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Abstract—White matter (WM) degradation is one of the most
common lesions causing neurological disorders, where early
diagnosis is crucial. Diffusion tensor imaging is a widely used
method for the study of WM injuries in the brain, however
its estimation using traditional methods such as non-linear least
squares (NLLS) is time consuming and patient dependent. This
work presents a machine learning (ML) approach for diffusion
MRI parameter estimation. A feed forward network following
two different strategies is presented to attempt the fitting of
a symmetric diffusion tensor model. The possibility of real-
time mapping is approached by four different experimental
setups with increasing data complexity during the ML training,
including synthetic and real signal simulations. Moreover, a novel
approach on gradient nonlinearity (GNL) correction using ML
is presented, opening the possibility of correcting for spatially
varying b-values and b-vectors while training the model. The re-
sults showed an acceptable ML performance compared to NLLS
when training and testing with one single subject, demonstrating
that ML can be used for parameter estimation of diffusion
images and GNL correction. However, the generalization of the
network to accept more than one subject is still a challenge.
Further hyperparameter tuning and architecture configuration
experiments are needed to generate comparable results to NLLS.
Nevertheless, these initial results highlighted crucial aspects in
the fitting process that could be important for future research of
the topic.

Index Terms—Diffusion MRI, DTI, Machine Learning, Param-
eter estimation, Microstructural imaging, Zeppelin model.

I. INTRODUCTION

White matter (WM) degradation is one of the most common
lesions causing neurological diseases. These disorders mainly
arise due anoxia, ischemia, trauma or autoimmune attacks,
which result in swelling, damage or complete loss of cellular
axons inside the brain [1]. Crucial early diagnosis of these
kind of diseases has raised interest in the improvement of non-
invasive techniques to effectively evaluate patient’s conditions
and develop more accurate treatment plans [2].

Magnetic resonance imaging (MRI) is a non-invasive imag-
ing technique that uses powerful magnets to generate a strong
magnetic field. When a individual is introduced in that mag-
netic field, the protons in the body are forced to align with
it. Then, a radio frequency (RF) pulse is applied, making the
protons turn into an excited state and temporarily spin. Lastly,
the RF pulse is shut down, and the energy released by those
protons is detected by RF receivers. That information will

be used later to reconstruct the images [3]. For many years,
conventional MRI has been the gold standard technique for the
diagnosis of WM related diseases [4], however it may lack of
the necessary sensitivity when detecting specific structures and
pathologies [5].

Diffusion weighted imaging (DWI) can examine the mi-
crostructural configuration of tissues at a much lower scale
than standard MRI. By focusing on the microscopic random
motion of water molecules, it is possible to detect pathologies
associated with WM more accurately [6]. The first method
used to generate DWI was developed by Stejskal and Tanner
[7], and was based on the original MRI spin echo sequence
that consisted of a 90º pulse followed by a 180º pulse [8].
Pulsed gradient Spin Echo (PGSE) sequencing relies on two
extra diffusion sensitizing gradients applied symmetrically to
the 180º pulse, where the first one introduces a phase shift
on the proton’s position, and the second one reverses the
change. The traditional PGSE method has been generalized
to account for more complex direction configurations present
inside the human brain. By repeating the simple experiment
that describes the diffusion gradient in one direction in at least
other six non-collinear directions, information about the flow
and distance of water molecules could be provided [9][10].

Diffusion tensor imaging (DTI) is a strategy that models
quantitatively structural and orientation information construct-
ing the so-called diffusion tensor [11]. The correct estimation
of diffusion parameters coming from the DTI formulation can
effectively detect non-invasively and more accurately WM
injuries. For instance, axial diffusivity (AD) has proved to
accurately locate axonal damage in patients with Alzheimer’s
disease [12], and radial diffusivity (RD) has demonstrated to
predict demyelination in multiple sclerosis [13]. However, this
methodology relies on a simple single compartment assuming
microscopically homogeneous environments in each voxel,
and WM tissues might include multiple compartments with
different behaviours [9]. Microstructural modeling relates the
microscopic details of the tissue structures with the diffusion
MR signals through the introduction of compartment models
[14].

Parameter estimation of multiple microstructural compo-
nents per voxel can be challenging and very time consuming,
which makes the possibility of real-time mapping almost
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impossible with traditional methods such as non-linear Least
Squares (NLLS). Additionally, both DWI and DTI come with
various artifacts that, if not accounted for, could lead to
incorrect interpretation of parameter maps and signals. Some
examples can be Gibbs ringing artifacts, integrated motion
errors, eddy currents, susceptibility distortions, or gradient
deviations [15]. Nowadays, advancements in technology have
proven to be of use in this field, where machine learning (ML)
networks could potentially address some of the previously
mentioned limitations. ML networks consist of algorithms able
to learn complex relationships between data by going through
a series of hidden layers [16]. In the context of DTI, these
networks could potentially fit biophysical models significantly
faster and more precisely than conventional optimization tech-
niques [17][18][19].

This project aims to use ML networks to predict DWI pa-
rameter maps by training and testing with different sets of data.
We study the feasibility of fitting a symmetric tensor model
using ML with multiple patients. Moreover, we also investigate
the possibility of accounting for gradient nonlinearity (GNL)
corrections during the network training.

II. METHODS

This section will first explain the biophysical model cho-
sen to fit the diffusion MRI data. Next, GNL deviations
are introduced with an explanation on how to correct for
them. Afterwards, we present the datasets used to execute
the experiments, which consisted of simulations of synthetic
and real data. Lastly, the three different strategies followed
to fit the model and correct for the deviations are de-
scribed, specifying the distinct experiments executed in each
of them. All the codes developed can be found in GitHub
github.com/PaulaCastroRamirez/ML for parameter fitting.

A. Microstructural modeling

In order to model diffusion MRI data, mathematical repre-
sentations are used to estimate different parameters and infer
properties of the tissue microstructure. In this project, the
biophysical model chosen is the so-called Zeppelin model,
represented in Figure 1. The Zeppelin is a two-compartment
cylindrically-symmetric diffusion tensor model with the shape
of an oblate spheroid. It is commonly used in diffusion MRI

Fig. 1. Zeppelin Biophysical model with Axial (parallel) diffusivity (λ1) and
Radial (perpendicular) diffusivity ((λ2+λ3)/2). For Zeppelin model, λ2=λ3.

modeling because it assumes restricted diffusion within elon-
gated structures such as fiber bundles, where water does not
follow spherical free motion anymore. The model has two
principal eigenvalues (λ1, λ2), corresponding to axial diffusiv-
ity (AD) and radial diffusivity (RD), respectively [20][21][22].

The parameters estimated are summarized in Table I, to-
gether with their corresponding physical bounds [18]. The
baseline signal intensity (S0) corresponds to the signal mea-
sured without any diffusion gradients. In diffusion MRI,
it is used as a reference for the comparison between the
different diffusion-weighted signal attenuations applied. AD
(λ1) describes the diffusion of water molecules parallel to the
main direction of diffusion. Moreover, the water diffusivities
perpendicular to the main direction of diffusion, λ2 and λ3,
are averaged and denoted as RD ((λ2+λ3)/2). Lastly θ and
ϕ represent the angle of the first eigenvalue of the diffusion
tensor.

TABLE I
PHYSICAL PARAMETER BOUNDS

FOR THE ZEPPELIN DIFFUSION TENSOR MODEL

Parameter Bound
Baseline intensity (S0) [0.0 - inf]
Axial diffusivity (AD) [0.0 - 3.2] µm2/ms
Radial diffusivity (k*AD) [0.0 - 3.2] µm2/ms
Theta (θ) [0.0 - π] rad
Phi (ϕ) [0.0 - 2π] rad

According to the Zeppelin tensor model, the definition for
the signal decay is given by Equation 1 [23]. Because the in
vivo data used (detailed in Section II-D), did not contain echo
time or T2 variations, the equation was modified as needed.

S (b,Θ,Φ,AD, k, S0) = S0 exp−
[
1

3
b (AD + 2k AD)

+ b (θg, ϕg) · (Θ,Φ))2 (AD − k AD)

]
(1)

with b as the b-values, (Θ, Φ) defining the first eigenvector
direction, AD as the axial diffusivity, k AD as the radial
diffusivity, and S0 as the baseline intensity.

B. Gradient Nonlinearity and Spatially varying L-matrix

Diffusion imaging exhibit relevant artifacts due to nonuni-
formities in the magnetic field gradients. New developments in
diffusion MRI consider more advanced scanners which apply
larger gradient amplitudes (300 mT/m) [24] compared to the
conventional ones (30-45 mT/m) to increase resolution and
get information at smaller scales. This can result in spatially
dependent inaccuracies in the diffusion-encoding direction and
orientation, leading to misinterpretation of the diffusion tensor.
Given the information about the relative deviations of the
magnetic field, GNL can be corrected pixel-wise. A gradient
coil tensor L(r) can be defined for each location r, to relate the

2

https://github.com/PaulaCastroRamirez/ML_for_parameter_fitting.git


effective gradient Gact, and the applied gradient G. Following
the formulation from Bammer et al. (2003) [25]:

Gact =

Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

G = L(r)G (2)

Consequently, the effective b-matrix Beff(r) can also be
related to the applied b-matrix B and computed for every
voxel:

Beff(r) = L(r)BL(r)T (3)

C. Simulations

Due to the complexity of diffusion MRI data, simulations
were generated from different synthetic distributions of pa-
rameters. The simulations were obtained from parameters
taken from uniformly distributed values scattered within their
corresponding physical bounds (see Table I for bounds). Next,
assuming those set of parameters as ground truth (S0, AD, RD,
θ and ϕ), we fed them into the Zeppelin model (Equation 1)
to simulate ground truth signals. Finally, ground truth signals
were corrupted with noise to generate the datasets that will be
used for training, validation and testing of the methods. Three
distinct noise distribution types were implemented, although
only one was chosen to conduct the experiments. The noise
types were Rician, Gaussian, and Noncentral Chi-Squared.

In total, we generated 8000 signals for the training set, 2000
for the validation set, and 1000 for the test following the same
protocol (b-values) as for the in vivo experiments described
in Section II-D. The noise type chosen was Gaussian with a
signal-to-noise ratio (SNR) of 70.

D. In vivo experiments

The second part of the project consisted on testing the
methodology using simulated data generated from real param-
eter distributions.

The datasets were taken from the Human Connectome
Project (HCP) Q1 data release [26]. Diffusion MRI scans
were acquired on a Siemens Skyra 3T scanner following a
Spin-echo EPI sequence with a customized SC72 gradient
insert, which allowed an important quality improvement of the
diffusion images [27]. However, due to technical limitations
associated with the gradient hardware and scanner design,
GNL increased, exceeding the ones of the conventional 3T
scanner. HCP datasets were corrected for geometric image
distortions caused by eddy currents, susceptibility errors, and
gradient field nonliearities [24], but not for voxel-wise changes
in the direction and intensity of the diffusion encoding gra-
dients. Effective b-values and b-vectors still contained slight
variations from voxel-to-voxel that needed to be taken into
consideration [28] (see representation of gradient deviations in
Figure 2). A basic script provided in the HCP publication [29]

was used to correct for GNL by calculating those individual
b-values and gradient orientations in each voxel.

Fig. 2. Example of Gradient nonlinearities (GNL) from HCP subjects.

Four datasets were randomly chosen from the repository,
all from a separate subject. Each diffusion MRI dataset was
acquired with three different gradient tables, each table con-
sisting of 90 diffusion weighting directions (shells with b-
values 1000, 2000, and 3000 s/mm2) and six b=0 images.
Theoretically, more diffusion weighting (higher b-value) trans-
late into different sensitivity towards microstructural features
and diffusion processes inside the brain. The diffusion of water
at higher b-values may be influenced by factors that were not
taken into account in the simple model chosen [30]. Because of
the simplicity of the Zeppelin tensor model, the resulting 288
measurements per signal (ordered from low to high b-value)
were restricted to the first 108.

Ground truth parameters were simulated fitting each of the
datasets from the HCP using non-linear least squares (NLLS)
optimization. Taking those parameters, signals were back-
simulated fitting the Zeppelin equation presented in Equation
1, and considered as ground truth signals. Lastly, noise was
added to corrupt the ground truth signals and create the
training, validation, and test sets in the same way we did with
the synthetic signal simulations described in Section II-C. The
noise distribution chosen to disrupt in vivo experiments was
Gaussian with a SNR of 70.

E. Non-linear Least Squares optimization

NLLS optimization was chosen as the reference method in
this work to compare and validate the novel ML approaches
as it is one of the classical methods used for diffusion
tensor fitting [17][31]. NLLS consists of solving a non-linear
optimization problem with bounds (see Table I) on the fitted
variables with the goal of finding the local minimum of a cost
function [32]. The equation optimized was the Zeppelin as
described in Equation 1. As the initial value for the variables
in each pixel was randomly selected between the bounds,
multiple initializations were needed during the process. At the
end, the solution with lowest residuals was chosen as the right
one.

Two different experiments were performed, with and with-
out GNL correction. NLLS without GNL correction was
executed as a normal optimization problem giving as an input
the b-values and gradient directions without any customized
preprocessing. Moreover, when taking into account GNL,
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Fig. 3. Feed forward ML network proposed. Each artificial neuron in the hidden layer receives a number of input signals, x1, x2, ..., xn, and gives as an
output the parameters of interest (ϕ, θ, AD, k and S0). Two strategies were used to calculate the training loss: Strategy 1 calculated the loss between tissue
parameters and Strategy 2 calculated the loss between tissue signals [19].

b-values and gradient directions were corrected using the
corresponding gradient deviation files provided by the HCP
release and following the L(r) matrix correction from Bammer
et al. (2003) [25] described in Section II-B.

F. Machine learning network

The network implemented in this paper was a feed forward
network. Based on the two strategies presented on the paper
from Grussu, Francesco, et al. (2021) [19], we propose a
modified generalized network able to accept multiple sub-
jects during the training, validation and testing. The default
architecture consisted of 108 input nodes, 1 hidden layer
with 56 nodes, and 5 output nodes, as depicted in Figure
3. Signals were fed into the network, each one consisting
of 108 measurements per pixel (S), and passed through the
hidden layer, which gave 5 parameters (p̂) as the output. All
the predicted parameters followed a min-max normalization
after undergoing a series of steps which assured correct scaling
between the desired bounds [19]. Lastly, if the second strategy
was being followed, those p̂ were given as an input to the
Zeppelin model equation generating the final predicted signal
Ŝ. The training loss was calculated differently in two separate
strategies. Strategy 1 calculated the mean squared error (MSE)
loss between predicted parameters p̂ and input parameters p,
while Strategy 2 calculated the MSE loss between predicted
signals Ŝ, and input signals S. Moreover, to enable the
network to include more than one dataset during the training,
a customized data class was created giving signals as the input
of each batch together with their corresponding b-values and
gradient directions. The signals were fed into the network,

while the b-values and gradient directions were used later
for the calculation of the output signals from the predicted
parameters. It must be highlighted that all the signals used for
training were contained inside the brain, as the background
was masked out using Otsu thresholding method [33].

1) Strategy 1: The first ML strategy calculated the training
loss between predicted and input parameters as expressed in
Equation 4.

L = ∥W (p̂− p)∥22 (4)

Following the scheme represented in Figure 3, Strategy
1 consisted of a supervised ML network. This method took
input signals (S), predicted the corresponding parameters (p̂),
and compared those p̂ to the real input parameters (p). To
achieve this, real parameters were also given as an input
during the training, but they were only used during the MSE
loss calculation. In this approach, no GNL correction was
conducted as it was not included directly in the parameter
simulations. The correction was performed in the b-values and
gradient directions pixel-wise, therefore, even if included, the
MSE loss calculation would not have been influenced by them.

2) Strategy 2: The second ML strategy calculated the
training loss between predicted and input signals as shown
in Equation 5.

L = ∥(Ŝ − S)∥22 (5)
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Following Figure 3, Strategy 2 consisted of a self-supervised
ML network. This method took signals as an input (S),
predicted the corresponding parameters (p̂), forward-simulated
signals with those p̂ using the Zeppelin tensor model equation,
and compared the predicted signal (Ŝ) to the real input signal
(S). For this strategy, GNL correction was included. All the
experiments conducted following Strategy 2 compared results
for correcting and not correcting for GNL.

The model was implemented in Python 3.10 using PyTorch
23.12 [34]. We used Adam as the optimizer, no dropout,
constant learning rate of 0.0001, and batch size of 256.
Hyperparameter tuning is one of the main steps when creating
and regulating a ML model to get to its optimal capability. The
default hyperparameter values that can be seen in Table II were
defined based on several exhaustive experiments detailed in the
following section.

TABLE II
DEFAULT NETWORK INFORMATION

AND HYPERPARAMETERS

Hyperparameter Default
Angle coordinates Polar
Learning rate 0.0001
Nº of epoch 250
Batch size 256
Nº of workers 4
Network architecture 108-56-5
Signal normalization Pixel-wise

G. Experimental setup

To study the generalizability of the methods proposed, four
experiments were conducted. A summary can be found in
Table III. For the first set of experiments, synthetic simulations
of parameters and signals were used during the training and
testing. For the second set, the training was performed with
one dataset, and tested with slices from that same dataset. For
the third set, the training was performed with four datasets,
with the middle slice of each one taken out and used during the
testing. Lastly, for the fourth, the training was conducted with
three datasets, and tested with one completely new dataset. By
separating the data in these four experiments, we were able
to study how the methods proposed behaved in the presence
of new data coming from three different sources: synthetic
signals, signals from the same training subjects, and signals
from new subjects.

a) Experiment 1. Synthetic simulations: Experiments
were carried out using synthetic simulations (Section II-C),
and default parameters were employed in the architecture setup
for both ML strategies (see Table II). To study the influence
of the data coordinate system and scattering, two key aspects
were examined in while training Strategy 1: input distributions
and angle transformations.

By changing how the parameter pairs were distributed, we
were able to investigate how the data scattering affected the
method proposed. Two different parameter distributions were
configured in the simulations. The first approach was based on

uniform distributions, which were generated individually for
each parameter, and bounded according to the maximum and
minimum values shown in Table I. Moreover, the second ap-
proach relied on von Mises distributions because of their good
behaviour when dealing with directional data [35][36][32].

Furthermore, Strategy 1 calculated the training MSE loss be-
tween input and predicted parameters, which involved treating
polar angles and diffusivities similarly. That matter brought
up several aspects that MSE did not take into account, like
periodicity or the spherical nature. Three angle transformations
were tested. Apart from the default polar coordinate system,
we also investigated using a sine transformation and a Carte-
sian coordinate system transformation before the MSE loss
calculation.

b) Experiment 2. Single subject: Experiments were
performed on real HCP data from a single subject, and tested
with slices from the same subject. This experiment was taken
as the proof of concept for testing the ML approaches with
our dataset and model, as it proved to work with other setups
and biophysical models [19][18]. From a total of 145 slices,
140 were divided into training and validation sets (70-30%,
respectively), and 5 were used for testing ( 3% from the total).
Default hyperparameters shown in Table II were employed for
both strategies.

c) Experiment 3. Multiple subjects: Experiments were
executed using data from four different subjects, and tested
with slices from the same subjects. The middle slice was
reserved from each dataset to create the test set, which
consisted of a total of four slices. Hyperparameter tuning was
conducted in this experiment, which involved the learning rate,
the number of hidden layers and number of nodes per hidden
layer, the dropout rate, and the input signal normalization.

- The learning rate defines the step size at which the
objective function will converge during the training pro-
cess [37]. The main tests were based on reducing the
learning rate in each experiment by a factor of 10, from
0.01 gradually to 0.0001. Additionally, the possibility
of including an exponential learning rate scheduler was
examined. It was defined to reduce the learning rate at
every epoch by a gamma value of 0.9 from an initial
learning rate of 0.01.

- Concerning the network architecture, several tests were
performed involving the number of hidden layers and
nodes in the model. By default, the model was set to have
only one hidden layer with a reduced number of nodes
(108-56-5), due to the low complexity of the Zeppelin
model (Equation 1). However, two other alternatives were
assessed. The first approach consisted on changing the
model’s architecture to have one hidden layer with the
same number of nodes as the input layer (108-108-5),
and the second involved having three hidden layers with
the same number of nodes as the input layer (108-108-
108-5).
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TABLE III
EXPERIMENT SPECIFICATIONS PER ML STRATEGY, DATA DISTRIBUTION, AND PURPOSE

Experiment 1 Experiment 2 Experiment 3 Experiment 4
ML Strategy 1

experiments
- Uniform vs von Mises
- Polar vs Sine vs Cartesian Default parameters Default parameters - Input normalization

ML Strategy 2
expetiments Default parameters Default parameters

- Learning rate
- ML architecture
- Dropout rate
- Input normalization

- Input normalization

Train and Test
data

- Train: synthetic simulations
- Test: synthetic simulations

- Train: one subject
- Test: same subject

- Train: multiple subjects
- Test: same subjects

- Train: multiple subjects
- Test: new subject

Purpose - Evaluate ML methods
- ML Strategy 1 analysis Proof of concept ML methods Hyperparameter tuning ML Generalizability test ML

- The dropout rate was examined with the aim of regular-
izing the model and avoid overfitting [37]. By default, it
was set to 0.0 (no dropout). However, several alternatives
were studied by performing multiple tests and gradually
reducing it from 0.3 to 0.0.

- Tests were performed on the normalization of input signal
intensities. Two main strategies were explored. In the first
one, all pixels were normalized independently dividing
by their corresponding maximum b=0 signal intensity. In
the second one, all the data was normalized based on the
maximum b=0 global intensity of the whole image.

d) Experiment 4. Multiple subjects: Once the ML model
was tuned with optimal hyperparameters, experiments were
conducted using data from three different subjects (two for
training and one for validation), and tested with one new
subject. With this approach, we concluded our original attempt
to generalize both strategies to accept more than one subject
at a time. Default parameters seen in Table II were used for
both strategies, except for the input signal normalization. For
this set of experiments, an scaling factor was calculated and
used to normalize the input signals. This scaling factor was
individual for each subject and was calculated as follows.
Taking one subject as a reference, we calculated its median
intensity. Next, the median intensity of other subject was
computed, and a linear scaling factor was determined between
them. Finally, both subjects were normalized dividing by the
maximum intensity of the reference subject.

H. Evaluation of results

To evaluate the performance of each experiment, different
quantitative methods were carried out. For each of the four
experiments, scatter plots were generated by plotting ground
truth parameters (x-axis) vs predicted parameters (y-axis). This
evaluation method allowed to visually show the quality of the
relationship between the predictions and the real data, i.e. how
well the model predicted the data. Additionally, the angles (θ
and ϕ) were converted to Cartesian coordinates and evaluated
using cosine similarity histograms. This method relies on the
cosine concept, that is, cosine similarity values closer to 1
indicate similar vectors, and closer to 0 orthogonal vectors.
For a more intuitive representation of the metric, we subtracted
the absolute value of the cosine similarity to 1. Following

Equation 6 with G as ground truth angles and P as predicted
angles, values closer to 0 were interpreted as similar vectors,
and values closer to 1 as orthogonal vectors.

1− | cosα| = 1−
∣∣∣∣ G× P

|G| × |P |

∣∣∣∣ (6)

To evaluate the reconstruction of real data distributions
(Experiments 2 to 4), maps were generated showing the
percentage of the absolute differences between predicted and
ground truth values.

Moreover, metrics were also calculated together with the
scatter plots and difference maps. To quantify the different
methods’ performances, we used the R-squared (R2) coeffi-
cient and the mean absolute error (MAE) [38].

III. RESULTS

In this section, the results from the different experimental
setups are presented. Specifically, we present the results for the
most optimal combination of parameters found (default values
seen in Table II), based on the experiments detailed in Section
II-G. For Experiments 1 and 2, results for NLLS, ML Strategy
1 and ML Strategy 2 are shown. Moreover, for Experiments
3 and 4, ML Strategy 1 and Strategy 2 results are presented.

A. Experiment 1: Synthetic simulations

The results from using simulations calculated from uni-
formly distributed parameters can be seen in Figure 4. Scatter
plots demonstrate that the three methods worked, specially
when predicting S0, AD and RD. However, it can also be seen
that as the ML model becomes more complex (Strategy 2), it
performed worse using this data arrangement. Focusing on the
cosine similarity histograms, while for NLLS the histogram
was centered at 0, Strategy 1 histogram was uniformly scat-
tered between 0 and 1, and Strategy 2 presented a considerable
amount of values >0.5.

To asses numerically the behaviour of simulations, R2 and
MAE values are presented in Table IV. Focusing on the R2

metric, we can see that apart from RD in Strategy 2, which had
a value of 0.537, all parameters had a R2 higher than 0.860.
The same behaviour could be deduced from MAE values,
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Fig. 4. Scatter plots and histograms 1-|cosine similarity| for Experiment 1.
Columns correspond to methods while rows represent the specific parameters.

where mostly all methods obtained values <0.1. Following
this results, the next step of the project was formulated based
on simulations generated from real data.

TABLE IV
METRIC RESULTS FROM EXPERIMENT 1.

Parameter Method R2 MAE
NLLS >0.999 0.001

S0 ML Strategy 1 0.997 0.006
ML Strategy 2 >0.999 0.003
NLLS 0.996 0.015

AD ML Strategy 1 0.975 0.100
ML Strategy 2 0.860 0.225
NLLS 0.985 0.020

RD ML Strategy 1 0.956 0.105
ML Strategy 2 0.537 0.325

B. Experiment 2: Single subject

In Figure 5 we can see the scatter plots and cosine similarity
histograms for the second experiment. The plots show that all
the methods followed the expected straight trend line, and that
the all cosine similarity histograms were centered at 0.

Moreover, Figure 6 displays the % of the absolute dif-
ferences between the ground truth and the corresponding
reconstructed maps for all the methods. NLLS optimization

successfully corrected for GNL. Focusing the attention on the
edges of the brain, without any correction we can appreciate
a clear % of absolute differences (blue edges) of 10% that
disappear when the correction was taken into consideration
(<2%). Strategy 1 showed for S0, AD and RD low a % of
absolute differences, <20%. However, when looking at the
error map for the angles, it showed a great number of areas
with cosine similarity values >0.5. Lastly, Strategy 2 presented
a similar behavior compared to Strategy 1 when predicting S0,
AD and RD, with % of absolute differences <20%. Despite
that, an improvement on the angles’ maps was demonstrated,
with all values of cosine similarity metric <0.5.

Table V shows the R2 and MAE values for the second set
of experiments. Supporting the goal of achieving the method’s
proof of concept, both R2 and MAE values confirmed the
accuracy of the predictions, with values >0.975 and <0.06,
respectively. However, it must be highlighted that, numerically,
although GNL correction proved to work in NLLS, i.e. without
GNL correction MAE value for AD was 0.014 and after
GNL correction it reduced to 0.003, no significant difference
could be appreciated in Strategy 2 due to the high range of
errors coming from the ML model itself (0.033 without GNL
correction compared to 0.043 with GNL correction).

TABLE V
METRIC RESULTS FROM EXPERIMENT 2.

Parameter Method R2 MAE
NLLS no GNL correction >0.999 <0.001
NLLS with GNL correction >0.999 <0.001

S0 ML Strategy 1 0.998 0.002
ML Strategy 2 no GNL correction >0.999 0.001
ML Strategy 2 with GNL correction >0.999 0.001
NLLS no GNL correction 0.997 0.014
NLLS with GNL correction >0.999 0.003

AD ML Strategy 1 0.995 0.021
ML Strategy 2 no GNL correction 0.987 0.033
ML Strategy 2 with GNL correction 0.978 0.043
NLLS no GNL correction 0.999 0.013
NLLS with GNL correction >0.999 0.004

RD ML Strategy 1 0.991 0.034
ML Strategy 2 no GNL correction 0.980 0.052
ML Strategy 2 with GNL correction 0.975 0.060

C. Experiment 3: Multiple subjects

Figure 7 displays the scatter plots and cosine similarity
histograms from the third experiment, where we trained with
multiple subjects and tested with slices from that same set
of subjects. For these experiments, a great difference in
performance can be appreciated in between strategies. The
scatter plots show that Strategy 1 could only accurately predict
S0, following the linear trend line, while it failed to predict
AD and RD. For these last two parameters, it is clear that
the observed relationship diverged from the ideal linear one.
Moreover, the cosine similarity histogram was not centered at
0, showing also a great error range when predicting the angles.
On the contrary, scatter plots and histograms from Strategy 2
confirmed an increased performance without and with GNL
correction, following the expected behaviors.
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Fig. 5. Scatter plots and histograms 1-|cosine similarity| for Experiment 2. Columns correspond to methods while rows represent the specific parameters.

Fig. 6. Reconstruction results for Experiment 2. First column shows the ground truth parameter maps. The following columns show the % of absolute
differences between predicted and ground truth simulations for each of the strategies followed. Rows correspond to the specific parameters.
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Fig. 7. Scatter plots and histograms 1-|cosine similarity| for Experiment 3.
Columns correspond to methods while rows represent the specific parameters.

The % of absolute differences between ground truth and
predicted maps are presented in Figure 9. From a first visual
inspection, it is clear that adding more datasets to the training,
made the model predict less accurately the parameter maps.
Strategy 1 showed a maximum % of absolute differences in
AD and RD of 60% and >80%, respectively. Moreover,
the angles presented high cosine similarity as well, obtaining
values >0.5. Regarding Strategy 2, AD and angle maps had
better predictions compared to Strategy 1 (AD <35%, and
angles <0.4). However, RD maps showed very high errors in
between the ventricles with values >90%.

Metrics from Experiment 3 are presented in Table VI.
Strategy 1 showed a considerably low R2 for AD and RD
maps (0.551 and 0.434, respectively) compared to Strategy
2 (0.991 and 0.78, respectively). Consequently, MAE values
presented the same behavior. Strategy 1 had significant high
errors for both diffusivities (AD and RD MAE values of 0.199,
0.268, respectively), while Strategy 2, although still with high,
had sightly lower values (AD and RD MAE values of 0.106,
0.209, respectively). As exposed in Experiment 2, the high
range of errors originated from the ML network itself made it
impossible to appreciate the GNL correction performed in each
of the parameter maps using either visual inspection (Figure
9) or quantitative metrics (Table VI).

TABLE VI
METRICS RESULTS FROM EXPERIMENT 3.

Parameter Method R2 MAE
ML Strategy 1 >0.999 0.003

S0 ML Strategy 2 no GNL correction >0.999 0.002
ML Strategy 2 with GNL correction >0.999 0.002
ML Strategy 1 0.551 0.199

AD ML Strategy 2 no GNL correction 0.991 0.106
ML Strategy 2 with GNL correction 0.893 0.119
ML Strategy 1 0.434 0.268

RD ML Strategy 2 no GNL correction 0.780 0.209
ML Strategy 2 with GNL correction 0.800 0.195

D. Experiment 4: Multiple subjects

The scatter plots and histograms of cosine similarity from
Experiment 4 are shown in Figure 8. Following the hyperpa-
rameter settings chosen for this experiment, both Strategy 1
and Strategy 2 showed the expected linear relationship for
S0, AD and RD. Also, for Strategy 2, both histograms of
cosine similarity were centered at 0, demonstrating a good
relationship between ground truth and predicted angles, while
Strategy 1 failed to accurately predict the angles (histogram
scattered between 0 and 1).

Fig. 8. Scatter plots and histograms 1-|cosine similarity| for Experiment 4.
Columns correspond to methods while rows represent the specific parameters.

In Figure 10 the % of absolute differences from each
parameter map is illustrated. Strategy 1 presented errors <30%
in AD, and <65% in RD. However, the angle’s cosine
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Fig. 9. Reconstruction results for Experiment 3. First column shows the ground truth parameter maps. The following columns show the % of absolute
differences between predicted and ground truth simulations for each of the strategies followed. Rows correspond to the specific parameters.

similarity measure showed values up to 0.8, as expected
from the histograms illustrated in Figure 8. On the other
hand, Strategy 2 had a comparable performance compared to
Strategy 1 predicting AD maps, but got a higher % of absolute
differences (>0.8) in RD maps. In spite of this, the angles’
cosine similarity maps showed significantly better estimations,
with values <0.5.

Lastly, moving on to the metrics presented in Table VII, it
can be seen that all R2 values for the three methods got a

TABLE VII
METRIC RESULTS FROM EXPERIMENT 4.

Parameter Method R2 MAE
ML Strategy 1 0.923 0.025

S0 ML Strategy 2 no GNL correction 0.993 0.007
ML Strategy 2 with GNL correction 0.996 0.005
ML Strategy 1 0.935 0.092

AD ML Strategy 2 no GNL correction 0.897 0.111
ML Strategy 2 with GNL correction 0.855 0.131
ML Strategy 1 0.912 0.118

RD ML Strategy 2 no GNL correction 0.771 0.214
ML Strategy 2 with GNL correction 0.781 0.209

value >0.771. However, MAE metric did not reflect such good
predictions, with values up to 0.214 in the worst map. Once
more, the difference between not correcting and correcting
for GNL was not visually perceptible due to the high errors
coming from the ML model.

IV. DISCUSSION

In this paper, the possibility of fitting a signal representation
using ML networks was investigated. Moreover, we also
studied the correction for GNL while predicting the parameter
maps, and the feasibility of generalizing the proposed ML
model strategies to train and test with multiple subjects. By
accepting more than one subject during the training, the pos-
sibility of real-time mapping could become a reality, allowing
us to have networks pretrained with several datasets ready to
predict new patient maps in seconds.

A. Experiment 1

The first set of experiments of the project were based
on a simulation study performed with different distributions
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Fig. 10. Reconstruction results for Experiment 4. First column shows the ground truth parameter maps. The following columns show the % of absolute
differences between predicted and ground truth simulations for each of the strategies followed. Rows correspond to the specific parameters.

of parameters to test the approaches with simpler data. As
mentioned in Section II-C, diffusion MRI data is inherently
complex, containing information about the movement of water
molecules inside the brain. By simplifying parameter distribu-
tions, we could study in a more controlled way the behaviour
of our proposed setups.

For ML Strategy 1, two different input distributions were
tested, uniform and von Mises distributions. The experiments
tested on uniform distributions exposed the main limitation
of this strategy, which was the spherical behavior of polar
angles (Figure 4). Von Mises distributions were implemented,
however, results revealed that changing input distributions
did not effectively solve the problem. Since the MSE loss
was calculated between input and predicted parameters, the
model handled in the same way the linear relationship of
the S0, AD and RD, and the spherical relationship of the
angles θ and ϕ. The MSE loss did not take into account
periodicity, where angles that differ by 2π radians should be
interpreted as the same, or positional errors in the sphere.
This problem was further addressed changing the angles
themselves. Considering that the input distribution of angles

were in polar coordinates, two main transformations were
examined. A sine transformation was implemented to handle
the problem of high positional errors due to the spherical
distribution. As the sine function is periodic with a period
of 2π it could potentially solve the problem described earlier.
However, this did not completely unravel the issue, as these
parameters also had orientation. For example, a vector that is
at position 0 and other that is at position π have the same
direction but different orientations. Moreover, the possibility
of transforming from polar to Cartesian coordinates was also
explored, but results were non conclusive either. Following all
the previous reasoning, synthetic simulation studies concluded
that Strategy 1 can give accurate predictions for parameters
following linear relationships, but fail to account for spherical
ones.

Using synthetic simulations, NLLS performed as expected
from literature [17][31], but Strategy 2 did not give such good
results. A reason for this could be the non realistic scattering of
the synthetic uniformly distributed parameters, which is why
the next step was to perform simulations based on in vivo data
simulations calculated from HCP subjects.
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B. Experiment 2

Training and testing with one unique subject proved to
work in all the methods proposed, as expected from previous
studies [18][19]. NLLS confirmed its superior performance
for fitting the Zeppelin model and for correcting for GNL.
However, the main disadvantage of the computational time still
persisted. On the same line, ML demonstrated an acceptable
performance for ML Strategy 1 and Strategy 2 (leaving out
the angular parameters for Strategy 1 as previously discussed
en Experiment 1). GNL correction was also correctly applied,
although the metrics did not reflect the improvement because
of the high error values coming from the ML predictions
compared to the small values related to the correction itself.
The correction was visually confirmed by reconstructing and
computing the absolute difference between the corresponding
signals from predicted parameters without and with GNL
correction.

C. Experiment 3

As the goal was to generalize for more subjects, Experiment
3 was the main focus for optimizing the model’s performance.
Training with multiple subjects and testing with data from the
same subjects was a valid intermediate step which permitted a
gradual increase in the complexity of the model, while at the
same time maintaining the familiarity of the test distribution.
Moreover, it also allowed to experiment in a more controlled
way its performance, minimizing the possible negative in-
fluence of introducing new data without first optimizing the
network. The focus of the hyperparameter tuning was set in
the learning rate, dropout rate, network architecture, and input
signal normalization.

The most optimal learning rate was found to be 0.0001.
By using a small constant learning rate that constrained the
model to take small steps during the training, we effectively
encouraged the network to avoid abrupt oscillations and pre-
vent overfitting. Results showed that, in our specific network,
applying learning rate schedulers with gradual learning rate
reduction leaded to sub-optimal training with slow conver-
gence and sharp loss changes, not reaching appropriately to
the optimal solution. Additionally, no dropout proved to give
the best results. Considering our simple model with only one
hidden layer, experiments demonstrated that adding a dropout
rate only introduced unwanted uncertainty to the training
process, and did not improve the network’s performance.
Next, based on literature [18], different network architectures
were tested. The analysis of the results after comparing
networks 108-56-5, 108-108-5, 108-108-108-5 yielded to the
following interpretations. The addition of hidden layers and
nodes allowed the model to capture more complex patterns
in the data, increasing its capability to extract deeper and
more abstract features. In our experimental setup, because
most of the relationships between parameters were linear,
and only 5 parameters were predicted, the number of hidden
layers and nodes that gave better predictions was 108-56-5. To
finish with the parameter optimization, two alternative methods

were studied to normalize the input signals: pixel-wise and
global dataset normalization. Results confirmed that pixel-wise
normalization was the most effective since scaling the intensity
values individually preserved the relative contrast intensity of
the pixels within the image. By dividing each dataset by the
maximum b=0 intensity value, the standardization was too
strict and the individual intensity characteristics of the images
were lost.

The results obtained using the optimized parameters in this
experiment were not optimal, specially for ML Strategy 1
which failed to accurately predict AD, RD, and the angles.
Strategy 2 performed slightly better when predicting AD and
the angles, but failed to predict RD maps too. One reason
that could explain this behavior is linked to the first limitation
of the proposed network, which is the definition of the input
training signals. To generalize the model and enable it the
accept multiple subjects, we defined a data class including
signals together with their corresponding b-values and gradient
directions. While the signals were given as an input to the
model’s first layer, the b-values and gradient directions were
not shown to the network. They were reserved and input
directly in the forward-simulation of the signal from the
predicted parameters. This made the network unaware of the
situation of having different sets of subjects in the training set,
and unable to differentiate between them without the posterior
reconstruction of the signal. The proposed method worked
better in Strategy 2, because for that strategy the b-values and
gradient directions were not fully excluded from the training
loop. Their influence was taken into account in the MSE loss
calculated between the signals.

D. Experiment 4

Lastly, Experiment 4 was conducted to test the network’s
ability to generalize to new subjects. Although Experiment
3 did not generate optimal results, this last experiment was
needed to analyse and understand the predictions more in
depth. Moreover, the application of real-time mapping needed
to be examined, involving testing with completely new differ-
ent subjects. In this experiment, a new approach for input sig-
nal normalization was considered as pixel-wise normalization
did not generate adequate predictions. An individual scaling
factor was calculated for each dataset based on their median
values, followed by the division by the maximum signal
intensity of the reference dataset. With this new approach, we
were able to normalize the training signals while accounting
for differences in intensity distributions between subjects, and
preserving the relative intensity within each dataset.

The ML predictions for this last experiment were similar to
the ones in Experiment 3. However, we must highlight a con-
siderable improvement in ML Strategy 1 maps. As discussed
in the previous experiment, Strategy 1 was unaware of the
different b-values and gradient directions during the whole
training process. In Experiment 3, pixel-wise normalization
did not consider normalization between subjects, leading to
wrong map outputs. In this final experiment, the scaling factor
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calculation helped the model to generalize better by addressing
the variability before the training, taking as an input signals
that were already normalized across subjects.

E. Limitations and future work

Overall, the project had some limitations which could be
solved in future experiments. Firstly, RD was theoretically
defined based on AD (RD = k*AD), explaining why RD
maps were systematically worse in every experiment. This
definition directly affected RD maps, as every source of error
coming from predicted AD maps was propagated to RD, and
added to its own set of errors. Independent variables for AD
and RD inside the training loop could be considered in new
experiments to avoid error propagation between predictions,
always constraining RD<= AD. Moreover, hyperparameter
tuning experiments were not very extensive, covering only
a few values and three different network architectures. In
the future, a more exhaustive study could be executed using
approaches such as grid search or random search [37] to
consider more tests, and find more optimal parameters. In
relation with the data class and the input signals definition
drawback, some changes could also be implemented. Instead
of keeping the b-values and gradient directions aside until the
forward-simulation of the predicted signals, they could also
be input to the network. This way, the ML network could
generalize better to multiple subjects using all the available
information that was not directly explored in our approach.
Also, it must be highlighted that the model chosen to fit the
HCP data was very simple, fitting only 5 parameters. NLLS
optimization has proved to fit remarkably good simple models
with a few number of parameters. However, as the model’s
complexity increases, the optimization problem becomes more
challenging. Studies have shown higher performance of ML
networks compared to traditional optimization techniques in
more complicated models such as the White Matter model
[39]. As a future step, other biophysical models could be
considered and added to the methodology proposed. Lastly,
the presented methods were only tested on healthy control
subjects taken from a public dataset. Once further investigation
is conducted to solve the main issues in the proposed method-
ology, real data from patients suffering from pathologies such
as Alzheimer’s disease or multiple sclerosis could be used. In
particular, one alternative could be the usage of data acquired
with an ultra-strong gradient head insert at the Utrecht Medical
Center Utrecht (UMCU).

Regarding the individual experiments performed in this
project, although Experiment 3 served as a valid first gen-
eralization step, the focus for future research should be placed
in Experiment 4. A more exhaustive hyperparameter tuning
should be executed, more signal normalization techniques
could be investigated, such as White Stripe, or Z-score nor-
malization [40][41], and new implementations for including
the b-values and b-vectors should be examined. Lastly, with
respect to the ML network implemented, we must highlight
the superior performance of ML Strategy 2 compared to

Strategy 1. Self-supervised networks have proven to mitigate
the influence of data distribution, specially when dealing with
directional parameters (periodicity issue) [18], and have been
successful in correcting for GNL during training.

V. CONCLUSION

This study proposed a ML approach for diffusion MRI
parameter estimation. Images from the HCP were fitted using
the Zeppelin diffusion tensor model by two ML strategies
which were compared to traditional NLLS optimization. We
investigated the possibility of real-time mapping by general-
izing the model to accept multiple subjects during training,
validation and testing. Additionally, the incorporation of GNL
correction in the ML network was also explored. The results
showed that ML approaches worked when training and testing
with one single subject. However, predictions were not optimal
when introducing multiple datasets. Nevertheless, S0, AD and
angular parameters revealed promising preliminary results,
giving a valid starting point for future experiments. Moreover,
GNL correction was properly implemented and included in
the methodology, but the high errors require future thorough
investigation before such networks could be used in e.g.
population studies.

REFERENCES

[1] Peter Stys. “White Matter Injury Mechanisms”. In: Current Molecular
Medicine 4 (2 Mar. 2004), pp. 113–130. ISSN: 15665240. DOI: 10 .
2174/1566524043479220.

[2] S Love. “Demyelinating diseases”. In: Journal of Clinical Pathology
59 (11 May 2006), pp. 1151–1159. ISSN: 0021-9746. DOI: 10.1136/
jcp.2005.031195.

[3] Robert-Jan M. van Geuns et al. “Basic principles of magnetic reso-
nance imaging”. In: Progress in Cardiovascular Diseases 42 (2 Sept.
1999), pp. 149–156. ISSN: 00330620. DOI: 10.1016/S0033-0620(99)
70014-9.

[4] DW Paty et al. “MRI in the diagnosis of MS: a prospective study
with comparison of clinical evaluation, evoked potentials, oligoclonal
banding, and CT”. In: Neurology 38.2 (1988), pp. 180–180.

[5] H. Jiang et al. “Early Diagnosis of Spastic Cerebral Palsy in Infants
with Periventricular White Matter Injury Using Diffusion Tensor
Imaging”. In: American Journal of Neuroradiology 40 (1 Jan. 2019),
pp. 162–168. ISSN: 0195-6108. DOI: 10.3174/ajnr.A5914.

[6] Benedetta Bodini and Olga Ciccarelli. Diffusion MRI in Neurological
Disorders. Elsevier, 2014, pp. 241–255. DOI: 10.1016/B978- 0- 12-
396460-1.00011-1.

[7] E. O. Stejskal and J. E. Tanner. “Spin Diffusion Measurements: Spin
Echoes in the Presence of a Time-Dependent Field Gradient”. In: The
Journal of Chemical Physics 42 (1 Jan. 1965), pp. 288–292. ISSN:
0021-9606. DOI: 10.1063/1.1695690.

[8] H. Y. Carr and E. M. Purcell. “Effects of Diffusion on Free Precession
in Nuclear Magnetic Resonance Experiments”. In: Physical Review 94
(3 May 1954), pp. 630–638. ISSN: 0031-899X. DOI: 10.1103/PhysRev.
94.630.

[9] Jan Hrabe, Gurjinder Kaur, and DavidN Guilfoyle. “Principles and
limitations of NMR diffusion measurements”. In: Journal of Medical
Physics 32 (1 2007), p. 34. ISSN: 0971-6203. DOI: 10 .4103/0971-
6203.31148.

[10] Michael A. Jacobs et al. “Diffusion-Weighted Imaging With Apparent
Diffusion Coefficient Mapping and Spectroscopy in Prostate Cancer”.
In: Topics in Magnetic Resonance Imaging 19 (6 Dec. 2008), pp. 261–
272. ISSN: 0899-3459. DOI: 10.1097/RMR.0b013e3181aa6b50.

[11] Peter J Basser, James Mattiello, and Denis LeBihan. “Estimation of the
effective self-diffusion tensor from the NMR spin echo”. In: Journal
of Magnetic Resonance, Series B 103.3 (1994), pp. 247–254.

13

https://doi.org/10.2174/1566524043479220
https://doi.org/10.2174/1566524043479220
https://doi.org/10.1136/jcp.2005.031195
https://doi.org/10.1136/jcp.2005.031195
https://doi.org/10.1016/S0033-0620(99)70014-9
https://doi.org/10.1016/S0033-0620(99)70014-9
https://doi.org/10.3174/ajnr.A5914
https://doi.org/10.1016/B978-0-12-396460-1.00011-1
https://doi.org/10.1016/B978-0-12-396460-1.00011-1
https://doi.org/10.1063/1.1695690
https://doi.org/10.1103/PhysRev.94.630
https://doi.org/10.1103/PhysRev.94.630
https://doi.org/10.4103/0971-6203.31148
https://doi.org/10.4103/0971-6203.31148
https://doi.org/10.1097/RMR.0b013e3181aa6b50


[12] J. Huang, R.P. Friedland, and A.P. Auchus. “Diffusion Tensor Imaging
of Normal-Appearing White Matter in Mild Cognitive Impairment and
Early Alzheimer Disease: Preliminary Evidence of Axonal Degenera-
tion in the Temporal Lobe”. In: American Journal of Neuroradiology
28 (10 Nov. 2007), pp. 1943–1948. ISSN: 0195-6108. DOI: 10.3174/
ajnr.A0700.

[13] Eric C. Klawiter et al. “Radial diffusivity predicts demyelination in
ex vivo multiple sclerosis spinal cords”. In: NeuroImage 55 (4 Apr.
2011), pp. 1454–1460. ISSN: 10538119. DOI: 10.1016/j.neuroimage.
2011.01.007.

[14] Daniel C. Alexander et al. “Imaging brain microstructure with diffusion
MRI: practicality and applications”. In: NMR in Biomedicine 32 (4 Apr.
2019). ISSN: 0952-3480. DOI: 10.1002/nbm.3841.

[15] Chantal M.W. Tax et al. “What’s new and what’s next in diffusion MRI
preprocessing”. In: NeuroImage 249 (Apr. 2022), p. 118830. ISSN:
10538119. DOI: 10.1016/j.neuroimage.2021.118830.

[16] Vladimir Golkov et al. “Q-space deep learning: twelve-fold shorter and
model-free diffusion MRI scans”. In: IEEE transactions on medical
imaging 35.5 (2016), pp. 1344–1351.

[17] Cheng Guan Koay et al. “A unifying theoretical and algorithmic
framework for least squares methods of estimation in diffusion tensor
imaging”. In: Journal of Magnetic Resonance 182 (1 Sept. 2006),
pp. 115–125. ISSN: 10907807. DOI: 10.1016/j.jmr.2006.06.020.

[18] Jason P. Lim et al. “Fitting a Directional Microstructure Model to
Diffusion-Relaxation MRI Data with Self-Supervised Machine Learn-
ing”. In: (Oct. 2022).

[19] Francesco Grussu et al. “Deep learning model fitting for diffusion-
relaxometry: a comparative study”. In: Computational Diffusion MRI:
International MICCAI Workshop, Lima, Peru, October 2020. Springer.
2021, pp. 159–172.

[20] Stefanie Eriksson et al. “NMR diffusion-encoding with axial symmetry
and variable anisotropy: Distinguishing between prolate and oblate
microscopic diffusion tensors with unknown orientation distribution”.
In: The Journal of Chemical Physics 142 (10 Mar. 2015). ISSN: 0021-
9606. DOI: 10.1063/1.4913502.

[21] Daniel Topgaard. “Multidimensional diffusion MRI”. In: Journal of
Magnetic Resonance 275 (Feb. 2017), pp. 98–113. ISSN: 10907807.
DOI: 10.1016/j.jmr.2016.12.007.

[22] Uran Ferizi et al. “A robust diffusion tensor model for clinical
applications of MRI to cartilage”. In: Magnetic Resonance in Medicine
79 (2 Feb. 2018), pp. 1157–1164. ISSN: 0740-3194. DOI: 10.1002/mrm.
26702.

[23] Chantal M.W. Tax et al. “Measuring compartmental T2-orientational
dependence in human brain white matter using a tiltable RF coil
and diffusion-T2 correlation MRI”. In: NeuroImage 236 (Aug. 2021),
p. 117967. ISSN: 10538119. DOI: 10.1016/j.neuroimage.2021.117967.

[24] Matthew F. Glasser et al. “The minimal preprocessing pipelines for the
Human Connectome Project”. In: NeuroImage 80 (Oct. 2013), pp. 105–
124. ISSN: 10538119. DOI: 10.1016/j.neuroimage.2013.04.127.

[25] R. Bammer et al. “Analysis and generalized correction of the effect
of spatial gradient field distortions in diffusion-weighted imaging”. In:
Magnetic Resonance in Medicine 50 (3 Sept. 2003), pp. 560–569. ISSN:
0740-3194. DOI: 10.1002/mrm.10545.

[26] D.C. Van Essen et al. “The Human Connectome Project: A data acqui-
sition perspective”. In: NeuroImage 62 (4 Oct. 2012), pp. 2222–2231.
ISSN: 10538119. DOI: 10.1016/j.neuroimage.2012.02.018.

[27] K. Setsompop et al. “Pushing the limits of in vivo diffusion MRI
for the Human Connectome Project”. In: NeuroImage 80 (Oct. 2013),
pp. 220–233. ISSN: 10538119. DOI: 10.1016/j.neuroimage.2013.05.
078.

[28] Hamed Y. Mesri et al. “The adverse effect of gradient nonlinearities
on diffusion MRI: From voxels to group studies”. In: NeuroImage 205
(Jan. 2020), p. 116127. ISSN: 10538119. DOI: 10.1016/j.neuroimage.
2019.116127.

[29] Stamatios N. Sotiropoulos et al. “Advances in diffusion MRI ac-
quisition and processing in the Human Connectome Project”. In:
NeuroImage 80 (Oct. 2013), pp. 125–143. ISSN: 10538119. DOI: 10.
1016/j.neuroimage.2013.05.057.

[30] Lei Tang and Xiaohong Joe Zhou. “Diffusion MRI of cancer: From
low to high b-values”. In: Journal of Magnetic Resonance Imaging 49
(1 Jan. 2019), pp. 23–40. ISSN: 1053-1807. DOI: 10.1002/jmri.26293.

[31] Ileana O. Jelescu et al. “Degeneracy in model parameter estimation
for multi-compartmental diffusion in neuronal tissue”. In: NMR in

Biomedicine 29 (1 Jan. 2016), pp. 33–47. ISSN: 0952-3480. DOI: 10.
1002/nbm.3450.

[32] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272.
DOI: 10.1038/s41592-019-0686-2.

[33] Eleftherios Garyfallidis et al. “Dipy, a library for the analysis of
diffusion MRI data”. In: Frontiers in Neuroinformatics 8 (Feb. 2014).
ISSN: 1662-5196. DOI: 10.3389/fninf.2014.00008.

[34] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Process-
ing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035. URL:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

[35] DJ Best and Nicholas I Fisher. “Efficient simulation of the von Mises
distribution”. In: Journal of the Royal Statistical Society: Series C
(Applied Statistics) 28.2 (1979), pp. 152–157.

[36] Kantilal Varichand Mardia. “Statistics of directional data”. In: Journal
of the Royal Statistical Society Series B: Statistical Methodology 37.3
(1975), pp. 349–371.

[37] Li Yang and Abdallah Shami. “On hyperparameter optimization of
machine learning algorithms: Theory and practice”. In: Neurocomput-
ing 415 (Nov. 2020), pp. 295–316. ISSN: 09252312. DOI: 10.1016/j.
neucom.2020.07.061.

[38] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[39] João P. de Almeida Martins et al. “Neural networks for parameter es-
timation in microstructural MRI: Application to a diffusion-relaxation
model of white matter”. In: NeuroImage 244 (Dec. 2021), p. 118601.
ISSN: 10538119. DOI: 10.1016/j.neuroimage.2021.118601.
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APPENDIX A

Fig. A.1. Reconstructed parameter maps from methods executed with Experiment 2. Methods presented in columns, and parameters in rows

Fig. A.2. Absolute difference map showing GNL correction for Strategy 2 Experiment 2 predictions. Signals reconstructed with parameters with and without
GNL correction, and subtracted. Signals shown for b-value of 1.005 µm2/ms
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Fig. A.3. Reconstructed parameter maps from methods executed with Experiment 3. Methods presented in columns, and parameters in rows.

Fig. A.4. Absolute difference maps showing GNL correction for Strategy 2 Experiment 3 predictions. Signals reconstructed with parameters with and without
GNL correction, and subtracted. Middle slice of each dataset (the 4 slices comprising the test set) is shown for b-value of 1.005 µm2/ms
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Fig. A.5. Reconstructed parameter maps from methods executed with Experiment 4. Methods presented in columns, and parameters in rows.
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Fig. A.6. Average intensity projection of the absolute errors calculated between ground truth and predicted parameters from the test dataset following ML
strategies in Experiment 4.

D


	Introduction
	Methods
	Microstructural modeling
	Gradient Nonlinearity and Spatially varying L-matrix
	Simulations
	In vivo experiments
	Non-linear Least Squares optimization
	Machine learning network
	Strategy 1
	Strategy 2

	Experimental setup
	Evaluation of results

	Results
	Experiment 1: Synthetic simulations
	Experiment 2: Single subject
	Experiment 3: Multiple subjects
	Experiment 4: Multiple subjects

	Discussion
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Limitations and future work

	Conclusion
	Appendix A

