
Computer Stratego World Championship, the maximum allowed average time it
could take a bot to contemplate a move was 5 seconds, and the maximum allowed
time 15 seconds — both values StarBot running with a search depth of four
would exceed, running on our machine. That said, it is a fairly weak machine,
so running it on a modern desktop computer would probably be adequate for a
search depth of four.

Apparently, slow and steady does indeed win the race, as this time StarBot
did manage to beat Vicki. Leaving StarBot running for two days with search
depth five only managed to complete a handful of moves, but without a doubt
this would have crushed our current bot had we had the resources to finish the
game.

It should however be noted that in between the production of StarBot and
our algorithm, the rules of Stratego changed: in our implementation, players
were not allowed to move back and forth on the same two squares more than
three consecutive times. When StarBot was written, the maximum allowed
number of consecutive movements on the same squares was five. Therefore,
when pitting the two against each other, enforcement of the two-squares rule,
as it is called, was disabled. The effect of this was that our algorithm assumed it
could not move back and forth on the same squares more than three times in a
row, whereas StarBot could happily continue repeating the same move. This
way, our algorithm could be forced into moves it would rather not making, even
when starting from an advantageous position. How much of an effect this has
on the outcome of the duels is unknown, but it is something to be kept in mind.
However, seeing as this is a disadvantage to our algorithm, it is still possible to
draw conclusions from the matches it did win.

5 Conclusion

Due its large number of possible states and the fact that players have incomplete
information, Stratego is a game that cannot simply be bruteforced. There has
been some research trying to tackle the problem of making computers play
Stratego, but all of those solutions were dependent on incorporating heuristics
formulated by expert human Stratego players. This research tried to investigate
the feasibility of approaching this problem with a genetic algorithm.

The results show that, even with a simple parameter-based approach to the
genetic algorithm, a clear improvement can be observed. Solutions judging pos-
sible moves using a set of valuations evolved over as few as twelve generations
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managed to achieve more and more convincing victories over an opponent play-
ing randomly. Moreover, the resulting valuations provided insight in strategies
that work well, as noted in de Boer (2012).

Whereas other attempts were dependent on the skill of their programmers
and thus are unable to exceed the level of play of their creator, our approach
could theoretically outperform the best human players. However, to really get
a sense of whether this approach might eventually produce better results, it
should compete with other artificial players. Luckily, even though obtaining
the code of other research on artificial Stratego players proved troublesome, we
finally managed to lay our hands on StarBot. Despite a small handicap due
to a change in Stratego’s rules, our evolved strategy was advanced enough to be
able to beat an artificial player with a manually constructed evaluation function
that looked three moves ahead, even though Vicki could only reason about the
current move.

This indicates that the genetic approach is, indeed, a viable one to pursue
to construct an artificial, well performing Stratego player. Section 7 outlines
several paths that can be taken to improve upon these results to produce a
high-quality artificial Stratego player. Possibly being able to develop a skilled
artificial player for a game with imperfect information such as Stratego is a step
forward for artificial game playing and, with it being one of its most-researched
areas, artificial intelligence.

6 Discussion

Despite the clear improvement realized in fitness, there were several areas in
which our implementation could have been better.

6.1 Mutation

When generating a new population, the only genetic operator used to initialize
the offspring’s parameter values is crossover. This means all parameter values
the final solution can consist of have to be present in the initial population.
Once a value has (possibly prematurely) “died out”, there is no way it can be
reintroduced.

To introduce more variety to the population, the genetic operator of muta-
tion could have been introduced. Every generation each parameter will also have
a chance to be modified a little bit, so new tactics can emerge. An interesting
approach here could be to see whether the algorithm could dynamically adapt
to the evolutionary phase it is in, balancing between crossover and mutation
depending on the distribution of fitnesses (Beasley et al., 1993a).

Possibly, introducing mutation could speed up the evolutionary process, be-
cause it allows for a smaller population size. Since it is less important when
parameter values completely vanish from a population (they can be reproduced
or at least approximated by mutations of other values), less solutions could
suffice.
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6.2 Scout mobility

Although the game implementation did allow for the Scout to move as many
squares in the same direction as possible without being blocked (which StarBot
— see section 4.2 — profited from), our genetic algorithm did not have the
possibility to evolve that behaviour. With this, the Scout became an ordinary
piece, and one of the weakest at that. Moreover, one of the most important
elements of many a Stratego strategy — exploring unknown pieces far away,
sacrificing Scouts — could now play no role in the evolved strategy. This,
too, might have skewed the results against StarBot to the disadvantage of our
algorithm.

6.3 Dependence on human player

Even though the actual parameter values were evolved by the computer, deter-
mining which parameters we used and when they kicked in still required help
of a skilled human player. Yet, even for a skilled human player it can be trou-
blesome to come up with useful parameters, as has been observed by Samuel
(2000): even though experts can have extensive knowledge of the game, it may
prove difficult to articulate this knowledge to the programmer.

The advantage of using a parameter-based approach is that it is immediately
clear what the evolved strategy entails. Simply looking at the evolved values
gives an indication of the type of actions each piece has a preference for. It
can also be used to test hypotheses about strategies that might or might not
work well. If the algorithm is given the chance to develop this specific strategy,
whether it actually does can be interpreted as an indicator of whether that
strategy does or does not work well. Finally, it is relatively simple to implement.

That said, it would be a stretch to claim that the computer is actually
learning to play Stratego by itself. Because the possible effects of each parameter
need to be clearly predefined, they have to be rather generic, so most strategies
are necessarily superficial.

7 Future Research

There are a variety of ways the genetic algorithm approach to writing an artificial
Stratego player could be improved so as to achieve a higher level of play.

7.1 Evolve board positions

To be a successful Stratego player, a very important element of playing is ar-
ranging one’s 40 pieces at the start of the game (De Boer, 2007). In our re-
search we used the same predefined board setup every time. This is extremely
predictable and only allows for very shallow strategies. Furthermore, it was a
rather simplistic setup.

The approach to generating a board setup in De Boer (2007) involves gen-
erating a number of setups based on a large corpus of setups used in real games
and selecting an actual setup according to some predefined heuristics. Another
approach is to use a setup chosen randomly from a number of predefined man-
ually selected setups Arts (2010) Schadd et al. (2009).
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An obvious improvement for our approach would be to evolve the initial
setups along with the strategies. Playing the same setup every time makes for a
bad player (since his opponent can know the position of the flag at the start of
the game) so it would be advisable to allow solutions to be able to use multiple
setups (and introduce a certain measure of randomness to each) and to make
the strategy be setup-dependent. In fact, board setup should be considered part
of the strategy.

Alternatively, several good solutions from a population can be kept, and
the final player could switch between any of those strategies so as to be more
unpredictable in their strategy. During evolution using the same strategy every
time does not influence the results, since their opponents do not incorporate
previous playing habits in their decisions. Since both defensive and offensive
strategies could be successful, the final player would then be able to play both
types of strategies.

7.2 Piece-based parameter values

In our algorithm, we evolved a set of parameters for each available moveable
rank. This allowed us to draw interesting conclusions (de Boer, 2012) about the
sort of actions certain ranks should perform to achieve good performance (e.g.
attack unmoved opponent pieces — which are more likely to be a Bomb — with
relatively worthless pieces, i.e. a low rank and no special abilities such as the
Miner’s to defuse bombs). However, this makes for a relatively unsophisticated
strategy compared to evolving a strategy per piece. Whereas we currently have
ten different piece strategies (one for each moveable rank), we could have evolved
33 (one for each moveable piece, so even pieces with the same rank could evolve
different strategies). These strategies would be bound to a certain board setup,
as each piece could adapt its strategy to its specific board position (it would be
superfluous to evolve separate tactics for pieces that might be of the same rank
and start on the same position, or in other words, whose situation is exactly the
same regardless of strategy).

Using piece-based parameter values in combination with evolving board se-
tups, the algorithm could evolve more advanced tactics, such as a strategy with
an aggressive left side of the board where strong pieces make some easy kills
after exploration by explorers and a more defensive right side, where pieces of
the same rank as pieces of the left side might rather want to flee than to attack
unknown opponent pieces. Combine this with tactical placement of among oth-
ers flag and bombs, and we have a strategy far more sophisticated than what
our current algorithm has evolved.

The piece-based approach could also be used to evaluate board setups used
in existing tactics by human players. If a person wants to utilise a defensive
strategy against a known aggressive opponent, and considers using a certain
setup, a strategy could be evolved building on that setup. If the pieces this
person expected to act defensively appear to work better acting offensively with
the considered initial setup, another setup can be considered and re-evaluated
until a suitable defensive setup to start from has been devised.
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7.3 Look ahead

Our algorithm considers all possible moves of a turn, evaluates the merits of each
move based on the evolved values of each parameter, and performs the move
with the highest valuation. Looking only at the next move Vicki can make itself
is a pretty limited approach though, which does not take into account future
implications of the move, and does not allow for the construction of longer-term
tactics. In fact, the the opponent’s way of playing is hardly taken into account.

The problem with Stratego is that it is a game of imperfect information.
When evaluating a move, one cannot tell with which move the opponent would
react best, since that depends on the ranks of the opponent’s pieces which are
unknown. A way to deal with this lack of information is to use one of the
variants of the *-minimax algorithms, which involves adding ‘chance nodes’ to
the game search tree (W. and Ballard, 1983). This approach has been applied to
Stratego by Arts (2010), albeit with a simple, manually constructed evaluation
function. In fact, our algorithm could beat this algorithm when it was set to
look no more than three moves in the future (the highest acceptable depth
on our test machine), by only looking a single move ahead. Replacing the
hand-crafted evaluation function with an evolved one could drastically improve
performance. An interesting endeavour to undertake would be to try and define
a set of parameters that actually incorporate information from multiple turns.

It should be noted, however, that this will significantly impact the speed of
execution. Informal tests indicate that a search depth of 2 could be used during
evolution on a reasonably powerful modern PC — perhaps even a depth of 3.
Once evolution has finished, search depth can be increased for regular games to
achieve similar speed to that achieved with the manually compiled evaluation
function. Evolved strategies cannot explicitly make use of the capability to look
ahead further, but performance will still be boosted by the ability to make more
informed decisions.

7.4 Opponent modeling

The options our algorithm can contemplate are pretty limited with regard to the
information it takes into account when determining the values of its parameters.
Some of the most advanced reasoning it can do is base its options on whether a
piece has moved yet; a piece having stood still the entire game having a greater
chance of being a bomb or a flag.

The evolved strategy could be more sophisticated if it also had an internal
model of the opponent’s pieces, assigning probabilities to each piece about the
rank it is likely to be. Such a model could incorporate knowledge such as that
pieces that have already moved are definitely not Bombs or Flags, or how many
pieces of a certain rank the opponent still has available. Incorporating these
and other facts into a probability distribution for Stratego has been found to
significantly improve performance by Stankiewicz and Schadd (2009).

Combining this opponent model with the genetic algorithm approach could
potentially allow for far more specific strategies. For the parameter-based
approach specifically this would enable parameters that are activated after a
threshold is crossed in the probability that a certain piece is of a certain rank.
This threshold, in turn, could also be evolved. Alternatively, a parameter’s
value could be dependent on the likelihood of a piece being of a certain rank,
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with a higher probability resulting in more influence of that parameter.
Examples of parameters that could be added/improved with a probability

distribution of the opponents pieces are the urge to attack an opponent (if the
opponent is likely to be an opponent we can beat, attack; currently, the attack
only proceeds when we are sure of the opponent’s rank, i.e. when it has already
attacked one of our pieces), or incorporating how likely it is that the opponent
still believes a piece to be a bomb in deciding whether to move it for the first
time.

7.5 Analyze gameplay

We looked primarily at the effects of the evolved player – does this player’s
strategy result in many wins, does he have many pieces left at the end of a game,
etc. A thorough analysis of actual games played by the algorithm could provide
more meaningful information on the effect of certain parameters in the fitness
function. It could show whether a punishment for each piece the opponent has
left does indeed lead to the algorithm avoiding capturing the flag early, whether
we can tweak the rewards in the fitness function to generate a more offensive
or defensive player, etc. Additionally, obvious flaws in the strategy could be
detected with more detailed analysis to construct new parameters that could be
used in the player’s evaluation function.
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A Value added to my bachelor

Performing the research taught me a number of things. First and foremost, I
developed the commitment to actually performing research, enjoying the process
moving from a vague idea on what to research, to obtaining actual results, to
clearly writing it down in this thesis. Secondly, I of course learned a lot on
the techniques used in this and related work, and about the current state of
research in this area. Finally, I learned a lot on working rigidly, in a structured
way gather information so as to also be able to write it down later so it can
actually be useful.

B The code

At the time of writing, the code used to generate the results is located at https:
//gitorious.org/stratego and is licensed under the GNU General Public
License version 2.
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