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Abstract—The Circle of Willis (CoW) is a group of vessels
connecting major circulations of the brain. Its vascular geometry
is believed to influence the onset and outcome of serious
neurovascular pathologies. These geometric features can be
obtained from surface meshes to capture vessel topology and
morphology. A recent deep learning technique to handle non-
Euclidean data, such as meshes, is Geometric Deep Learning
(GDL). To this end, this study aimed to explore a GDL-based
approach to directly reconstruct surface meshes of the CoW from
magnetic resonance angiography images, thereby eliminating
the traditional postprocessing steps required to obtain such a
mesh from volumetric representations. The network architecture
includes both convolutional and graph convolutional layers,
allowing it to operate with images and meshes at the same
time. It takes as input an image volume and a template mesh
and outputs a 3D surface mesh. Experiments were performed
on five crops representing different vessels and bifurcations to
capture both stability and variability within the CoW. The
results showed that anatomy-specific template input meshes
and enhancement of the image feature representation increase
the accuracy of the reconstruction. Moreover, incorporating
the curvature characteristics of the meshes showed promising
capability of handling complex geometries and sharp edges.
However, achieving a consistent performance across CoW regions
remains a challenge.

Index Terms—Circle of Willis, magnetic resonance angiography,
deep learning, vascular geometry, surface mesh reconstruction,
graph convolutional networks

I. INTRODUCTION

The Circle of Willis (CoW) is a group of connected vessels lo-
cated in the base of the brain forming a circulatory anastomosis
[1]. Several arteries comprise the CoW, including the anterior
communicating, anterior cerebral, internal carotid, posterior
communicating, posterior cerebral, and basilar arteries. The
CoW has the ability to redistribute cerebral blood flow in case of
impaired or decreased flow through one or more of its proximal
feeding vessels [2]. This ability is considerably affected by its
morphology and topology, which presents anatomical variations
among 70% of the population [3]. The different configurations
of the CoW and sharper bifurcation angles between its arteries
have previously been identified as morphological imaging
markers predictive of various neurovascular pathologies, such
as aneurysms [4]. Recent studies have focused on understanding
how the vascular geometry of the CoW influences the onset
and outcome of these pathologies [5, 6].

These geometric features that capture vessel topology and
shape can be obtained using Geometric Deep Learning (GDL).
Rather than grid-structured data, such as images, GDL is a
technique capable of handling non-Euclidean data, for example,
graphs or meshes. These meshes can be roughly described as
piece-wise planar approximations of a surface composed of
nodes, edges, and faces. These components are often discretized
as triangular meshes and used for modeling 3D objects or
structures [7]. Using such mesh representations, we can derive
characteristics for perceptual parsing of 3D surfaces, in this
case, vessel surfaces [8]. Meshes have been successfully applied
to classification and segmentation problems because of their
ability to handle topology and shape information. Overall,
these 3D representations are increasingly applied in clinical
applications, including physics-based simulations, to study
vascular hemodynamics [9].

Recent studies have shown promising precision in re-
constructing meshes, but they are highly dependent on the
performance of voxel-wise segmentation and resolution of the
image data. This segmentation is then usually followed by
surface reconstruction and postprocessing techniques, such
as smoothing or morphological operations. Segmentation of
the intracranial arteries is typically performed using magnetic
resonance angiography (MRA) images, which is a non-invasive
imaging modality to visualize patient-specific vasculature
[10–13]. However, these segmentations may still include
disconnected regions, such as missing small vessels, which
results in an incorrect surface topology representation or vessels
merging. Furthermore, the presence of noise caused by stair-
case artifacts prevents segmentations from having contiguous
or sub-voxel accuracy [14]. In current literature, there is little
focus on converting the segmented volumes to mesh; therefore,
improving mesh quality could enhance the topology and shape
information.

The next step in reconstructing meshes, surface recon-
struction, also faces challenges, particularly when applied to
intracranial arteries. Currently, there are two main approaches
for surface reconstruction: centerline-based and template-based.
The first approach involves a two-step process that reconstructs
the vascular surface from centerlines. As centerlines are usually
extracted from segmentations, similar issues arise. This limita-
tion echoes the challenges mentioned earlier in segmentations
[15, 16]. The second approach, the template-based, gained
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recent interest with new neural network architectures enabling
direct 3D mesh reconstruction from volumetric images. These
architectures are based on the diffeomorphic deformation of an
input template to the target surfaces, meaning that the template
mesh and image are taken as input and the mesh is altered
iteratively by learning the deformation field of its vertices
[17–20]. While these methods have been applied to simpler
structures such as abdominal organs (i.e., the liver) or the
hippocampus, the anatomy of the intracranial arteries presents
a more complex and variable challenge.

To overcome the previously outlined shortcomings, such as
segmentations and centerlines inaccuracies, we explore using
a GDL-based approach to predict surface meshes of the CoW
bifurcations directly. To achieve this, we will use the template-
based approach, consisting of a graph convolutional network
(GCN) to predict mesh deformation given a specified template
input mesh. More specifically, this GCN is combined with a
convolutional neural network (CNN) based image encoder to
extract the features from the MRA images. To analyze the
model’s adaptability, it will be applied to various bifurcations
within the CoW.

II. METHODS

A. Dataset

To obtain information from the different components of the
CoW, Time of Flight MRA images were used. The open-source
dataset was provided by the “Topology-Aware Anatomical
Segmentation of the Circle of Willis for CTA and MRA”
challenge or TopCoW for short [21]. It was organized in
association with the Medical Imaging and Computer Assisted
Intervention 2023. The data cohort is composed of patients
admitted to the Stroke Center of the University Hospital Zurich.
MRA images were acquired by SIEMENS Skyra or Avanto
Fit model, with: magnetic field strength of 3 or 1.5 Tesla,
TOF-3D or TOF-3D multi slab mode, voxel size between 0.29
to 0.35 mm in X-Y dimension, and between 0.5 to 0.6 in the
Z dimension.

The patients of the data cohort were admitted for or recov-
ering from a stroke-related neurological disorder. The dataset
consists of 90 patients with manual multilabel annotations.
These annotations only included vessel components and regions
necessary to assess the CoW anatomy and geometry. These
vessel components are the left and right internal carotid artery
(ICA), left and right anterior cerebral artery (ACA), left and
right anterior communicating artery (Acom), left and right
posterior communicating artery (Pcom), left and right posterior
cerebral artery (PCA), and basilar artery (BA). A schematic
representation of the CoW is shown in Fig. 1.

As previously mentioned, the CoW morphology and topology
are highly variant. This results in certain principal artery
components being hypoplastic or absent [2]. The TopCoW
dataset includes a wide range of CoW variants, among which:
with or without Acom, double Acom, with or without Pcom,
triple ACA, aplastic or hypoplastic vessel segments of the ACA
and PCA, vessel fenestrations, etc. This last refers to splits

Fig. 1. Schematic representation of the Circle of Willis. The abbreviations
are as follows: A1/A2 are segments of the anterior cerebral artery (ACA);
Acom is the anterior communicating artery; M1 is the segment of the middle
cerebral artery at 50% of total length; P1/P2 are segments of the posterior
cerebral artery (PCA); Pcom is the posterior communicating artery; ICA is
the internal carotid artery; BA is the basilar artery. The vessels of interest (A1
and Pcom) and bifurcations of interest (A1/A2, ICA top, and BA top) are
marked by blue circles.

or openings in the artery walls that can significantly affect
vascular flow dynamics [21].

B. Preprocessing

All images were preprocessed by padding to a uniform
size of 576x640x256 to standardize image dimensions, and Z-
score normalization to adjust for intensity variations. To acquire
different representations of the CoW and address the anatomical
variability and complexity of the CoW, the MRA images were
cropped into different segments. First, two types of vessels were
selected to represent these anatomical differences: the lower
segment of the ACA (A1), which exhibits minimal anatomical
variation across individuals, and the Pcom, which shows large
variability. Second, three bifurcations were chosen to capture
both stability and variability within the CoW. The ICA top
and BA top bifurcations were selected for their consistent
anatomical presence across individuals, while in contrast, the
A1/A2 bifurcation was used for its anatomical variation and as
an indicator of the complex interconnections within the CoW
(see Fig.1).

To analyze each of the selected vessels and bifurcations, the
preprocessed images were cropped at the specific locations
of interest. To extract the vessel locations, a skeletonization
method based on a distance transform was utilized [22].
The resulting vessel skeletons were converted into graph
representations with nodes. The coordinates of these nodes
were employed to compute the vessel center of mass and create
a crop of 32x32x32 around that location. A similar approach
was used for the bifurcations, instead of using the center of
mass of the nodes in the graph, the top node of the graph was
used as the center of the crop. Then, a connected components
analysis was applied to discard small voxel clusters from close
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vessels. This process was performed in MevisLab (version
3.4.2) [23].

Next, the dataset was split into three subsets: training,
validation, and testing. The first 80% of the data (72 cases) was
allocated for training, while the subsequent 10% (9 cases) was
used for validation and the remaining 10% (9 cases) for testing.
For the A1 and Pcom vessels, and the ICA top bifurcation,
both left and right structures were considered. It should be
noted that due to the data variety, such as missing vessels, not
all sets included the totality of the dataset.

C. Network architecture

Following the extraction and preprocessing of the vessel
structures, the next section delineates the employed network
architecture. The adopted baseline framework is based on the
Voxel2Mesh [17]. It takes as input a 3D image volume, such as
the MRA crops, its corresponding ground truth, and a sphere
template mesh. It consists of two components: (1) a CNN that
operates on voxels and extracts features from the input volume,
and (2) a GCN that predicts the deformation of the input sphere
mesh vertices. Both networks are combined by sampling the
features extracted from the CNN into vertex locations of the
GCN.

1) Voxel encoder and decoder: The CNN consists of a voxel
encoder and decoder that are based on a standard 3D U-Net
architecture [24]. Briefly, it has four resolution steps in both
the voxel decoder and encoder. Each layer in the encoder
contains two 3x3x3 convolutions, with batch normalization
(BN), and a rectified linear unit (ReLU), which are followed
by a 2x2x2 max pooling. The decoder consists of a 2x2x2
transpose convolution, followed by the same convolutions, BN,
and ReLu on each resolution step.

2) Mesh deformation: The next module of the architecture
consists of a GCN that iteratively deforms the input mesh
vertices in four steps by using the features extracted from
the CNN voxel decoder. The input of the mesh decoder is a
3D sphere mesh. Formally, each graph convolution could be
defined as:

f’ = w1f +
1

N (vl)

∑
vil∈N (vl)

fiw2e
−d2i/σ

2
(1)

where f’ and f represent the feature vector associated with
the 3D vertex coordinates vl after each mesh decoder block
l. N (vl) is the set of vertex neighbors and fi is the feature
vector of its corresponding neighbor vertex vi

l . di represents
the Euclidean distance between vil and vl. w1, w2, and σ are
weights learned during training.

Then, the two decoders communicate in all four resolution
levels, progressively enhancing precision. To transition features
extracted from the voxel decoder in continuous 3D space,
the feature maps are interpolated trilinearly from discrete
voxels. The network also includes adaptive mesh sampling and
unpooling mechanisms. This means that only the necessary
mesh vertices and their neighbors were used to refine the

output mesh. Therefore, the network learns to obtain optimum
sampling locations. In this way, the mesh refinement is more
precise and densely sampled in high-curvature areas but not
elsewhere, thereby reducing the amount of memory needed for
the computation.

3) Architecture modifications: In this study, several modifi-
cations were made to the baseline architecture to improve the
feature representation and adaptability to different types of data.
Briefly, the voxel decoder and encoder were enhanced with
residual blocks, which allow the gradient propagation during
training through the network more easily and help improve
generalization. Each block consists of 3x3x3 convolutions and
a dropout layer before the last convolutional layer. In addition,
Leaky ReLU nonlinearities were used for all feature map
convolutions [25–27]. Moreover, based on Rundo et al. [28],
Squeeze-and-Excitations (SE) blocks were included to exploit
the adaptive channel-wise feature recalibration to boost the
generalization performance [29]. Lastly, the feature maps from
both the voxel decoder and encoder were connected with the
mesh deformation module. This enables the network to identify
relevant information throughout the training phase, which is
not achievable with a limited set of feature maps [19]. Fig. 2,
depicts the modified architecture.

D. Mesh initialization

Current techniques for explicit mesh reconstruction tech-
niques begin with a generic template mesh, such as a 3D sphere.
Alternatively, to enhance the reconstruction of CoW vessels
and bifurcation crops, anatomy-specific templates were used.
This approach tailors the initial mesh to the specific anatomical
features of interest, as demonstrated in studies [19, 20]. This
could help to reduce the distance between the predictions and
ground truths while also avoiding large deformation during
the initial stages of training. To obtain a general anatomy
of the CoW, the Forkert et al. [30] MRA atlas was used. A
vesselness filter was applied [31], which indicates how similar
a structure is to a tube, and in this way detects the bright
vessels from the averaged background. The center locations
of the desired vessels and bifurcations were selected in the
atlas by visual inspection and used as the center to create a
32x32x32 crop of the image. Next, a threshold interval region
growing algorithm was used to extract the mask. However,
this was not possible for the Pcom vessel, since it is often
underdeveloped or missing. Consequently, the intensity values
of the MRA atlas for this region were blended with those of
the background. In this specific case, the mask was extracted
by manual segmentation. Then, an isosurface of each of the
desired structures was generated with a Neighboring Cells
algorithm [23] and the number of vertices was reduced until
approximately 400 vertices to reduce computational memory.
Laplacian smoothing was applied to the resulting surfaces until
the surface did not change anymore [32]. Lastly, the templates
were normalized by translating their centroid to the origin (0,
0, 0), and scaled to fit inside a unit sphere [33].
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Fig. 2. Modified Voxel2Mesh network pipeline. The architecture takes as input a 3D cropped vessel or bifurcation and a template mesh. It predicts a voxel-wise
segmentation and surface meshes. It is composed of a CNN that extracts image features and communicates at each level to a GCN decoder to deform the
template mesh. At each step of the mesh decoding, it receives features from both the encoder and decoder of the CNN. The mesh is deformed by adding
vertices only where needed.

E. Loss functions

The training procedure was supervised by the binary ground
truth segmentations from the TopCow dataset and their corre-
sponding 3D ground truth meshes. These meshes were obtained
by applying the marching cube algorithm [28]. Several loss
functions were used during training. Firstly, the cross-entropy
loss Lce was used for the segmentation module and can be
defined as:

Lce(yP , yG) = −(yG log (yP ) + (1− yG) log (1− yG) (2)

where yG denotes the ground truth binary segmentation and
yP the predicted probability map. This loss returns a probability
value between 0 and 1, in which the higher the loss, the higher
the predicted probability diverges from the ground truth.

Secondly, the mesh loss is a combination of geometry
consistency losses, which include Chamfer distance and normal
consistency losses, and regularization losses, which are the
edge length and Laplacian losses. These losses help to improve
convergence and smooth the output mesh. Regarding the
Chamfer loss, it is a popular evaluation criterion to determine
the similarity between mesh vertices. Chamfer loss assigns the
nearest vertex in the other point cloud for a point from the
ground truth or the predicted mesh [34]. Then, all the distances
are averaged to get the similarity between the two meshes. It
can be defined as:

Lcf (Pi, Gi) =
∑
p∈Pi

min
g∈Gi

||p− g||22 +
∑
g∈Gi

min
p∈Pi

||p− g||22 (3)

where p and q are vertex from the predicted mesh Pi and
ground truth mesh Gi, respectively.

A variation of the standard Chamfer loss was introduced
by Bongratz et al. [19] to reduce the smoothing effect of the
other regularization loss terms that can lead to lower geometric
accuracy. To solve this, they proposed a curvature-weighted
Chamfer loss to emphasize high-curvature regions. For this,
consider κ(p) ∈ [1, κmax] to be the point weights based on
the local discrete mean curvature [35, 36], where κmax = 5.
Then, the curvature-weighted Chamfer loss can be described
as:

Lcwcf (Pi, Gi) =
∑
p∈Pi

κ(u) min
g∈Gi

||p− g||22 +
∑
g∈Gi

κ(ũ) min
p∈Pi

||p− g||22

(4)
where ũ = argmin||p− r||2. In this regard, the loss pulls

predicted points in high-curvature regions closer to their correct
position than points in low-curvature regions. Only ground truth
weights were considered to avoid possible inaccurate curvature
from the predictions, which could be deceptive.

Next, the normal consistency loss computes the surface
normal, which is obtained from the cross product between
two edges (in this case, p1 and p2) of a face connected to
vertex p. This effectively aligns surface normals with ground
truth observations to improve geometric consistency, even on
non-planar surfaces. It is defined as follows:

Ln(Pi, Gi) =
∑

p∈Pi:argming∈Gi
∥p−g∥2

2

∥(p1−p)×(p2−p)−ng∥22

(5)

where ng is the observed surface normal from the ground
truth.

Regarding the regularization losses, the Laplacian loss
prevents mesh self-intersection by restricting excessive vertex
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mobility. This loss serves as a local detail-preserving operator
by ensuring a consistent movement among its neighboring
vertices. To compute this loss, the difference between a vertex
p location and the mean location of this neighboring vertices
kp are used as follows:

Llap(Pi) =
∑
p∈Pi

∥∥∥∥∥∥p−
∑

kp∈N (p)

1

∥N (p)∥
kp

∥∥∥∥∥∥
2

2

(6)

The last term, the edge length loss is used to penalize flying
vertices and to encourage a more uniform predicted mesh
density. It is calculated from the difference between each edge
length between a vertex p and its neighboring vertices kp for
both the ground truth and the predicted mesh. The average
edge length is then the ratio between these meshes, such as:

Ledge(Pi) =
∑
p∈Pi

∑
kp∈N (p)

∥p− kp∥22 (7)

As a result, the total loss is a weighted sum of all five losses
described, which can be written as:

Ltotal = λ1Lce+

L∑
l=1

λ2Ll
cf +λ3Ll

n+λ4Ll
lap+λ5Ll

edge (8)

where L is the number of stages in the mesh decoder. Each
loss term is assigned a hyperparameter λ, λ1,2,3 = 1, and
λ4,5 = 0.1, which were based on literature [17].

F. Experiments

Different experiments were performed to assess the adapt-
ability of the model to the CoW morphology and topology. The
Voxel2Mesh network is used as a baseline for the experiments,
described in II-C1 and II-C2.

1) Comparing mesh initialization templates: The first ex-
periment is to compare if using an anatomy-specific template
improves the model performance, in comparison to the basic
3D sphere. For each desired vessel and bifurcation, their
corresponding smoothed templates from II-D were introduced
to the Voxel2Mesh network, instead of the 3D sphere.

2) Comparing model modifications: The second experiment
is used to assess whether the modifications from the baseline ar-
chitecture, described in II-C3, improve the overall performance
for each of the desired vessels and bifurcation. Especially,
the change in information exchange between the models. The
combination of a CNN and GCN raises the dilemma of how
to transfer information from one subnetwork to another, in
this case from the CNN to the GCN. It is possible to employ
feature maps derived from either the encoder [18], the decoder
[21], or both [19].

3) Comparing curvature-weighted Chamfer loss: The third,
and last experiment, consists of using the curvature-weighted
Chamfer loss, explained in II-E, to assess if it helps to obtain
a more accurate reconstruction in high-curvature areas. For
this, the discrete mean curvature of the ground truth meshes
is obtained from the cotangent Laplacian and used as point
weights of the loss. The modified model is used for this case.

G. Training strategy

To perform fair comparisons, all models were trained with
the same parameters. The baseline model was trained for
three different random initializations to assess its effect on
the training procedure. Then, a fixed seed was employed for
both experiments. All cases were trained for a maximum of
9000 epochs, with 300 iterations each, evaluating every 100
iterations. Training is done using the Adam optimizer [37],
with an initial learning rate of 10−4. To optimize the learning,
a learning rate scheduler was used, reducing the learning rate
by a factor of 0.1 upon no improvement in validation loss.
Furthermore, early stopping is enforced to cease training upon
no improvement in validation loss to ensure efficiency and
prevent overfitting. The best epoch was selected based on the
validation set.

Data augmentation techniques, based on Wickramasinghe et
al. [17], were used during training to increase the robustness
of the model to fluctuations in input images. These techniques
included: axis permutation, flips, quaternion-based 3D rotations,
translations, and scaling. They were randomly applied with a
50% probability, resulting in a composite transformation.

H. Evaluation metrics

To evaluate the performance of the different models, the Dice
Similarity Coefficient (DSC), Jaccard Index (JAC), and Chamfer
weighted symmetric distance, from now on Chamfer distance,
were calculated between the ground truth segmentations and the
predicted meshes. The DSC quantifies the overlap between two
volume segmentations and is defined as twice the intersection of
the volumes divided by their union. JAC is then the intersection
between the volume segmentations divided by their union [38].
Both DSC and JAC measure the overlap between volumes, in
this context, they were both used to be able to compare with
the baseline and current literature results.

I. Statistical Analysis

To evaluate the differences between the models, a statistical
analysis was performed. First, the Shapiro-Wilk test was used
to confirm the non-parametric distribution of the samples [39].
Since the data is paired, a Wilcoxon-ranked t-test [40] is
suitable. To test the null hypothesis, the significance level
established was α = 0.05, meaning that if the p-value is lower
than this, the null hypothesis would be rejected. Since multiple
model comparisons with the Wilcoxon-ranked t-test are being
performed, Bonferroni adjustment was used. It is applied to
limit the possibility of getting a statistically significant result
when testing multiple hypotheses.
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J. Implementation details

All models are based on PyTorch (v1.11.0) [41], PyTorch3d
(v0.7.2) [42]. They were trained and evaluated on Nvidia GP102
Titan X (12GB) using CUDA version 11.3. The experiments
were tracked with Weights and Biases [43].

III. RESULTS

In this section, the results of the experiments are presented.
Only the test results are reported. Table I summarizes the results
in terms of DSC, JAC, and Chamfer distance. As a reference,
the performance of the baseline model for the CHAOS dataset
[17, 44], with the same reduced settings as the rest of the
models, had a mean JAC of 0.86 and Chamfer distance of 0.26·
10−2. Then, the median DSC of the three random initializations
for each data structure was in the following range: 0.55-0.61
for the A1 vessel, 0.47-0.55 for the Pcom vessel, 0.70-0.75 for
the A1/A2 bifurcation, 0.85-0.86 for the ICA top bifurcation
and 0.84-0.87 for the BA top bifurcation. The ICA top and
BA top bifurcations have a more stable performance than the
rest of the structures.

A. Comparing mesh initialization templates

The 3D sphere and the generated atlas templates are shown in
Fig. 3. The atlas templates have a considerably higher number
of vertices, increasing from 162 for the sphere to approximately
400. This difference also impacted the training time, which
increased notably. Regarding the analytical results, as shown
in Table I, the atlas template achieved a higher DSC overall
compared to the sphere templates, except for the A1 vessel,
where the DSC was significantly lower (p = 0.02). However,
the ICA top bifurcation resulted in a significantly higher DSC
(p < 0.001). These differences can also be seen in Fig. 4.
Correspondingly, the JAC values followed a similar trend. In
addition, the Chamfer distance was consistently lower for the
atlas templates across all vessels except for the A1.

Fig. 3. General and anatomy-specific mesh initialization templates: A) 3D
Sphere, B) A1 and C) Pcom vessels, D) A1/A2, E) ICA top, and F) BA top
bifurcations.

Fig. 4. Boxplot of the DSC values for the different models. ’*’ indicates
that the model to the right is significantly better than the model to the left
(p < 0.05).

B. Comparing model modifications

The modified model outperformed the baseline model for all
cases, except for the ICA top bifurcation where the DSC median
remains unchanged at 0.86, although the interquartile range
increased slightly (see Table I). There is a considerable increase
in performance for the A1 vessel (0.64), Pcom vessel (0.64),
and A1/A2 bifurcation (0.76), which was also higher than the
atlas template baseline model. The best and worst performances
of the modified model can be seen in Fig. 5. Similarly, the
JAC also experienced an increase in the cases where DSC
improved, stayed consistent for the BA top bifurcation at 0.75,
and experienced a minor reduction for the ICA top bifurcation.
In contrast, there was not a corresponding substantial reduction
in the Chamfer distance for the first three scenarios.

C. Comparing curvature-weighted Chamfer loss

The modified model with the curvature-weighted Chamfer
loss resulted in a higher performance in terms of DSC for all
cases, except the BA top bifurcation which remained unchanged
(0.86), as can be seen in Table I and visually in Fig. 4. This
is in comparison to the same model utilizing the standard loss
function. In Fig. 6, it can be seen that the curvature-weighted
Chamfer loss model produces a closer curvature to the ground
truth in areas of high curvature for the A1/A2 bifurcation.
Moreover, the JAC values slightly increased for all cases. The
Chamfer distance values were also reduced for each case when
employing the curvature-weighted loss.

IV. DISCUSSION

In the present study, we evaluate the efficacy and adaptability
of a GDL-based approach in modeling surface meshes of
selected CoW vessels and bifurcations. Our results highlight
that using anatomy-specific templates can help reduce the
distance between predictions and ground truths, preventing
large deformations during the early stages of training, which
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TABLE I
EVALUATION METRICS RESULTS FOR BASELINE MODEL AND THE DESCRIBED EXPERIMENTS

A1 Pcom A1/A2 ICA top BA top

DSC ↑
Sphere + Baseline 0.60 [0.48, 0.69] 0.47 [0.31, 0.76] 0.70 [0.42, 0.75] 0.86 [0.82, 0.87] 0.85 [0.82, 0.89]
Atlas + Baseline 0.53 [0.44, 0.58] 0.62 [0.40, 0.73] 0.72 [0.68, 0.76] 0.88 [0.82, 0.89] 0.87 [0.84, 0.89]

Sphere + Modified 0.64 [0.52, 0.70] 0.64 [0.53, 0.68] 0.76 [0.72, 0.78] 0.86 [0.84, 0.88] 0.86 [0.83, 0.89]
Sphere + Modified + Curv 0.65 [0.56, 0.77] 0.67 [0.59, 0.71] 0.78 [0.71, 0.79] 0.87 [0.83, 0.88] 0.86 [0.85, 0.88]

JAC ↑
Sphere + Baseline 0.43 [0.32, 0.53] 0.31 [0.19, 0.61] 0.54 [0.27, 0.60] 0.76 [0.69, 0.77] 0.75 [0.70, 0.79]
Atlas + Baseline 0.36 [0.29, 0.41] 0.43 [0.25, 0.57] 0.56 [0.51, 0.62] 0.78 [0.70, 0.80] 0.77 [0.72, 0.80]

Sphere + Modified 0.47 [0.35, 0.54] 0.47 [0.36, 0.52] 0.62 [0.56, 0.64] 0.75 [0.72, 0.78] 0.75 [0.71, 0.80]
Sphere + Modified + Curv 0.48 [0.39, 0.63] 0.51 [0.39, 0.55] 0.64 [0.55, 0.65] 0.76 [0.71, 0.78] 0.76 [0.74, 0.78]

Cf ·10−2 ↓

Sphere + Baseline 1.67 [0.71, 2.82] 2.55 [0.97, 3.00] 1.31 [0.95, 2.84] 0.53 [0.39, 1.89] 0.61 [0.39, 1.11]
Atlas + Baseline 2.28 [1.15, 3.95] 1.26 [0.61, 2.19] 0.79 [0.59, 1.04] 0.46 [0.27, 1.75] 0.40 [0.26, 1.29]

Sphere + Modified 1.60 [0.94, 3.57] 2.25 [1.60, 2.85] 0.79 [0.60, 1.17] 0.49 [0.33, 1.53] 0.60 [0.41, 1.68]
Sphere + Modified + Curv 1.00 [0.50, 2.81] 2.09 [1.10, 2.62] 0.63 [0.55, 1.00] 0.48 [0.35, 1.50] 0.54 [0.37, 0.65]

First, the baseline model (Sphere + Baseline), then the atlas template mesh initialization (Atlas + Baseline) experiment, the model modifications (Sphere +
Modified) experiment, and lastly, adding the curvature-weighted Chamfer loss to the modified model (Sphere + Modified + Curv) experiment. The vessel and
bifurcations abbreviations are as follows: A1 is the lower segment of the anterior communicating artery (ACA), Pcom is the posterior communicating artery,
A1/A2 is the bifurcation between the two segments of the ACA, ICA top is the bifurcation at the top of the internal carotid artery, and the BA top is the
bifurcation at the top of the basilar artery. Then, the evaluation metrics abbreviations are: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Index, and
Cf is the Chamfer distance.

Fig. 5. Visualization of the best and worst reconstruction results of the modified model for each case, in terms of the Dice Score Coefficient (DSC). The
sphere template is used as a reference. The vessel and bifurcations abbreviations are as follows: A1 is the lower segment of the anterior communicating artery
(ACA), Pcom is the posterior communicating artery, A1/A2 is the bifurcation between the two segments of the ACA, ICA top is the bifurcation at the top of
the internal carotid artery, and the BA top is the bifurcation at the top of the basilar artery.
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Fig. 6. Visualization of the A1/A2 bifurcation ground truth and its corre-
sponding predicted mesh of the modified model with the standard Chamfer
loss versus the modified model with the curvature-weighted Chamfer loss.
Both predictions are shown overlapped on the ground truth to observe their
adaptability to the bifurcation and compare their performance. The arrows
highlight specific high-curvature regions and the presence of a fenestration.

can avoid local minimums and achieve faster convergence. Fur-
thermore, enhancing the feature representation and providing
features from both the voxel decoder and encoder is most
effective, as was also suggested in other studies [20, 45].

Almost all cases yielded improvements with the atlas
template, likely due to reduced initial deformations and a
greater vertex count. However, the A1 template did not improve
the results. This could be affected by the variability in the crops.
Since the ACA vessel was labeled as a whole, no distinction
was made for the A1 and A2 segments. This issue led to crops
including parts of the highly curved A1/A2 bifurcation, as can
be seen in the worst DSC case for A1 in Fig. 5. This suggests
that the sphere template mesh could be beneficial for more
variable data since it provides a more general shape for the
initial deformation stages.

The overall performance of the baseline model was consid-
erably lower for the single vessels. This could be due to the
variability of the data. Notably, the single vessels were more
sensitive to diameter changes and length. For instance, in the
case of the Pcom, the diameter could be as low as 1mm, or as
high as 2.5mm, which caused a huge range in metrics values.
It should also be noted that the dataset used to train the Pcom
was lower (88 cases) since it was missing in around 40% of
the patients, and sometimes only present in one side. This did
not happen for the main bifurcations, such as the ICA top and
BA top. The observed variability for both bifurcations across
patients was substantially lower than the Pcom, explaining the
higher performance. Interestingly, there were twice as many
data samples for the ICA top (left and right) compared to the
BA top, but the achieved model performance was comparable.
So, including more cases for the most variable structures, such
as the A1 and Pcom vessels or the A1/A2 bifurcation, could
boost model performance.

The modified model outperformed the baseline in Chamfer
distance, with DSC scores either improving or remaining
constant. In general, the model tends to round the sharp
edges at the bifurcations, as shown in Fig. 5. In some cases,
such as the A1/A2 bifurcation, the predicted output shape
seems topologically different despite resulting in a high DSC
value. This discrepancy suggests that a high DSC does not
always correspond to an anatomically accurate representation.

Nevertheless, some cases deviate considerably from the median
performance, which can be seen in the second column of Fig.
5. The worst DSC value for the A1 vessel seems to contain
part of the A2 segment of the ACA in the crop. This resulted
in a sharp edge, which was not present in the rest of the A1
training data. Similarly, in the A1/A2 worst DSC case, only
a single vessel is present instead of both sides vessels. This,
and the fact that it is far from the origin center, resulted in a
bad prediction. It seems that the ACA was longer and more
curved, which made them further from the bifurcation point.
Since the connected component analysis was used for obtaining
the crops, only one ACA was considered for the ground-truth
crop. A better and optimized cropping strategy could have
helped in these cases. Moreover, the model struggled with
small diameter or hypoplastic vessels, particularly evident for
the Pcom worst DSC, underscoring the impact of diameter
variability and dataset size.

Introducing the curvature-weighted Chamfer loss slightly
enhanced the performance of the modified model compared to
using the standard loss, especially for the A1/A2 bifurcation
(see Fig. 6), where higher curvatures were expected. This
improvement is not only crucial for accurately capturing
sharp edges in bifurcations, resulting in a more refined
mesh, but it also helps mitigate the challenge of balancing
accuracy and regularization terms in the loss function for
highly curved regions in the field of deformation-based surface
reconstruction methods [19, 45]. Furthermore, by incorporating
the information of neighboring vertices, the GCN generates a
mesh that is not only smoother but also more refined, enhancing
the overall quality of the reconstructed surface.

This study presents several limitations. First, the model is
unable to capture fenestrations, which can be seen in Fig. 6.
This is because the genus-0 spherical template mesh and the
generated anatomy-specific templates cannot capture holes in
between the vessels. Second, this study has been performed
on small crops of selected CoW vessels and bifurcations that
were trained separately. The multi-site dataset contained a lot
of variability with different CoW configurations. It would be
interesting to assess the performance of the model on healthy
controls and a broader dataset, to include more cases with
smaller vessel diameters or hypoplastic vessels, which may
improve its robustness. In this last case, other metrics like
the Hausdorff distance could provide a more informative view
than the DSC as it is sensitive to small disagreements in
voxels [46]. Moreover, it would be interesting to train the
modified model with the curvature-weighted Chamfer-loss and
the anatomy-specific templates, since it was trained with the
3D sphere template mesh as input. Third, the computational
resources were limited, since a lower number of vertices, fewer
unpooling operations, and fewer sampling data points were
used to train the model. For this, the baseline model with the
CHAOS dataset was trained with this setting, and resulted in
a similar JAC but a higher Chamfer distance, 0.26 · 10−2, in
comparison to 0.13 · 10−2. Nevertheless, all of our models
yielded a lower performance. Given these challenges, future
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efforts aimed at addressing these limitations could potentially
enhance the models’ performance.

The assessment presented in this study represents the initial
stages of a comprehensive effort to enhance 3D vascular model-
ing. Future directions could involve a previous detection of all
the major CoW bifurcations, initialize different template meshes
on those locations, and use a shared GCN to simultaneously
deform and predict the vascular surface meshes on the multiple
locations. This could also be followed by an algorithm to
combine all generated meshes to obtain a whole mesh of the
complete CoW [47]. In this way, the templates would only be
initialized if a bifurcation is detected, which could help alleviate
the problem of missing vessels. Some further modifications
could be implemented into the modified model, such as deep
supervision in the voxel decoder [10, 18, 19, 48], as well
as attention gates to help focus on the target [49]. Another
possibility would be to include gauge equivariance in the
model, which could enhance the model’s ability to accurately
represent and reconstruct the complex geometrical features of
the CoW by ensuring consistent and invariant responses to
local transformations of the vascular structures [50].

V. CONCLUSION

In this study, we explored a GDL approach to directly
predict surface mesh reconstructions of the vessels and bi-
furcations of the CoW, thereby eliminating the traditional
postprocessing steps required to obtain such a mesh from
volumetric representations. The architecture takes as input an
image volume and a template mesh and outputs a 3D surface
mesh. Our results highlight the model’s adaptability to anatomy-
specific templates and the effectiveness of enhancing the
feature representation of the volumetric images. Furthermore,
the employment of curvature-weighted Chamfer loss showed
promising capability of handling complex geometries and
sharp edges. Nevertheless, given the CoW’s variability across
regions, achieving consistent accuracy remains a challenge.
Future work could potentially extend this approach with a
CoW bifurcation detection model to initialize multiple template
meshes and further create a complete surface reconstruction
of the CoW vasculature. Such advancements could facilitate a
deeper understanding of the CoW’s geometric characteristics,
crucial for assessing neurovascular pathologies.
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“Modelling the circle of willis to assess the effects of anatomical
variations and occlusions on cerebral flows,” Journal of Biomechan-
ics, vol. 40, no. 8, pp. 1794–1805, 2007, ID: 271132. [Online].
Available: https : / / www . sciencedirect . com / science / article / pii /
S0021929006002946.

[6] R. Pascalau, V. A. Padurean, D. Bartos, A. Bartos, and B. A. Szabo,
“The geometry of the circle of willis anatomical variants as a potential
cerebrovascular risk factor,” Turk Neurosurg, vol. 29, no. 2, pp. 151–
158, 2019, pmid:29484629.

[7] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, “Geometric
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