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1 Introduction

Norms in daily life are mostly conventions about behavior that tend to make living among
other people easier for everyone. They can be either written laws or unwritten promises.
An example of the first category would be the norm not to steal, while the norm to
shake hands belongs to the second. Most norms are like restrictions to behavior. One
has to accept a limitation to its own possibilities, but benefits from the fact that others
also have this restriction. A traffic light is a good example: a driver cannot just drive
when he wants to, but benefits from the fact that others cannot do that, either.

Norms can be of use in computer science. The first computers that were build, worked
entirely separate from other computers. They had their input and output, and no
interaction at all with other systems. Nowadays that is completely different: almost
all computers are connected in some way. While making a computation, a computer
always interacts with other systems, and it often is dependent on these other systems.
For computers that need to interact to accomplish their tasks, rules of another kind are
needed. Rules only to compute an input are not enough. That is what norms are used
for in computer science. They guide the behavior of computers interacting with each
other, so that their performance is optimized. It is like optimizing the lives of people
who live together in a society.

To define these norms, logicians try to formalize the concept ‘norm’ as we use it. They
try to find a suitable definition to use in computer science. As a result of the changing
way computers work, there has been a focus shift in agent systems. Rationality of a
group has become an important topic apart from single agent rationality.

Deontic logic is the field concerned with prohibitions, obligations and related concepts.
Researchers in this area reason about these concepts, and also the formalization of
norms is a huge subject. Game theory often plays an important role here. That is not
surprising: if the assumption is that every agent is selfish, then accepting a norm only
makes sense if it has some good implications for all agents. Most of the time, this also
depends on the choices other agents make, so deciding to accept a norm or not can be
viewed as a game.

A problem that occurs here is that ideas about norms in game theory seem to differ from
those in deontic logic. When a norm in game theory is accepted, it restricts behavior,
and violations are not possible. In deontic logic, a norm can be violated. The norm
and the system have to be designed in such a way that agents do not benefit from
violation.

How are the different views on norms related? Do they contradict each other? Or is it
possible to combine them somehow? That will be the subject of this thesis: how is the
game theoretic notion of norms or normative systems related to the deontic
notion of norms?

I will summarize and discuss two approaches on norms in multi agent systems. I'll start



with two papers by Thomas Agotnes, in which agents use game theory to optimize their
choices. I'll use some examples to illustrate my interpretation of his work. The deontic
perspective is based on a paper by Paolo Turrini, who connects coalitional rationality
with behavior of individual agents.

Connection to CAI When focussing on Cognitive Artificial Intelligence, this research
is relevant in two ways. To understand this, let’s first define the two main objectives
of CAIL: 1) to learn more about human cognition by trying to ‘teach’ its abilities to
computers, and 2) to gain techniques to make smarter machines by studying human
cognition. Since computers only compute problems described in logic, for both of these
objectives it is needed to formalize concepts about human cognition. Norms, too, can
tell something about how human cognition works, so formalizing them is relevant in
both objectives of the field of CAIL

2 Introduction in norms

2.1 A deontic view on norms

Most in this section is based on the ideas from [4] and [6]. A distinction can be made be-
tween two kinds of norms: written norms (like laws) and unwritten norms (like promises
between at least two agents). An intuitive way to describe a norm could be a description
of right and wrong. Since often it depends on the situation if a certain action is right or
wrong, this definition is insufficient, especially in (deontic) logic. The words norm and
normative system are mostly used for (sets of) rules that regulate multi-agent behavior.
Another distinction to make lies in the origin of the norm. Some norms are rules written
by a designer, they come from outside of the system. Other norms are cooperative rules,
from which every agent benefits. These norms come from within the system.

When a norm benefits all agents, the situation is simple. An agent, if it has a choice, will
comply with the norm. There is of course another category: norms that do not benefit all
agents and therefore are not automatically accepted by all agents. An example is found
in the prisoner’s dilemma. Game theoretic models say agents should not cooperate,
while cooperating would be better for the group. So the norm should be to cooperate,
even though it is not in the interest of the individuals.

Originally, norms were defined as obligations, based on the distinction between right and
wrong. Something was obliged when the opposite was not permitted. Lately, norms and
obligations are not defined as the same thing. The two concepts now differ in various
ways. Norms are applied to a group of agents over some period of time. They exist inde-
pendent of an agent. Obligations, on the other hand, are part of the motivational states
of single agents. They can influence an agents’ choice at a particular moment.



There is another important distinction: the one between ‘ought-to-be’ and ‘ought-to-do’.
The first tells what states are good to be in, while the second tells what actions are good
to execute.

While beliefs are descriptive, norms and obligations are prescriptive. Therefore they do
not have a truth value, because there is no environment where to test whether a norm
or obligation is true or not. So-called norm propositions do have a truth value, however.
The logics of these norm propositions differ from the logics of norms. The question
whether a logic of norms can exist if norms have no truth value, is called Jorgenson’s
dilemma.

2.2 A game theoretic view on norms

For this section, most information comes from Shoham [5], who speaks of social laws. He
describes a social law as a restriction on the given strategies of a group of agents. For an
agent, a social law presents a tradeoff: it suffers from a loss of freedom, but can benefit
from the fact that others lose some freedom as well. A good social law is designed to
benefit all agents.

In game theory, each agent has a number of possible strategies. Depending on the
strategies selected by each agent, each agent receives a certain payoff. Agents are free to
choose their own strategies, based on their guesses about the strategies of other agents.
A social law eliminates from a game certain strategies for each of the agents.

When a designer wants to design a system, he cannot always design any system, because
often the strategy spaces are given. Still, a designer wants to be able to influence the
actions of the agents which is possible using social laws.

Once a social law is imposed, it is not guaranteed that agents will follow it. Three
ways to regulate this are the following, using a central (independent) agent to guide the
others:

e Contracts. A center can propose a contract, which specifies an action for each
agent. When all agents accept, the center can fine each agent that did not follow
the contract. The downside on this solution is that it requires great effort from
the center.

e Bribes. The center promises agents a higher payoff in certain outcomes to imple-
ment a desired behavior.

e Mediators. The center operates as a mediator for the agents. It makes it possible
for agents to make their strategy dependent on the strategies of others.



3 Work of Thomas Agotnes

3.1 Normative system games

The basic principle in [2] is that multi-agent systems are coordinated by social laws,
which are constraints on the behavior of agents. By constraining the behavior of the
agents in a system, the system will achieve its goal. In this approach preferences of
agents are taken into account, an idea that was missing in some older approaches. It is
important to take this into account because agents make a choice whether to comply with
the normative system or not. Because this means that behavior will now be strategic, a
model is needed in which strategy is incorporated.

In the paper, a model is created in which agents have a list of goals. They also have
priorities: every goal has some importance relative to the other goals. Based on its goals
and priorities, an agent decides to accept or decline a normative system. It is clear that
game theory plays a role in formalizing this choice to accept or not.

Kripke structures and CTL A Kripke structure is a directed graph. It has a set of
states and a set of transitions between these states. The transitions are directed. In this
case transitions are labelled with agents that perform an action and states are labelled
with boolean variables that express the properties that are true.

Computation Tree Logic (CTL) is a temporal logic used to express the properties of a
Kripke model. A certain computation from some state s is called an s-path.

o K,s = AQ ¢ means ‘for all s-paths, the second element satisfies ¢’.
e K,s = E (O ¢ means ‘for some s-path, the second element satisfies ¢’.

e K, s = A(p U 1) means ‘all elements in all s-paths satisfy ¢ until some element
satisfies .

o K,s = E(pU 1) means ‘for some s-path, every element satisfies ¢ until an element
satisfies 1)’.

Normative systems A normative system tells which transitions in a system are ille-
gal. It is a subset of the set of transitions. When some normative system 7 is applied
to system K, so the illegal transitions are deleted, the resulting system is referred to as
K in. If C is a subset of the set of agents, nn [ C' is the system that only contains the
forbidden transitions in 7 that correspond to actions of agents in C. So in K 1 (n | C)
only these transitions are deleted. The same goes for 1 C, but the other way around:
it is the same as 1 but contains only the transitions that do not correspond to actions
of agents in C.



Goals and utilities The goals of an agent are listed as CTL formulas. The first is
the least important one, the last is the most important. If an important goal can be
reached, the goals before that one will be ignored. The first formula is always true. A
goal in hierarchy v is true in K if all initial states satisfy this goal. One of the properties
of such a hierarchy is monotonicity. If a higher goal is true, then the lower goals are
as well. Each agents’ hierarchy, together with the Kripke model, forms the multi-agent
system M = (K, v1,... ,Vn)-

The utility of a Kripke model for an agent is the index of the highest goal that is always
true, which is always at least zero. Because of the definition of utility, it is possible to
compare different Kripke models for an agent, but not to compare different agents in
a model. Agents mostly do not have the same goals, and the index of a goal does not
carry information that can be compared with other agents’ goals. §;(K, K tn) (shorter:
0i(K,n)) is the utility of n for agent 7. This utility is equal to u;(K {n) — u;(K), and
is therefore negative if the agent is worse off with the normative system. So if an agent
is in a situation where only some universal goal is true, no norm will be a problem for
it. The situation cannot be worse than that, so the utility of any normative system for
this agent cannot be negative. If for an agent an existential goal is true, no normative
system can make its situation better. In that case, the utility of any normative system
will be at most zero.

A social system is now defined as ¥ = (M, n).

K1 C K5 means that K7 is a subsystem of K5. This is the case if Ry C Ry and the rest
of the properties (9,5°, A, a, V) are equal.

Normative system games Given an multi-agent system and a normative system,
agents get a strategy to accept or defect this normative system. The making of this
choice is a process called a normative system game, which takes place before an agent
is in the system. A game is defined as follows:

o G=(AG,S1,....,5,U1,....Up)

e AG ={1,...,n} is the set of agents

e S; is the set strategies for each agent (so the possible actions)
o U;: (51 x..xS,) — Ris the utility function for an agent

Given an social system ¥ = (M, n), every agent chooses a strategy: C (comply) or D
(do not comply). For S (a tuple of strategies, one for each agent) and = € {C, D}, AG%
gives the subset of agents that play x. The utility function then is U;(S) = 6;(K,n |
AGS).

A normative system is individually rational if each agent would be better off with it.
Logically, it is better for each agent if each one of them complies, than if no agent



complies. Individual rationality is necessary, but not sufficient for a norm to succeed
(see for example the prisoner’s dilemma).

A normative system is Pareto efficient if there does not exist another system which each
agent is better off with.

A social system is a Nash implementation if S causes a Nash equilibrium. This means no
agent is better off by defecting from the norm, given that other agents will comply.

3.2 Power in normative systems

An issue discussed in [I] is what happens if an agent does not accept a normative system.
The goal is to find a way to measure the influence of an agents’ choice to the success of
a normative system. The tool used here is the voting power indexr. Power is the ability
to let a normative system succeed or not. In the ideal situation this power is equally
divided among the agents.

Coalitional games and power A coalition is defined as a subset of the set of agents
that accept a normative system. A swing player is an agent that can make the difference
in letting a normative system succeed or not: if it complies, the system succeeds, oth-
erwise it does not. The Banzhaf score of an agent is the number of coalitions of which
it is a swing player. The Banzhaf measure of an agent is the chance that it is swing
player of a random chosen coalition. The Banzhaf index of an agent is the proportion of
coalitions of which it is a swing player to the number of swings in the game. And last:
the Shapley-Shubik index of an agent is the proportion of permutations of which it is a
swing player to the total number of permutations.

Power in social systems The first thing to do is to show how to associate a coalitional
game with a social system. If C', complying with a normative system, will achieve the
objective, then it gets the value 1. If not, then it gets the value 0. This way, the relative
power (the relative ability to cause a normative system to succeed or fail) of agents in
a social system can be measured. The goal could be to evenly divide the power over all
of the agents in the system. Coalition monotonicity ensures that if a coalition complies
with a certain system, all supersets of that coalition do as well:

VC:Ki(n|C)E¢impliesVC'D2C:Kt(n|C)Ee

3.3 Examples

Example: traffic lights Imagine a crossing of streets. Three cars come from different
directions, and the drivers want to cross as soon as possible. There are three time steps
at which the drivers can drive (first, second, third). If two or more go at the same time,



they crash, which is the worst possible situation for them. The best situation is driving
first, while the others wait.

A state in the Kripke structure represents the crossing, with a status for each car: has
crossed or has not crossed yet. The transitions represent the actions of the drivers. These
are crossing and waiting.

When no normative system is applied, every driver will drive first, causing an accident.
So each normative system that prevents an accident is individually rational: every agent
will be better off with that system.

All of these systems are also Pareto efficient. A system that prevents cars from crashing,
does so by telling which driver can go first, which one second, and which one last. There
is no system that gives all agents a better position. A driver that has the second or third
turn cannot drive earlier, because it will cause an accident. Also the driver that has
the first turn obviously cannot go earlier. This last statement is also true for systems in
which one driver gets the first turn, but the other two crash. So apart from the systems
that prevent an accident, there are more Pareto efficient systems. The set of Pareto
efficient systems is a superset of the set of individually rational systems.

Imagine a normative system that forces two or three drivers to drive at the same time.
It is better for the drivers to decline this norm and drive at another moment. There is
always one moment at which no other driver is driving. So al the systems that cause
accidents are not Nash equilibria. All the others are, because no agent can be better off
by not accepting the norm, given that others do accept it.

Example: non-shareable resource The goal for both agents is to have the resource
as often and as long as possible. The result is that both agents prefer keeping it rather
than giving it away. Since transitions in the model correspond to keeping the resource
or giving it away, and a normative system contains one or more of these transitions, the
norm is preventing one or more of the possible actions. Preventing an agent to give the
resource away will make no difference, because he prefers to keep it anyway. So only
situations in which one or two agents are forbidden or allowed to keep the resource, are
interesting in this example.

None of the possible norms are individually rational. Without a system, the agent that
starts with the resource can keep it forever. That is the maximum for this agent, so it will
not be better off with any normative system. Therefore no system can be individually
rational.

Also none of the systems are Pareto efficient. If keeping the resource is forbidden for
only one agent, the other is still able to keep it. The same argument as for individual
rationality goes here: one agent get his maximum score, so there is no system with which
both agents are better off. If the prohibition is for both agents, then it is still impossible
to find such a system. One would be better off with a system where keeping the resource
is allowed, but the other would not be.



There is no possible Nash implementation in this example. If one agent is prohibited to
keep the resource, then it is always better off defecting from the norm. This also is the
case if both agents are prohibited to keep it.

Also with three or more agents, this example does not seem to be a good one to explain
the notions of individual rationality, Pareto efficiency and Nash implementations. A
basic principle in this example is that an agent can only get a better score at the cost
of another agents’ score. We would have to change the example, in such a way that a
better score for both agents can be reached if they cooperate. That is what is missing
here.

Example: investment Four agents each have 2 euros. They have the possibility to
earn more by investing their money together. Each agent wants to make as much profit
as possible. They all have a choice: they can invest 0 or 1 euro. An investment of in
total 4 euros is large enough to double the money. The profit will be shared equally,
so every agent gets 2 euros. If someone does not invest, there is not enough to double
the money, and the agents that gave away their money have 0 euros. So there are three
possible outcomes for each agent: 0, 1 or 2 euros.

Let’s translate this example to a normative system game like in [2]. The states in the
Kripke structure correspond to the different situations in which every agent has invested
an amount of money (0 or more). The transitions correspond to the set of investments
that are done. As for the goals of the agents: there are certain amounts of money for each
agent to end with, these are the goals. Obviously ending with the maximum possible
amount of money (in this case 2 euros) is considered the most important goal, ending
with 0 euros is the universal goal at the other end of the list. (In this context, to have
x euros must be read as to have at least x euros, so that the condition that higher goals
imply lower goals is met.)

The social system is clearly a Nash implementation. To get the maximum amount, all
agents need to invest their money. So it is good to invest the money if everyone does, but
if someone does not, it is better to keep what you have. The norm to invest the money
is also Pareto efficient: all agents get the maximum amount of money. Furthermore, it
is individually rational, because every agent is better off with the norm.

458 o1
ind. rat. | no | yes
Pareto no | yes
Nash yes | yes

Table 1: Situation in which every agent has 1 euro.

Now, to make the example a bit more interesting, each agent gets 2 euros. They now
have three options: give 0, 1 or 2 euros to make an investment together. If the total
investment is 4 euros (or more), 8 euros are to be shared. But if 8 euros are invested,



16 come back. If the total amount is 1, 2, or 3, but also if it is 5, 6, or 7, some money
is lost.

Investing 1 euro still results in a Nash equilibrium. If all agents give 1, then it is better
to also give 1. The same goes for investing 2 euros: if all other agents do that, it is best
to follow. Also, both of these norms are individually rational. If everyone invests the
same amount of money, then everyone is better off. Then Pareto efficiency: the norm to
invest 2 euros results in more money for each agent then the norm to invest 1. So the
first is Pareto efficient: each agent gets the highest possible amount. The second is not,
because there is a norm with which every agent is better off.

4-588=16 0 | 1 | 2

ind. rat. no | yes | yes
Pareto no | no | yes
Nash yes | yes | yes

Table 2: Situation in which every agent has 2 euros.

Let’s change another thing in this example: to get 16 euros, a total investment of 6 is
needed instead of 8. The maximum amount an agent can get now changes: an agent
will end up with 6 if it keeps his money, while all the others give 2. All investing 1
euro at the same time still results in a Nash equilibrium, all investing 2 does not. It has
become profitable to not invest anything in that situation. The norm to invest 2 euros
does remain Pareto efficient and individually rational. Each agent is better off with the
norm, and no norm gives a better outcome for all agents.

4-586—-16 0 | 1 | 2

ind. rat. no | yes | yes
Pareto no | no | yes
Nash yes | yes | no

Table 3: Situation in which investing 6 euros results in 16 euros.

Prisoner’s dilemma The previous example is pretty much like a large prisoner’s
dilemma. It could be interesting to describe the prisoner’s dilemma itself in terms of
normative systems, and to analyze it like the other examples.

H Comply Do not comply ‘
Comply <4,4> <0,5>
Do not comply || < 5,0 > <1,1>

Table 4: Prisoner’s dilemma.

There are two possible norms: to comply and to defect. The first is Pareto efficient and
individually rational. It is better to have this norm than no norm at all, and there is no

10



norm with which both agents are better off. It is not a Nash equilibrium, though. Since
it is the default choice for both agents, the second norm is not individually rational nor
Pareto efficient, but it is a Nash equilibrium.

The following is always true in games with agents that have equal choices: if some choice
is the default choice for each agent, then the norm of choosing that is always a Nash
equilibrium and never individually rational. This is because without this ‘norm’, every
agent would choose the same. Because the outcome in accepting and defecting is equal,
an agent never benefits from accepting or defecting. For a norm to be individually
rational or a Nash equilibrium, agents have to benefit making a certain choice, which is
impossible in this situation.

Example: voting game (Shoham) There are four parties in a parliament, A, B, C,
and D. They have 45, 25, 15 and 15 representatives, respectively. There will be a vote
on wether to spend a certain amount of money or not, and how much of that money
each party gets to spend. If a coalition of at least 51 representatives votes for the same
distribution, that is what will happen. If there is no such majority, no party gets to
spend anything. Let’s not worry about the actual distribution of the money, and let’s
assume that:

e every representative of the same party votes the same;

e every party in the winning coalition gets a share in proportion to the number of
representatives in the coalition;

e because of the assumption above, every coalition wants to be in a winning coalition
as small as possible.

In that case there are fifteen possible coalitions. One-party coalitions are never a major-
ity. Two-party coalitions are a majority only if A is one of the two parties in it. Further-
more, every three-party coalition and of course the four-party coalition are majorities.
The possible coalitions can function as norms: the representatives (or the parties) in the
coalition are agents that all have to vote for the coalition, like for a norm. Let’s see what
the notions of individual rationality, Pareto efficiency and Nash implementation can tell
us here.

The coalitions that are minorities are neither individually rational, Pareto efficient or a
Nash equilibrium. A party wins nothing by voting for such a coalition.

All the winning coalitions are individually rational. The parties in it win by voting for
these coalitions, so they are better off with then without them.

Pareto efficiency is not useful in this example. If you are only taking into account the
parties in a certain coalition, then there is never a better coalition for all of the parties
in the first one. Such a coalition has to be one that contains at least all the parties of
the first coalition. Therefore it is at least as big as the first one, and cannot be better
for each party.
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About Nash: in the winning two-party coalitions {A,B}, {A,C}, and {A,D} there is
no Nash equilibrium. In the first case, A is better off in a coalition with C or D and
therefore should not comply with this coalition. In all three cases, the smallest party
is better off in {B,C,D}, so even if A complies, there is a better situation. Also in the
three-party coalitions with A in it, {A,B,C}, {A,B,D}, and {A,C,D}, there are no Nash
equilibria. A is better off in a two-party coalition, and the rest will prefer {B,C,D}. In
this last coalition is a Nash equilibrium, since it is the best choice for all three of the
parties in it. They all should comply with the insurance the rest does. The four-party
coalition is of course the worst winning coalition for all of them, so they are declining
this one.

Analyzing the notions in [I], we can say the following: A is a swing player for six of
the seven winning coalition that contain A. This means its Banzhaf score is 6 and its
6

Banzhaf measure is 15 It has a Banzhaf index of 1%. The Banzhaf score of the rest

of the parties is 2, so they all have a Banzhaf measure of 1% and a Banzhaf index of
2
ﬁ.

4 Work of Paolo Turrini

Introduction The aim of [3] is to formally capture the notion of coalitional rational-
ity. To achieve this, it is needed to combine two views on the representation of group
decisions: one is to represent the preferences of the whole group and the other is to
represent the preferences of the individuals. Therefore policies are studied where the
desirable properties to be achieved by a coalition reflect the preferences of some superset
of that coalition. In this way the different views can be accounted for as particular
cases. In multi-agent systems there are situations in which individual preferences are
not compatible and agents’ capabilities affect the realization of other agents’ prefer-
ences. In this paper, enactment of norms as aimed at the regulation of such interactions
is studied.

The goal is to isolate the notions of betterness (to compare players’ possibilities), choice
restriction and interest.

Preliminaries A dynamic effectivity function E : W — (249t — 22W) gives a choice
set for a certain coalition in a certain state. If a set X is member of E(w)(C), the
coalition is able to force that the next state after w will be some member of X.

The following properties are considered:

e Regularity: if a coalition is able to force the outcome of an interaction to belong
to a particular set, then no possible combinations of moves by the other agents
can prevent this to happen.

12



e Outcome monotonicity: if a coalition is able to force the outcome of an inter-
action to belong to a particular set, then it is also able to force the outcome to
belong to all of its supersets.

e Inability of the empty coalition: the empty coalition cannot bring about non-
trivial consequences.

To reason about effectivity functions, coalition logic is used. The language of this logic
is ¢ = p|=d|p A ¢|[C]p. A coalition model is a triple (W, E, V). W is a set of states,
E' is a effectivity function and V is a valuation function that associates to every state a
set of atomic propositions. In a model, in a certain state, [C]¢ is true iff M € E(w)(O)
(where M = {w € W|M,w |= ¢}).

The relation >=; shows a preference ordering. In v >; w, state v is as least as nice to be in
as w, from the perspective of agent i. The relations <;, >;, and <; work in a similar way.
A coalition model extended by a preference relation, (W, E, <;, V), is called a cooperative
game model. M,w = quﬁ now means that for some w’ with w < w’, M,w’ |= ¢. LICL=3

is the language of coalition logic extended with the O; modality.

Regulating strategic decisions Effectivity functions do not say anything about what
coalitions would force if they had a choice, and preference relations are defined on out-
comes and not on sets. So there needs to be a way to lift preferences over outcomes to
effectivity functions and a way to take choices of others into account.

E(w)(C)NY gives the choices of C in w, intersected with some choice Y of the oppo-
nent. The possible outcomes are restricted with Y. With this notion of choice restric-
tion, it is possible to define a notion of undomination. An undominated choice remains
Pareto optimal for all possible answers of the opponents. A possible choice X is un-
dominated iff (X NY’) is Pareto optimal in the Y-choice restriction of E(w)(C) (for all

Y € Ew)(C)).

A deontic logic for strategic interactions The ingredients for a deontic logic for
this purpose are a coalition logic and some way to express coalitional rationality. The
operator for rationality:

M, w = [rationalc)¢ iff $>c

With this, it is possible to say which coalitional choices are rational.

Also needed is a way to express what actions should be performed by coalitions, and the
link with rationality. The following operators are used:

o F(C:¢)
Coalition C is forbidden to choose ¢. It makes no difference whether ¢ is available
as a choice.

13



P(C : )
Coalition C' is permitted to choose ¢. This means it is not forbidden to choose ¢.

0(C: )
Coalition C' is obliged to choose ¢. It is forbidden to choose —¢.

Stating that a choice is rational for a coalition itself, is the same as stating that this
choice is permitted in the interest of the coalition.

The following statements are true in the described system:

If something is permitted for a coalition, it is not obliged to do the opposite.

For a choice to be permitted for a smaller coalition, it needs to be rational for the
grand coalition.

If ¢ is permitted or % is permitted, then ¢ V 1 is permitted.

If a possible choice of C' is obligated, then it is rational for the grand coalition, and
therefore als obligated for other smaller coalitions.

A rational choice of a coalition is forbidden if it is in conflict with a rational choice
of the grand coalition.

If ¢ is forbidden and ) is forbidden, then ¢ A ¢ is forbidden.

The following statements are not true in the system:

4.1

If ¢ is obliged and v is obliged, then ¢ A ¥ is obliged.
If ¢ V ¢ is permitted, then ¢ is permitted or 1 is permitted.
If ¢ is obliged, then —¢ is not obliged.

If a choice is rational for a coalition, it is not always rational for the grand coalition
(and the other way around).

If ¢ is obligated, then ¢ is permitted.
If ¢ is obligated for C, then C' can choose ¢.

Examples

Voting game The voting game example used before might be a good example here, as
well. With four parties, there are fifteen possible coalitions (the empty one not counted).
All of the parties have the choice to vote for a certain coalition. If the coalition is a
majority, then it gets money to spend. The set of agents is the set of parties, renamed

to P,

Q, R and S. They consist of 45, 25, 15 and 15 members respectively.

A={P,Q,R,S}
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The set of worlds consists of one world in which nobody has money (n), and for each
coalition a possible world in which that coalition gets the money (let’s name these worlds
after the coalitions). So the number of possible worlds is equal to the number of possible
coalitions plus one, which is sixteen.

W = {n7p7 Q7 T? 87pq7pr’ ps’ qr? qs7 TS,qu, pq‘g?prs? qrs?pq/rs}

Choices: if a set X is part of choice set E(w)(C), then C' is able to force that the world
after w is an element of X. This is where the difference between winning coalitions and
the rest becomes clear. The winning coalition {Q, R, S} for example is able to force that
the money goes to them: {grs} € E(n)({Q, R, S})H But {Q, R}, which is not a winning
coalition, is unable to do so. It is unable to force any world after n, so E(n)({Q, R}) = 0.
To take a look at choice sets E(w)(C) in which w # n is not very interesting, so that
will not be discussed.

Investment Imagine the same situation as before: four players all have 1 euro. They
have a choice to invest, and if they all do, everyone gets twice as much back. Because
agents with the same amount of money have the same possible actions, they are consid-
ered equal in this example. Therefore, there are four different coalitions: a coalition with
one agent (C1), with two agents (C2), with three (C3), or with four (C4). The possible
worlds differ in the amount of money the agents have. Let’s call world wsg20 the world
in which all agents have 2 euros, wi1gp the world in which two agents have 1 and two
agents have 0, etc. This notation only gives the number of agents that have a certain
amount of money; it doesn’t specify which agent has which amount. Since agents with
the same amount of money are considered equal, worlds with an equal number of agents
with the same amount of money are considered the same. So, for example, w1100, W1go1
and wpi01 all have two agents with 1 euro and two agents with 0 euros, and are therefore
considered as the same state. The possible worlds then are:

W = {wa222, w1111, W1110, W1100, W1000 }

The choices we want to discuss are all made in w111, since agents always have 1 euro to
start with. So wi111 is the starting state. As said before: only if all four of the agents
invest, then they all get 2 euros. So only a coalition of four agents is able to force was92
as the next world. Formally: {wa22} € E(wi111)(C) if and only if C' = C4. But also
w1111 is a possibility for this coalition, in case the agents choose not to invest. Therefore
{wi111} € E(w1111)(Cy). You could say Cy is also able to force the other coalitions, but
then agents need to make decisions that are not equal, which would be a strange thing
to do. I will not discuss that option here and assume that agents in a coalition take the
same action.

E(wi111)(Cy) = {{wa222}, {w1111}}

'In the original example, a winning coalition got to decide which party could spend which amount
of money. In that case, all worlds could be forced by the coalition, so {p} € E(n)({Q,R,S}), {¢} €
E(n){Q, R, S}), etc.
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A three agent coalition is unable to force a set of one world. When three agents choose
to invest, there are two possible outcomes: the last agent also invests, and everyone gets
2 euros, or it does not, in which case it is the only one that keeps 1. So: {wa222, woo01} €
E(w1111)(C3). When the coalition chooses not to invest, there are also two possibilities:
when the agent invests, it looses its money, and when it does not invest, it keeps 1. So,
in this case: {wlno, w1111} € E(’U)HH)(Cg). Together this results in:

E(w1111)(C3) = {{wa2222, wooo1 }, {wi110, w1111} }

In a similar way, we can describe the effectivity functions of coalitions Cs and Cf:

E(w1111)(C2) = {{w2222, woo10, woo11 }, {w1100, w1110, w1111 }}
E(wi111)(C1) = {{w2222, wooo1, Woo11, Woi11 }» {w1000, W1100, Wi110, W1111 } }

The following is an example of a valuation function, which is also needed for a complete
coalition model. In this example, the propositions that are assigned to the states contain
information about the amount of money each agent has (for example, p = ‘agent z has 1
euro’). A modality [C]¢ in this context could mean that C' is able to force that a certain
agent has 1 euro and another has 0.

The coalition model is further extended with a preference relation, in which different
worlds are compared by the propositions that are assigned to them. With this, it is pos-
sible to express which worlds individual agents prefer. In this example, agents probably
prefer worlds in which they have more money. w999 is preferred by all of the agents,
because they have the maximum amount of money. But only the individual outcome
counts: a hypothetical wsggy would be preferred by the agent that has 3 euros in that
world.

Now the connection is made between the abilities of the coalitions and the preferences
of the agents. Suppose that for an agent w992 is at least as good as w1119, which in turn
is at least as good as wiggo:

W2222 7~ W1110 =i W1000

Then by lifting these preferences to sets, it is possible to say what choice sets are prefer-
able over another. For example:

{wa222} =i {wi110} =i {wi000}

{wa222, wir10} =i {wi110, w1000}

A choice X for a coalition C' is Pareto optimal if there is no choice Y (in the same state)
that is strictly better than X for all agents in the coalition. So in our example, for Cy
the Pareto optimal choice is {wa292}. For the others, no particular set is strictly better
than another, so all choices are Pareto optimal.
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The next thing to illustrate is the notion of undominated choices (and therefore choice
restriction). Suppose a coalition of three C5 has to decide what to invest. Then its
choice set, as said before, contains the following sets:

E(w1111)(Cs) = {{wa2222, wooo1 }, {w1i110, w1111}}

Let’s say INV3 = {wa992, wooo1 } and K EEPs = {w1110, w1111 }- Now, assuming that the
agents in Cj are taking the same action, the choice set of E(wi111)(C3) contains the sets
{wa222, w111} (which I will refer to as INV7) and {w1000, w1111} (called KEEP).

For a choice of ('3 to be undominated, it needs to be Pareto optimal, no matter what
the choice of C3 is. See for example INV3. Two things need to be true for it to be
undominated:

e INV3NINV; needs to be Pareto optimal in F(w;111)(C3) MINV;
e INV3 N KEEP) needs to be Pareto optimal in F(wi111)(C3) M KEEP,

The first condition is true:

E(w1111)(C3) MINVy = {{wa222}, {wi110}}

So INV3NINV;, = {waaa2} is Pareto optimal for Cs. The second condition, however, is
not:

E(wi111)(C3) M KEEP, = {{wooo1 }, {w1111}}

And INV3 N KEEP; = {wgo1} is not Pareto optimal. w111 is better for all agents
in C3. The conclusion is that INV3 is not undominated for C3 in wyi11. The same
argumentation goes for K E'E P;, which is also not undominated.

It is rational for C' in w to try to achieve ¢, if and only if the set of possible worlds
that satisfy a formula ¢ is equal to an undominated choice for a coalition C' in w.
Formally:

M, w [ [rationalc]é iff ¢M>c

For example, if ¢ means that every agent has 2 euros, then [rationalc,] is true, because
{wa222} is an undominated choice for this coalition. It is not an undominated choice
for C3, though, since it is not part of the choice set of ('3 at all. So we cannot say
[rationalc,|wagea. The sets that are part of the choice set of C3, are not undominated,
so there is nothing that is rational to force.

But coalitional rationality is not as much used for expressing what is rational, as for
expressing what is not rational. For example: if C3 chooses to keep what it has, it forces
that the three agents in the coalition keep 1 euro. Let’s call this situation ¢. Now, ¢
contains two worlds: w119 and wy111. This set is of course equal to the earlier mentioned
choice K EEP;3. From the fact that this choice is not undominated, we can derive that
it is not rational for Cs to force ¢.

The forbiddance operator F(C' : ¢, C : 1)) means that C forcing ¢ and C’ forcing ¢ imply
that ¢ A 1 is not rational for C' and C’ together. In the case of C3: if C5 and C3 both
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keep their money, then the resulting world is wi111. For the two coalitions together,
however, this is not a rational choice, because wo992 is a better outcome. Therefore, if
C3 and Cj3 are forming a coalition together, the action to not invest should be forbidden
for both of them. In this stage, the notion of interest becomes important: the action is
forbidden in the interest of the greater coalition.

5 Discussion

Now that I have tried to illustrate the work of Thomas Agotnes ([2],[1]) and Paolo Turrini
([3]) by the same examples, it may be easier to compare the two approaches.

In [2] and [I], notions of norms are simply used to describe possible situations. Let’s
return to the main example. When speaking of the norm to invest 1 euro, the situation
in which all agents invest some amount of money is described. We can reason about
whether or not this situation is possible to achieve, by checking if it is profitable for
each agent. If some agent looses money, then it will not comply with the norm, and the
situation we are talking about will never happen. In other words, the state or world in
which the agents invest that amount will not be reached. The norms that are possible,
are the ones that are profitable for all of the agents.

Norms are constraining the behavior of agents. This is, as we have seen, illustrated by
the deletion of transitions in the Kripke structures that represent the possible worlds
and transitions. But which transitions exactly are deleted? An agent will only accept
a norm if it does not delete the transition the agent wanted to use. So a norm that
is accepted by all agents is only making actions impossible which the agents would not
perform anyway. The profit lies in the fact that agents have knowledge about what
others do. The moment a norm is accepted, agents have knowledge about what others
will not do. Given this information, their choice of action might change. So what this
approach does is providing a strategy based on game theory to make better choices, but
it is still focussed on individual agents. The agents remain selfish, and if cooperation
takes place, then it is to make individual outcomes better.

The approach in [3] uses a notion of interest to define coalitional rationality apart from
individual rationality. With this, it is possible to tell what an agent should do to optimize
the outcome for the coalition it is participating in. This can very well be another choice
than the agent would make in its own interest. To compare the two approaches, we
could say that in [2], agents act in their own interest, while in [3], a way to act in the
interest of a coalition is provided. In this approach, a norm is a guideline, translating
interests of higher levels to lower levels.

Having made that distinction, let’s see how these approaches can be useful for the
purpose they have: improving the interaction and cooperation of computers in a system.
Recall the distinction made earlier, between norms from within a group and norms ‘from
above’. For a system that is guided by the latter, the approach in [3] is very relevant.
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A designer of such a system can define goals that it has to reach. These goals can be
translated to behavior constraints for subsystems, then for subsystems of these systems
and so on. In the end, this will result in constraints for the smallest parts of the system,
that still, indirectly, optimize the outcome for the entire system. In a top-down way,
each part of the original system gets these limitations that are needed to optimize the
outcome on the highest level. In the opposite situation, if these norms from above
are no part of the system, then a game theoretic approach like in [2] might be better.
The smallest parts of the system will act selfish, and thereby determine the behavior
of subsystems on higher levels. The outcome for the entire system depends, indirectly,
on the selfish agents on the lowest level. This is a bottom-up way of working. When
it comes to applying in computer science, both notions of norms can be relevant and
important, but in different situations.

To return to my question which I started with: how are the two notions of norms related?
At first, they seem to exclude each other. But by examining the two approaches further,
we can see that different assumptions are made about how agents behave and how the
accepting of a norm works. An agent is selfish in one approach, but acting in the interest
of the group in the second. One approach is focussed on optimizing scores of individual
agents, and explains cooperation as letting each other know what actions will not be
taken. That is what norms do, in that case: providing information, which is the best way
of letting selfish agents cooperate. The other approach is focussed on optimizing scores
for the group, while individual agents are not important. Here, norms are the translation
of higher level interests to lower level behavior constraints. With these constraints, the
score of the group is optimized. So, in both cases, norms help agents to cooperate, but
with different goals, and therefore in different ways. If the goal is optimizing the score
of the group, it is not clear why agents should cooperate from their own perspective. So
apart from the norm, there have to be rules about what happens if an agent does not
cooperate. In the game theoretical approach, this is not needed, since the norm does
not exclude individually preferred actions. Every agent has to accept a norm before it
is applied to their system, so there is no doubt they will follow it. So the deontic norms
are explaining what should be achieved with the use of prohibitions, while the game
theoretical norms tell us what can be achieved without prohibitions.

Are these both relevant in computer science? Let’s recall the two main fields of research
in Cognitive Artificial Intelligence I mentioned in the introduction: 1) learning more
about human cognition by trying to ‘teach’ its abilities to computers, and 2) gaining
techniques to make smarter machines by studying human cognition. Since a human
takes its own decisions and acts selfish, in a way, norms as in game theory can explain
a lot about human behavior. The second kind of norms are less relevant in this re-
search. Things like making laws for citizens to rule a country are not part of Cognitive
Science.

Focussing on the other field, where the goal is to make smart systems, it is very relevant
to have a way to tell what individual agents in a system should do. Individual scores
do not matter. So the game theoretical approach seems to answer a question which is
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not relevant here. The deontic approach is very relevant, but misses something. In the
introduction, I mentioned a few ways in game theory to force agents to perform a certain
action, from [5]. Being able to force agents to perform or not perform certain actions is
essential, so these elements should have a place in the approach.

6 Conclusion

To discuss the difference between game theory and deontic logic on the subject of norms,
I have summarized [2], [I] and [3]. T have used the first two as an example for the game
theoretic view on norms, while the last one was an example of the deontic approach.
After summarizing the relevant parts of these papers, I have tried to illustrate both
approaches with the same examples, to be able to compare them. Comparing the two
approaches, I saw that they are making different assumptions on the behavior of agents
and the goal to be reached. I concluded that they were solving two different problems,
and that the notions of norm are related but not the same. The norms in the game
theoretical approach have a more descriptive purpose, while the norms in deontic logic
prescribe what agents should do. Therefore the game theoretical approach is not solving
the problem it is focussing on. It can be more relevant in the other field of CAI. The
deontic approach is a sufficient one if the goal is making intelligent systems, but aspects
of forcing agents to behave in a certain way should have a place in it.
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