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Printing the Future: On the Enhancement of 
Bioprinting Techniques Through Artificial 
Intelligence 
 

Abstract: 
Interest in artificial intelligence has skyrocketed, being mentioned in over 2% of all 

publications on PubMed for the past two years. In this literature review, we illustrate the various ways 
in which artificial intelligence can support the field of biofabrication with a focus on bioprinting. 
Computer vision and machine learning are well-suited for various applications in bioprinting, ranging 
from 3D model design, to tuning printing parameters, to development of novel bioinks. The articles 
reviewed showed an overwhelmingly positive view of these and other possible utilisations of 
computer vision and machine learning, and the general view of the development of these technologies 
is one of excited optimism. That said, there are a number of issues, with data acquisition remaining 
the main hurdle within this field. Due to the nature of the bioprinting field, acquisition of data to such 
an extent that reliable ML models can be fashioned requires significant time and resources. This leads 
to many researchers running ML models with inadequate dataset sizes. A worrisome trend within the 
articles reviewed is that specifics such as number of datapoints, training : validation ratio, and 
validation methods are simply not mentioned. When these are mentioned, dataset sizes are often 
inadequate, and researchers often fail to note this fact. Instead, they opted to discuss the wider 
implications of their results without deliberating their credibility. This leads to difficulties when 
comparing results between research articles. This literature review posits that researchers should be 
required to make their ML model publicly available so that they may be scrutinised. In addition, we 
would like to impress that the importance of the creation of open-source databases containing data on 
bioink formulations, printing parameters, and print shape-fidelity would be an extremely useful tool 
for future research within this field. Furthermore, the research found has an understandable preference 
for extrusion printing, which has long been the most used printing method within biofabrication. 
However, the future of bioprinting is likely to feature printing methods with which higher resolutions 
are possible, such as volumetric bioprinting and 2-photon printing. Little research has been done on 
ML applications for these bioprinting technologies, although they are well-suited for similar 
applications as discussed in the reviewed literature. This would be an interesting avenue for novel 
research. 

Keywords: 
Artificial Intelligence, Biofabrication, Computer Vision, Machine Learning, Bioprinting 

Layman’s Summary: 
Artificial intelligence, or AI, is a collection of techniques through which computers can learn 

to recognise complex patterns and draw conclusions from those patterns using machine learning (ML) 
models. A number of different variations and supporting technologies exist, which are expanded upon 
in this paper. These machine learning models are often supported through computer vision, which 
allows information to be extracted from visual data. ML capabilities are growing rapidly with the 
development of faster and more powerful hardware. This advent of AI technologies has a wide range 
of applications, including biofabrication.  
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 Biofabrication is a branch of biotechnology that deals with the automation of tissue 
engineering, mainly focusing on bioprinting. The most widely used technology within biofabrication 
is extrusion bioprinting, a printing technique in which a printing nozzle extrudes the bioink (often a 
hydrogel) in layers to make a 3D object. Bioprinting, as essential as it is to biofabrication, faces a 
number of hurdles. Extrusion printing is a difficult process to get right, mainly because it is 
challenging to find the ideal printing parameters, bioink formulation, and the optimal printing path. 
This means that the printing process is often very slow, as researchers have to make their best guess at 
these parameters and often have to make multiple passes, before they achieve a result that is close to 
what they had in mind.  

 Because AI is so good at finding patterns in data, it is a logical solution to the problems that 
biofabrication is facing. As such, there have been a fair number of researchers who have investigated 
to what extent, and in which situations, AI can be integrated into bioprinting. This literature review 
takes a look at the existing research and aims to draw some conclusions on the applicability of AI 
within biofabrication overall. Generally, the outlook of AI within biofabrication is quite positive, and 
the realistic applications are wide. Although the results of the research reviewed were overwhelmingly 
positive, there are some issues to solve, with the largest being data acquisition. Almost all cases where 
ML was used, a significant positive effect was found on the aspect of bioprinting that the researchers 
were working on. There was no singular type of machine learning model which was found to be 
superior to any other between the articles reviewed, instead the selection of model type is highly 
specific to the application.  

Unfortunately, the nature of biofabrication means that gathering data for AI to learn from has 
to be done manually, which is time consuming and expensive. This is mostly the case for applications 
such as the development of novel bioink formulations, as well as printing parameter optimalisation, 
and less so for cases such as optimising print trajectory. Some researchers made do with smaller 
datasets, expanding them by a prediction method called finite element simulation. A good solution in 
many cases would be open-source databases, so that researchers can combine their efforts. Although 
datasets used by researchers are often limited, researchers are clearly enthusiastic about the new 
possibilities AI brings them, and they are quick to judge their results as successful based on their 
models successfully finding patterns. However, it is often unclear how transferrable and replicable 
their results are due to the small dataset. This is often not discussed by researchers. A trend within the 
papers is that more time is spent on deliberating the biofabrication aspects of the research than on the 
specifics of the models utilised. This is unfortunate, as it decreases the replicability of the research, 
and prevents possible insights which may be gained from this information. In many cases, researchers 
fail to mention important information such as the number of datapoints used, the ratio of training to 
validation data, or data validation methods. This reduces the trustworthiness of their results. When 
dataset size is cited, researchers often fail to mention that the limited size of their dataset (usually 
below the standard threshold needed for the model to accurately reflect true patterns in data) affects 
the credibility of their results, and instead researchers seem more interested in discussing their 
implications without doubting their validity. 

The research articles reviewed showed a bias towards extrusion printing, which is 
understandable considering this technology is used extensively within the biofabrication field. 
However, extrusion printing has limitations concerning print resolution, and technologies such as 
volumetric bioprinting and 2-photon printing are likely to make a come-uppance because of their 
superior printing resolution and a certain degree of freedom in print shape which extrusion printing 
lacks. Little to no research has been done as to the applicability of machine learning methods in 
supporting these types of bioprinting but they are expected to be well-suited for them. This could be 
an interesting avenue of future research.   
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1. Introduction and background information: 
 

 Bioprinting is an innovative technology within the field of tissue engineering that enables the 
automated fabrication of three-dimensional structures. It holds great promise for various applications 
in regenerative medicine, including the eventual creation of functional tissues and organs for the 
purposed of transplantation, drug screening, and disease modelling (Matai et al., 2020). 

 Various 3D printing techniques are utilised for bioprinting, which address the complex 
requirements of tissue engineering. These include, among others: fusion deposition modelling (FDM), 
melt electro-writing (MEW), vat polymerisation-based printing techniques (stereolithography (SLA), 
digital light processing (DLP), and volumetric bioprinting(VBP)), ink jet printing, and powder bed 
fusion-based printing techniques (selective laser sintering (SLS), selective laser melting (SLM), and 
selective electron beam melting (SEBM; Bernal et al., 2019; Daghrery et al., 2023; Gupta & Meena, 
2023; Sing et al., 2017; Ullah et al., 2023). Selection of 3D printing technique depends on the 
purpose, mechanical requirements, and material of the object to be fabricated. It is also important to 
consider whether cells should be added, as this reduces technique selection significantly as many 
techniques require high temperatures or exert excessive pressure on the bioink for cells to remain 
viable during/after printing. Currently, only inkjet, extrusion, MEW, and stereolithography-based 
bioprinting techniques have been successfully adapted to incorporate cells (Castilho et al., 2021; 
Kumar et al., 2021; Persaud et al., 2022). 

 Although bioprinting holds great promise with regards to regenerative medicine, the process 
through which these objects are currently produced is such that they are limited mostly to lab-based 
production, and the widespread production of i.e., personalised bioprinted wound dressings or 
replacement skin for burn victims in hospitals is not yet realistic (Shopova et al., 2023). This is likely 
due in part to the lack of standardised printing parameters and troubleshooting guides for various 
bioinks. 3D printing of non-cell-laden biocompatible materials has already been used to some extent 
in the creation of patient-specific implants for use in orthopaedics and maxillofacial surgery (Shopova 
et al., 2023). Each bioink composition and material combination may require specific printing 
parameters to achieve optimal results. Without standardised guidelines, the process of bioprinting 
becomes more time-consuming and requires extensive optimisation of printing parameters (Ruberu et 
al., 2021).  The need for optimisation of printing parameters adds to the complexity and duration of 
the printing process. Researchers and scientists often engage in iterative experimentation and fine-
tuning of parameters to achieve the desired print quality, cell viability, and functional outcomes. This 
optimisation phase can prolong the time required to produce bioprinted constructs, making large-scale 
production for clinical use challenging (Thattaruparambil Raveendran et al., 2019).  

 To enable the widespread production of bioprinted objects in hospitals and clinical settings, 
there is a need for the development of methods that may streamline the optimisation process in order 
to develop standardised protocols and printers that self-adjust their printing parameters based on 
material and environmental aspects. This would facilitate the translation of bioprinting technology 
into practical and accessible solution for personalised medicine and regenerative therapies. 

 In recent years, there has been a growing interest in leveraging artificial intelligence (AI), 
machine learning (ML), and computer vision (CV) techniques to enhance bioprinting processes 
(Ruberu et al., 2021). These advanced technologies offer new possibilities for improving the 
precision, efficiency, and outcomes of bioprinting, thereby accelerating the progress of regenerative 
medicine. 
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Machine vision, which involves the analysis and interpretation of visual data, can play a 
crucial role in monitoring and controlling the bioprinting process. By pairing imaging systems with 
competent algorithms, real-time feedback can be obtained on the deposition of bioink, cell alignment, 
and overall print quality. Machine vision enables the detection of errors, such as misalignment or 
inconsistent cell distribution, enabling automated adjustments or real-time feedback to optimize 
printing parameters (Liu, Yang, et al., 2022). 

Artificial intelligence and machine learning techniques can further enhance bioprinting by 
facilitating process optimization and predictive modelling. AI can analyse large datasets, including 
experimental results, imaging data, and printing parameters, to identify patterns, correlations, and 
optimal printing conditions. This information can be used to create predictive models that optimise 
printing parameters, improve cell viability, and enhance tissue functionality (Shin et al., 2022). 

Furthermore, ML can assist in the design and fabrication of bioprinted structures. By 
analysing vast amounts of existing data on tissue characteristics, mechanical properties, and cellular 
behaviour, these technologies can generate optimised designs and scaffolds. Such designs can 
consider the specific requirements of different tissues and incorporate factors like cell types, spatial 
organisation, and vascularisation to create more biomimetic and functional constructs (An et al., 2021; 
Sun et al., 2022; Xu et al., 2022). 

This literature review aims to provide a comprehensive analysis of the potential ways in which AI 
techniques can contribute to enhancing the efficacy and speed of bioprinting processes. By examining 
the existing body of research and scholarly articles, this review seeks to elucidate the current state of 
knowledge and identify potential future directions in this emerging field, contributing to the broader 
understanding of how these technologies can be harnessed to improve the efficacy, quality, speed, and 
overall outcomes of bioprinting processes in the field of regenerative medicine. 
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2. General Overview of AI Technologies 
 

Over the past decades, progress in computational power, data availability, and machine learning 
has fuelled significant progress in the development of artificial intelligence technologies. At their 
core, they simulate human-like cognitive functions such as learning, reasoning, problem-solving, 
perception, and language understanding using computer models that act as intelligent agents. One of 
the key drivers behind the creation of sophisticated AI systems is the advent of machine learning 
algorithms (Ketkar & Moolayil, 2021). 

Machine learning (ML) is a branch of AI that encompasses the development of algorithms and 
statistical models which allow computer systems to improve their performance on a specific task 
through learning from vast amounts of data (Shin et al., 2022; Zaman et al., 2021). ML has 
applications in various domains, including healthcare and bioprinting. In the context of bioprinting, 
ML can be incorporated at different stages, addressing various challenges, which will be discussed 
later in this review. 

In addition to ML, the exponential growth in computational power has played a significant role in 
advancing AI technologies. There is a trend, called “Moore’s Law”, which says that the number of 
transistors on identically sized computer chips doubles every two years on average (Debenedictis et 
al., 2017; Moore, 1965). High-performance computing, advances in graphics processing units (GPUs), 
and specialised hardware such as tensor processing units (TPUs), have made it possible to train 
complex neural networks, leading to the development of deep learning models (IEEE Computer 
Society et al., 2022). This type of model simulates human learning processes through a many-layered 
neural network, which progressively extracts higher-level features from the raw input data. Numerous 
types of deep learning models exist, including convolutional neural networks, transformers, and deep 
belief networks, and they may be supervised, unsupervised, or a mixture of the two (Ketkar & 
Moolayil, 2021). 

The division between supervised and 
unsupervised learning is a basic but 
important distinction. Supervised 
learning models are trained on labelled 
datasets, where the labelled data acts as a 
teacher guiding the model’s learning 
process. Classification and regression 
are important terms of prediction in the 
field of supervised learning and ML 
overall. Here, classifications predict data 
based on expected labels of the test data 
based on the labelled training data. On 
the other hand, regression makes 
predictions of validation data labels 
based on characteristics of the data 
(Shin et al., 2022). The model 
progressively adjusts its parameters in 
order to reduce the discrepancy between 
the  predictions and the actual labelled 

output (Jo, 2021). Important to note is that the labelled data must be split into sets, one for training 
purposes, and one test set to assess the quality of the model’s predictions. Without splitting the data 

Figure 1. Methods of machine learning, taken from An et al. (2021). 
Each type of machine learning model takes input and transforms it 
into output. The process through which this transformation takes 
place depends on the type of model and typically involves a number 
of layers and functions. 
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into these sets,  it would simply learn the correct answers to each datapoint and may not yield 
adequate results when used on novel data. Performance of classification systems is usually measured 
by a confusion matrix (Figure 2), and high-performing classification systems feature relatively few 
false negatives/positives. Within the realm of biofabrication, classification systems have applications 
in post-processing analysis such as classifying tissues based on characteristics like cell type, density, 
and distribution (classification), or predicting and optimising parameters such as material viscosity, 
print speed, and temperature, in order to achieve desired results (regression). 
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Figure 2. A confusion matrix, used to calculate model accuracy depending on the ratios between accurately 
and falsely predicted values. A highly accurate model will maximise true positives and negatives and minimise 
false positives and negatives. This type of matrix is also used when determining model sensitivity (the ability to 
find all positives). 

 

Unsupervised learning, on the other hand, deals with unlabelled data, where the algorithm 
investigates relationships and structures within the input without any guidance. This is done to 
generate meaningful clusters and to reduce the dimensionality of the data (Razzaque, 2019). 
Unsupervised learning is already a common technique in bioinformatics. Principal component 
analysis (PCA), for example, has proven to be a useful analysis of genetic and metabolomic data, for 
example to visualise and identify patterns typical of certain cancers (Worley & Powers, 2013). This 
type of analysis is invaluable when working with complex data where explicit labels are unavailable, 
providing valuable tools for data exploration and pattern discovery (Jo, 2021). This may prove useful 
in the field of biofabrication in a number of ways, for example in the characterisation of tissue 
architecture, and the design of scaffolds based on these structures. It could also be useful in quality 
control and prediction of bioink, biomaterial, and cell behaviour.  

Scoring or evaluating the performance of these ML models typically involves metrics such as 
precision, recall, F-1 score, mean squared error (MSE), and the area under the receiver operating 
characteristic curve (AUC-ROC), depending on the specific problem and learning type (Kamath & 
Liu, 2021). The formulas for these metrics can be found in figure 3. Important for the scoring of a ML 
model is that the model has successfully converged. This means as much as that the model has found 
its (local) optimum parameters, and subsequent iterations do not significantly change the outcomes of 
the model, the ML model has stabilised.  

While supervised and unsupervised learning models are perhaps the most commonly used 
learning methods used in ML, other architectures exist. These include reinforcement learning (where 
the model learns through trial and error from interacting with its environment), semi-supervised 
learning (where the model generates a surrogate supervision signal without externally labelled data), 
transfer learning (training a model for one task, and leveraging that knowledge to improve 
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performance on a related task), and many others (Razzaque, 2019). The choice of the ML method and 
the stage at which it is incorporated in bioprinting depends on the specific goals of the project, the 
type of data available, and the challenges being addressed.  

Figure 3. Commonly used performance metrics for machine learning models and their corresponding equations.  
Here, TP = true positives, FP = false positives, TN = true negatives, FN = false negatives, yi is the ith observed value, pi is 
the corresponding predicted value for yi, and n is the number of observations.  

In general, we can divide the applications of the ML methods in the biofabrication process up into 
three categories: pre-processing, in-processing, and post-processing (see figure 4). An example of how 
these categories might be applied to real-life research can be found in figure 5. Here, pre-processing 
accounts for everything that happens before the bioprinter is turned on: from preprocessing data 
(cleaning up and preparing data used for bioprinting, ensuring data quality, normalisation, and 
standardisation) to 3D model generation. In-processing entails all methods applied while the 
bioprinter is on, including bioprinter optimisation (optimising printing parameters, such as print 
speed, nozzle temperature, and material deposition, to improve print quality and efficiency), 
automated printer calibration, and real-time monitoring (surveying print quality and detecting issues 
such as nozzle clogs or material inconsistencies to adjust printing parameters in real-time and to alert 
the researcher of any issues). Post processing applications mainly relate to quality control, analysing 
the printed tissue for structural defects, cell viability, and overall quality, as well as analysing and 
characterising the printed tissue’s mechanical properties, cellular behaviour, and compatibility with 
the desired application. Dividing a ML-model up into these pre- in- and post-processing steps helps 
give an easily digestible overview of the research being done, an example of this can be found in 
figure 5. 

ML performance metrics Equation 
Precision 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

Recall/true positive rate 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 

False positive rate 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

 

Specificity 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 

F1-score 2
1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗  1
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

MSE ∑(𝑦𝑦𝑖𝑖 −  𝑝𝑝𝑖𝑖)2

𝑛𝑛
 

AUC-ROC Area under the ROC curve, which plots 
recall/true positive rate against the false positive 
rate. 

Pre-processing Bioimaging Computer aided 
design 

Cell selection Biomaterial 
selection 

Bioprinting Extrusion 
bioprinting 

MEW Inkjet bioprinting SLA 

Post-processing Maturation of 
bioprinted cells 

Submerge 
method 

Real-time 
monitoring 

Bioreactor 

Figure 4. A selection of factors that may be present in the different stages of bioprinting, adapted from Shin et al. (2022). 
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Most biofabrication applications mentioned above rely at least in part on visual data. This is 
acquired by the system through a field known as computer vision (CV), which enables computers to 
extract meaningful observations from images and/or videos in a manner similar to humans (Liu, Liu, 
et al., 2022). This process starts with the acquisition of visual data by a sensor (i.e., a camera) which is 
then processed to improve its quality or to extract specific features (i.e., by utilising techniques and 
filters such as noise reduction, contrast adjustment, and edge detection). Afterwards, the CV extracts 
relevant features from the image that may be used for further analysis, these include features such as 
edges, shapes, colours, and patterns. Further analysis can be done through deep learning models such 
as convolutional neural networks (CNNs), which can identify objects, scenes, or patterns, and draw 
meaningful conclusions (Liu, Wang, et al., 2022). 

CNNs are a class of deep learning algorithms designed specifically for structured grid data, such 
as images and videos. Characteristic of this type of neural network is the use of many layers, which 
automatically and adaptively learn to represent the input data in a hierarchical structure based on 
increasingly complex features and patterns (Karim et al., 2018). CNNs typically use three types of 
layers: convolutional layers which extract features using learnable features/kernels and represent them 
as a stack of feature maps (where higher layers represent features pulled from a wider context 
window), pooling layers which help reduce dimensionality and retain only the most important data 
from the feature maps (thereby preventing overfitting), and fully connected layers which process the 
extracted features and use them to make decisions based on the data (Karim et al., 2018). 

In addition to CNNs, another type of neural network highly applicable to bioprinting is the 
Recurrent Neural Network (RNN), which is designed to process sequential data, where information is 
retained between cycles and past patterns are remembered by the system. This is unlike the most basic 
neural network architectures such as Feedforward Neural Networks (FNN) in which the information 
travels through the layers in only one direction (input layer  hidden layer(s)  output layer), where 
each layer is made up of nodes (neurons) connected to nodes in the subsequent layer (Svozil et al., 
1997). In RNNs the hidden state is instead updated based on the previous hidden state(s) and the 
current data. This type of neural network is particularly useful in biofabrication applications that are 

 
Figure 5. An overview of the steps used by the machine learning model developed by Muhlroth & Grottke, 2022. 
 



A n n e  Z i j l  –  2 8 1 7 2 3 3    

11 | Printing the Future: On the Enhancement of Bioprinting Techniques Through Artificial 
Intelligence 
 
 

time-sensitive, such as real-time quality assessment and dynamic adaptation during the printing 
process. 

As with learning types, there are many variations upon neural network architectures in addition to 
the widely used RNN, FNN, and CNN types. These include Long Short-Term Memory Networks 
(LSTMN, a variation on RNNs), Gated Recurrent Units (GRU, a simpler version of the LSTMN), 
autoencoders (unsupervised network used for dimensionality reduction), and many others (Karim et 
al., 2018; Mirzaei et al., 2022). However, in order to limit the scope of this review, we will limit 
ourselves to the neural network architectures most applicable to 3D bioprinting, focusing on  print 
quality control and optimising printing parameters. 
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3. Scope and Methodology: 
 
 As the fields of regenerative medicine, biofabrication, and artificial intelligence are 
developing rapidly and evolving constantly, the publication range of articles used was limited to 
articles published within the last five years (2017-2023), only including peer-reviewed articles from 
before 2017 that were deemed exceptionally interesting or important to the field. In addition to 
evolving rapidly, these fields also have a wide range of applications. In order to reduce the scope, 
articles on CV, AI, and ML had to also mention applications in biofabrication to be included, unless 
the article was chosen to help illustrate a specific technique or concept.  

Biofabrication and regenerative medicine utilise a large number of techniques for the automated 
production of tissues, including but not limited to de/re-cellularisation, microfluidic devices, self-
assembly, electrospinning, and bioreactor systems. To reduce the scope of this literature review, and 
also because few other appropriate topics have been investigated in depth so far, topics discussed were 
limited to aspects of 3D printing with bioinks, as this technique is widely used in biofabrication 
applications and is thus highly relevant. In addition, while there are many techniques that fall under 
the 3D printing umbrella, the AI technologies discussed (such as those used for quality control) can be 
applied in many types of 3D bioprinting. While techniques such as electrospinning and electro melt 
writing may benefit from AI-enhanced quality control, the focus of the literature review is limited 
mostly to 3D printing methods which utilise bioinks, as these can have a high degree of variance in 
composition and behaviour and are thus more prone to irregularities that could be identified by AI. 

Our search strategy involved using a combination of the following key terms, which were adapted 
and combined as needed to yield the most relevant results: 

- Biofabrication 
- Machine learning 
- Computer vision 
- Artificial 

intelligence 
- 3D  
- Bioprinting 
- Bioink 

- Quality control 
- Cell viability 
- Tissue engineering 
- Bioprinter 

optimalisation 
- Tissue constructs 
- Scaffold design 

- AI-enhanced tissue 
engineering 

- Automated tissue 
production 

- AI in tissue 
regeneration 

- Deep learning

 

Our search encompassed variations and combinations of these terms, ensuring a thorough 
exploration of the literature. The search was conducted on the WorldCat catalogue, focusing on 
articles published within the specified time frame (2017-2023) and related to the fields of regenerative 
medicine, biofabrication, and the application of AI technologies in this context.  



4. Review of Literature: 
 
4.1 Interest in topics over time 

Interest into AI and biofabrication is pictured in the form of PubMed citations in figures 6, 7, 
and 8. Data from before 1946 is sparse. This doesn’t affect our graphs however, since the first hit for 
any of our search terms occurs in 1951 for artificial intelligence, with the other AI-related 
technologies all following within around a decade. The first hit for biofabrication occurs in 1985, and 
for bioprinting in 2000. By this time, papers discussing artificial intelligence and/or neural networks 
are in the hundreds per year, and it is no surprise that the first hit which mentions both an AI 
technology and either biofabrication or bioprinting occurs in 2003, only 3 years after the first mention 
of bioprinting. The first mention of 3D bioprinting by the Gartner Hype Cycle (a graphical 
presentation by the information technology firm Gartner, which represents the progress of emerging 
technologies) occurred in 2011, with the topic seeming to have been emerging since 2009, although 
the number of papers on the topic was fairly low (Muhlroth & Grottke, 2022). 

From these graphs it is clear that interest in AI technologies has skyrocketed and has entered 
an exponential increase in citations since approximately 2016-2018, where AI in particular is 
mentioned in over 2% of all publications on PubMed for the past two years. The year 2022 was 
chosen as a cutoff point for the charts, as a flattening in the curve beyond this point may indicate that 
not all publications for the following two years may have been accessible for the tool or may not all 
have been published on PubMed (data was gathered for this graph in March of 2024), and as such it 
would be remiss to conclude that there would be a stabilisation in interest in certain topics. While at a 
much smaller scale, interest in biofabrication and bioprinting has been increasing as well, and 
bioprinting seems to have especially grasped the interest of researchers, showing a significant upturn 
in citations since 2015 (possibly related to the discovery of induced pluripotent stem cells in 2012 and 
their implications for the field). So too, there is an increase in interest in combining 
biofabrication/bioprinting with AI technologies, which roughly follows the shape of the bioprinting 
graph. This is logical, as bioprinting is a branch of biofabrication which more easily lends itself to 
optimalisation and pattern recognition through AI technologies. As an aside, we have added graphs 
showing only biofabrication/biofabrication and/or the combined search terms in order to better 
visualise trends in their data due to the stark difference in proportions compared to AI technologies. 
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Figure 6. Graph developed through the tool “PubMed by year” showing the trends in citations of biofabrication 

and AI-related search terms. This graph and the ones in figures 7 and 8 were made using the tool “PubMed by Year”, 
developed by Ed Sperr using open-source data from NCBI’s PubMed, made available via GitHub (Sperr, 2016). They show 
the number of citations in the database that mention given search terms as a proportion per 100.000 citations, to generate a 
visual illustration of change in interest in given topics. Search terms were biofabrication (yellow), bioprinting (orange), AI-
technologies (greens, blues, and purple), and papers combining either biofabrication or bioprinting with at least one AI 
technology (red). The database used by the tool is PubMed, which contains citations from approximately 26,000 journals, 
including articles from 1966 onwards (through the MEDLINE database) and from 1946 to 1966 (through the 
OLDMEDLINE database). For our graphs, we elected to have the time axis start from 1980 to limit the part of graph which 
would be barely distinguishable from 0.  
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Figure 7. Graph developed through the tool “PubMed by year” showing trends in citations of biofabrication search terms as 
well as a combined search term attempting to show citations of papers which combine the ideas of biofabrication and an AI 
technology. 

 
Figure 8. Graph showing solely the trend in citations using a combined search term attempting to find papers which combine 
the ideas of biofabrication and an AI technology. 
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4.2 Review 
 
Please find a summarising table of the reviewed research articles in Appendix A for more information. 

Main hurdle: 

 Many of the articles reviewed posited that the acquisition of data, whether that be the manual 
gathering of data or acquiring data via open-source databases, is the main hurdle that the field of 
biofabrication is currently facing (An et al., 2021). Another factor that was often cited as being one of 
the greatest challenges in 3D bioprinting, especially when concerning extrusion printing, is that of 
printing resolution and shape fidelity (Arjoca et al., 2023; Guan et al., 2022; Liu, Liu, et al., 2022; 
Liu, Yang, et al., 2022; Sun et al., 2022). As such, a majority of the research found was focused 
around integrating ML and CV methods into biofabrication to improve these two factors. Additional 
hurdles named were that of achieving optimal bioink formulation and optimising printing parameters 
(Chen et al., 2022; Freeman et al., 2022; Lee et al., 2020; Shin et al., 2022). The main solutions to 
relieving printing errors had to do with optimising print trajectories by adjusting print-axis corrections 
(Liu, Liu, et al., 2022; Liu, Yang, et al., 2022). Data acquisition for print trajectory was generally less 
fraught, whereas research that aimed to optimise bioink formulation and printing parameters generally 
found data acquisition more challenging. As a result, ML models used to optimise print trajectories 
more often had sufficient data to support complex ML models, whereas research that had issues 
gathering enough data (concerning bioink formulation and optimising printing parameters) such as 
that of Nadernezhad & Groll (2022) and that of (Xu et al., 2022), more often stuck to simpler models.   

Success of research: 

There is a wide variety in the ML methods used between the articles reviewed, and there doesn’t 
seem to be one type of neural network (deep learning or otherwise) or other kind of ML model that is 
best suited for biofabrication applications in general. Instead, the choice in ML model to use is highly 
specific to the project and the individual needs and intricacies of the research.  

 Although the overwhelming majority of research reviewed found positive results using their 
ML method of choice, and researchers generally held a shared belief in the potential of ML to 
revolutionise biofabrication processes, there is a question of reliability of their results. Not all research 
had large sets of data to use. As a general rule of thumb, the ANN community requires the dataset to 
have at least 50-1000 times the number of prediction classes versus the sample size, for the sample 
size to be at minimum 10-100 times the number of features, or for the sample size to be at least 10 
times larger than the number of weights in the network. Even so, the “factor 10” rule has been found 
to be lacking in conservativity, and a factor 50 rule would enable more sufficient performances 
(Alwosheel et al., 2018). This usually leads to models which use thousands of datapoints, and a few 
hundred datapoints is generally thought of as a small dataset, which has been shown to result in scaled 
errors of up to 15% if not accounted for, whereas datasets of at least a thousand datapoints showed 
scaled errors of 5% and below (Zhang & Ling, 2018). Unfortunately, many of the research articles 
which were reviewed did not reach an adequate dataset size. As can be garnered from the table in 
Appendix A, four articles failed to specify their dataset size, five had datasets below 500, and only 
four articles featured datasets of at least a thousand datapoints (of which one was achieved through 
finite element simulation). As such, while these ML models may have converged, there is a chance 
that patterns found by these models may not have been representative of the population. This is 
difficult to ascertain without access to the data and models used, but it is important to note that a ML 
model successfully finding patterns is not necessarily indicative of the model’s success in accurately 
representing the data. This is not generally mentioned in the research articles reviewed which had to 
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deal with small datasets, although some (such as Xu et al., 2022) do mention wanting to increase their 
datasets through increased sampling in future research. The importance of this becomes clear when 
trying to replicate results in another research. If datasets are too small, patterns found may only be 
representative of patterns within that specific dataset, and not representative of a whole population 
(e.g., an AI might draw the conclusion that humans should not consume dairy if their sample 
contained a disproportionate number of persons with lactose intolerance). Several of the papers 
reviewed increased their dataset sizes through finite element simulation, which can be an appropriate 
and cost effective way to handle small dataset sizes if there is a careful validation process. 
Performance metrics such as precision, recall, F1-score, and AUC-ROC are invaluable in determining 
whether dataset size is sufficient. In addition, validation curves showing model performance (e.g., 
accuracy or error) can be used to determine whether additional data might be necessary, as a plateau 
in the validation curve may indicate that further data additions no longer significantly increase the 
model’s performance.  

Data: 

A common issue among the literature reviewed was the challenge of acquiring sufficient data for 
the training and validation sets in order to generate reliable results from the ML model. This was even 
touted as often being one of the largest challenges when developing a ML for biofabrication purposes 
(Shin et al., 2022). A large dataset, generally containing at least 1000 data points, is crucial for a ML 
model to draw meaningful conclusions about patterns and variations present in the data (Shin et al., 
2022). In addition, a large dataset is necessary to help prevent overfitting and ensure the model can 
perform well using novel data. Data was generally found difficult for a number of reasons, gathering 
visual data from bioprinting takes a significant amount of time and resources in the preparation of 
bioink, the printing itself, and the processing of the data (including computation time in the case of 
big data). Gathering data on biomaterial properties for the design of novel bioinks is also highly time-
consuming and expensive, requiring the generation of large tables based on numerous rheological 
tests.  

While some researchers worked with smaller datasets, some made use of simulated data. One 
example is the group of Sun et al. (2022), who generated a dataset with 6000 data points based on 
finite element simulations, although 2000 points were found to be sufficient to result in convergence 
around the 55th epoch of their ML models (a recurrent neural network and a convolutional network). 
Another group which went the simulation route was that of Guan et al. (2022), which generated 
simulated data for their research on compensating for the light scattering caused by cell-laden bioinks 
in digital light processing. They initially gathered data through fluorescent staining and imaging of 
printed scaffolds, and combined the data gathered with that of the masks used to generate simulated 
augmentation data to be used by their deep neural network. Both studies considered that simulating 
data significantly reduces time and resources spent on data gathering, without compromising on ML 
performance.  

Other researchers didn’t go this route, instead generating and compiling data manually, making do 
with smaller data sets.  Xu et al. (2022), opted to combine results from a number of simpler ML 
systems to account for their lack of data (a mere 405 data points) in order to yield the most reliable 
results. Shohan et al. (2022), on the other hand, found a dataset of 660 data points to be sufficient to 
run a number of ML methods. However, this data was split 1:1 into training and validation sets, which 
would be deemed uncommon by Shin et al. (2022), who claim that large databases will usually 
dedicate 80% of data to the training set whereas smaller datasets might push towards 60-70% of the 
data to be used for the training set. The research group, however, deems the results of their research 
were positive as all models used were able to spot patterns in the data. Similar research methods were 
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used by the same group previously, to the same conclusion (Shohan et al., 2021). However, taking into 
account the small dataset and the method of splitting data 1:1, and given that ML methods will 
attempt to find patterns in data regardless of their existence, it is unclear whether the results found by 
this research group are reliable. The same goes for the research by Nadernezhad & Groll (2022), who 
generated a library of rheological data and printability scores for 180 different hydrogel formulations 
with just 13 rheological and printing parameter measures per hydrogel formation. 

The group of An et al. (2021) states that it is unclear how ML will affect 3D bioprinting, and that 
two major factors will be Big Data and Digital Twin. ML models generally require large datasets, and 
complex ML models even more so than simpler ones, and these datasets are often not as readily 
available as they are for other applications of ML. One example is image-generation MLs such as 
Dall·E  and Midjourney, which are both AI systems that can generate works of art and realistic images 
based on text-based prompts, using the vast number of images readily available on the internet. Vast 
databases such as these are not yet available for many biomedical applications and would help 
immensely in providing reliable data sources for researchers. The beginnings of such databases are 
already being worked on. Shin et al. (2022) make a particular note of the advantages of open source, 
and its benefits to the biomedicine research community. One recent example is a publicly available 
web-based nanomaterial database, which consists of hundreds of unique nanomaterials with annotated 
nanostructures providing nano-descriptors for use in ML. In addition, Digital Twins, being a cell-by-
cell digital copy and model of human organs, could provide a significant support for ML applications 
in biofabrication research. The group of An et al. (2021) envisions a future of 3D bioprinting which is 
supported by ML and big data, through digital twinning and open-source databases. A graphical view 
of such a future as envisioned by their group can be seen in figure 9. 

 

Figure 9. A future of 3D bioprinting, as envisioned by An et al. (2021). Common aspects of 3D 
bioprinting research in the manner in which it is done currently are broken up into pre-processing, 
processing, and post-processing steps. Through the integration of machine learning and big data, and 
the various components thereof, An et al. (2021) envision a future of 3D bioprinting where pre-
processing is fully supported by digital twins, and a sidestep may be made for in silico experiments, 
overall streamlining the process through which bioprinted models would be made. 
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Choice of ML model 

 There did not seem to be a trend in which types of ML models were selected for the purposes 
of the different studies, although many of the researchers opted to compare between different types. In 
research which compared the performance of different types of ML model, there was no type of model 
which performed significantly better over different studies. This can mean that the optimal choice of 
ML model is highly dependent on the specifics of its implementation. Of course, this makes sense, as 
certain types of models have been developed to be specialised for certain types of data and certain 
types of patterns within that data. Even so, some of the studies we reviewed fed similar data to their 
models for similar purposes (increasing print shape fidelity) and found that different types of ML 
model performed best. In those cases, it is difficult to ascertain why one ML model performs better 
than the other when the type of data and purpose is similar between studies. It may be that this is due 
to the often-small datasets showing study-specific trends not reflective of the data as a whole. It may 
be that there are study-specific quirks that were not discussed as having an influence on the type of 
ML model that would be most applicable. It may also be that for certain ML model types, the choice 
between them doesn’t matter all that much, or there are settings and variations to the model which 
may have varied between results (which weren’t discussed). It isn’t possible to tell for certain from 
the data examined alone and would require further research with larger datasets to verify. 
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5. Discussion and synthesis 
 

Several papers discussed that the main problem with developing ML for biofabrication is the 
gathering of sufficient amounts of data. It has been proposed that open-source databases will be highly 
beneficial in this regard, as they have been in other applications of ML. What these papers do not 
discuss, however, is the likelihood of applicability of data between bioprinters. As bioprinters can 
vary greatly from machine to machine, it may be difficult to ascertain to what extent data is dependent 
on the specific bioprinter’s features, and which parameters of the bioprinter have to be reported in 
order for data to be replicable. As such, there is a need for standardisation. This is also important 
when considering the replicability of rheological data of hydrogel formulations, although these have 
been more widely discussed in the past. When taking silk hydrogels as an example, not only does the 
processing of the silk (i.e., length of boiling time) have a great effect on the materials rheological and 
mechanical properties, so too does the choice of supplier. Biofabrication, by nature, is largely reliant 
on substances derived from biological origins, and as such there is great variation between samples 
and suppliers. This would be important to note in any open-source database.  

Perhaps logically, there seems to be a trend in the papers analysed, that the focus of the research 
articles lies more on the biofabrication aspect and the results of the ML methods than on discussing 
the specifics of their ML methods. Researchers seem to be much more interested in relationships they 
find in their data and explaining and using those relationships for the development of improved 
biofabrication techniques. Many of the papers discussed only spend the bare minimum on discussing 
the specifics of their ML methods, 6/15 papers did not appropriately describe the number of 
datapoints used, 8/15 neglected to mention the ratio of training : validation data, and 8/15 did not use 
appropriate methods to validate the data (instead, 6 of these papers relied solely on assessing print 
quality). This is worrisome, as without this information it is difficult to assess the accuracy and 
trustworthiness of their results. Many of the papers which do cite the size of their datasets used a 
worryingly small amount of data, often much less than the standard minimum of 1000 datapoints that 
the average ML model needs in order to provide results which are reflective of true patterns in the 
data. This is understandable in part due to the biological nature of the data and the often difficult, time 
consuming, and expensive process of gathering data for the ML model to use, but the problematic 
nature of this lack of data is often not mentioned by the researchers as a deficiency in their research. 
This begs the question whether many researchers do not fully understand the importance of a large 
dataset in ML, and the implications on their results of using an inadequately sized dataset. In addition, 
the lack of exposition on the specifics of their ML models does not contribute to a greater 
understanding of the ways in which AI methods can be applied in biofabrication and doesn’t allow 
researchers to find patterns in what may or may not work for their intended research. As such, 
although many of the reviewed papers discussed the benefits of an open-source database of 
rheological and printability data, we would argue that it may also be beneficial to the scientific 
community if researchers were to publish their models (via GitHub or another resource) to contribute 
towards a greater understanding of their research for readers, as well as a good jumping-off point for 
researchers wishing to further research the various ways in which AI technologies can contribute to 
biofabrication methods.  

Another understandable but limiting focus of the reviewed research is that of printing method. 
The most used printing method within biofabrication has long been extrusion printing, and the table of 
articles in the review portion of this paper reflects that. It is difficult to find research that investigates 
the applications of AI technologies in biofabrication that does not make use of extrusion printing. 
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Some were found which discussed MEW, and a solitary article was found which discussed SLA and 
drop-on-demand printing, but these papers are in a very small minority. This is understandable, as the 
simplicity of extrusion printing and the issue of printing resolution mean that AI methods can be 
clearly and easily implemented in order to increase print quality. Because of the widespread use of 
extrusion printing and its simplicity, selecting this printing method for their research of applications of 
ML and computer vision in biofabrication is logical and a good proof-of concept, but extrusion 
printing is not necessarily expected to continue being the optimal method of 3D bioprinting. There are 
inherent limitations with the method, including its printing resolution. As such researchers have been 
adapting novel printing methods for biology such as volumetric bioprinting and 2-photon 
polymerisation (Bernal et al., 2019; van Altena & Accardo, 2023). As a proof-of-concept, the research 
reviews have been successful at showing that AI technologies can be implemented to spot patterns and 
improve print quality in extrusion printing. With regards to the future of biofabrication it would be 
interesting and valuable to show whether these technologies are applicable in other forms of 
bioprinting.  
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6. Conclusions and Future Research 
 
 In conclusion, many researchers view the future of biofabrication as a bright one with a 
myriad of possibilities. The main issue with biofabrication cited by many researchers in extrusion 
printing is that of printing resolution and print shape fidelity, which is dependent on many factors 
including printing parameters and bioink formulation. The traditional approach to addressing these 
challenges involved extensive manual fine-tuning, a process both time-consuming and resource 
intensive. The studies reviewed have shown that this can be alleviated, at least in part, through the 
integration of AI technologies, including CV and ML, in the optimalisation process.  

The articles reviewed showed that researchers have an optimistic outlook on the use of AI for 
optimalisation processes, and initial research has shown positive results. However, due to the nature 
of biofabrication and the requirements of ML models, it remains difficult to acquire sufficient data to 
generate replicable results. In order to alleviate this hurdle, it would be beneficial to future researchers 
to set up open-source databases containing information pertaining to specific bioinks and their related 
print shape fidelity (including visual data), rheometric data, and printing parameters used. Of course, 
this type of database requires structured standardisation to make sure data between research is 
comparable. The generation of such a database would enable researchers in the field to collaboratively 
contribute and access valuable datasets, which would foster a culture of knowledge-sharing and 
accelerate progress in the optimisation of biofabrication processes. This collaborative effort could 
considerably mitigate the data acquisition challenge and propel the field towards more robust and 
universally applicable AI-driven solutions, which could conceivably allow greater scalability of 
biofabrication applications in order to bring them from the lab into the clinic. 

 In addition, although research thus far has logically focused on extrusion-based bioprinting, 
many bioprinting techniques exist which could benefit from AI integration. For instance, volumetric 
bioprinting utilised techniques such as holographic patterning and light-induced methods to print 
structures within a volume rather than layer by layer. This approach allows for faster printing speeds, 
higher printing resolutions, scalability, and scaffold-free printing. Similarly, 2-photon printing 
leverages precise laser-based techniques to achieve exceptionally high-resolution prints by activating 
photo-responsive materials at specific points within a three-dimensional space. Integration of AI 
within these bioprinting techniques could have similar applications as have been researched for 
extrusion printing, including optimalisation of the 3D designing process, optimising printing 
parameters, and analysing and identifying promising bioink formulations. The superior printing 
resolutions, printing speeds, and the option for scaffold-free printing provided by these techniques 
make them more future proof than extrusion printing, and it is likely that such techniques will become 
more widely used as the field of biofabrication evolves into the creation of more complex structures 
which require high resolution, multi-material printing, and complex architecture. As such, it would be 
beneficial for future research to investigate the possibility of AI integration into different bioprinting 
techniques.  
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A. Table summarising literature 
 

Paper Summary Type of 
3D 
printing 

Proce
ssing 
focus 

Main hurdle Success Data-
set size 

Training : 
validation 
data  

Data validation Techniq
ues 

ML model 

Abdull
ah et 
al., 
2023 

Research 
investigating 
ML-based 
image analysis 
to improve 
MEW print 
quality, with a 
focus on printed 
line width. 

MEW In Extremely 
limited dataset, 
which affected 
ML model 
performance 
and 
applicability of 
results. 

Success was limited. 
Models often didn’t 
converge, and validation 
of models failed due to 
limited dataset. 
Maximum ML model 
accuracy was 93% 

168 80:20 MSE, RMSE, 
and R-squared. 
Models were 
optimised with 
Bayesian 
optimiser. 

Comput
er 
vision, 
ML-
models 

Linear, 
vector 
suppose 
machine 
(VSM), 
decision 
trees, neural 
network, 
gaussian 
process 

Chen 
et al., 
2022 

This research 
paper 
investigated an 
AI-assisted 
high-throughput 
printing-
condition-
screening 
system. 

Extrusion 
printing 

In Optimising 
printing 
parameters. 

The optimised conditions 
devised by the AI system 
resulted in the generation 
of higher-quality 
constructs. 

280 
images 

Not 
specified 

Fourfold cross-
validation, 
precision 
calculation. The 
model was ran 
four times using 
different subsets 
for training and 
validation. 

Comput
er 
vision, 
ML 
(deep 
learning) 

Neural 
network 

Guan 
et al., 
2022 

Investigated the 
applicability of 
ML predicting 
and accounting 
for light 
scattering to 
optimize masks 
in DLP. 

Digital 
light 
processin
g (DLP) 

Pre Light 
scattering in 
DLP, which 
makes printer 
optimisation 
difficult. 
Limited 
training set.. 

ML models (inc. deep 
learning) could greatly 
improve shape fidelity in 
DLP. In addition, the 
limited dataset was 
expanded using 
calibrated simulation  

4000 
data 
pairs 
from 32 
printing 
samples 

90:10 Printing quality 
comparison 

ML, 
calibrate
d 
simulati
on (to 
generate 
more 
data) 

NN 
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Huang 
et al., 
2023 

Research using 
ML to predict 
the number of 
cells in thermal 
inkjet bioprinted 
droplets. 

Thermal 
inkjet 
bioprintin
g 

Post Acquisition of 
usable data, 
limited dataset. 

Good accuracy. Random 
forest regression was best 
at detecting 
presence/absence of cells, 
extra tree regressor was 
best at predicting cell 
count. 

156 
droplets 
with 0-
2 cells 

60:40 Linear 
regression was 
used as a 
control 

ML, 
compute
r vision 

Random 
forest model, 
linear 
regression, 
support 
vector 
regression, 
decision tree, 
extra tree. 
 

Lee et 
al., 
2022 

Research using 
ML models to 
design novel 
bioinks based 
on rheological 
and printability 
characteristics. 

Extrusion 
printing 

In Design of 
biocompatible 
3D printable 
bioinks. 

ML techniques were 
successfully implemented 
in order to predict bioink 
predictability based on 
rheological factors. 

25 
hydrog
el 
samples 

74:26 A novel bioink 
was devised 
based on ML 
model results 
and assessed for 
printability. 

ML Inductive 
logic 
programming 
methodology 
often used 
for 
classification 
problem, 
supported by 
multiple 
regression. 
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Liu, 
Liu, et 
al., 
2022 

Research which 
developed a 
method of error 
detection in 
extrusion 
bioprinting to 
increase 
resolution. 

Extrusion 
printing 

In Printing 
resolution, due 
to a lack of 
process 
control. This 
leads to 
inconsistent 
cell 
classification 
and survival 
rates. 

Computer vision was 
successfully implemented 
in order to reduce print 
errors. 

6 
printed 
helices, 
each 
with an 
associat
ed 
point 
cloud 
of data 
with 
unspeci
fied 
size. 

n/a Print quality 
comparison 

Comput
er vision 

 

n/a 

Liu, 
Yang, 
et al., 
2022 

Research which 
developed an 
algorithm which 
analysed errors 
in extrusion 
print trajectories 
using computer 
vision 

Extrusion 
printing 

In Printing 
resolution. In 
addition, there 
was a waste in 
resources due 
to the lack of a 
NN in their 
experimental 
set-up. 

The method showed a 
significant increase in 
print resolution. 

Not 
specifie
d 

n/a Print quality 
comparison 

Comput
er 
vision, 
automat
ed 
image 
analysis 

n/a 

Mieszc
zanek 
et al., 
2021 

Research using 
computer vision 
to optimise print 
settings for 
MEW 
bioprinting. 

MEW In The technique 
used was not 
applicable for 
multi-layer 
scaffolds. 

Research resulted in the 
successful identification 
of optimal printing 
parameters and printing 
of high-accuracy MEW 
scaffolds.  

14580 
data 
points 
per 
print, 
print 
count 
unclear. 

n/a Prints made 
with varied 
printing settings 
were compared 
to control 
group. 

Comput
er 
vision, 
automat
ed 
image 
analysis 

n/a 

Muhlr
oth & 

Research which 
devised a 

n/a n/a The main 
hurdle 

3D bioprinting was 
deemed a particularly 

770 
papers 

Not 
specified 

Sensitivity 
analysis 

AI-
enabled 

Supervised 
ML model 
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Grottk
e, 2022 

method to 
assess the 
current status of 
an AI technique 
within the 
scientific 
community 
using an AI-
enabled data 
mining model. 

identified was 
the lack of 
data-driven 
support and 
automation in 
analysing 
changes in 
interest in 
subjects in the 
scientific 
community.  

promising application of 
AI. The ML model was 
deemed successful. 

and 434 
patents 
(in the 
case of 
3D-
bioprint
ing) 

data 
mining 
model, 
ML 

Nader
nezha
d & 
Groll, 
2022 

Research using 
a ML system to 
predict 
extrusion 
printability of 
novel bioink 
formulations 
based on a 
library of 
rheological data 
and printability 
scores. 
 
 

Extrusion 
printing 

In Global criteria 
that predict 
printability 
may not exist, 
limiting the 
use of an open-
source 
database for 
the formulation 
of novel 
bioinks. 

The ML was considered 
highly accurate and 
successful. Patterns were 
found in rheological data 
which enabled 
printability prediction. 

180 
differen
t 
hydrog
el 
formula
tions, 
each 
with 13 
rheolog
ical 
measur
es. 

Not 
specified 

F-score 
(formula 
calculating 
precision) 

ML Random 
forest model 

Ruber
u et 
al., 
2021 

Research 
investigating the 
applicability of 
ML as a tool for 
printability 
assessment and 
optimisation. 

Extrusion 
printing 

In Predicting and 
optimising 
bioink 
formulation 
printability. 
Resource 
availability. 
Used visual 

The method used was 
successfully implemented 
in order to find optimal 
printing parameters 

Not 
specifie
d 

Not 
specified 

Visual 
assessment and 
comparison of 
print quality. 

ML Bayesian 
optimisation 
framework 
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assessment of 
images to 
score 
printability. 

Shoha
n et 
al., 
2022 

Research which 
used a number 
of different ML 
models to 
predict quality 
of extrusion 
printed GelMA 
constructs. 

Extrusion 
printing 

In Progress in 
biofabrication 
methods needs 
to be supported 
by non-
destructive 
quality 
engineering 
techniques 

Previous research by 
Shohan et al. (2021) 
showed that ANNs could 
extract patterns in 
relative permittivity of 
bioprinted scaffolds 
subjected to dielectric 
impedance spectroscropy. 
This research showed 
that time series modeling 
based on  ML-models 
give accurate predictions. 
 

660 50:50 MSE CV, ML SVM, ANN, 
CNN, LSTM 
(LSTM 
performed 
best) 

Sun et 
al., 
2022 

Research 
investigating 
applicability of 
ML and 
evolutionary 
algorithm-based   
approaches in  
4D print design. 

4D 
extrusion 
printing 

Pre Acquiring data 
from prints is 
difficult, so 
this research 
used finite 
element 
simulations to 
predict forward 
shape-change. 

The ML model was 
found to be extremely 
successful at spotting 
patterns (R2>0.999) and 
can be applied to 
different target shapes 
without having to retrain. 

6000 
data 
points 

70% 
training, 
15% 
validation, 
and 15% 
testing. 

Compared RNN 
to CNN 
performance. 
Accuracy, 
predicting 
speed, MSE, 
RMS, and R2. 

Finite 
element 
simulati
on, ML 

Recurrent 
neural 
network and 
convolutiona
l neural 
network. 

Venka
ta 
Krish
na & 
Ravi 
Sanka
r, 2023 

Research which 
investigates the 
application of 
ML in the 
biofabrication 
of personalised 
nerve guide 

Extrusion 
printing 

In Inadequate 
data lead to 
inaccurate 
predictions. 

ML techniques 
successfully found 
optimum composition of 
materials, fibre diameter, 
and neurotoxicity of 
additives. 

Not 
specifie
d 

Not 
specified 

Unclear. MSE 
and accuracy 
were mentioned 
once and twice, 
respectively. For 
the random 
forest model, it 

Finite 
element 
simulati
on, ML 

Logistic 
regression, 
ANN, kernel 
ridge 
regression, 
SVM, lasso 
regression 
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conduits, with a 
focus on 
biomaterials. 

appears that 
predicted results 
were compared 
to experimental 
results, but the 
researchers 
could have been 
more clear.  

Xu et 
al., 
2022 

Research using 
ML-models to 
predict cell 
viability in 
bioprinted 
GelMA 

Drop on 
demand 
bioprintin
g and 
SLA. 

Post Physics-based 
models are 
unable to 
accurately 
predict cell 
viability. 

The research used 
ensemble learning, 
combining different types 
of ML-models, to 
account for the limited 
dataset to successfully 
predict cell viability. 

405 70:30, 
80:20, and 
90:10 
were all 
evaluated 

R-squared, 
relative error 
(RE), RMSE 

ML, 
ensembl
e 
learning 

NN, random 
forest, k-
nearest 
neighbours, 
ridge 
regression 
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